
Constructing a Gödel Sentence
Stephen Lee∗

September 22, 2011

Abstract
I argue that Gödel’s incompleteness theorem is much easier to understand when thought of in

terms of computers, and describe the writing of a computer program which generates the undecidable
Gödel sentence.

1 Introduction
Gödel’s incompleteness theorem is 80 years old, but is still seen as difficult to understand by many. In a
time when computers are everywhere this should not be the case, as Gödel’s theorem is very much about
computers (Of course it is part of the genius of Gödel that he devised the theorem before electronic
computers were invented). Gödel numbering is a way of storing a certain kind of data as bits and bytes.
Gödel arithmetization should be familiar to anyone who knows how a compiler works. Then it’s a case
of following the diagonalization argument, and diagonalization should be familiar from other proofs (e.g.
Cantor’s proof of the uncountability of the real numbers)

Gödel’s theorem states that given a first order axiomatization of arithmetic, such as the first-order
Peano axioms, there exist arithmetical statements which cannot be either proved or disproved using those
axioms. In this paper I describe a computer program which generates such an undecidable statement
from the axioms. The program consists of a number of Java applets which can be found at [1]. There is
a sketch of how the proof goes in this paper, but more details can be found in [1]. Much of this proof is
based on the proof in [2], to which the reader who wants more details - or more rigor - is referred.

2 Encoding an arithmetic formula as a number
It is assumed that the reader is familiar with formal proofs from axioms, as explained in undergraduate
level textbooks on mathematical logic, e.g.[3]. The important thing is that what counts as a statement
is precisely defined, and that the rules of proofs are also precisely defined, so that checking a proof is a
mechanical procedure.

In this project the encoding of an arithmetic statement into a number is done using the following
tables. The expressions are built up using a Polish notation, so that the code for an operator comes first,
followed by the codes for its parameters. Note however, that the bits of the number are read from right
to left, i.e. the least significant bit first. Formulae and terms are encoded via the following tables

Formula meaning bits
term = term equality 00
¬formula not 01

formula1⇒ formula2 implies 10
∀variable formula for all 11

Term meaning bits
variable variable 0

0 zero constant 001
term′ successor function 011

term+ term addition 101
term× term multiplication 111

Variables can be x, y or z followed by a number. The letter is encoded as 00, 01 or 10 and then the
following number is encoded in base-3 using the same bit pairs. The bit pair 11 is used to indicate the
end of the number.

Thus the expression 0′ + 0′ = 0′′ is encoded as 100101101100101100101110100 in binary (which is
79059316 in decimal), since, reading from right to left gives:

∗stephen@quantropy.org

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Quantropy is open to all

https://core.ac.uk/display/141207786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


00: term= term. This is followed by the code for the left hand term, which starts with 101:term+term.
The left hand term has 011 (successor) followed by 001 (zero) and so is 0′. This is followed by the right
hand term of the addition, which is again 0′. Finally comes the right hand term of the equality 001011011,
which encodes 0′′. There is a 1 bit at the end to act as a terminator, although this is not strictly necessary.

The applet implementing this encoding can be found at Godel_applet1

3 Encoding proofs
Normally a proof consists of a series of mathematical statements, with the derivation of each from earlier
ones given as a comment. When encoding a proof to be read by a computer, things are a bit different
- it is the content of the comments which is the important part. Specifying how a statement is derived
means that the computer can do the actual derivation. Hence each line of the proof is an axiom from the
following table.

Axiom name Axiom Structure bits Comment
Ax1(WF1,WF2) WF1⇒ (WF2⇒ WF1) 0001 First are the three

propositional
axiomsAx2(WF1,WF2,WF3) (WF1⇒ (WF2⇒ WF3))⇒

((WF1⇒ WF2)⇒ (WF1⇒ WF3) 0101

Ax3(WF1,WF2) (¬WF2⇒ ¬WF1)⇒ ((¬WF2⇒ WF1)⇒ WF2) 1001

Ax4(V,T,WF) ∀V WF(V)⇒ WF(T)
(T is a term free for V in WF)

