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Abstract— In this paper, we present an optical diagnostic assay 

consisting of a mixture of environmental-sensitive fluorescent 

dyes combined with multivariate data analysis for quantitative 

and qualitative examination of biological and clinical samples. 

The performance of the assay is based on the analysis of spectrum 

of the selected fluorescent dyes with the operational principle 

similar to electronic nose and electronic tongue systems. This 

approach has been successfully applied for monitoring of growing 

cell cultures and identification of gastrointestinal diseases in 

humans. 

 
Index Terms— chemometrics, clinical applications, 

fluorescence dyes, optical diagnosis. 

I. INTRODUCTION 

INCE the last decade the research associated with the 

development of new sensor assays to detect multiple 

analytes has been growing intensively [1-3]. The use of such 

an intelligent device with the capability of accurate and 

reliable diagnosis could help to decrease probability of harm, 

minimize clinical intervention, costs of medical treatment and 

as a consequence improve long-term public health. This 

requires new developments and implementation of suitable 

indicators to estimate potential risk factors and their effects on 

health, identification of early symptoms of diseases or 

monitoring the progress of treatment [4, 5]. 

Current trends in the development of sensing technologies 

mimic perception of mammalian smell and taste (schematically 

shown in Fig. 1a). Known as electronic noses (e-noses) and 

tongues (e-tongues), these techniques [6, 7] are based on the 

'smelling/tasting' array of cross-sensitive chemical receptors 

and interpretation of detected composite signals with suitable 

statistical methods [8, 9] (see Fig. 1b). The specificity of such 

a methodology is related to the pattern recognition in response 

to signals produced by interactions of the sample with all 
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sensing elements [10, 11]. The obtained patterns are unique to 

particular conditions and therefore can be considered similar 

as the fingerprints. 

The analytical capability of such an approach is less likely 

to lie in the measurements of analytes’ concentrations than in 

profiling the chemical or biological processes and qualitative 

sample analysis.
 

Although both e-nose and e-tongue 

technologies are currently commercially available, they suffer 

from significant limitations, such as poor stability, limited 

selectivity, low reproducibility, demand for frequent 

calibration, complexity of generated information, and high 

fabrication costs of sensor arrays [6,12]. 

Lately there has been a surge of attention to optical 

diagnostics, especially in the field of real-time non-invasive in 

vivo detection [13]. This is explained by the facts that optical 

techniques are often non-destructive, do not require physical 

contact with a sample during analysis and enable rapid 

response [14,15]. They are able to provide information at the 

molecular level through tissues and living organs originating 

from both animals and humans. Light can also be used as a 

tool for manipulating or modifying living cells and can be 

focused at a tiny spot, which allows precise localised and 

minimal invasive treatment [16]. By providing more effective, 

cheaper and easy accessible service, biophotonics and optical 

diagnostic technology can have a huge and crucial impact on 

clinical practice. 

Recently we described a fluorescence-based assay with the 

operating principle similar to e-noses and e-tongues used for 

simultaneous measurements of several physicochemical 

parameters [17]. Those preliminary experiments have been 

performed to investigate the analytical capability of the 

proposed assay and validate its potential for quantitative 

analysis of samples. Additionally, previous publication 

includes the details on the methodology and data evaluation. A 

schematic illustration of the concept of optical/fluorescent 

assay is shown in Fig. 1c. The mixture of five fluorescent dyes 

interacts with the sample and generates excitation-emission 

matrix (EEM) fluorescence spectra (Fig. 2) distinctive for 

biochemical or medical conditions. 

EEMs are generated by passing white light (typically from a 

Xe source) through an excitation polychromator which splits 

the light into different wavelengths at a pre-determined range 

which then irradiate the sample in the cuvette. The 

fluorescence light emitted by the sample passes through an 

emission polychromator which also splits the light into
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Fig. 1. Schematic representation of sensing systems: (a) human olfactory system, (b) electronic analogue and (c) optical/fluorescence analogue [17]. 

 

different wavelengths from which the split light is captured on 

a charge-coupled device (CCD) camera, thus generating an 

image or fluorescence profile as shown in Fig. 2. Using 

chemometric approaches these patterns are further analyzed 

and the optical signal is transferred into analytical 

characteristics of the samples. Additionally, for the minimum 

interference with biological samples, selected fluorescent dyes 

are responsive in the VIS-NIR range. 

