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1. INTRODUCTION

Sensors are becoming more pervasive. They exist ubiquitously around us and are em-
bedded in our phones, cameras, clothing, buildings, cars, and in all kinds of everyday
objects. Massive amounts of data are generated from these sensors continuously. The
availability of real time sensory information through these sensors has led to the emer-
gence of research into “Activity Recognition” (AR). Activity recognition aims to provide
accurate and opportune information based on people’s activities and behaviours. Ac-
tivity recognition has become an emerging field in the areas of pervasive sensory data
processing and ubiquitous computing. Many applications have demonstrated the use-
fulness of activity recognition. These include applications in healthcare [Tentori and
Favela. 2008; Do et al. 2013; Wu et al. 2008; Mohomed et al. 2008; Zhang et al. 2008;
Sanchez et al. 2008], social networks [Miluzzo et al. 2008], environmental monitor-
ing [Mun et al. 2009], surveillance, and emergency response [Zhang et al. 2008; Nait-
Charif and McKenna 2004]

Activity recognition has been widely studied using different approaches and from
various perspectives. Probabilistic, statistical and logical reasoning approaches have
been applied to understand and predict various user activities. Additionally, machine
learning approaches based on sensory data have also been leveraged for activity recog-
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nition. The premise underlying the use of machine learning in activity recognition is
that activities can be recognised and even anticipated using prior knowledge of previ-
ously collected data representing different activities. Typical activity recognition pro-
cess consists of three main components: namely, data collection and preprocessing,
modelling, and finally recognition. The data collection and preprocessing component
that gathers annotated sensory data evolves from diverse data sources such as on
body wearable sensors, mobile sensors, and/or smart environment sensors. Then, raw
sensory data is processed into features that help discriminate between activities. The
modelling component uses the extracted features to train a baseline learning model
that is then deployed to predict activities from new incoming sensory data by the recog-
nition component.

State of the art activity recognition techniques rely strongly on prior knowledge to
recognise activities based on models built from samples of the population. However,
typical activity recognition techniques deal with data that is continuously streaming
from various sensors. Sensory data is a data stream that contains unbounded data
which arrives at high speed. Therefore, it is unrealistic in activity recognition to as-
sume that data is static over time. Dynamic changes in activities that reflect variations
in user’s activities are expected and natural. Change of existing activities or emergence
of novel activities occur in evolving activity data.

In this paper, we survey the area of research concerning activity recognition in data
streams. The focus of this paper is on the research gaps and challenges that are faced
by activity recognition approaches when dealing with data streams. We start the sur-
vey by discussing the scope of this survey across activity recognition and stream min-
ing disciplines in Section 2. Within this scope, we first discuss different learning ap-
proaches for activity recognition in Section 3. Then, section 4 explores approaches to
mine changes in data streams in general. Section 5 represents the research area com-
prising the intersection of stream mining and activity recognition approaches. Section
6 surveys key activity recognition systems applied in streaming settings. We further
present in Section 7 the current research challenges and gaps, along with a compar-
ison of key systems. Section 8 discusses future directions of research. The paper is
summarised and concluded in Section 9.

2. SURVEY SCOPE

Activity recognition is a wide research area that has been investigated from many per-
spectives. A well investigated research perspective focuses on managing the process
of data collection. This perspective concerns issues related to the kinds of sensors and
sensing platforms. Yet, immense research has been directed towards learning meth-
ods for recognising activities from sensory data. The literature covers a wide variety
of learning techniques applied for activity recognition. This research focuses on learn-
ing in activity recognition, yet, in streaming environments. Although the literature
represents subsets of the research themes across activity recognition and stream min-
ing disciples, this survey primarily focuses on the holistic approach that merges both
activity recognition and stream mining.

In the light of the survey’s scope, we introduce different learning techniques for
activity recognition with data streams. To explain the scope, we first introduce the
known term of i.i.d. in statistical and probability theory, which refers to data that
is both independent and identically distributed. A key challenge with learning from
sensory data in a streaming environment is that it requires learning beyond identically
distributed and independent conditions. In machine learning, a collection of data D is
defined as independent and identically distributed if all samples in D : X, X5,....X,,
follow the same distribution function f and are independent of each other.
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Many state-of-the-art statistical and machine learning approaches rely on process-
ing the data that follows the i.i.d. conditions. These approaches assume that data
instances are independent and follow the same distribution. Thus, the prediction of
new data relies strongly on prior knowledge. In the ubiquitous environment, either of
the i.i.d. conditions or even both can be violated. The distribution condition is clearly
challenged with the basic concepts of data streaming. In a streaming dynamic envi-
ronment, we can not assume the fulfilment of the identical distribution condition, as
a typical data stream evolves over time. There is an increasing interest in the domain
of learning from data that is not identically distributed. Changes in data distribution
leads to concept drifts that are formally defined using the Bayes rule as the change
in the prior and/or the likelihood. A concept drift can be abrupt, gradual, incremental,
or recurrent. The appearance of new concept corresponds to concept evolution. While,
outliers can be considered as a new concept that only occurred once. A main difference
between outliers and concept evolution is the recurrence of the concept and action
required upon detecting. In concept evolution, we expect more points in the stream
that represent the new concept and therefore the classification model is required to be
adapted to include the novel concept. On the other hand, outliers are mostly sparse
and not forming a concept. The action required for outliers is filtration rather than
adaptation. Indeed, these methods still preserve data independence. Other areas of
research focus on the violation of the independent data condition. These approaches
deal with data that is dependent while the distribution is fixed. Stationary time se-
ries and Markov Chains are examples of approaches that challenge the dependency
assumption.

