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Abstract Supporting Einstein's advocacy for local realism and hidden-variables, we show that measurement outcomes 
(manifest-variables) reveal the equivalence classes to which hidden-variables belong. We show that equivalence classes are 
the fundamental concepts that any analysis of measurement requires. We show that the correlation of manifest-variables 
equates to the pre- and post-measurement correlation of equivalence classes. We show that, though hidden-variables remain 
hidden, manifest-variables enable us to name their equivalence classes. Revealing the local realistic variables that alone 
determine measurement outcomes, we identify Bell's unrealistic assumption about measurements and refute his theorem. 
Responding to Bell’s hope for a simple constructive model of quantum entanglement, we also deliver Einstein's wish for a 
classical account of EPR correlations. We thus provide a basis for understanding quantum mechanics in terms of local 
realism and deterministic digital outcomes. 
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1 Introduction 
 
Taking quantum mechanics (QM) to be an incomplete description of physical systems, Einstein, 
Podolsky & Rosen (EPR)2 believed that QM could be completed with variables that would restore 
locality and realism to the theory, with added understanding. Challenging this view, Bohr's3 influential 
epistemology had no place for such variables, and von Neumann,4 Gleason,5 and Jauch & Piron6 
offered mathematical proofs that they were impossible. Examining these proofs and finding unrealistic 
assumptions, Bell dismissed them7 to present8 his own mathematical impossibility proof based on 
EPRB,9 Bohm's version of EPR. Bell's work (EPRB-Bell) leads to a family of mathematical relations, 
known as Bell inequalities, which are said to constrain all local realistic theories. With QM predicting 
Bell inequalities to be breached, and with experimental observations confirming the QM predictions, 
many claim that no local realistic theory can match QM.10-14 In fact, in supposedly requiring us to 
abandon realism or locality and change our consequent understanding of reality or space-time,10 Bell’s 
impossibility theorem8 is widely regarded as the most profound discovery of science.15 
 In line with Bell's hope that such analyses might be illuminated, perhaps harshly, by a simple 
constructive model,16 we study the impact of measurements on photons and spin-half particles; 
sensitive contributors to the veiled reality17 of our world. With probability theory as our logic and 
highlighting its ontological implications, we take valid inference from factual data to be the necessary 
tool for drawing factual conclusions about sensitive hidden-variables (HVs): there being "no 
infinitesimals by the aid of which an observation might be made without appreciable perturbation,"18 a 
fact which justifies the term hidden when variables are sensitive, as we will show. 
 It follows that our inferences are testable inferences; and that our conclusions, inferred from 
multiple observations, may be tested by additional observations. Consistent with Einstein's advocacy 
for local realism and HVs, we reveal the local realistic HVs that refute Bell's theorem. We identify 
Bell's unrealistic assumption about measurements19 and deliver Einstein's wish for a classical account 
of EPR correlations.20 As we will show, the manifest variables (MVs) associated with measurements –
tests, in our terms; on measurement, see Bell21 – reveal the equivalence classes (ECs) to which HVs 
belong. So: Section 2 next provides a common Framework and notation for EPRB-Bell studies with 
photons or spin-half particles. Section 3, Analysis, reveals the local realistic variables that refute Bell’s 
theorem; and identifies and discusses Bell's error. Conclusions follow in Section 4, then References. 
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2 Framework 
 
Supporting local realism, we suppose that a local physical reality exists, independent of any test or 
observation, aware that any test or observation may appreciably perturb a sensitive HV. By local 
(local action) we mean that local events cannot be influenced by actions in space-like separated 
regions: Locality equates to the impossibility of any influence travelling faster than light. By realism 
(physical realism) we mean that an external reality exists and has definite (perhaps sensitive) 
properties, independent of observation: Realism requires MVs – the results of observations – to be a 
consequence of properties carried by physical systems. 
 Local realism is therefore the notion that objects have definite properties, whether tested or not, 
any such test or related outcome being unaffected by space-like separated events. In other words, 
following Einstein: The real factual situation of a system ν is independent of what is done to system ν' 
that is space-like separated from it.22 Endorsing these terms, we employ a physically significant 
notation to sketch an idealised EPRB experiment9 – with every relevant element of the physical reality 
in the sketch and in our formalism: 
 

