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Abstract

Bromate formation has been identified as a significant barrier in the
application of ozone during water treatment for water sources that contain high levels of
bromide. Bromate has been identified as a possible human carcinogen and bromate
levels in drinking water are strictly controlled at 10 g/L in most developed countries.
Various models have been proposed to model bromate formation during ozonation
based on raw water quality, ozone dose and contact time. Two main approaches for
modelling have been used: an empirical regression modelling methodology and kinetic
based methodology. Currently, the benefit of the bromate models lies in their ability to
show how process parameters may impact on the amount bromate formed.
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Introduction

In recent years, bromate has become known as a contaminant of potable water supplies
and in aquariums due to its formation from naturally occurring bromide during
ozonation. Evidence supports the view that bromate is a possible human carcinogen and
is therefore strictly controlled in drinking water (Weinberg et al, 1993; Bull and
Cottruvo, 2006). Ozonation has become increasingly important in water treatment
across the world as an oxidising agent and disinfectant due to its strong oxidation
potential (von Gunten, 2003a). Ozone is used as a disinfectant in the water industry that
is active against a wide range of microbes including more effective treatment of
Cryptosporidium oocysts and Giardia over conventional chlorine due to the increased
oxidation potential of ozone (Bull and Cottruvo, 2006). Ozone is also used at water
treatment works (WTW) for oxidising organic molecules such as pesticides and taste,
odour and colour causing compounds and oxidising inorganics such as iron and
manganese to their insoluble form (Kasprzyk-Hordern et al., 2003).

Disinfection by-product (DBP) formation is associated with all disinfectants and
oxidants, however, the major DBP of concern when using ozone is bromate (BrO3

-), a
DBP that forms from naturally occurring bromide (Br-) in raw water (Legube et al.,
2004). Toxicity testing on experimental animals has consistently shown bromate to
induce cancer in rats, mice and hamsters through damage to genetic material (Chipman
et al., 1998 and Bull and Cottruvo, 2006). Whilst there is no data demonstrating that
bromate is carcinogenic to humans, it is plausible to assume that the mechanisms
resulting in tumour formation in laboratory animals could occur in humans. For this
reason the World Health Organisation (WHO) has set a provisional guideline
concentration of 10 g/L bromate in drinking water (WHO, 2004). European Union law
specifies that all member states must enforce a maximum bromate concentration of 10
g/L by 2008 (European Drinking Water Directive). In the UK, the legislation
enforcing this standard came into effect in 2003. In the US, regulations also specify a
maximum value of 10 g/L (United States Environmental Protection Agency (USEPA)
Stage 1 Disinfectants and Disinfection By-products Rule, 1998).

There is some evidence showing that water utilities using hypochlorite solids or liquids
for disinfection purposes may add up to 3 g/L of bromate in to drinking water as a
result of the formation of bromate during the manufacture of hypochlorite products
(Weinberg et al., 2003). However, the formation of bromate during disinfection and
oxidation is generally only associated with the use of ozone as it has superior oxidising
ability over other commonly used disinfectants. In the presence of ozone, the conversion
of bromide to bromate occurs via two complex pathways (Figure 1). The first is through
the direct oxidation of bromide from molecular ozone (O3) to hypobromite (BrO-),
which is then further oxidised to bromate (Haag and Hoigne, 1998). The second
pathway occurs from the formation of the hydroxyl radical (OH•) from the
decomposition of molecular ozone in water. The hydroxyl radical has an even greater
oxidation potential than molecular ozone (Balakrishnan et al., 2002). The hydroxyl
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radical converts the bromide ion to the bromide radical (Br•) which is then converted to
BrO3

- through further reactions with OH• or molecular ozone.

Bromate formation has been the major barrier in the use of ozone for water treatment
where the source water contains bromide, particularly given the challenging targets set
for the maximum allowable bromate concentration (Magazinovic et al., 2004). A
number of bromate modelling tools have been developed for predicting bromate
formation in order to provide a better understanding of when bromate regulations may
be exceeded at WTWs. From a health and water utility perspective, the ultimate goal of
such models would be to provide a bromate formation tool capable of accurately
controlling bromate formation by changing operational conditions during ozonation to
bring bromate formation below the maximum allowable concentration.

The objectives of this review were to:
- determine the important operational parameters for modelling bromate formation
- describe and discuss empirical regression, kinetic and artificial neural network

(ANN) bromate modelling efforts that have been developed for predicting
bromate formation.

- Use real historical data from a full scale WTW to determine the applicability of
bromate formation models at full scale.

