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ABSTRACT  18	  

Inbreeding depression refers to the reduction of fitness that results from matings 19	  

between relatives. Evidence for reduced fitness in inbred individuals is widespread, 20	  

but the strength of inbreeding depression varies widely both within and among taxa. 21	  

Environmental conditions can mediate this variation in the strength of inbreeding 22	  

depression, with environmental stress exacerbating the negative consequences of 23	  

inbreeding. Parents can modify the environment experienced by offspring, and have 24	  

thus the potential to mitigate the negative consequences of inbreeding. While such 25	  

parental effects have recently been demonstrated during the postnatal period, the role 26	  

of prenatal parental effects in influencing the expression of inbreeding depression 27	  

remains unexplored.  To address this gap, we performed matings between full-sibs or 28	  

unrelated individuals in replicated lines of Japanese quail (Coturnix japonica) 29	  

experimentally selected for high and low maternal egg provisioning. We show that in 30	  

the low maternal investment lines hatching success was strongly reduced when 31	  

parents were related. In the high maternal investment lines, however, this negative 32	  

effect of inbreeding on hatching success was absent, demonstrating that prenatal 33	  

maternal provisioning can alleviate the negative fitness consequences of inbreeding. 34	  

 35	  

 36	  
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INTRODUCTION 40	  

Inbreeding depression occurs when matings between relatives result in decreased 41	  

offspring fitness. This reduction in fitness is likely due to an increase in homozygosity 42	  

that exposes deleterious recessive alleles to selection (1). This phenomenon has been 43	  

observed across many taxa (2, 3), but the degree to which an individual experiences a 44	  

decreased fitness at a given level of inbreeding varies between species and 45	  

populations.   46	  

Some of this variation is explained by differences in genetic load, the reduction in the 47	  

mean fitness of a population from that of a theoretically optimal genotype (1, 3). 48	  

However, there is increasing evidence that environmental conditions can also 49	  

influence the degree of inbreeding depression experienced by an individual (4-6). In a 50	  

benign environment, the deleterious effects of inbreeding may not be expressed, but 51	  

when exposed to environmental stressors such as heat, drought or food limitation 52	  

inbreeding depression can increase with the magnitude of the stressor (2, 7-9).  53	  

The environment an individual experiences during the first stages of life is provided 54	  

by the parents in most taxa, and this early life environment can have long-lasting 55	  

effects on offspring phenotype and fitness (10, 11).   At the same time, inbreeding 56	  

depression is particularly strong during early life stages (12). Parents thus have the 57	  

potential to mitigate the negative consequences of inbreeding by increasing their 58	  

investment in parental care, and thereby providing a more favourable early life 59	  

environment for the offspring (13, 14).  In line with this idea, a recent study in 60	  

burying beetles (Nicrophorus vespilloides) showed that postnatal parental care can 61	  

buffer the negative effects of inbreeding (15).  62	  

However, parents influence not only the offspring’s postnatal environment, but also 63	  

the conditions experienced before birth. This prenatal environment is provided by the 64	  
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mother in most taxa. While it is well documented that inbreeding negatively affects 65	  

early development and hatching success (16-19), the role of the prenatal environment 66	  

in influencing the expression of inbreeding depression has not been experimentally 67	  

tested.  68	  

To address this gap, we performed experimental matings between full-sibs and 69	  

unrelated individuals in replicated lines of Japanese quail (Coturnix japonica) 70	  

experimentally selected for high and low maternal egg provisioning  (high and low 71	  

maternal investment lines).   This 2 x 2 design allowed us to test experimentally if 72	  

prenatal maternal provisioning can buffer the negative effects of inbreeding on 73	  

hatching success. We predict that if mothers can mitigate the negative consequences 74	  

of inbreeding by providing a favourable prenatal environment for their offspring, 75	  

inbreeding depression will be pronounced in the low maternal investment lines but 76	  

absent, or strongly reduced, in the maternal high investment lines. 77	  

 78	  

 79	  

METHODS 80	  

Artificial selection lines for divergent maternal egg provisioning 81	  

We established replicated selection lines for high and low maternal egg provisioning 82	  

in a population of Japanese quail (Coturnix japonica) maintained at the University of 83	  