0010 Next are two
predicate axiomsAx5(V,WF1,WF2) ∀V (WF1⇒ WF2)⇒ (WF1⇒ ∀V WF2)

(WF1 has no free occurence of V)
0110

Ind(V,WF) WF(0)⇒ ((∀V(WF(V)⇒ WF(V′)))⇒ WF(V)) 1010 Integer Induction
MP(L1,L2) WF1, WF1⇒ WF2 ` WF2 0011 Finally two rules of

inferenceGen(V,L) WF ` ∀V WF 0111
End of proof 00

The first six axioms take as parameters formulae,
terms and variables which are encoded in a way sim-
ilar to that specified in section 2. The final two
axioms are slightly different. MP (Modus Ponens)
takes two line numbers of earlier statements in the
proof. These must be of the form WF1, WF1⇒ WF2
and the derived statement is then WF2 . Gen, which
adds a universal quantifier to a statement, takes a
line number and a variable. Instead of a line num-
ber these axioms can take an integer axiom from the
following table.

No. Axiom Bits
I1 x = y ⇒ (x = z ⇒ y = z) 0001
I2 x = y ⇒ x′ = y′ 0011
I3 ¬0 = x′ 0101
I4 x′ = y′ ⇒ x = y 0111
I5 x+ 0 = x 1001
I6 x+ y′ = (x+ y)′ 1011
I7 x× 0 = 0 1101
I8 x× y′ = (x× y) + x 1111

The program takes a proof encoded in this form and generates the statements of the proof, finishing
with the statement to be proved. The applet is located at Godel_applet2

4 Gödel arithmetization
Having dealt with the straightforward matter of encoding statements and proofs in terms of bits, we now
get on to a more central part of the proof, that is expressing a computer program in terms of arithmetic
statements. In particular, given an integer function with one parameter f(x), written in a programming
language, the task is to translate a statement such as y=f(x) into a formal arithmetical statement. The
function to be translated in the proof of Gödel’s theorem is that of Section 3, which takes the encoding
of a proof as a parameter and returns the encoding of the statement proved as its result. This was
written in Java, but I found that the conversion of program statements into arithmetic was much more
straightforward if the functional programming language Haskell was used, so the proof decoding program
was rewritten in this language (In fact a small subset of Haskell is used).

Formal arithmetic has no way of saying ’Do this n times’, but such a concept is a crucial part of
programming, for instance in expressing a function such as f(n) = 2n, which would generally be written
using a loop. In Haskell, however, loops are often implemented via recursion, so that this function can
be programmed as

f n =if n==0 then 1 else 2*(f (n-1))

2

http://tachyos.org/godel/Godel_applet1.html
http://tachyos.org/godel/Godel_applet2.html


To convert this into an arithmetic statement requires another of Gödel’s insights, the Gödel beta
function which is defined as β(a, b, x) = b%(1 + (x+ 1)a) where % is the modulo operator. It is straight-
forward to convert statements involving the β function into arithmetic statements. Now it is possible
to show that given a sequence of natural numbers a1, a2..an, there exist numbers Y and Z such that
ai = β(Y,Z, i) for all i in [0..n]. Hence it is possible to express m = 2n as follows

∃Y, Z (m = β(Y, Z, n) ∧ (0 < i ≤ m⇒ β(Y, Z, i) = 2 ∗ β(Y, Z, i− 1)) ∧ β(Y, Z, 0) = 1)

Further details of the arithmetization process can be found at Godel_arithmetization and the arith-
metization applet can be found at Godel_applet3

5 The Gödel sentence
Given an arithmetical formula φ(x) with one free variable, and a numerical encoding num of aritmetical
statements, it is possible to find a statement σφ such that σφ is equivalent to the statement φ(num(σφ)).
This is known as Gödel’s fixed point theorem and σφ is a fixed point of φ. (This is the diagonalisation
step of the proof, although in the proof from[2] it doesn’t appear to have much in common with Cantor’s
diagonal argument) From Section 3 we have a function proof(x) which takes an encoded arithmetical
proof, and returns the statement which it proves. By Section 4 this can be expressed as an arithmetical
statement *proof*. Now take φ(x) to be ¬∃y(x = ∗proof ∗ (y). This has a fixed point σφ, which is then
mathematically equivalent to

¬∃y(num(σφ) = ∗proof ∗ (y) (1)

The claim is that σφ is the undecidable statement. For suppose that there existed a proof of σφ, then
this proof could be encoded as an integer k. Then num(σφ) = ∗proof ∗ (k), which, from 1 implies ¬σφ, a
contradiction. Hence there is no proof of σφ. But this is just what 1 is saying, and so σφ is true, meaning
that there can be no proof of ¬σφ.