Activity recognition data that represents a sequence of performed activities is intu-
itively dependent. Therefore, an efficient activity recognition system focuses on dealing
with the dependency among data for predicting performed activities. Furthermore, in
a streaming environment, activity recognition violates not only the assumption of in-
dependence but also identical distribution. Changes in activity recognition context can
also be abrupt (e.g., change in walking pattern after an accident), gradual (e.g., change
in walking pattern for toddlers), incremental (change in walking pattern during heal-
ing from an injury), or recurrent (e.g., repeated change of walking pattern according to
situations). However, new activities performed frequently represent novel concepts or
concept evolution (e.g., using a gym instrument for the first time). On the other hand,
a new activity performed once can be an outlier (e.g., sudden fall or malicious be-
haviour). Figure 1 depicts the intersection of the two research areas of stream mining
and activity recognition. In the following sections, we survey methods for both activity
recognition and data stream mining as well as the intersection between them.
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Fig. 1: Survey Scope
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3. ACTIVITY RECOGNITION TECHNIQUES

We survey in this section the main body of research in activity recognition. Differ-
ent from traditional probabilistic and logical approaches, other approaches that con-
sider activity recognition from the machine learning perspective have been studied.
In general, approaches in machine learning for activity recognition can be broadly
divided into two major strands. The first strand concerns the underlying learning ap-
proach. That includes supervised, unsupervised, and semi-supervised learning. The
second strand focuses on the dynamic capabilities of the recognition system beyond
the learning phase. This includes personalisation and adaptation of a learning model
and the concept of transfer learning.

3.1. Overview

Activity recognition is one of the emerging applications in the area of ubiquitous com-
puting. Systems that can recognise human activities opened the door to many impor-
tant applications such as:

— Health and wellness [Longstaff et al. 2010; Karantonis et al. 2006; Hong et al.
2010; Sanchez et al. 2008; Do et al. 2013]: Progressive research in activity recogni-
tion has provided the foundation for many applications in health and wellness. In
recent years, fitness tracking applications have attracted much attention in activity
recognition. Devices and applications, such as fitbit !, monitor distances walked and
corresponding burned calories. More advanced fitness applications aim at tracking
Activities of Daily Living (ADL) [Hong et al. 2010]. Recognition and monitoring of
the type and frequency of ADL is essential for creating what is known as an ac-
tivity diary/log [Yang 2009]. These diaries help users to understand their personal
lifestyle patterns and effect healthy changes (e.g. increase physical exercise, reduce
number of hours sitting in front of the computer). Such activity recognition appli-
cations are important for preventing medicine and avoiding chronic illness such as
cardiovascular diseases, diabetes and obesity. Other applications in health monitor-
ing are concerned with the remote supervision of home based patients or at risk
elderly people. Medical professionals believe that one of the best ways of early de-
tection and prevention of emerging medical conditions is to recognise changes and
abnormality in different activities [Lawton and Brody 1969].

— Activity-based crowdsourcing and surveillance [Bodor et al. 2003; Wilson and Atke-
son 2005]: Recognising activities for crowds leads to interesting applications. A case
of a large number of people running in a place where they normally walk or sit in-
dicates a possible emergency or disaster [Lockhart et al. 2012]. Also, surveillance
applications that are able to understand and model people’s activities could pre-
dict intent and motive as people interact with the environment. Therefore, activity
recognition applications aim to proactively detect abnormal behaviours in busy en-
vironments [Niu et al. 2004]. An example is a suspicious person who is spending
longer than usual time on a train platform.

— Targeted advertising [Intille 2004; Sricharan et al. 2006]: Activity recognition in
real time is an important component of applications that interact with users to de-
liver context relevant information and services. Applications in this category target
conveying the right message at the right place and at the right time using activ-
ity recognition. Examples include personalised advertisements or discount deals
in smart shopping scenarios. The term Know Your Customer (KYC) [Woodruff and
Gardial 1996], which has been used by businesses, refers to understanding customer
needs and provides them with satisfying services. Activity recognition contributes

Thttp://www.fitbit.com
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to KYC analytics by inferring the general interests of customers and thus helps in
providing them with relevant information and services.