 
Fig. 2. 3D color mapped surface of the excitation-emission spectral pattern 

for selected 5 fluorescent dyes: Dye 1 is 8-hydroxypyrene-1’,3,6-trisulfonic 

acid, Dye 2 is Oregon green 514, Dye 3 is Rhodamine B, Dye 4 is Tris(4,7-

diphenyl-1,10-phenanthroline) ruthenium dichloride, Dye 5 is Thionin acetate 

[17]. 

In the current study we investigate the potential of the 

technique developed in [17] for qualitative examination of 

biological and clinical samples. 

 The feasibility of this approach has been tested for 

monitoring development phases of growing bacterial cultures 

and for analysis of urine samples from healthy volunteers and 

patients diagnosed with gastrointestinal diseases. 

In the first issue we take into account that certain types of 

bacteria, fungi, viruses or parasites have significant impact on 

human life considering their beneficial or harmful effects. 

Therefore, controlling the growth of microorganisms is 

necessary for many practical reasons including medicine, 

prevention or treatments of diseases, production of drugs, etc. 

This involves the identification of the phases of microbial 

growth to inhibit the process or recognize and learn favorable 

environmental conditions, which they need to live and 

reproduce. 

The second test was performed on human urine samples for 

recognition of three gastro-intestinal diseases (irritable bowel 

syndrome, Crohn’s disease and ulcerative colitis). They are 

currently serious public health problems, which have been 

forecasted to further increase in most countries around the 

world [18, 19]. The identification of the symptoms, early 

diagnosis and treatment of these diseases is still challenging 

because the etiology and factors causing these complex 
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disorders are yet not well known. Therefore, their mechanisms 

are difficult to explain, various types difficult to discriminate 

and therapeutic targets hard to identify [20, 21]. Typically, 

their diagnosis involves many analytical tests which are often 

costly and invasive. Therefore, it is of the great importance to 

search for the suitable and sensitive method for controlling 

gastrointestinal microbiota and early detection of dangerous 

pathogens [22]. 

II. MATERIALS AND METHODS 

The assay composed of five commercially available and 

inexpensive fluorescent dyes has been successfully developed 

for measurements of pH, temperature, dissolved oxygen and 

ionic strength of a solution (given by a buffer concentration) 

[17]. The results obtained have demonstrated, with high 

accuracy, quick, simultaneous identification and calculation of 

several physicochemical parameters (see Table I). Analytical 

performance of the assay was demonstrated with relatively low 

root means square error (RMSE), which describes the quality 

of fitting of a regression model. 

 
TABLE I 

 PERFORMANCE OF FLUORESCENT DYES ASSAY 

 Parameter Dye Name Sensitivity 

Range 

RMSE 

1 pH 8-Hydroxypyrene-

1’,3,6-trisulfonic acid, 

Oregon Green 514 

5 - 9 0.004 

2 temperature 

[oC] 

Rhodamine B 25 - 40  0.437 

3 dissolved oxygen 

[ppm] 

Tris (4,7-diphenyl -

1,10-phenanthroline) 

ruthenium dichloride 

0 - 21.6 0.049 

4 buffer concentration 

[mM] 

8-Hydroxypyrene- 

1’,3,6 - trisulfonic acid 

5 - 150 6.818 

 

A. Composition of dyes mixture 

The mixture of fluorescent dyes were prepared as a stock 

solution of following dyes: 0.15 mM 8-Hydroxypyrene-1’,3,6-

trisulfonic acid, 0.1 mM Rhodamine B, 2 mM Thionin acetate, 

0.025 mM Oregon Green 514, 6 mM Tris (4,7 – diphenyl - 

1,10 - phenanthroline) ruthenium dichloride. Solutions of dyes 

were prepared in deionized water and stored in ~5 ºC, covered 

with aluminum foil to protect them from light. The 200 µl of 

each water/dye stock solutions were mixed together and used 

in further experiments. 