Zurich, Switzerland (20). The founder population for this study consisted of 91 84	  

females and 98 males. It was obtained from a commercial quail egg farm located in 85	  

the south-east of Switzerland, where birds from two different origins were maintained 86	  

in two separate populations. These populations had been maintained since 1998 at the 87	  

farm before our selection experiment began in 2012, and no (intentional) artificial 88	  

selection had been imposed on the birds during this time. Although no pedigree was 89	  
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available for the founders, large populations were maintained on the farm, and efforts 90	  

were made to avoid inbreeding. To further increase genetic diversity in our study 91	  

population, we crossed birds from the two origins and used these crosses as the 92	  

starting population for the selection experiment (see (20) for more details).  93	  

In the first generation of the selection experiment, eggs from the 25% of females 94	  

producing the largest and smallest eggs relative to their body size were incubated to 95	  

create the high and low investment lines, respectively. In subsequent generations we 96	  

selected the most extreme 50% of females within each line. We repeated this 97	  

procedure with two independent starting populations to create two independent 98	  

replicates per line (20). During the selection procedure, matings between relatives 99	  

were prevented and as a result the inbreeding coefficient (f) of the parental generation 100	  

used in this experiment (see below) was low (< 0.058, based on six generations of 101	  

complete pedigree data).  102	  

We observed a strong response to selection on egg size, as well as a positively 103	  

correlated response in dried egg components (i.e. fat and protein), but not in the 104	  

number of eggs laid (20). The lack of an egg size / number trade-off was surprising, 105	  

but appears to be not uncommon (reviewed and discussed in (20)), and we are 106	  

currently exploring alternative costs associated with increased maternal offspring 107	  

provisioning in our population. 108	  

40 males and 40 females from the sixth generation of these divergently selected lines 109	  

were used for this experiment (mean egg mass (mean ±  sd) of females from the high 110	  

investment lines: 12.391 ± 0.892g; mean egg mass of females from the low 111	  

investment lines: 11.390 ± 0.698g (line: F 1, 37 = 15.473, p <0.001; inbreeding status: 112	  

F1, 37 = 0.599, p = 0.444; line x inbreeding status: F1, 36 = 0.156, p = 0.695;  N = 40)). 113	  
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Females were kept separately from males before the experiment to ensure that they 114	  

had not mated before.  115	  

 116	  

 117	  

Experimental inbreeding 118	  

Individuals from the high and low investment lines were assigned to breed either with 119	  

a full sibling (inbreeding) or an unrelated partner from the same line replicate 120	  

(outbreeding), resulting in 40 breeding pairs that were paired up simultaneously: 10 121	  

high investment line inbreeding (HI) pairs, 10 high investment line outbreeding (HO) 122	  

pairs, 10 low investment line inbreeding (LI) pairs, and 10 low investment line 123	  

outbreeding (LO) pairs. We measured the birds’ body size  (i.e. tarsus length) at the 124	  

beginning of the breeding experiment to the nearest 0.1mm. There was a significant 125	  

difference in body size between females from the H and L lines (F1, 37 = 10.997, p = 126	  

0.002; see also (20)), but not between females that were paired to a related or 127	  

unrelated partner (F1, 37 = 0.002, p = 0.968; interaction line x inbreeding status: F1, 36 = 128	  