Factors influencing bromate formation

The formation of bromate during ozonation is strongly dependent on the characteristics
of the water to be treated and the amount of ozone contacting the water. The following
lists the important variables for bromate formation:

1) Bromide concentration
Given that bromide is oxidised by ozone to bromate, an increase in bromide
inevitably leads to an increase in bromate for a constant ozone dose and contact time
(Legube et al., 2004). Conversion of bromide to bromate is usually between 10-50
% during ozonation (Song et al., 1996). Typical concentrations of bromide in
natural waters usually range from 30-200 g/L, with an average of 100 g/L (Amy
et al., 1994), however this can be greater than 500g/L (Legube et al., 2004). Amy
et al. (1994) have suggested that up to 30 g/L of bromate can form from an
average bromide concentration of 100 g/L – significantly above the target bromate
concentration of 10g/L. This equates to a 20.5 % conversion rate of bromide to
bromate in terms of Br. Groundwater sources can have particularly high bromide
concentrations due to ingress by salt water, road run-off following the salting of
roads in winter and also as a result of dissolution from sedimentary rocks
(Magazinovic et al., 2004; Butler et al., 2005). A general conclusion by von Gunten
(2003b) was that waters containing <20 g/L of bromide do not present a problem
for bromine-derived DBPs, whilst waters containing >100 g/L of bromide are
likely to cause significant bromate problems. The propensity to form bromate from
bromide is therefore highly dependent on the raw water quality and source and the
goals of disinfection.
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2) pH
As the ozonation pH of the water is increased, the rate of bromate formation
increases (Pinkernell and von Gunten, 2001). In part, this is as a result of the
formation of the more unstable and reactive BrO- compound at high pH as the

equilibrium between   HBrOHBrO shifts to the right as the concentration of
hydrogen ions decreases. In addition to this, hydroxyl radical formation is promoted
at high pH due to the increased concentration of hydroxyl ions present and the lower
stability of ozone at high pH (Song et al., 1997; Siddiqui et al., 1998). Bromate
formation has been shown to increase from 10 g/L at pH 6.5 to 50 g/L at pH 8.2
(Legube et al., 2004) whilst Krasner et al. (1994) observed a 60 % decrease in
bromate formation for each drop in pH unit. The ozonation pH is widely regarded as
being the most effective bromate control strategy at WTW and should be considered
the best available treatment for bromate control (Ozekin and Amy, 1997). However,
this must be balanced by the increased formation of brominated organic compounds
as pH is reduced (USEPA, 1999a). Additionally, the cost of pH reduction may be
prohibitive for high alkalinity waters due to the volume of acid required (von
Gunten, 2003b).

3) Applied ozone concentration and contact time
An important consideration in the conversion of bromide to bromate is the specific
goal of disinfection (von Gunten et al., 2001). For example, if bacteria and viruses
are being targeted, the conversion of bromide to bromate is low. However, if
Cryptosporidium parvum oocysts are being treated, the conversion of bromide to
bromate is high. This relates to the concentration of applied ozone (C) and the
residence time of the ozone (t). The efficiency of any disinfectant may be
characterised by the ‘Ct’ factor (USEPA, 1999b). The relationship between bromate
formation and Ct follows a linear function with an increase in Ct leading to an
increase in bromate formation (von Gunten and Hoigne, 1996 and Legube et al.,
2004). Due to its low solubility, typical residual concentrations of ozone found at
WTW are in the range 0.1-1 mg/L. In order to achieve 99 % inactivation of C.
parvum oocysts typical Ct of 3.1-48.0 mg min/L are recommended by the USEPA
(USEPA, 2006). The range of Ct was temperature dependent with the Ct increasing
with temperature (<0.5-30 ºC). For bacteria and virus inactivation, the Ct required to
achieve a similar inactivation is much less. For example the Ct required to achieve a
2-log inactivation of Escherichia coli is five orders of magnitude less than for C.
parvum (von Gunten et al., 2001). However, Ct is dependent on temperature and the
log inactivation of microorganisms required. For example at 13 °C, a 3-log
inactivation of Cryptosporidium requires a Ct of 22 mg min/L whilst at 22 °C a
similar inactivation requires a Ct of 8 mg min/L (Galey et al., 2004). Any change in
Ct for bromate control must therefore also ensure that adequate disinfection is
maintained.

4) DOC concentration
Both the concentration and nature of organic material in water can affect bromate
formation. During ozonation, any natural organic matter (NOM) present in the water
generally reduces bromate formation. This is because ozone and hydroxyl radicals
are consumed by the oxidation of organic molecules and therefore taken away from
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the bromate formation pathways. However, this is not always the case because if a
residual ozone concentration is required for disinfection, more ozone may need to be
added resulting in similar or in some cases increased concentrations of bromate. The
presence of NOM and bromide during ozonation can also lead to the formation of
brominated organics. The exact identity of all of these brominated compounds has
yet to have been fully established (and are not currently regulated for), but they are
believed to be a higher risk to health than chlorine based DBP’s (Song et al., 1997).
From a bromate modelling point of view, the presence of NOM can be the principle
stumbling block in producing accurate bromate formation models due to the
complexity and site specific nature of NOM and its complex interactions with ozone
(Westerhoff et al., 1998; Sohn et al., 2004). This prevents accurate knowledge of the
precise reactions between ozone and NOM difficult.

5) Alkalinity
The presence of inorganic carbon (IC) species increases bromate formation because
both carbonate (CO3

-2) and bicarbonate (HCO3
-) species can form the carbonate

radical (CO3
-•) as a result of oxidation by hydroxyl radicals (von Gunten, 2003a).

Once the carbonate radical has been formed, this can convert hypobromite into the
hypobromite radical (BrO-•) and then bromate (Kim et al., 2004).