B. Samples preparation 

The bacterial strain used in the experiment was Escherichia 

coli (JM 83) provided by Cranfield University (UK). Bacteria 

were recovered from frozen state by growing them in a Miller 

LB broth (Fluka Biochemica, Cat No.1.10285), solution of 

12.5 g of the medium in 0.5 L of Milli-Q water, overnight at 

37 ºC and subcultured. The bacteria colonies were transferred 

into centrifuge tubes filled with 20 ml of liquid medium and 

incubated for 60 hours at 37 ºC [23]. The tubes with bacteria 

cells were collected at different intervals and centrifuged at 

2800 rpm for 20 min. The supernatant was filtered through a 

0.22 µm filters and 3 ml of the filtrate were transferred into 4 

ml quartz cuvettes. The optical/fluorescent assay was then 

applied to supernatants taken from suspensions of growing 

bacteria. Control fluorescent measurements were performed 

using samples without growing bacteria.  Additionally, 

bacterial growth was monitored by measuring the absorption 

of the suspensions [24]. 

Further experiments have been performed with urine 

samples obtained from healthy volunteers (CTR) and patients 

diagnosed with Crohn's disease (CD), ulcerative colitis (UC) 

and irritable bowel syndrome (IBS). All volunteers were given 

information, consent forms to read and sign, and a 

questionnaire, which provide details on their diet, exercise, 

sleep, medication and general health. The samples, provided 

by Addenbrookes Hospital (UK), have been obtained prior to 

any medical treatment and/or conservation. They have been 

stored at -80 ºC to maintain sample integrity. Before the 

measurements each sample was defrosted, centrifuged at 2800 

rpm for 20 minutes and filtrated through 0.45 µm glass fiber 

filters. The mixture of fluorescent dyes was added into this 

supernatant, and then measured. 

C. Instrumentation 

The measurements of fluorescence intensity have been 

performed using three-dimensional spectrofluorimeter Jobin 

Yvon – SPEX FL-3D (Instruments SA, Stanmore, Middlesex, 

UK) at 0.5 s of time exposure. The spectra have been recorded 

over a range of excitation (74-691 nm) and emission (227-724 

nm) wavelengths. The range of wavelengths was based on the 

technical specification of the spectrofluorometer. The 

fluorescence measurements were performed using quartz 

cuvettes with stoppers and a light path of 10 mm. 

Absorption spectra of bacteria suspensions at different 

growing phases were measured with Spectrometer (UVPC 

2100, Shimadzu, Japan) at 550 nm. 

D. Data evaluation 

The changes in fluorescent patterns (see an example in Fig. 

2) caused by interactions with the dyes surrounding media 

have been analyzed using an artificial neural network (ANN). 

ANNs were implemented in MATLAB (version 7.3.0, 

MathWorks Inc., 2006) using the Neural Network Toolbox 

(version 5.0.1) and trained on the data patterns of samples of 

known identity (45 samples with known time of bacteria 

growth from 0 to 60 hours) using Bayesian back-propagation 

of errors [25]. Once the ANN was trained, the approach was 

applied for evaluation of 18 unseen samples. Based on 

learning experience, the network was capable of identifying 

unknown fluorescent fingerprints and predicting outputs 

(identifying different test solutions). 

The total number of urine samples provided was limited to 

32. We admit that this number is small yet for statistical 
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purposes it is suitable to generate preliminary results leading to 

a proof of concept. Table II summarizes the sample 

distribution between the disease states. In order to classify the 

three gastrointestinal diseases pertaining to the urine samples 

via their EEM spectra, two approaches were undertaken. 

  
TABLE II 

NUMBER OF DISEASE STATES IN URINE SAMPLES 

Disease Control 

(CTRL) 

Irritable 

bowel 

syndrome 

(IBS) 

Crohn’s 

disease 

 (CD) 

Ulcerative 

colitis (UC) 

Number of 

samples 

9 11 6 6 

 