Typical activity recognition process consists of three main components: data collec-
tion and preprocessing, modelling, and finally recognition. The flow of the learning
process through different components in activity recognition is illustrated in Figure 2
The data collection and preprocessing component that gathers annotated sensory data
evolves from diverse data sources such as on body wearable sensors, mobile sensors,
and/or smart environment sensors. Then, raw sensory data is processed into features
that help discriminate between activities. The modelling component uses the extracted
features to train a baseline-learning model that is then deployed to predict activities
from new incoming sensory data by the recognition component.
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Fig. 2: Activity Recognition Components

Data collection and preprocessing component represents the very initial step of any
activity recognition process. Data collection includes issues related to the sensing plat-
form such as types and locations of the sensors. Both types and locations vary based
on the aim of the recognition. For instance, recognising hand gestures may require ac-
celerometer sensors attached to hands or fingers. Variously, spatiotemporal activities
require collection of GPS data that could be from a user’s device that they carry. Atomic
activities such as sitting and walking may also be recognised using accelerometer data
embedded in a mobile device or attached as wearable sensors. Another consideration
for the data collection concerns the annotation or labelling of activities in the collected
data. The process of data collection is followed by a preprocessing and feature extrac-
tion steps, which aim to prepare the raw collected data for the following component of
modelling.

The collected data is then pre-processed in order to recognise the target activities.
The pre-processing step in activity recognition strongly relies on sensors applied for
data collection and aim of the recognition process (kind of activities). Raw data is pro-
cessed in this step with feature selection and extraction methods to extract meaningful
information that can distinguish between different activities. For example, accelerom-
eter raw data (i.e. X, y and z component) needs to be transformed to a set of features
that include the magnitude, mean, standard deviation, and number of peaks of the ac-
celerometer readings along the three axes. Studies in activity recognition have applied
various well-known feature extraction and selection techniques in the collection and
preprocessing component that also includes data filtration from both noise and outliers
[Hong et al. 2010; Kwapisz et al. 2011]
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Popular features include mean, standard deviation, maximum, peak-to-peak, root-
mean-square, and correlation between values of modality axes. Autoregressive mod-
elling can also be applied on raw data to form augmented-feature vectors. Survey on
features used for activity recognition can be found in [Bulling et al. 2014]. Section
3.2 discusses learning techniques related to modelling and recognition components in
Activity Recognition process.

3.2. Learning Approaches

Typical activity recognition systems deploy supervised learning methods such as Naive
Bayes, Decision Trees, Hidden Markov Models, Nearest Neighbour, Support Vector
Machines, and different Boosting techniques for activity classification. Moving beyond
fully supervised settings, researchers have started studying the feasibility of other ma-
chine learning techniques for activity recognition: unsupervised and semi-supervised
learning.

Supervised learning is applied pervasively for activity recognition. Basically, la-
belled data is collected to train a static classification model for recognising a set of
activities. The classification model built from labelled data is used to recognise the in-
coming unlabelled data. Figure 3 explains the supervised learning process. Supervised
learning is categorised as either generative, discriminative or hybrid approach [Rubin-
stein et al. 1997]. Algorithms that follow the generative approach models the class con-
ditional distribution. Naive Bayes is an effective generative approach that is applied
pervasively for activity recognition such as in [Ravi et al. 2005]. Hidden Markov Mod-
els are also generative methods that have been successfully applied for recognising
activities [Patterson et al. 2005; Ward et al. 2006]. Discriminative models on the other
hand learn the boundaries between classes. Decision trees [Bao and Intille 2004; Logan
et al. 2007] and nearest neighbour [Maurer et al. 2006; Lee and Mase 2002] are well-
studied examples of the discriminative approach for activity recognition. Moreover, a
hybrid approach is the one that combines the two approaches into a single classifier. In
[Viola and Jones 2001], authors applied a modified version of AdaBoost that combines
a set of static classifiers for recognising activities. They demonstrated the efficiency of
combining discriminative and generative classifiers for smooth recognition of activities
[Lester et al. 2005]. The hybrid approach discriminatingly selects useful features and
learns an ensemble of static classifier to recognise different activities. In [Yuan and
Herbert 2014], a hybrid classifier was developed that combines both threshold based
and machine learning methods to select the most suitable classifier dynamically on
the cloud. Artificial Neural Networks rely on a hybrid generative-discriminative ap-
proach. Authors in [Do et al. 2013] developed a system based on stream reasoning and
Artificial Neural Networks for recognising activities from mobile phone sensors.

A wide range of supervised methods commonly used for activity classification was
reviewed in [Preece et al. 2009; Peterek et al. 2014]. One main characteristic of these
methods is the necessity of a significant amount of labelled data to build the classifica-
tion model. The assumption that labelled data is consistently available is unrealistic.
Due to many reasons, activities may vary while time evolves for the same person or
across different individuals. For each activity, data is required to be collected for each
user to attain an accurate recognition. However, the annotation process is a time con-
suming, error prone, and mostly tedious process. Therefore, researchers investigated
an unsupervised learning approach for activity recognition to overcome the limitations
of the supervised approaches.