6) Ammonia concentration
The presence of ammonia in water acts as a scavenger of hypobromous acid (HOBr)
during ozonation, an important intermediate in the formation pathway of bromate
(Pinkernell and von Gunten, 2001; von Gunten, 2003a). HOBr reacts with ammonia
to form bromamine compounds, which, in turn, can be converted back to bromide
through oxidation by ozone. Ammonia can therefore remove a significant
intermediary from the bromate formation path and reduce the amount of bromate
formed (Song et al., 1997). Ammonia may be present naturally in waters to be
ozonated, or alternatively can be added prior to ozonation as a bromate prevention
strategy. The addition of a high concentration of ammonia (1.5 mg/L) has been
shown to reduce bromate formation by around 5 g/L when applied to water
containing 100 g/L Br- under constant conditions (Ozekin and Amy, 1997). This
reduction, although small, may be critical for those WTW where bromate levels are
around the maximum permitted concentration. However, this must be tempered by
the fact that above a certain concentration, the addition of ammonia has no further
effect on bromate reduction. Therefore, for waters that contain naturally high to
medium concentrations of ammonia, the addition of further ammonia may offer no
further benefit (von Gunten, 2003b). Furthermore, any un-removed ammonia may
act as a nutrient for nitrifying bacteria once in distribution (USEPA, 1999a). An
additional strategy for bromate control using ammonia is combined pre-
chlorination/ammonia addition before ozonation. This has been shown to reduce
bromate formation in lake Zurich water from 10 g/L to 2 g/L (conditions: Cl2 0.7
mg/L; NH3 400 g/L; 1.5 mg/L O3; Br- 90 g/L) and may be a promising control
strategy involving lower ammonia addition to drinking water (Buffle et al., 2004).

7) Temperature
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Increased temperature has been shown to increase the rate of bromate formation as a
result of increased reaction kinetics and because the equilibrium between

  HBrOHBrO shifts to the right as the temperature increases due to a
commensurate increase in the acidity constant (Legube et al., 2004). The effect of
temperature has been shown to be more pronounced at higher ozone doses. For
example, Galey et al. (2004) observed that at an ozone dose of 1 mg/L the bromate
formation was 8 g/L at both 5 and 24 °C whilst at 2.5 mg/L the bromate formation
was 22 g/L at 5 °C and 37g/L at 24 °C. Bromate formation is therefore
dependent on water temperature and remediation strategies may only need to be
considered seasonally where there are big differences in the temperature of the water
to be treated. However, it must also be considered that ozone disinfection efficacy is
also dependent on temperature. There is evidence showing that for some
microorganisms, increased temperature results in reduced inactivation (bacteria and
bacterial spores) whilst for C. Parvum, inactivation increased with increasing
temperature (von Gunten, 2001b). The proposed purpose of ozonation therefore
needs consideration. Increased ozone may need to be added for bacteria inactivation
when the temperature is high whilst for C. Parvum lower ozone doses may be
applied. The two different goals of disinfection will therefore also result in different
levels of bromate formation.

Modelling approaches

Previous bromate modelling papers have concentrated on empirical modelling using
multiple linear regression (MLR) or kinetic based models. The following section will
review and evaluate each of these approaches in turn.

Empirical models and multiple linear regression

Empirical modelling from existing bromate formation data has been the most widely
applied approach to bromate formation modelling. The variables important for bromate
formation are those mentioned previously: bromide, DOC or UV254, pH, O3 dose, NH3,
alkalinity and temperature. The relationship of each of these variables to the output
bromate concentration is then found experimentally by fixing all variables but one. The
change in bromate formation is then observed with the random variable. By carrying out
MLR on the data (or log transformed data), the cumulative relationship and significance
of each of the variables can be found. MLR was first applied to bromate formation by
Ozekin (1994) and, to date, most bromate formation models using MLR have been of
the form:

log Y = b0 + b1 log x1 + b2 log x2 + b3 log x3…….+ bn log xn

Equation [1]

where Y is the dependent variable, xi is an independent variable and bi is the regression
coefficient. The following example shows the bromate formation regression model from
Song et al. (1996):
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log [BrO3
-] = -6.11 + 0.880 log[Br-] – 1.180 log[DOC] + 5.110 log[pH] + 1.420 log[O3]

+ 0.270 log[t] – 0.180 log[NH3-N] + 0.180 log[IC]
Equation [2]

A range of bromate formation models found in the literature of the form shown in (1)
are included in Table 1. An alternative form of the equation has been developed by
Ozekin and Amy (1997), where not all the variables in the equation have been log
transformed:

log[BrO3-] = -3.361 + 1.136 log[Br-] – 1.267 log[DOC] + 0.249 [pH] + 1.575 log[O3]
+ 0.006 [t]

Equation [3]

Not all of the developed models include every one of the variables. For example,
Ozekin’s original model incorporated bromide, DOC, pH, O3 dose and contact time
with alternative models for waters with and without ammonia addition. DOC has been
replaced with ultra-violet absorbance at 254 nm (UV254) in the model of Sohn et al.
(2004). This was because there has been shown to be a strong correlation between the
organic content of raw water and the UV254. Using UV254 is of advantage because UV254

is regarded as being an easier measurement to make on-line A number of the regression
models also include ammonia. This gives flexibility to water utilities depending on
whether they add ammonia as a bromate control measure or routinely measure ammonia
as a water quality parameter (Ozekin and Amy, 1997).