The first involved performing principal components analysis 

(PCA) [25] on each sample’s EEM spectrum in order to attain 

the most influential emission profiles. This was achieved by 

taking, for each sample, the loadings profile of the first 

principal component (PC1) which is generated from the 

decomposition of the respective EEM spectrum. The PC1 

loadings profile is taken because it will have a high percentage 

of variance and have no contribution from noise within the 

EEM spectrum. The collection of profiles were inputs for the 

ANN probability network [26] to classify each of the three 

diseases from the healthy controls by assigning class values to 

the states: 1 for healthy; 2 for disease. Leave-one-out cross-

validation (LOO-CV) permitted each sample to be classified 

leading to an overall success of classification. In order to 

perform a thorough analysis, and thus to ascertain the best 

results, different scaling techniques were employed such as 

mean-centering, auto-scaling and range-scaling. Each have 

their own merits: mean-centering removes any offset from the 

data originating for example from instrumental drift; auto-

scaling permits the analysis of the data by correlation and not 

covariance; range-scaling make all the samples equally 

important therefore biological activity dominates.  The linear 

classification technique of partial least squares discriminant 

analysis (PLSDA) [27] was also employed for comparison 

against ANN. The technique of PLSDA attempts to maximize 

the covariance between the classification (healthy vs disease) 

and the loadings profiles. 

The second approach involved the use of a multi-way 

technique called parallel factor (PARAFAC) analysis [28]. It 

is a multi-way extension of PCA and thus permits data 

reduction of a data cube (collection of EEMs) into a scores 

matrix and two loadings matrices: the first containing profiles 

pertaining to excitation wavelengths; the second containing 

profiles pertaining to emission wavelengths. The key 

advantage with this technique is that given the correct number 

of components have been selected, the pure fluorescence 

emission spectra for each dye can be captured within the 

PARAFAC loadings [29]. The loadings corresponding to the 

emission spectra were combined with the scores to reproduce 

the sample matrix in which the number of rows corresponds to 

the number of samples and the number of columns to the 

emission wavelength range. This matrix formed the input 

parameters for PLSDA and the ANN probability network. 

Classification was performed as described above. 

Finally, in order to ensure that the results were valid, a 

Monte Carlo simulation was performed [30]. This involves 

generating random class values for each sample and then 

classifying via the leave-one-out cross-validation (LOO-CV) 

method. The number of runs was set to 500. This is to 

guarantee a normal distribution is attained. If the overall 

classified result is beyond the 95% confidence limit, then that 

result can be deemed valid. 

III. RESULTS 

In the analysis of bacteria growth the mixture of dyes was 

added to supernatants taken from suspensions of growing 

microrganisms. Samples were collected at different intervals of 

time. During their growth the concentration of nutrients, 

oxygen and pH were changing. These reflected in the 

modification of dyes spectra which were further analyzed by 

ANN. Bacterial growth was monitored by measuring the 

absorption of the suspensions. Additionally, control 

measurements were performed using samples consisting of the 

mixture of fluorescence dyes in solutions of only the medium 

(LB broth), without growing cells. They were kept in the same 

condition as diagnosed samples. The results for control 

measurements showed no changes in fluorescence signal, 

whereas the changes in fluorescence caused by the presence of 

bacteria have been clearly identified. 

The results of ANN predictions are presented in Fig. 3. The 

graph illustrates the correlation between real (measured) time 

of growth of bacteria culture (x axis), and the time predicted 

by ANN (y axis). Circles (○) indicate the mean values of data 

points of the network prediction and error bars indicate 

standard deviation.  
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Fig. 3. Correlation between the time of bacterial growth measured 

experimentally and predicted by ANN: circles (○) indicate mean values of 

data points of ANN simulations: solid line (  ) shows the best linear fit and 

the line ( – • – ) presents ideal response of ANN with zero error. Error bars 

indicate standard deviation. 

 

These results demonstrate capability of the technique to 

identify detected fluorescent fingerprints and predict outputs. 
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The RMSE is 6.412 and indicates very accurate prediction and 

the potential of the dye assay application to analyze biological 

samples. 

Classification of the urine samples (Fig. 4) shows great 

promise particularly when performed with artificial neural 

networks (ANNs) and in both cases, outperform the linear 

approach of partial least squares discriminant analysis 

(PLSDA). Fig. 4 also shows that, overall, the ANN probability 

network has performed better than PLSDA. However, with 

regards to PCA, the sensitivity of PLSDA is slightly superior 

to that of ANN (Fig. 4a and 4b) which means that it can 

distinguish the respective disease better with the exception of 

ulcerative colitis (UC). 