The main goal of unsupervised learning techniques in activity recognition is to
discover variation and likelihood among data. Figure 4 depicts an overview of the
unsupervised learning process. There are few researchers who studied unsupervised
learning for activity recognition such as [Lee et al. 2009; Wyatt et al. 2005; Li and
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Fig. 3: Supervised Learning in Activity Recognition

Dustdar 2011; Huynh and Schiele 2006; Ye et al. 2014]. Lee et al.[Lee et al. 2009] used
unsupervised learning for abnormality detection. To detect whether a pattern is reg-
istered or not, a probability model based on the past activity pattern is created. The
Expectation-Maximisation (EM) algorithm is applied with the feature vectors to de-
cide whether the activity has abnormal behaviour. In another study, Li and Dustdar
[Li and Dustdar 2011] studied the feasibility of applying a specific type of unsuper-
vised learning to high-dimensional, heterogeneous sensory input. The correspondence
between clustering output and classification input is proposed as well. Although clus-
tering is a promising approach in discovering data structure and patterns, at least a
few labels have to be provided for performing the actual recognition of activities. Also,
the feasibility of traditional clustering approach is questionable for high dimensional
streaming data [Li and Dustdar 2011]. Furthermore, methods for unsupervised learn-
ing require a large pool of unlabelled data in order to find interesting patterns.

Unlabelled Data

Unlabelled Data Dis a
Collection Reco,
\ J \ J =

Fig. 4: Unsupervised Learning in Activity Recognition

In realistic conditions, large amounts of unlabelled data are easily collected while
small set of labelled training data is available. In order to integrate the advantages
of both supervised and unsupervised learning; the concept of semi-supervised learn-
ing is considered for activity recognition. A semi-supervised approach requires less
labelled data for recognising a substantial amount of unlabelled data. Figure 5 rep-
resents an outline of the semi-supervised learning approach. The ability to use unla-
belled data for enhancing the recognition system became an interesting topic for many
researchers. Different approaches have been applied for semi-supervised learning that
include self-learning, co-learning, multi-graph based and Multiple Eigenspaces. In the
self-learning paradigm, a small amount of annotated data is used to build the clas-
sification model for later prediction of the unlabelled data. The predicted label with
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highest confidence is added to the training seed for rebuilding the classification model.
Self learning has been successfully applied in many applications such as text analysis
[Yarowsky 1995] and image processing [Li et al. 2007]. Continuing research is being
conducted to study self-learning techniques for activity recognition. Longstaff, Reddy,
and Estrin [Longstaff et al. 2010] investigated methods of further training classifiers
after a user begins to use them using semi-supervised learning techniques.
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Fig. 5: Semi-supervised Learning in Activity Recognition

Co-learning was first developed by Blum and Mitchell [Blum and Mitchell 1998]. It
uses two classifiers, each trained on different perspective of the data. Each classifier
adds its most confidently predicted label to the training set and rebuilds the model.
Guan et al. [Guan et al. 2007] applied co-learning with three classifiers from the same
view of data. They also used majority voting to choose the most confident label to
augment the training data. Stikic, Laerhoven, and Schiele [Stikic et al. 2008] applied
various semi-supervised techniques for enhancing accuracy of recognising users’ activ-
ities. Lee et al. [Lee and Cho 2014] presented a method to recognise a person’s activities
from sensors in a mobile phone using mixture-of-experts model.

Authors in [Stikic et al. 2009; Stikic et al. 2011] proposed multi-graph based methods
that propagate information through a graph containing both labelled and unlabelled
data. These methods deploy two different ways of combining multiple graphs based on
feature similarity and time. Each node of the graph corresponds to an instance while
every edge encodes the similarities between a pair of nodes as a probability value. Ali,
King and Yang [Ali et al. 2008] implemented a Multiple Eigenspaces (MES) technique
based on the Principal Component Analysis combined with Hidden Markov Models.
The system is designed to recognise finger gestures with a laparoscopic gripper tool.
Huynh and Schiele [Huynh and Schiele 2006] combined Multiple Eigenspaces with
Support Vector Machines to recognise eight ambulation and daily activities.

Semi-supervised approaches can be categorised in general as transductive or induc-
tive. The concept of transductive learning has been introduced in 1998 [Gammerman
et al. 1998] in contrast to inductive learning. In transductive learning the aim is to
predict the labels of unlabelled test data without building a model that maps between
the input and output space. According to the transductive approach, there is no need
to build a generic model to identify specific labels, as it will add unnecessarily com-
putation overhead. Instead, in transductive learning, unlabelled test data is directly
labelled based on the labelled training data.

The majority of semi-supervised methods applied for activity recognition are induc-
tive. Induction approach is more applicable for activity recognition because of two rea-
sons. First, the test data is not required to be available at the training time in in-
ductive learning which is more applicable in activity recognition. In a typical activity
recognition learning flow, labelled data exist in the training phase, while unlabelled
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data stream on later recognition/testing phase that mostly occurs online. It is compu-
tationally inefficient in streaming environment to keep both training and testing data
available if applying induction methods. Second, the deployment domain may differ
from the development domain. I.e., data that is used for training and testing is drawn
from completely different sets (of users). Therefore, using induction approach to build
a general classification model that maps between training and testing would be more
suitable to avoid possible overfitting.

Despite the ongoing research on semi-supervised learning, most of the developed
techniques rebuild the whole classification model upon predicting the most confident
label. Yet, this is impractical for real time recognition in streaming settings. Also, the
focus of aforementioned methods was mainly to minimise the labelled data required
for building the initial classification model rather than improving the classifier itself,
especially with confusing data [Longstaff et al. 2010].