For a number of the predictive regression models, bromate formation is limited in
application to water temperatures of 20 °C because the original experiments were
carried out at 20 °C (Ozekin, 1994; Song et al., 1996). Due to the reduced stability of
dissolved ozone with increasing temperature, bromate formation increases as
temperature increases. Temperature is therefore of real concern for drinking water
production at WTW where there is a risk of bromate formation. A survey of 47 small
WTW in France found that 49 % of drinking water contained ≥10 g/L bromate in July
in comparison to 7 % in December (Legube et al., 2002). In order for bromate formation
models to be successfully applied at WTW, temperature must be factored into the model
given that variations in water temperature received by a WTW can vary from season to
season by more than 20 °C in extreme climates (Serodes et al., 2003). Sohn et al. (2004)
report on a temperature correction factor for bromate formation (see Table 1) that was
deemed to satisfactorily adjust the bromate formation from that found at 20 °C to that at
temperatures between 2-24 °C. An alternative approach to this has been to incorporate
temperature into the regression model as an independent variable by carrying out
bromate formation experiments at a range of temperatures (Galey et al., 1997 and
Legube et al., 2004).

The relative importance of each of the variables that determine bromate formation can
be identified by comparison of the regression co-efficient (Song et al., 1996). A higher
positive value gives an increased effect on bromate formation whilst an increasing
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negative co-efficient value has a more reducing effect on bromate formation based on
similar incremental contributions to the model from each variable. Analysis of the co-
efficients presented in Table 1 shows that the parameters are of the following order of
importance:
Increase in bromate formation: pH > O3 dose > Br- > IC > time
Decrease in bromate formation: DOC > NH3-N

Evidently, the higher concentrations of OH- and BrO- ions at high pH are of more
importance than the other variables contributing to the regression equations. Because
temperature has only been considered in two models (Table 1), there is less certainty of
the overall impact that it has on bromate formation. The regression equation from
Siddiqui et al. (1994) suggests that an increase in temperature has more of an impact on
bromate formation than both bromide concentration and ozone dose. Work from Galey
et al. (1997) implies that it has less of a bearing than ozone dose, but more of an effect
than bromide concentration. However due to the increased bromate formation observed
at WTW during summer, temperature should always be included in bromate formation
models

Validation of developed models
In order for bromate formation models to be considered for application at WTW, the
models must be validated with real data. During most model development, the models
have been applied to the same type of water to those with which the models have been
developed. Although from a limited database, in these instances good correlation has
been seen between the observed and predicted bromate concentrations. For example,
Song et al. (1996) had an average R2 value of 0.93 for validation of bromate models on
water sources that were used to develop the model for predicted against measured
bromate concentrations, with the regression line close to the y=x line that is indicative
of a perfect model. Similarly good correlation was seen by Siddiqui et al. (1994) and
Ozekin and Amy (1997) with R2 values of 0.98 and 0.91 respectively. There is little
information available in the literature for models applied to different waters from where
the model was developed. However, those that have carried out this type of ‘external
validation’ have seen mixed results The data shown in Figure 2 shows the predicted
bromate against the observed bromate from three studies (Siddiqui et al., 1994; Song et
al., 1996; Ozekin and Amy, 1997). The authors have assessed the predicted bromate to
the actual bromate formation from a water that was different to that from which the
model was developed. The model of Song et al. (1996) had data points very close to
y=x, but there were only a few data points and only concentrations >20 g/L bromate
have been considered. At low concentrations, the model of Ozekin and Amy (1997) was
not very accurate with most bromate predictions significantly over the observed
bromate.

Validation of MLR models to a full scale WTWs
There are only a few examples in the literature of externally validating MLR models.
For this reason, further elucidation is required in order to assess the more widespread
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applicability of these models at full scale. In the following section, a number of bromate
MLR models have been applied to a common data set from a WTW in the UK.

The data available from the works consisted of 36 complete data sets taken over a one
year period for the following water and ozonation parameters: raw water bromide and
DOC concentration, raw water UV absorbance at 254 nm (UV254); ozonation pH,
contact time, transferred ozone dose, water temperature and final water bromate
concentration. Samples were taken by site scientists and sent to an accredited laboratory
for analysis of bromide, bromate, DOC concentration and UV254. Ozonation pH, ozone
dose and contact time and temperature were taken from the WTWs on-line monitors and
automated control systems. For the model of Song et al. (1996) and Sohn et al. (2004)
the alkalinity of the water was estimated to be 100 mg/L as CaCO3. This data was input
in to the bromate formation models in Table 1 with the exception of the two ammonia
models which were not assessed firstly because ammonia was not added as a bromate
reduction strategy at the WTW and secondly the background ammonia concentration in
the water to be ozonated was very low (≤0.04 mg/L N). The output bromate
concentrations from the models were then plotted against the observed bromate
concentrations for each of the models. As can be seen from Figure 3, the predictive
ability varied from model to model.