O –  [ν(s, Λa+) ⊕ ν(s, Λa–)]⇐ [a]←  ν(s, λk) – (S) – ν'(s, λk') → [b]⇒ [ν'(s, Λb+') ⊕ ν'(s, Λb–')]  – z.  (*) 
 

In (*), single-arrows (← , → ) accompany each physical input, preceding its interaction and transition 
within a testing/measuring-device; double-arrows (⇐ , ⇒ ) point to the succeeding physical output; ⊕ 
denotes xor, exclusive-or; s denotes intrinsic spin (angular momentum) in units of , and in this paper 
reference to a particle means s = ½ ⊕ s = 1. Primes (') distinguish some elements on the right from 
their counterparts on the left; and k is another identifier, a number, k = 1, 2, ..., N. N is large; and even, 
so that an equiprobable distribution over N has the sets in one-to-one correspondence. 
 Source (S) emits N paired particles (N twins) ν(s, λk) and ν'(s, λk') one pair at a time, pair-wise 
correlated in the spherically symmetric singlet state. ν(s, λk) is short for ν(s, λk, ...), ν'(s, λk') is short for 
ν'(s, λk', ...), the ellipsis representing properties not relevant here. Unit-vectors λk and λk' – discrete 
sensitive random HVs over the 4π steradians of 3-space – denote the orientation of the total spin of 
each particle; or, where the total spin is parallel to Oz, the direction of polarization. With total spin 
conserved during the emission of each particle-pair, and with ρ denoting a probability distribution: 

 
λk + λk' = 0. In the limit as N→∞: ρ(λk) = 1/4π; ρ(λk') = 1/4π.                            (1) 

 
The paired particles separate by counter-propagating along the line-of-flight axis Oz to interact with 
space-like separated testing/measuring-devices [a] (with output-channels designated a+ and a–) and [b] 
(with output-channels designated b+ and b–). Unit-vectors orthogonal to Oz, a freely or randomly23 set 
by Alice, b freely or randomly set by Bob, denote the principal-axis orientation (a ray or half-line) of 
each device; a+ denotes an orientation parallel to a; a– denotes the orientation of what we term the 
secondary axis, an orientation orthogonal to Oz and differing from a by the angular relation π/2s; etc. 
Importantly: From (1), and in agreement with Bell,23 λk and λk' are independent of a and b. 
 Unit-vectors Λ denote an MV, a post-test orientation defined by a subscript; i.e., ν(s, Λa+) 
denotes a post-test particle on the left, its MV (Λ) reported by Alice's analyzer to be oriented parallel 
to a. Similarly, ν'(s, Λb+') denotes a post-test particle on the right, its MV (Λ') reported by Bob's 
analyzer to be oriented parallel to b; etc. Expressed as trigonometric arguments, relevant angular 
differences are: 

 
(a, a–) = (a+, a–) = (Λa+, Λa–) = (a, Λa–) = (b, b–) = (b+, b–) = (Λb+', Λb–') = (b, Λb–') = π/2s;       (2) 

 
where, as is conventional, arguments such as (a, a–) denote the angle between the orientations a and a–; 
etc. Then, in terms of common QM descriptors: For s = ½, the test-devices are Stern-Gerlach magnet-
analyzers; outcome Λa+ is termed spin-up parallel to a, Λa– is termed spin-down parallel to a; etc. For s 
= 1, the test-devices are dichotomic linear polarizer-analyzers; outcome Λa+ is termed polarized 
parallel to a, Λa– is termed polarized orthogonal to a; etc. Experiment (*) is thus a long run of N 
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paired-tests on a real (concrete, sequential) ensemble of N pairs of pair-wise correlated particles, a test 
or measurement being a completed interaction between a particle and a relevant device. 
 
3 Analysis 
 
Let H be the set of HVs with a k-identifier; the set of 2N HVs measured under (*). Let M be the set of 
MVs under (*), and let W (the Whole) be the union of H and M, with ω, ω' ∈ W. 