Active learning is another approach in the semi-supervised learning category. Unlike
self learning and co-learning, active learning requires user input to label data with the
true label. According to Muslea, Minton, and Knoblock [Muslea et al. 2000], the main
goal of active learning algorithm is to find the more profitable and less costly data
to label. Kapoor and Horvitz [Kapoor and Horvitz 2008] compared different methods
to decide upon the selection of profitable data. While Stikic et al. [Stikic et al. 2008]
employed a multi-sensor approach to choose important data to be labelled. The data
is selected for active learning based on two approaches. One approach chooses the
data with the lowest classification confidence. The other approach chooses the data
that causes a high degree of disagreement between two classifiers. Results showed im-
proved performance when active learning is applied. State-of-the-art active learning
techniques in activity recognition assume the retraining of models. This is not appli-
cable in streaming settings. Alternatively, dynamic update to tune the classification
model in real time are crucial in a streaming environment. Improving active learning
methods to consider the value of label compared to the cost of interrupting the user is
essential in the context of activity recognition. Also, estimating the time taken to pro-
vide true labels and their effect on the prediction accuracy in real time requires more
investigations. Table I summarises basic learning approaches in activity recognition.

Table I: Learning Approaches in Activity Recognition

Learning Approach References
Generative [Ravi et al. 2005; Patterson et al. 2005; Ward et al.
Supervised 2006]
Discriminative [Bao and Intille 2004; Logan et al. 2007; Maurer et al.
2006; Lee and Mase 2002]
Hybrid [Viola and Jones 2001; Lester et al. 2005; Do et al.
2013]
Unsupervised [Lee et al. 2009; Wyatt et al. 2005; Li and Dustdar
2011; Huynh and Schiele 2006; Ye et al. 2014]
Self-learning [Longstaff et al. 2010]
Semi-Supervised Co-learning [Stikic et al. 2008; Lee and Cho 2014]

Multi-graph learning | [Stikic et al. 2009; Stikic et al. 2011]

Multiple eigenspaces | [Ali et al. 2008; Huynh and Schiele 2006]
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In this section, we have reviewed the three main approaches of activity recognition
according to the underlying learning approaches. Traditional activity recognition sys-
tems are based on fully supervised learning approaches. However, these techniques
require all data to be annotated which is impractical, especially when applied in a
streaming environment. On the other hand, unsupervised learning finds pattens in un-
labelled data. Unsupervised learning is not capable of finding the actual predicted la-
bel of activity without at least some labelled data presenting the ground truth. There-
fore, semi-supervised learning is a recent trend in activity recognition that employs
only a small set of labelled data for training. In semi-supervised learning, the recog-
nition system continuously learns from unlabelled data either automatically with self
learning or similar approaches or interactively with user input via an active learning
approach.

3.3. Dynamic capabilities

In this section we aim to review the dynamic capabilities of the recognition system ac-
cording to the objective of a system update. In the literature, two reasons urge model
update beyond the learning phase: model personalisation to best fit a specific user;
model adaptation by adding new activities or deleting abandoned ones. The wide con-
cept of transfer learning is also presented to explain the different kinds of anticipated
changes in activity recognition and the proposed techniques to handle these changes.
We represent, in the following, the literature contribution to each category.

3.3.1. Model personalisation. 1t is hard to generate one learning model that fits all users
in activity recognition. Due to many reasons, different individuals might perform the
same activity but in different ways. A “walking” activity for one person, for instance,
might seem to be “running” for another. The most accurate recognition results can be
obtained if we train the learning model with the annotated data for a specific user.
This assumption is invalid in a ubiquitous environment when labelled data is scarce.
Therefore, continuous learning approach for tailoring the model to best fit a specific
user is crucial for improving recognition accuracy. We define model personalisation as
the process of tuning a general model to represent a user’s personalised way of perform-
ing different activities.

The vast majority of activity recognition research did not consider the personalisa-
tion issue. Only few studies investigated the impact of training model on personalised
data and compared it to training the model on general data collected from different
users. The researchers showed the improved accuracy when deploying subject-specific
data for training instead of the general model [Kwapisz et al. 2011; Weiss and Lock-
hart 2012]. Weiss and Lockhart [Weiss and Lockhart 2012] demonstrated the improved
accuracy if a personalised model is deployed even using only a small amount of user-
specific training data. Whereas Kwapisz et al. [Kwapisz et al. 2011] created models
individually for each user, then deployed a personalised model for recognition.