3.070, p = 0.088). To control for these line differences in body size, female tarsus 129	  

length was included as a covariate in the statistical analyses (see below).  130	  

All birds received ad libitum food, water, and grit. Breeding cages (122 x 50 x 50 cm) 131	  

were lined with sawdust, and contained a house and a sand bath. The facility was 132	  

maintained on a 16 L :8 D cycle and at a temperature of approximately 20°C. Eggs 133	  

were collected over a period of 15 days. During this entire period, breeding pairs were 134	  

housed together in the breeding cages. Males and females were in breeding condition 135	  

when entering the cages and all couples copulated immediately after being released 136	  

into the cages.   137	  
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We calculated the inbreeding coefficient (f) for the offspring of all these pairings: 138	  

offspring produced by outbreeding pairs had an inbreeding coefficient 0.002 < f  < 139	  

0.02, while those produced by inbreeding pairs had an f  ≥ 0.25.    140	  

 141	  

 142	  

Hatching success 143	  

Eggs were collected daily between 08:00 and 11:00 am, weighed to the nearest 0.01g, 144	  

and stored for up to five days at 12◦C until incubation. Incubation occurred in three 145	  

batches (batch 1: eggs from day 1-5, batch 2: eggs from day 6-10, batch 3: eggs from 146	  

day 11-15) at 37.8◦C and 55% humidity for 14 days (Favorit, HEKA Brutgeräte, 147	  

Rietberg).  Eggs were then transferred to individual compartments in a hatcher 148	  

(Favorit, HEKA Brutgeräte, Rietberg), and kept at 37.6◦C and 80% humidity until 149	  

hatching (20).  Eggs that did not hatch after 18 days of incubation were classified as 150	  

‘did not hatch’ (20). Eggs of all treatment groups were treated in the same way and 151	  

there was no significant effect of inbreeding status (χ2 = 0.030, p = 0.862), line (χ2 = 152	  

0.190, p = 0.663) or their interaction (χ2 = 1.958, p = 0.162) on the number of eggs 153	  

laid (i.e. incubated) (number of eggs incubated per breeding pair: 1-16; total number 154	  

of eggs incubated: N = 526).  155	  

 156	  

Statistical analysis 157	  

The probability of hatching (hereafter referred to as ‘hatching success’) was analysed 158	  

on the level of the breeding pair using a generalised linear model with a binomial 159	  

error structure and a logit link function. In a first model, we included selection line, 160	  

inbreeding status and their interaction as fixed effects, and maternal tarsus length as a 161	  

covariate. In a second model (same as above), we replaced selection line with a 162	  
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female’s mean egg mass (in g) to provide further evidence that the line effects 163	  

observed in the first model are mediated by differences in maternal egg provisioning. 164	  

To infer significance, we compared two nested models, with and without the variable 165	  

of interest, using likelihood ratio tests (all df = 1; N = 40 breeding pairs). Data were 166	  

analysed using the lme4 (21) and multcomp (22) packages in R version 3.21 (R 167	  

Development Core Team 2015).  168	  

 169	  

RESULTS 170	  

Hatching success was influenced by a significant interaction effect between selection 171	  

line and inbreeding treatment (χ2 = 5.355, p = 0.021; Figure 1, see Table 1A for full 172	  

model output). Posthoc contrasts revealed that in the low maternal investment lines, 173	  

hatching success was significantly lower when parents were related (Tukey’s HSD 174	  

test; LO vs. LI: z = 4.237, p < 0.001, Fig. 1). In contrast, in the high investment lines 175	  

the hatching success of eggs from related parents was not significantly different from 176	  

the hatching success of eggs from unrelated parents (HO vs. HI: z = 1.041, p = 0.724, 177	  

Fig. 1). Furthermore, the hatching success of eggs from related or unrelated parents 178	  

from the high investment lines did not differ significantly from hatching success of 179	  

eggs from unrelated parents from the low investment lines (LO vs. HI: z = 1.297, p = 180	  