 
H = {λk, λk'| k = 1, 2, ..., N}.                                                  (3a) 

 
M = {Λa+, Λa–, Λb+', Λb–'}.                                                    (3b) 

 
W = H ∪ M.                                                                 (3c) 

 
ω ∈ {λk, Λa+, Λa–| k = 1, 2, ..., N}.                                                  (3d) 

 
ω' ∈ {λk', Λb+', Λb–'| k = 1, 2, ..., N}.                                                (3e) 

 
 

Clearly, the carrier-particle for each variable is identified by the presence or absence of a prime on that 
variable: for primed variable x', the particle is ν'(s, x'); for unprimed variable y, the particle is ν(s, y). 
So let ω → [a] ⇒  Λa+ represent the dynamics of a test involving ω at [a], with certainty; i.e., after 
particle/device interactions at Alice's device [a], ω enters the a+ output-channel of [a] as Λa+ with 
certainty; etc. Let [a]:ω = Λa+ also represent this dynamic; i.e., with certainty, test [a] on HV ω yields 
MV Λa+. Then, with ⇔ denoting material equivalence, we define an equivalence relation ~ on W by: 

 
[P(ω → [a]⇒  Λa+| (*)) = 1] ⇔ [P([a]:ω = Λa+| (*)) = 1] ⇔ ω ~ Λa+.                           (3f) 

 
[P(ω → [a]⇒  Λa–| (*)) = 1] ⇔ [P([a]:ω = Λa–| (*)) = 1] ⇔ ω ~ Λa–.                           (3g) 

 
That is: If the transition ω → [a]⇒  Λa+ is certain, then we take ω to be equivalent to Λa+; if ω is 
equivalent to Λa+, then the transition ω → [a] ⇒  Λa+ is certain; etc. So, given (N + 2) tests involving 
every ω at [a], we find just two classes of ω-s: The class that transitions ω → [a]⇒  Λa+ with certainty, 
and the equiprobable class that transitions ω → [a]⇒  Λa– with certainty; etc. Similarly, with our (N) 
tests involving every λk at [a]. Here we again find just two classes of λk-s: The class that transitions λk 
→ [a]⇒  Λa+ with certainty, and the equiprobable class that transitions λk → [a]⇒  Λa– with certainty; 
etc. So both sets of variables provide two mutually-exclusive collectively-exhaustive equiprobable 
transitions at [a]. From these facts we infer just two mutually-exclusive collectively-exhaustive 
equiprobable ECs, as shown next in (4a) and (4b). Summarizing in the alternative format: Given (N + 
2) tests [a]:ω – or from our (N) tests [a]:λk – half the variables will be equivalent to Λa+ (with 
certainty, [a]:ω = [a]:λk = Λa+), and half will be equivalent to Λa– (with certainty, [a]:ω = [a]:λk = Λa–). 
 So we now formally identify each EC, denoted [.} to signify that an EC is both a class and a set; 
noting that a particle may belong to more than one EC. With (1) the basis for material equivalences, 
(3f) and (3g) and their [b]-based equivalents yield: 

 
[Λa+} = {ω ∈ W| ω ~ Λa+}; λk ∈ [Λa+} ⇔ λk' ∈ [– Λa+'}.                                (4a) 

 
[Λa–} = {ω ∈ W| ω) ~ Λa–}; λk ∈ [Λa–} ⇔ λk' ∈ [– Λa–'}.                               (4b) 

 
[Λb+'} = {ω' ∈ W| ω' ~ Λb+'}; λk' ∈ [Λb+'} ⇔ λk ∈ [– Λb+}.                              (4c) 

 
[Λb–'} = {ω' ∈ W| ω' ~ Λb–'}; λk' ∈ [Λb–'} ⇔ λk ∈ [– Λb–}.                              (4d) 
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From prior analysis,24,25 tests under (*) give mathematical expectations as functions of cos 2s (.), with 
component probability functions cos2 s (.). This same cos2 s (.) probability relation here links those 
same component (observable) MV combinations, as well as the new EC/EC combinations on any HV; 
i.e., on λk-λk or λk'-λk' combinations, but not on space-like separated combinations λk-λk' or λk'-λk: 
 

P(Λb+'| Λa+) = P(λk' ∈ [Λb+'}| λk ∈ [Λa+}) = P(λk' ∈ [Λb+'}| λk' ∈ [– Λa+'}) = cos2 s (b+, – a+) 
= P(Λa+| Λb+') = P(λk ∈ [Λa+}| λk' ∈ [Λb+'}) = P(λk ∈ [Λa+}| λk ∈ [– Λb+}) = cos2 s (a+, – b+).   (5a) 