Due to the sparsity of labelled data for a specific user, a more practical approach is
investigated to tailor a general model to best fit a specific user. In [Zhao et al. 2011],
the authors developed an algorithm that learns a binary decision tree model for one
person from his labelled data, transfers its structure to another person, and automati-
cally adapts its non-determinate nodes with the unlabelled samples of the new person.
This accomplishes the cross-people knowledge transfer task. Parkki, Cluitmans, and
Ermes [Piarkki et al. 2010] proposed a similar approach based on a binary decision
tree. In this method, the user’s input is required to tune tree thresholds for a spe-
cific user. Moreover, it takes 3—10 minutes of new data with annotation and uses that
for updating the thresholds in each node. The problem of activity recognition is more
challenging with multi-dimensional data in a streaming environment. Therefore, the
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binary decision trees applied in the aforementioned studies are not efficient with large
scale data and complicated scenarios. Gomes et al. [Gomes et al. 2012b] constructed a
personalised activity recognition system that is deployed in a streaming environment.
Despite the efficiency of the developed system, their model still required user specific
annotated data to achieve personalisation. Similarly, Reiss and Stricker [Reiss and
Stricker 2013] used a set of classifiers as a general model which is later updated with
new labelled data from a specific user. In [Vo et al. 2013], authors adjusted the learn-
ing model from person A with a selected confident sample for another person B. The
proposed algorithm is an integration of an SVM classifier and clustering approach for
updating the model automatically. However, the proposed system has not been evalu-
ated in a streaming setting. The deployment of activity recognition system in stream-
ing environment imposes more challenges as the change of data distribution while a
stream evolves may cause the model to drift away from the actual data distribution.

3.3.2. Model adaptation. The other dynamic feature of the recognition system concerns
its ability to capture significant data changes. It is impractical to assume that there is
always a static set of activities along evolving data streams. In the recognition system,
the initial data represents a set of activities that is collected to train the primitive
model. Then, the learning model is deployed for the actual recognition of incoming un-
labelled sensory data. However, state-of-the-art approaches in activity recognition do
not consider the appearance of new activities that did not exist in the initial training
data [Yang et al. 2010]. New activities appear because of two common reasons. First,
it is unrealistic to collect annotated sensory data for all kind of activities that exist in
a domain. A typical activity recognition system contains only a few activities that are
annotated with experts or with a means for assistance such as videos. Other activities
may appear beyond the learning phase. Therefore, the set of activities may need to
be extended later after deployment because of the scarcity of annotated data in the
learning phase. Second, novel activities include also sudden activities. It is impractical
to collect data representing sudden activities for training the model. An example of
this kind of sudden activity is a sudden fall for an elderly person in the application of
health care. Due to the difficulties of collecting annotated data for such sudden activi-
ties, other approaches have to be considered for detecting novel activities. Traditional
methods solve this problem by rebuilding the entire model based on the training data
of the new set of activities. This is impractical for real time activity recognition and
especially in a streaming environment.

Developing a recognition system that can recognise new activities and assimilate it
with existing model for further recognition is essential for real life recognition. The
same concept applies for the removal of abandoned activities that are no longer rel-
evant to a particular user. Model adaptation is a key criterion for the flexibility and
accuracy of any activity recognition system with an evolving data stream that changes
over time. There is no notion of adaptation/refinement of the learning models in the
literature. Models do not detect activities that may emerge over a period of time (post
the data collection) or changes in a user’s patterns, which are both completely realistic
in the context of a mobile user. The adaptation process needs to update the recognition
model to recent changes in a real life user’s activities in real time. Different from model
personalisation that only tunes existing models, model adaptation enforces changes to
core activities with incremental assimilation of new discovered activities or elimina-
tion of abandoned activities.

3.3.3. Transfer Learning. A major assumption in activity recognition is that the under-
lying concepts of both training and target (deployment) are the same. This assump-
tion is invalid in many cases. Data collected for training in activity recognition may
be different from data received in actual recognition in terms of distribution, domain
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and tasks. Transfer learning concerns “developing systems that can leverage experience
from previous tasks into improved performance in a new task which has not been en-
countered before” [Cook et al. 2013]. The power of transfer learning is in the flexibility
of mapping between training and deployment. Thus, we can reuse knowledge learned
previously to solve a new problem faster or in a more efficient way.

We first define basic notations of transfer learning. The notations in this paper are
consistent with Pan [Pan and Yang 2010] and Weiss [Weiss et al. 2016] definitions.
Transfer learning adapts between training (D7) and deployment domain (Dp). Each
domain is defined by a feature space X and labels Y, where X1, Yr pairs represent
the training space, Xp, Yp depicts the deployment space. The marginal probability
distribution of X is P(X). While the predictive function learned from label pairs z;, y;
is f(.) where z; in X and y; in Y. The prediction function is also termed as conditional
probability distribution of the domain P(Y'|X). Basic notations of transfer learning are
illustrated in Figure 6.