0.564; LO vs. HO: z = 0.357, p = 0.984, Fig. 1).  181	  

To confirm that these line-specific effects of inbreeding on hatching success are 182	  

mediated by egg size, we ran a second model in which we replaced selection line with 183	  

mean maternal egg mass as a predictor. Again, we found that the interaction effect 184	  

between inbreeding treatment and egg mass significantly affected hatching success (χ2 185	  

= 15.539, p < 0.001; figure 2; see Table 1B for full model output). Larger eggs from 186	  

an inbreeding pair were more likely to hatch than smaller eggs, whereas no 187	  
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relationship between egg size and hatching success was found in outbreeding pairs 188	  

(Fig. 2).  In both models, there was a trend for a negative relationship between a 189	  

female’s body size and the hatching success of her eggs (Table 1A, B). 190	  

 191	  

DISCUSSION 192	  

We show that favourable prenatal conditions can buffer the negative effects of 193	  

inbreeding on hatching success. Inbreeding strongly reduced hatching success when 194	  

offspring developed in a small, nutrient poor egg (i.e. under harsh prenatal 195	  

conditions), but this inbreeding effect was absent when offspring developed in a large, 196	  

nutrient rich egg (i.e. under benign prenatal conditions). This demonstrates that the 197	  

prenatal environment affects the expression of inbreeding depression, and that 198	  

mothers can mitigate the negative consequences of inbreeding by increasing their 199	  

prenatal provisioning.   200	  

There is widespread and increasing evidence for environmental mediation of 201	  

inbreeding depression (5, 7, 9, 23, 24). However, despite the importance of parents in 202	  

shaping the early environment experienced by an individual, the role of parental care 203	  

in modulating the expression of inbreeding depression has received little attention to 204	  

date. An exception is a pair of recent studies in burying beetles that provide support 205	  

for ‘parental rescue’ from inbreeding depression during the postnatal period (15, 25). 206	  

Burying beetle parents provide food to the larvae, but this parental provisioning is 207	  

facultative. Pilakouta and colleagues (15) setup experimental matings between 208	  

siblings and unrelated individuals, and removed the care-providing mother before 209	  

larval hatching from half of the broods. They found that inbred offspring without a 210	  

mother present suffered a greater decline in fitness-related traits than did those with 211	  

an attendant mother (15). A subsequent study revealed that maternal quality can also 212	  



	   10	  

impact the expression of inbreeding depression, with offspring of large mothers 213	  

experiencing less inbreeding depression than offspring of small mothers (25). 214	  

However, a similar study in another care-giving insect, the European earwig 215	  

(Forficula auricularia), failed to find evidence that postnatal parental care alleviates 216	  

the negative consequences of inbreeding (26).  217	  

While there is mixed empirical evidence for a role of parental care during the 218	  

postnatal period in shaping the consequences of inbreeding (see above), the role of 219	  

care provided before birth, and in particular of prenatal maternal resource 220	  

provisioning, has not been experimentally tested.  221	  

It is well documented that prenatal care has positive effects on offspring fitness (27-222	  

29). Chicks developing in larger, more nutrient rich eggs are, for example, heavier, 223	  

grow faster and are more likely to survive (20, 29, 30).  Prenatal parental provisioning 224	  

is also known to mitigate the negative effects of a harsh postnatal environment on 225	  

offspring fitness. For example, large amphibian eggs increase juvenile survival in 226	  

harsh environments (31), and nestlings raised under limited food conditions reach a 227	  

similar fledging mass as food-supplemented nestlings if their mother had received 228	  

extra food during egg laying (32). Finally, prenatal maternal provisioning has been 229	  

hypothesized to alleviate genetic disadvantages, as when female house finches 230	  