The above assumes that the axioms are consistent, of course, but it also makes the stronger assumption
that if ψ(k) is false for all natural numbers k then there is no proof of ∃y ψ(y), an assumption known as
ω-consistency. This is true for the axioms given, but we might also want to consider other sets of axioms.
The assumption can be dispensed with as follows. Define a function proofsearch(x), which takes the
encoding of an arithmetical statement µ, and searches through all proofs (which are ordered using the
encoding used in Section 3) to see if there is a proof of µ, in which case it returns 1, or of ¬µ, in which
case it returns 0. Note that this function may not terminate, indeed we will find a case where it does
not. Let φ′(x) represent proofsearch(x)=0, and let σφ′ be its fixed point. Suppose that there were a
proof of σφ′ . Then proofsearch would find it, so that ∗proofsearch ∗ (num(σφ′)) = 1. However σφ′

is mathematically equivalent to ∗proofsearch ∗ (num(σφ′)) = 0, a contradiction. Alternatively if there
were a proof of ¬σφ′ then proofsearch(num(σφ′)) = 0, from which we could obtain a proof of σφ′ , a
contradiction. Hence neither σφ′ nor ¬σφ′ have a proof from the given axioms.

Further details of this proof can be found at Godel_fixed_point.

6 Discussion
Putting all of the above together, it is possible to generate an undecidable sentence (as well as its Gödel
encoding). These can be found at Godel_statement and Godel_number. Note that they are much
shorter than might be expected. I had originally assumed that they might require tens or hundreds of
megabytes, but the Gödel sentence has just 40203 characters and the Gödel number 29479 digits, so that
they fit reasonably on a webpage. There have been other computer based proofs of Gödel’s incompleteness
theorem, e.g. [4], but I believe that this is the first one which has actually exhibited the undecidable
statement which is generated.

There are a number of ways in which this project might be extended. Firstly, ∃,∧ and ∨ are not
allowed in the arithmetic expressions - they need to be converted into expressions using just ∀ and ⇒.
It would be straightforward to allow a wider range of symbols. Secondly, the arithmetization program
could be written in Haskell itself rather than Java (Haskell compilers are usually written in Haskell), and
extended to allow a larger set of Haskell statements. The proof program has the integer axioms built
into the program, but it could be modified so that the axioms could be given as input. It would then
be possible to see the effect of adding the undecidable statement (or its negation) as an axiom to the
program. Another possible extension of the proof program would be to make it easier to enter proofs - at
present they have to be encoded by hand into their Gödel encodings. I feel that any of these extensions
would be suitable for an undergraduate computer science project.

3

http://tachyos.org/godel/Godel_arithmetization.html
http://tachyos.org/godel/Godel_applet3.html
http://tachyos.org/godel/Godel_fixed_point.html
http://tachyos.org/godel/Godel_statement.html
http://tachyos.org/godel/Godel_number.html


References
[1] S. Lee. Gödel’s incompleteness theorem project. URL: http://tachyos.org/godel.html

[2] B. Kim. Complete proofs of gödel’s incompleteness theorems. URL: http://web.yonsei.ac.kr/bkim/
goedel.pdf

[3] H. B. Enderton, A Mathematical Introduction to Logic, Second Edition. Academic Press, 2001.

[4] N. Shankar, Metamathematics, Machines and Gödel’s Proof (Cambridge Tracts in Theoretical Com-
puter Science). Cambridge University Press, 1994.

4

http://tachyos.org/godel.html
http://web.yonsei.ac.kr/bkim/goedel.pdf
http://web.yonsei.ac.kr/bkim/goedel.pdf

	Introduction 
	Encoding an arithmetic formula as a number
	Encoding proofs
	Gödel arithmetization
	The Gödel sentence
	Discussion