 
P(Λb–'| Λa+) = P(λk' ∈ [Λb–'}| λk ∈ [Λa+}) = P(λk' ∈ [Λb–'}| λk' ∈ [– Λa+}) = cos2 s (b–, – a+) 

= P(Λa+| Λb–') = P(λk ∈ [Λa+}| λk' ∈ [Λb–'}) = P(λk ∈ [Λa+}| λk ∈ [– Λb–}) = cos2 s (a+, – b–).    (5b) 
 

P(Λb+'| Λa–) = P(λk' ∈ [Λb+'}| λk ∈ [Λa–}) = P(λk' ∈ [Λb+'}| λk' ∈ [– Λa–'}) = cos2 s (b+, – a–) 
= P(Λa–| Λb+') = P(λk ∈ [Λa–}| λk' ∈ [Λb+'}) = P(λk ∈ [Λa–}| λk ∈ [– Λb+}) = cos2 s (a–, – b+).     (5c) 

 
P(Λb–'| Λa–) = P(λk' ∈ [Λb–'}| λk ∈ [Λa–}) = P(λk' ∈ [Λb–'}| λk' ∈ [– Λa–'}) = cos2 s (b–, – a–) 
= P(Λa–| Λb–') = P(λk ∈ [Λa–}| λk' ∈ [Λb–'}) = P(λk ∈ [Λa–}| λk ∈ [– Λb–}) = cos2 s (a–, – b–).    (5d) 

 
Note the probabilistic symmetries between correlated MVs – the equality of P(Λb+'| Λa+) and P(Λa+| 
(Λb+'); etc. Also note that the correlation of any HV's ECs is one function –  cos2 s (c, d)  – of the 
orientations c and d that define those ECs; e.g., from (5a): 

 
P(λk' ∈ [Λb+'}| λk' ∈ [– Λa+'}) = cos2 s (b+, – a+).                                  (5e) 

 
Thus the correlation of MVs reflects the pre-test correlation of the related ECs. So, measurement 
interactions perturb HVs but not their ECs; on the contrary, measurement outcomes (MVs) reveal the 
equivalence of pre-test and post-test ECs. That is, measurements – yielding deterministic digital 
outcomes 0 ⊕ 1 – confirm these correlations via jumps (in our terms) from particles with unknown 
HVs in knowable ECs to observable MVs that are also members of those now-known ECs: i.e., from λk 
∈ [Λa+} ⊕ [Λa–} to Λa+ ∈ [Λa+}, etc; from λk' ∈ [Λb+'} ⊕ [Λb–'} to Λb+' ∈ [Λb+'}, etc. Thus, seeking both 
physical significance and precision, we have the so-called quantum jumps in our equations as 
dynamical processes in dynamically defined conditions, after Bell.20 To be clear: MV correlations 
reflect the pre-test correlations of the relevant HV ECs, such ECs remaining unaffected by 
measurement-induced perturbation. Then, for a specific spin s, (5) yields: 

 
For s = ½: (5a) = (5d) = (5e) = sin2 ½ (a, b); (5b) = (5c) = cos2 ½ (a, b).                 (6a) 

 
For s = 1: (5a) = (5d) = (5e) = cos2 (a, b); (5b) = (5c) = sin2 (a, b).                     (6b) 