From this data, the models can be classified into three categories: models that tend to
under predict bromate formation (models of Siddiqui et al., 1994 and Song et al., 1996);
models that tend to over predict (models of Ozekin, 1994 and Sohn et al., 2004) and
models that are scattered around the observed=predicted curve (y=x) (models of Galey
et al., 1997 and Ozekin and Amy, 1997). This agrees with the validation efforts on
‘real’ waters that have been presented in Figure 2. The models of Galey et al. (1997)
and Ozekin and Amy (1997) gave the most accurate predictions as the linear regression
line through the data was close to the y=x line and the scatter around the regression line
much less than that for the other two models. However, the correlation coefficients for
the ‘good’ models were low (R2 values of 0.34 for Galey et al. (1997) and 0.40 for
Ozekin and Amy (1997)).

Taking the best two models in Figure 3, the models were able to follow the general
trend in bromate formation (as shown in Figure 4), however as shown in Figure 3, the
main disadvantage of the models being that individual estimates on bromate formation
could be very inaccurate, with some estimates approaching a difference of ±100 %. The
inaccuracy of the models was confirmed statistically using a chi-squared test to compare
the prediction of the models with the observed data. For both the models there was a
very significant difference between the modelled and actual bromate concentrations
(Galey et al. model: 2 = 70.4, p = 0.00036, Ozekin and Amy model: 2 = 92.1, p =
0.0000005) indicating that the model is a very poor fit to the data.

Whilst the individual estimates were inaccurate even for the best fitting model, an
indication of the model being able to assess more general trends rather than individual
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estimates was given by considering how the models predict values over and under the
current EU drinking water standard for bromate (10 g/L) (regardless of the difference
in individual estimates). During the actual experimental period the observed number of
bromate values ≥10 g/L was 13/36 (36.1 %). Both of the selected models were very
accurate, with the model of Galey et al. (1997) exactly matching the observed number
of bromate failures. The model of Ozekin and Amy (1997) was still very accurate with
only one extra bromate failure predicted.

MLR summary
The assessment of different MLR models in this study showed that they were able to
follow the general trend in bromate formation well but individual estimates could be
very inaccurate when applied to different data sets. This tends to agree with previous
conclusions that as the MLR models are applied to increasing numbers of raw waters,
the accuracy of the models decreases (Legube et al., 2004; Kim et al., 2004). The
reasons for this may be fourfold:

1) Models have been derived from specific waters and reactor configurations.
Bromate formation has been shown to be highly influenced by NOM, not only in
terms of its concentration, but also in its source and nature. Song et al. (1996) have
added NOM isolates to model waters and found that different source waters and
different MW organics produced different bromate formation models. However,
there was no consistent relationship for specific MW giving rise to
increased/decreased bromate formation when compared from source to source. The
fact that NOM is highly variable from site to site has lead to the conclusion that the
type of NOM is more important than its concentration for bromate formation (Song
et al., 1996; Ozekin and Amy, 1997). The available information on the relative
reactivity of ozone with different types of organic compounds is limited. However,
activated aromatic moieties in organic pollutants have been shown to have low
direct reactivity with ozone (von Gunten, 2003a; Buffle and von Gunten, 2006).
This suggests that waters containing highly aromatic NOM may have increased
bromate formation due to the reduced ozone consumption of these compounds.
NOM is therefore likely to be a significant source of error in bromate formation
models during more widespread application of the models. In addition, most MLR
models have been developed from waters that have been spiked with bromine
(Ozekin and Amy, 1997). Often the bromine concentrations added are unnaturally
high and therefore bear little relationship to those found in the field. In light of the
fact that permitted bromate concentrations in drinking water are heading towards 10
g/L worldwide (if they are not already at this level), increased definition and
accuracy of MLR models are required at these low concentrations which is not
currently present.

2) Boundary conditions of models may be exceeded
Each of the MLR models was developed within a set of boundary conditions.
Outside these ranges, the accuracy of the models has not been experimentally
validated. Therefore, when the models have been applied to different data sets, there
can be no guarantee that the data lies within the required range. For example, in all
of the models in Table 1, the lowest raw water bromide concentration boundary was
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70 g/L, whilst for the utility data presented in Figure 3, the lowest bromide
concentration went as low as 43 g/L. This helps explain the inaccuracies of the
models, but also highlights the need for future models to consider lower bromide
concentrations to improve their applicability at WTW. A further consideration must
also be given to WTW sites where a sidestream ozone dose is applied at high
concentration and then diluted in a contact tank. In these instances, the applied
ozone dose can be up to 20 mg/L prior to dilution. The implications for bromate
formation both in the sidestream and the contact tank have yet to have been
analysed, but it has been shown previously that MLR models do not accurately
predict bromate for sidestream ozone dosing (Smith, 2002).