 

 
 
Fig. 4. Comparison of the PLSDA (a and c) against the ANN probability 

network (b and d) to discriminate the three diseases from the healthy controls 

in terms of % Overall*, % Specificity** and % Sensitivity*** after 

application of PCA (a and b) and PARAFAC (c and d) to each EEM. 

*Overall means the overall success of discrimination; **Specificity 

represents the number of true negatives (e.g. healthy samples). If the 

percentage of true negatives was 90% (90 out of 100 healthy samples were 

classified correctly) then there would be 10% false positives (10 out of 100 

healthy samples incorrectly classified, i.e. classed as diseased); 

***Sensitivity represents the number of true positives (e.g. diseased 

samples). If the percentage of true positives were 95% (95 out of 100 diseased 

samples correctly classified), then there would be 5% false negatives (5 out of 

100 diseased samples incorrectly classified, i.e. classed as healthy). 

 

However in terms of specificity we observe 100% which 

implies that the healthy control can be completely 

distinguished from the diseased samples. With regards to 

PARAFAC (Fig. 4c and 4d) the ANN probability network has 

performed better than PLSDA but also has resulted in a better 

outcome than the application of PCA. On this occasion, the 

sensitivity pertaining to UC in PLSDA (100%) is better than 

ANN (83%) yet the corresponding specificity is much worse 

(Fig. 4c). 

In order to confirm that the results are indeed valid, Monte 

Carlo simulations were performed. In this context, the word 

“simulation” does not refer to a hypothetical situation 

(emulation of reality) but the fact that repeated sampling is 

performed. In this case, the classification vector is randomly 

generated, and then used in the classification procedure with 

either PLSDA or ANN. 
Fig. 5 shows two examples of plots attained which affirm 

that the results are valid. Both plots (Fig. 5a and 5b) show a 

normal distribution and that the overall percent classified is 

beyond the 95% confidence limit, in other words the results 

are significant and not due to chance. The reason for the lack 

of results, e.g. ~42% and ~68% in Fig. 5a and ~53% in Fig. 

5b, is due to the fact there is an odd number of samples in the 

control dataset in conjunction with the respective data sets not 

balanced. 

 

 
Fig. 5. Monte Carlo simulations applied to the urine samples in which very 

good overall classifications were attained for PCA (a) and PARAFAC (b). 

 

IV. DISCUSSION 

These promising results indicate that it is possible to use the 

fluorescence signals of a dye assay combined with an artificial 

neural network (ANN) model in the determination of bacterial 

presence and their growth phases. This would be helpful for 

analysis of the quality of clinical, pharmaceutical or 

biomedical samples. Further analysis can be improved by 

investigation of specific factors which affect bacteria growth, 

such as pH, oxygen, salt, sugars or nutrients concentration. 

Usually, these parameters are optimal for one strain but they 

tend to vary for others. They also can change the natural 

environment and affect the growth of particular strain of 

microorganisms. Therefore it is important to know the actual 

effects of single factors on the growth of microbial. The 

current results indicate that it is possible to control the growth 

rate of microorganisms implying that in the future it will be 

comprehensively possible to inhibit unwanted strains from 

growing such as human pathogenic bacteria. Conversely, it can 

lead to the improvement of the development of the beneficial 

strains once the impact of certain factors on their growth is 

better understood. 

The work here has also demonstrated that ANNs can be 

employed as a classification tool to distinguish three 

gastrointestinal diseases (irritable bowel syndrome, Crohn’s 

disease, and ulcerative colitis) from healthy controls with 

extremely good overall accuracies of >90%. ANNs also 

performed better than partial least squares discriminant 

analysis (PLSDA). This can be partly attributed to the fact that 

PLSDA can only model linear relationships where as ANNs 

are able to model both linear and non-linear relationships [26]. 
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Furthermore, classification via PLSDA has produced very 

good sensitivities but poor specificities which imply that many 

false positives were predicted (Fig. 4c). In contrast, the 

classification via ANN has resulted in high sensitivities and 

specificities, especially for Crohn’s disease (CD) at 92% and 

100% respectively (Fig. 4d). 