 
These local realistic results, in full accord with the experimentally confirmed predictions of QM, 
refute Bell's theorem and any related claim against local realism; e.g., Greenberger, Horne and 
Zeilinger (GHZ),26 Mermin.27 Not recognizing the interrelation between measurement settings, MVs 
and ECs – see Bell's error two paragraphs down – Bell's theorem states: "In a theory in which 
parameters are added to quantum mechanics to determine the results of individual measurements, 
without changing the statistical predictions, there must be a mechanism whereby the setting of one 
measuring device can influence the reading of another instrument, however remote. Moreover, the 
signal involved must propagate instantaneously, so that such a theory could not be Lorentz-invariant."8 
 On the contrary, as we show: the setting of a measuring device, say [a], influences – via 
interactions with HVs λk in its locale – the associated MVs, Λa+ ⊕ Λa–; they in turn reveal the relevant 
ECs, [Λa+} ⊕ ∈ [Λa–}. Moreover, in our Lorentz-invariant theory, the setting of a measuring device 
has no influence whatsoever on the reading of another space-like separated instrument. 
 We conclude this analysis with an explanation of Bell's error, first recalling Bell's challenge: 
"And does not any analysis of measurement require concepts more fundamental than measurement? 
And should not the fundamental theory be about these more fundamental concepts?"1 Our theory takes 
these questions seriously and responds positively: ECs are core concepts in mathematics and in our 
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analysis of measurement. And though HVs remain hidden – i.e., in that we did not identify the specific 
orientation of any λk or λk' – and though measurements perturb HVs, the ECs of the HVs are revealed 
by those measurements and the associated MVs. And thus it is that we find Bell's unrealistic 
assumption in the area of measurement. Here's Bell: "... the result of the measurement [say Λa+, in our 
terms] does not actually tell us about some property previously possessed by the system ... ."19 
 To the contrary, as presented here: The test result Λa+ tells us which of the ECs [Λa+} ⊕ [Λa–} is 
applicable as a property previously possessed – in Bell's terms19 – by λk ∈ H: for to be a member of a 
particular EC is a property; and without this discrimination among the relevant ECs, [Λa+} ⊕ [Λa–}, 
Λa+ would not be a relevant test result. Here's Bell again, not fully understanding: "While imagining 
that I understand the position of Einstein … as regards the EPR correlations, I have very little 
understanding of the position of his principal opponent, Bohr."28 
 But as Bohr emphasized, viewed in the light of our ECs: At the last critical stage of the test 
procedure – as the test-device orientation (in our case) is finalized; before the measurement interaction 
takes place between particle and device – there is "no question of a mechanical disturbance of the 
system under investigation ... But ... there is a question of an influence on the very conditions which 
define the possible types of predictions regarding the future behavior of the system."3,29 "… closer 
examination reveals that the procedure of measurement has an essential influence on the conditions on 
which the very definition of the physical quantities in question rests."30 "And just as the choice of a 
different frame of reference in relativity affects the result of a particular measurement, so also in 
quantum mechanics the choice of a different experimental setup has its effects on measurements, for it 
determines what is measurable."31 We agree, and emphasize: The orientation of the test-device, say 
[a], determines the ECs that are measurable, [Λa+} and [Λa–}; the measurement outcome (MV), Λa+ ⊕ 
Λa–, reveals which of these ECs is applicable to the particle under test. 
 
4 Conclusions 
 
In full accord with the experimentally confirmed predictions of QM, and with local realism rigorously 
maintained, (6) refutes Bell's theorem. Revealed by our existence proof, λk and λk' represent separable 
sensitive local realistic HVs: their remarkable pre-test correlation arising from their twinned emission 
with total spin conserved, per (1). And though HVs are transformed in perturbative particle/device 
interactions, such transitions do not prevent the associated MVs from yielding the requisite EC: An 
MV reveals an EC to which the HV belongs. Thus, as the following schematic shows, extending (3), 
ECs are the fundamental concepts that any complete analysis of measurement requires: 

 
[ω → [a]⇒  Λa+ → [a]⇒  Λa+] ⇔ ω ~ Λa+; Λa+ ∈ [Λa+}; etc.                              (7) 

 
We have also shown that the correlation of MVs equates to the pre-measurement correlation of ECs; 
and that apart from our naming their ECs, HVs remain hidden. Nevertheless, particle properties λk or 
λk' (with their ECs), and a device-variable in the same locale (with which they interact), are the local 
realistic variables that alone determine measurement outcomes (MVs). Relatedly, we identified the 
unrealistic assumption about measurements that undermines Bell's theorem and provides the basis for 
its refutation. Further, our analysis, per (5) – identifying ECs as elements of physical reality more 
fundamental than measurements – cannot be negated by any experiment that accords with QM. So, 
with appeal to experiment ever remaining our best defense, we eliminate much mystery from QM and 
scotch all Bell-based claims that local realists must abandon local-action or physical-realism or both. 
 Finally: Endorsing Einstein's advocacy for local realism and hidden-variables, we provide a 
basis for understanding quantum mechanics in terms of local realism and deterministic digital 
outcomes. In line with Bell’s hope for a simple constructive model of quantum entanglement, we 
deliver Einstein's wish for a classical account of EPR correlations. In short: The new theory – 
wholistic mechanics, with its deterministic digital outcomes and lessons from the theory of relativity – 
paves the way for a local realistic model of the world; with added understanding. 
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