Training Domain (Dy) Deployment Domain (Dp)

XT ) P(XT) XD ) P(XD)

Transfer Learning

P(Yr|Xq) T P(Yol%0)

¥ v

Fig. 6: Illustration of Transfer Learning

Transfer learning is categorised according to four aspects: alignment of feature
spaces, distribution, what has been transferred and availability of labelled data. The
first aspect focuses on the relationship between features in both training and deploy-
ment spaces. In this direction, transfer learning can be either heterogeneous [Harel
and Mannor 2010] or homogenous [Chattopadhyay et al. 2012; Yao and Doretto 2010;
Long et al. 2013]. In terms of notations, the case where X1 # Xp is defined as hetero-
geneous transfer learning. Homogenous transfer learning is where the feature spaces
are the same for both training and deployment, i.e., Xr = Xp. Transfer learning can
also be categorised according to its aim in distribution correction. It can be either
correcting for marginal distribution differences [Pan et al. 2011], conditional distribu-
tion differences [Yao and Doretto 2010] or differences in both [Chattopadhyay et al.
2012; Long et al. 2013]. Distribution correction mainly occurs in homogenous condi-
tion, where features in training and deployment domains are aligned. Heterogeneous
methods, on the other hand, focuses on aligning X+ and Xp while assuming that dis-
tributions are the same. Work such as [Shi et al. 2010] addressed the distribution
correction in addition to feature spaces alignment. Further studies are required to
combine distribution correction methods with feature spaces alignment.

Transfer learning can also be categorised with respect to what has been trans-
ferred which includes four approaches: instance-based transfer, feature-based transfer,
parameter-based transfer, and relational-based transfer.

— Instance-based transfer uses reweighted data in the training domain accord-
ing to certain criteria into the deployment domain. Instance-based transfer per-
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forms well when features in both domains are homogenous. In [Chattopadhyay
et al. 2012], for example, the weights of different sources in the training domain are
computed based on the marginal distribution differences between the training and
deployment domains. These weights are then changed according to the difference
in the conditional distribution. The weights in [Yao and Doretto 2010] are adapted
according to the performance of the algorithm in each boosting iteration.

— Feature-based transfer aims to adapt the feature space of the training domain to
attain the best performance in the deployment domain. Feature-based transfer can
be either symmetric [Pan et al. 2011] or asymmetric [Long et al. 2013]. In Symmet-
ric feature transfer finds a common latent feature space between the two domains
that improves the performance while correcting the marginal distribution in both
domains. Asymmetric transfer, on the other hand, maps the features directly from
the training domain through reweighting to closely match the deployment domain.

— Parameter-based transfer assumes common parameters across training and tar-
get domain. Therefore, prior knowledge of parameters would be transferred between
training and deployment domains [Chattopadhyay et al. 2012].

— Relational-based transfer discovers relationships among the training data and
transfers this knowledge to the target. This type is relatively new area with few
work published such as [Li et al. 2012].

It is important to highlight the difference between homogeneous feature-based
transfer and heterogeneous transfer. Homogenous feature based transfer is the case
where the feature space is the same between the source and target, and the adap-
tation is performed on individual features in an attempt to align the distributions.
Heterogeneous transfer is the case of feature spaces being different. In this case the
adaptation between the source and target attempts to find a transformation to make
both feature spaces common.

Cook [Cook et al. 2013] classified transfer learning in regards to the presence of
labeled data. Transfer learning is defined as supervised, unsupervised and semi-
supervised based on the availability of labeled data in the training domain. It can also
be either informed or uninformed with respect to the presence or absence of labeled
data in the deployment domain. Therefore, uninformed supervised transfer learning,
for example, means labeled data is available only in the training domain while data in
deployment domain is unlabeled. The majority of the methods are supervised, which
assume the availability of data labels in the training domain. Few methods, such in
[Zhu et al. 2011], are unsupervised. However, these methods are very specific to their
related application, such as image classification in [Zhu et al. 2011], and are difficult
to use in other applications. Transfer learning has been applied successfully to many
machine learning applications such as text classification [Li et al. 2012], image clas-
sification [Zhu et al. 2011], human activity classification [Harel and Mannor 2010]
and object recognition [Yao and Doretto 2010]. Figure 7 summarises transfer-learning
categories.

Transfer learning is founded on an underlying assumption that the training domain
and deployment domain are related. Therefore, knowledge transfer would bring benefit
to the deployment domain. However, there is a situation when both domains are not
related and hence transfer learning will be unsuccessful, and even worse, it might have
a negative impact on the performance in some cases. This situation is often referred to
as negative transfer learning. This field of research is relatively new [Yang et al. 2016].
Future research in transfer learning focuses more on investigating negative transfer
and ways to measure and qualify it.

Definition related to transfer learning might vary with respect to the application
domain. In the context of activity recognition, transfer-learning terms have different
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Fig. 7: Transfer Learning Approaches

domain specific meanings. This has been explained in details in cook [Cook et al. 2013].
Traditional approaches for activity recognition assume that training and deployments
domains are typically identical. However, this assumption is not valid due to many
differences that may exist between both domains. These differences can be because of
changes in one or many aspects. We list some of the common reasons for change as
follows:

— Sensor modality [Kurz et al. 2011; Roggen et al. 2010]: Sensors used for ac-
tivity recognition can be on-body, mobile or ambient sensors. This includes changes
of type, location and layout of sensors. These changes may affect data distribution,
parameters and features. Thus, changes in sensor modality require instance-based,
feature-based, parameter-based transfer to align both domains.