3) Reactor configuration
The reactor configuration used in the model development tend to be different from
study to study and to those utilised at WTW. In most instances, configurations have
been true batch or semi-batch reactors (Siddiqui et al., 1994). In the true batch
mode, ozone is administered into a sidestream and then introduced to the reactor for
a set period of time. In this way, all of the applied ozone is in the aqueous phase. In
semi-batch mode, the ozone is applied for a set amount of time directly into the
reactor. Adopting these models for a WTW is therefore likely to lead to some error
as ozonation is operated in the continuous mode; the scale is much greater and the
efficiency of ozone transfer into the reactor may be different depending on diffuser
configuration and operation. However, as only a small percentage of bromide is
converted to bromate, the reactor configuration is likely to be of less importance
than the previous two factors.

4) Uncertainty in the measured variables
It must also be considered that there was some error associated with the actual
measurements taken from the WTWs for variables that went in to the models and
the actual bromate measured exiting the site. This may result from natural drift of
on-line monitors, variations in flow through the WTWs, difficulties in measuring
ozone concentration and error in instruments. However, due to routine site quality
controls and laboratory auditing it is unlikely that this had a significant impact on
model accuracy.

In order to provide accurate bromate formation predictions, the empirically based
models must therefore be derived experimentally for a specific water (or set of waters).
Alternatively, given that the best selected models were able to show more general trends
in bromate formation for a different water source to that used in the model development,
the models can be used as a more qualitative demonstration of the change in bromate
formation when the input variables are changed (Ozekin and Amy, 1997; Galey et al.,
2002). The example in Figure 5 shows the water utility data used previously, however
here the pH has been fixed at either pH 6, 7 or 8. This highlighted how a reduction of
pH from 8 to 6 could lead to significant reductions in bromate formation using the
model of Galey et al. (1996). The decrease in bromate values >10 g/L was from 47 %
at pH to 0 % at pH 6. The impact on bromate reduction was less when the ozone contact
time was changed from 20 to 5 minutes (Figure 6). Reducing the contact time from 20
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to 5 minutes reduced the proportion of bromate failures above 10 g/L from 64 to 34 %.
This highlights the increased benefit of reducing pH over contact time as previously
identified from comparison of the co-efficients from the regression model. Using the
models in this manner could prove to be an important tool for water treatment managers
in order to prioritise bromate remediation strategies.

Kinetic and ozone decomposition rate modelling
It has been shown above that empirical modelling of bromate formation is highly
dependent on the specific nature of the water (Kim et al., 2004). Mechanistic models
incorporating the fundamental chemical reactions in the formation of bromate have been
developed in an attempt to overcome this problem (Westerhoff et al., 1998, Hassan et
al., 2003; Sohn et al., 2004). Essentially, a kinetic approach models the reactions and
rate constants (obtained experimentally or from the literature) involved in:

1) the consumption of ozone and the conversion of ozone to radicals, and
2) bromate formation from both direct and indirect oxidation.

The modelling of ozone consumption has taken a number of different approaches. A
basic model assumes that the hydroxyl radical alone is responsible for the conversion of
bromide to bromate as it has been estimated that the hydroxyl radical contributes
between 70-100 % of the total bromate formation (Mizuno et al., 2007). This
relationship is dependent on the conversion of ozone to hydroxyl radicals at different
pH:

O3 → 0.5OH• + O2

Equation [4]

Accurate bromate prediction has been simulated using this type of model for
synthetically prepared waters. However, this does not consider that other radical species
can form that may become available for bromate formation. A second approach
increases the complexity by considering all the known reactions of ozone in water at
neutral pH, including those involving inorganic and organic carbon which consider all
oxidant radical formation (Westerhoff et al., 1998).

The ozone consumption models can then be combined with bromide oxidation reaction
kinetics to predict bromate formation. During the modelling process, the reactions
involved (both direct and indirect) during the bromate formation pathways and the rate
constants for the reaction must be identified. Increased accuracy has been achieved by
considering as many possible reactions as possible that may influence bromate
formation. Different modellers have previously used differing numbers of reactions. For
example Hassan et al. (2003) listed 72 separate reactions that may occur, Kim et al.
(2004) listed 68 whilst Westerhoff et al. (1998) considered 46.

water
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Differential equations for each of the reactions and the associated reaction rate constants
are then input into a computer programme along with the initial concentrations of the
important chemical species involved in bromate formation. The programme then
integrates the differential equations together and gives solutions for the concentration of
each species with time for ozone decay and bromate formation (von Gunten, 2003b).

Validation of kinetic models
The validations of the kinetic model when NOM is absent have been shown to be
comparable to validations of MLR models. Westerhoff et al. (1998) compared two
models: firstly, a basic model based on a single equation for the formation of hydroxyl
radicals from ozone and secondly a more complex model involving 12 reactions for
ozone consumption and radical generation. For both models, 34 reactions were then
subsequently considered for bromate formation. Good fits were seen for both models
when used on synthetic waters, with both having regression lines with an R2 ≥ 0.98 and
slopes very near to a value of 1 and an intercept close to 0. However, once NOM
isolates were added to the water, the accuracy of the models broke down with bromate
concentrations being over-predicted. This can be seen in Figure 7, where the predicted
and observed bromate concentrations over time have been taken for the basic and
simple models. This was after the addition of three equations for NOM reacting with
OH• radicals and hypobromite and hypobromous acid in the models.