However the success in distinguishing the diseases from the 

controls is also attributable to the data pre-treatment, that is in 

the employment of parallel factor (PARAFAC) analysis to 

extract the pure emission profiles from the EEM spectra – a 

major advantage of PARAFAC provided that the correct 

number of components are selected [29]. This was shown to be 

better than using principal components analysis (PCA). This is 

because PCA only focused on the EEM of one sample 

therefore a PCA loading (PC1) was generated for each sample. 

However, PARAFAC was able to act on all of the EEMs 

simultaneously, i.e. across all the samples, therefore revealing 

other trends and characteristics within the data that cannot be 

detected by PCA alone. It must be stated that PCA is not a 

classification technique; it is exploratory. In this capacity it 

acts as a data reduction technique with the aim of removing 

noise. PC1 is thus used because it contains the emission profile 

that will have captured the most variance in the data and have 

zero contributions from noise. 

The success of the classification of the three diseases against 

the control is fortified by the application of the Monte Carlo 

simulation [30]. This has statistically demonstrated that the 

respective overall accuracies attained are not due to chance 

(Fig. 5). This also implies that the respective models generated 

have good accuracy. It is therefore feasible to infer that there 

are significant and distinctive characteristics contained within 

the excitation-emission matrix (EEM) spectra (e.g. Fig. 2) to 

permit the classification of the diseased samples. 

Leave-one-out cross validation (LOO-CV) is a thorough yet 

time-consuming procedure, particularly if there are a large 

number of samples (e.g. in excess of 100). Other forms of 

cross-validation exist such as venetian blinds cross validation 

(VB-CV) and block cross validation (B-CV) [30]. The former 

involves omitting, for example the odd-numbered samples, 

building a model with the even-numbered samples then 

classifying the odd-numbered samples; the next iteration 

would involve omitting the even-numbered samples, etc. Other 

permutations could also be implemented. B-CV is more 

similar to LOO-CV but instead of omitting one sample, omits 

for example 10 consecutive samples and builds a model with 

the remaining samples.  These work faster than LOO-CV yet 

are not as accurate. 

In recent years the technique of bootstrapping has become 

commonly employed [30]. A specified number of samples are 

selected randomly from the dataset to form a validation set. 

The remaining samples thus make up the bootstrap set. The 

latter is randomly split into a training and test set. A model is 

created from the training set then the test set is classified. This 

is repeated N times, e.g. where N could be 250. The model that 

resulted in the best classification is used to classify the 

validation set from which the accuracy and performance are 

assessed. Given that accuracy tends to be better, bootstrapping 

can however be computationally intensive. For this work, the 

low number of samples present in each subset (as shown in 

Table II) did not permit its use therefore LOO-CV was 

employed. 

Although the total number of samples used in this study are 

low (32), the study has illustrated the potential of this 

proposed method. The next phase of the work would involve 

substantially increasing the number of samples, for example in 

excess of 100. This would lead to improved clinical relevance 

since every patient or healthy volunteer will have different 

characteristic responses as indicated by the metabolites 

contained in their urine. Furthermore, the ability to be able to 

distinguish the diseased samples from each other, for example, 

a “one-against-all” approach such as classifying irritable bowel 

syndrome in the presence of healthy controls, Crohn’s disease 

and ulcerative colitis, should also be investigated. Finally, 

making use of the metadata collected via the questionnaire 

(diet, lifestyle, medication, etc) could also be incorporated into 

the classification model.  

V. CONCLUSIONS 

In this study, we demonstrated an optical form of e-nose and 

e-tongue, which offers a promising alternative to 

electrochemical systems providing highly sensitive, easy and 

inexpensive measurements where no reference signal is 

needed. The system also gives a possibility of remote sensing 

and further assay miniaturization. Potential of the proposed 

analytical tool is wide and diverse and can have great impact 

on a variety of applications including non-invasive diagnostics 

of tissues, cosmetics testing, early warning of ultraviolet 

radiation abuse, general health monitoring, therapeutic 

management, fundamental physiological investigations and 

disease diagnosis. 
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