(Haemorhous mexicanus) paired with low quality mates increase the deposition of 231	  

androgens to their eggs (33). Our results are in line with these previous findings and 232	  

provide the first experimental evidence that mothers can reduce the negative fitness 233	  

consequences of inbreeding for offspring by increasing their resource provisioning 234	  

before birth. It implies that population structure, and thus the likelihood of mating 235	  

with a relative, may shape the evolution of parental care in general, and the evolution 236	  

of prenatal maternal provisioning in particular (see also 34).  Selection for increased 237	  
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parental provisioning might be particularly strong in small and isolated populations, in 238	  

which inbreeding is common (34), but weaker in large populations where outbreeding 239	  

is the norm. Population structure might therefore contribute to the maintenance of 240	  

variation in parental provisioning observed across populations (35, 36).   241	  

Egg size has a strong heritable component and has been shown to respond rapidly to 242	  

selection (20, 37). In addition, there is evidence for a substantial non-genetic effect of 243	  

maternal egg size on the egg size of the next generation (i.e. a cascading maternal 244	  

effect, Pick et al unpublished) that further accelerates the response to selection on 245	  

prenatal maternal provisioning.  This positive feedback loop will allow for a fast 246	  

response in prenatal provisioning to changing environmental conditions, which may 247	  

buffer the next generation from the negative impact of environmental or genetic 248	  

stressors (38).  249	  

In addition, our results suggest that plastic changes in prenatal maternal provisioning 250	  

in response to the relatedness of the partner may be adaptive. On the one hand, we 251	  

may predict increased prenatal maternal provisioning when a female is breeding with 252	  

a relative in order to alleviate the negative consequences of inbreeding for the 253	  

offspring. On the other hand, also a reduced prenatal maternal provisioning may be 254	  

predicted when the risk of inbreeding is high. Indeed, the higher susceptibility of 255	  

inbred offspring to harsh prenatal conditions may provide females (which mate with 256	  

multiple partners) with a post-zygotic inbreeding avoidance opportunity and prevent 257	  

females from wasting post-natal investment in unfit offspring. To our knowledge, no 258	  

data on the plastic change of egg size in response to the relatedness of the partner are 259	  

currently available from natural populations, but testing for evidence for these 260	  

different scenarios would clearly be a fruitful next step.  261	  

 262	  
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In conclusion, we provide the first experimental evidence that prenatal maternal 263	  

provisioning can alleviate the negative consequences of inbreeding.  Our results, 264	  

along with those of Pilakouta and colleagues (15, 25), demonstrate that parental 265	  

buffering of inbreeding depression may be widespread and suggest that the risk of 266	  

inbreeding may shape the evolution of parental care.   267	  
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TABLES 389	  

Table 1. Effects of the inbreeding status of the parents (inbreeding vs outbreeding) 390	  

and prenatal maternal provisioning on hatching success. A) Including selection line as 391	  

a measure of prenatal maternal provisioning, B) Including egg mass (g) as a measure 392	  

of prenatal maternal provisioning. 393	  

  394	  

B. χ2 P 

Hatching success   

     Inbreeding status  13.681 <0.001 

     Egg mass 2.439 0.118 

     Egg mass x Inbreeding status 15.539 <0.001 

     Maternal tarsus length 3.681 0.055 

   

A. χ2 P 

Hatching success   

     Inbreeding status 14.976 <0.001 

     Selection line  2.125 0.145 

     Selection line x Inbreeding status 5.355 0.021 

     Maternal tarsus length 3.395 0.065 
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FIGURE LEGENDS 395	  

Figure 1. Hatching success of eggs from inbreeding and outbreeding parents in the 396	  

high and low maternal investment lines. Plotted values are means ± S.E. of the 397	  

proportion of eggs hatched per breeding pair. Inbreeding significantly reduces 398	  

hatching success in the low investment lines but not in the high investment lines. 399	  

  400	  
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Figure 2. Relationship between hatching success and egg mass in inbreeding and 401	  

outbreeding pairs. The proportion of eggs hatched per breeding pair are plotted. When 402	  

parents are related large eggs are more likely to hatch than small eggs (open dots), but 403	  

when parents are unrelated egg size does not impact hatching success (filled dots).  404	  

 405	  