Validation of kinetic models on different water from that which the model has been
developed has been carried out for a synthetic water in the absence of organic material
(Hassan et al., 2003). As can be seen in Figure 8, there was a general tendency for the
model to over predict bromate formation when compared to actual values. Given that a
satisfactory prediction for kinetics models has currently been considered as ±100 %
(von Gunten, 2003; Hassan et al., 2004), there is still considerable work required in
order to improve the accuracy of kinetic based models. Additionally, there is a paucity
of detail available for low bromate concentrations that are critical for because they are
likely to be experienced at low concentrations at WTW.

Kinetics summary
The kinetics based model have shown similar or worse levels of performance to the
MLR models giving high levels of accuracy for synthetic water in the absence of NOM.
A more simple kinetic model has recently been developed that predicts bromate
formation from the concentration of hydroxyl radical to dissolved ozone ratio (Mizuno
et al., 2007). Once NOM has been added to the water, the models have been ill-
equipped to deal with the increased complexity of the systems (Westerhoff et al., 1998).
Given that all natural waters contain NOM, further research is required on quantifying
the reactions between NOM and the oxidising species present during ozonation before
kinetic based models can be considered for application at WTW.
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Artificial neural networks
Finally, there has been one example in the literature of modelling bromate formation
using the relatively new modelling strategy of artificial neural networks (ANN) (Legube
et al., 2004). Whilst it is beyond the scope of this work to go into ANN with any great
detail, the following briefly summarises the basic steps involved in ANN modelling
(from Lek et al., 1996). The modelling principle is based upon human neurone
operation, with three types of neurone layers: the input layer, one or more hidden layers
and an output layer. Each neurone of the input layer is connected to the neurones of the
hidden layer, which in turn are connected to the output neurone that corresponds to the
value to be predicted. The initial input layer comprises as many neurones as there are
variables in the system (e.g. bromine, pH, ozone dose etc). Using computer modelling
software, the hidden and output neurones evaluate the stimulation from the previous
neurones based on the weighting of the connections between neurones (defined by the
modeller). Through a series of algorithms and back-propagation, the network is trained
until there is minimum error in the expected and observed values of the model. The
model is then validated and tested using randomly selected data not used in the model
development.

ANN models have the advantage of being able to consider complex input variables that
may not be independent of one another and where relationships between variables may
not be linear. Whilst there has been limited work on bromate formation using ANN,
work completed has shown that ANN increases the accuracy over MLR of predicting
bromate formation for comparison of the same 20 data points by increasing the R2 co-
efficient from 0.94 to 0.98 (Legube et al., 2004). Further work is therefore required for
bromate formation using ANN as a useful predictive tool on real waters.

Summary

As has been shown both kinetic and MLR models have limited applicability to
accurately predict bromate formation when applied to waters that are different from
where they have been developed due to the inherent variability in raw water quality
from site to site. The real benefit in the general application of the models at present,
particularly for the MLR models, lies in a more qualitative demonstration of how
changing process variables such as ozone dose/contact time, pH or ammonia addition
can impact on bromate formation. Rather than provide absolute bromate concentrations,
a more realistic outcome of using the models is to state that reducing a controllable
parameter (e.g. pH, ozone contact time or dose) from x to y at a WTW will reduce the
proportion of bromate failures (i.e. those above 10 g/L). However, before process
variables are changed, some caution is needed to ensure that the primary function of the
ozonation does not become compromised. For example, reducing ozone contact time
may impact on disinfection efficacy and pH changes could affect oxidation and
precipitation of iron and manganese.

Each of the different bromate modelling techniques has advantages and disadvantages
for application to real waters at WTW (Table 2). The most accurate results to date have
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been seen with MLR models, but this technique requires considerable time and effort
investment in order to independently assess all of the variables of the model. An
alternative approach in the development of an accurate site specific model may be to
build a regression model directly from the full scale water treatment system. However,
the implication of not being able to control water quality variables and the limited scope
for changing ozonation parameters needs to be quantified using such an approach.
Kinetic models have struggled to meet the accuracy required when NOM has been
present in the raw water. The ANN model has shown promise, but large volumes of data
are required to ‘train’ the model and remains an unexplored technique at present.

Conclusions

None of the models can be considered accurate for generically predicting bromate
formation at WTW. Unless investment is made to develop empirical models for specific
waters, the current benefit of bromate formation models lie in their ability to show the
likely change in bromate formation when process variables are changed rather than
precise and highly accurate bromate predictions.
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Table 1. Regression coefficient values for bromate formation from various locations

Regression coefficient values for listed variables from bromate prediction models (number of variables
included is dependent on particular model)

Boundary conditions Notes Source

Constant Br-

(g/L)
DOC
(mg/L)

pH O3*
1

(mg/L)
t*2

(mins)
NH3-N
(mg/L N)

UV254

(cm-1)
Alkalinity
(mg/L as
CaCO3)

Temp
(°C)

1.55 x 10-6 0.730 -1.260 5.820 1.570 0.280 - - - - 70 ≤ Br- ≤ 440
1.1 ≤ DOC ≤ 8.4
6.5 ≤ pH ≤ 8.5
1.1 ≤ O3 ≤ 10.0
1 ≤ t ≤ 120

Model developed
from 10 raw
waters.
For raw waters
with no ammonia.
Limited to 20 °C.

Ozekin (1994)

1.63 x 10-6 0.730 -1.300 5.790 1.590 0.270 -0.033 - - - 70 ≤ Br- ≤ 440
1.1 ≤ DOC ≤ 8.4
6.5 ≤ pH ≤ 8.5
1.1 ≤ O3 ≤ 10.0
1 ≤ t ≤ 120
0.02 ≤ NH3-N ≤ 3.0

Model developed
from 10 raw
waters.
For raw waters
with ammonia.
Limited to 20 °C

Ozekin (1994)

1.19 x 10-7 0.960 - 5.680 1.307 0.336 - 0.623 -0.201 *3 70 ≤ Br- ≤ 440
6.5 ≤ pH ≤ 8.5
1.1 ≤ O3 ≤ 10.0
1 ≤ t ≤ 120
0.010 ≤ UV254 ≤ 0.280
13 ≤ Alkalinity

Developed from
Ozekin (1994).
For raw waters
with no ammonia.
Limited to 20 °C.

Sohn et al.
(2004)

8.71 x 10-8 0.944 - 5.810 1.279 0.337 -0.051 0.593 -0.167 *3 70 ≤ Br- ≤ 440
6.5 ≤ pH ≤ 8.5
1.1 ≤ O3 ≤ 10.0
1 ≤ t ≤ 120
0.02 ≤ NH3-N ≤ 3.0
0.010 ≤ UV254 ≤ 0.280
13 ≤ Alkalinity ≤ 316

Developed from
Ozekin (1994).
For raw waters
with ammonia.
Limited to 20 °C.

Sohn et al.
(2004)

(continued)
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Table 1 (continued)
Constant Br-

(g/L)
DOC
(mg/L)

pH O3*
1

(mg/L)
t*2

(mins)
NH3-N
(mg/L N)

UV254

(cm-1)
Alkalinity
(mg/L as
CaCO3)

Temp
(°C)

Boundary conditions Notes Source

7.76 x 10-7 0.880 -1.180 5.110 1.420 0.270 -0.180 - 0.180 [says
IC]

- 2 ≤ BrO3
-

100 ≤ Br-≤ 1000
1.5 ≤ DOC ≤ 6.0
6.5 ≤ pH ≤ 8.5
1.5 ≤ O3 ≤ 6.0
0 ≤ t ≤ 30
0.02 ≤ NH3-N ≤ 3.0
1 ≤ Alkalinity ≤ 216

Model developed
from 4 different
model waters.
Limited to 20 °C

Song et al.
(1996)

5.41 x 10-5 0.040 -1.080 4.700 1.120 0.304 - - - 0.580 70 ≤ Br- ≤ 440
1.1 ≤ DOC ≤ 8.4
6.5 ≤ pH ≤ 8.5
1.1 ≤ O3 ≤ 10.0
1 ≤ t ≤ 120

Galey et al.
(1997)

1.5 x 10-3 0.610 -0.740 2.260 0.640 - - - - 2.030 250 ≤ Br-≤ 1500
3.0 ≤ DOC ≤ 7.0
6.5 ≤ pH ≤ 8.5
1.5 ≤ O3 ≤ 17.5
20 ≤ Temp ≤ 30

Model developed
from 5 surface and
ground waters

Siddiqui et al.
(1994)

*1Utilised/transferred ozone
*2Time in ozone contactor
*3Temperature correction factor can be applied for variations in temperature: [BrO3]@tempT = [BrO3]@temp20 °C (1.035)T-20
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Table 2. The advantages and disadvantages of each of the bromate formation modelling
techniques.

Model Advantages Disadvantages

MLR - Bromate formation can be
predicted accurately for real
waters from which model
developed.

- Relatively simple technique
to apply to individual WTW
once model has been
developed

- Empirically derived
therefore models are site
specific. Generic model
inapplicable across all
types of water.

- Labour intensive to
develop models

- No evidence available
suggesting the technique
can be applied to high rate
side stream ozone dosing
and subsequent blending.

Kinetics - Accurate results achieved
when applied to model
waters not containing NOM.

- Complex understanding of
the reactions that occur
during ozonation required

- Reactions of NOM can
interfere with predicted
kinetic equations to an
unknown degree due to the
complexity of organics.

ANN - Does not assume a linear
relationship between input
variables (transformed or
otherwise)

- Does not assume variables
are independent of one
another

- Relatively unexplored
technique for bromate
formation

- Large amounts of data are
required to ‘train’ the
models.

- Model is only as good as
the assumptions made by
the modeller.
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Figure 1. The pathways for bromate formation from bromide (adapted from Legube et
al., 2004).
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Figure 2. Predicted bromate against observed bromate for external validation of model
prediction models (from the models of Siddiqui et al., 1994; Song et al., 1996 and
Ozekin and Amy, 1997).
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Figure 3. Water utility data applied to MLR bromate prediction models
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Figure 5. How the bromate formation models change with increasing pH.
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Figure 8. External validation effort of kinetic model (data taken from Hassan et al.,
2003).