— Time [Pan et al. 2007; Pan et al. 2011]: Changes in activity times between train-
ing and deployment domains are very likely in activity recognition. An example of
health information associated with user activities, when medical tests, treatments,
immunization times for specific disease might be different between domains. Differ-
ences could be due to change in the medical plans, test times, immunization avail-
ability. Time changes will require feature and/ or parameter based transfer to map
between training and deployment domain.

— People [Hachiya et al. 2012]: Typical activity recognition application uses dif-
ferent subsets of people in training and deployment spaces. Thus, different peo-
ple perform the same activity or the same activity is performed in different ways.
This essentially will require instance-based transfer, feature-based transfer and
parameter-based transfer.

— Sampling rate [Zhao et al. 2010]: Change in sampling rate between domains
is very common in activity recognition and requires mostly parameter transfer to
align both domains.

— Activities/labels [Zheng et al. 2008]: Data provided in training could represent
activities that are different from those of the deployment domain. The difference
could be with respect to activities granularity, labels set, and/or label context. Con-
sider an example of differences in activities granularity in smart home settings. In
this example, labels of training domain might include cooking, washing the dishes,
and watching, while labels of the deployment domain only include high-level activ-
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ities such as walking, standing or sitting. Labels of activity could also have context
bias that makes them different across domains. For example, lying activity in the
hospital has different context meaning from lying in smart home context. Difference
in activities/labels mostly require instance, feature based transfer and relational-
knowledge transfer.

In activity recognition, these differences have a direct impact on various data as-
pects: distribution (marginal, conditional or both), alignment of feature spaces (Het-
erogeneous) and what to be transferred (Instance, features, parameters, relational-
knowledge). An efficient learning algorithm will need to be able to transfer informa-
tion between domains by addressing the aforementioned changes. As the number of
difference increases, the less related training and deployment domains are and more
effort is required to align them. Work in the literature focuses on addressing a single
change between the domains, which is not realistic when multiple changes exist. Also,
more attention needs to be given to negative transfer to be able to decide when it is
better or worse to apply transfer learning on activity recognition data.

In the next section, basic concepts of the deployment domain of stream environ-
ment are presented to introduce the developed challenges. These challenges of activity
recognition that arise from the streaming environment are described in Section 7.

4. MINING CHANGES IN DATA STREAMS

This section discusses various methods proposed to capture changes in data streams.
We first differentiate between input and target domains in stream mining. The input
data is received before time point ¢; while the target data is received between ¢y and ¢;.
Thus, the change is monitored between the two time points ¢y and ¢;. In a streaming
dynamic environment, changes are expected to occur between the input and target
data. These changes might occur once or many times, gradually or suddenly [Gama
et al. 2014]. Figure 8 represents an example of the change in data distribution between
the input domain and target domain in 1-D data.

Data Streams

Data Mean
~—
P
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\
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=
#
=

Input Domain Target Domain

to tl

Time

Fig. 8: Example of Change in Data Streams

Various types of change could be detected in streams. Concept drift is one of them
that refers to the change in the distribution that occurs while the stream evolves. An-
other type is concept evolution which refers to the appearance of a new concept in the
target domain that did not exist in the input domain. An extension of concept evolu-
tion is concept forgetting. Opposite to detecting novel concepts, concepts that are no

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Z. Abdallah et al.

longer relevant in the target domain require a forgetting technique for adapting the
model to the recent changes in the stream. Outliers are considered as a rare change of
the stream. Unlike concept evolution, outliers are not incorporated into the system or
added to the model for enhancement.The goal of detecting outliers is to isolate irrele-
vant data and filter them out from real data. Noise can also be considered as a special
case of outliers. For various kinds of change, adaptive learning techniques are applied
in order to update the learner and cope with the evolution of data. Figure 9 illustrates
categories of changes.
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Fig. 9: Categories of Changes in Data Streams

Adaptive learning in stream mining can be categorised into two approaches. The first
approach aims to update underlying concepts to cope with the most recent changes in
data streams. In this approach, changes are not explicitly detected, yet the learner is
updated periodically to accommodate for the expected changes in the data streams.
While the other approach aims to observe data streams in order to detect the changes
and then adapt the model upon the identified changes. In the following, we illustrate
different types of change in data streams. Then, we discuss adaptive learning tech-
niques that are applied for model update.

4.1. Tracking changes

Concept drift.

Figure 10(a) represents the type of change known as concept drift which is first
identified in [Schlimmer and Granger Jr 1986]. It refers to the change in distribu-
tion between input and target domains. Klinkenberg and Renz [Klinkenberg and Renz
1998] specified three indicators for concept drift. The first one is based on the classifier
performance metrics such as the accuracy of the classifier. While the second indica-
tor is based on model properties such as model complexity. The last one concerns the
change of data properties, i.e. data distribution. Examples of techniques that detect
concept drift based on performance indicators are the FLORA family of algorithms
[Widmer and Kubat 1996]. A FLORA algorithm monitors the accuracy and the cov-
erage of the model of a rule based classifier. The algorithm adapts the window size
dynamically according to the measured performance metric. This approach requires
true labels provided by the user in order to measure the accuracy. Indeed, this input
is impractical in streaming settings when data arrives at high speed and requires real
time adaptation. Other relevant techniques in [Gama et al. 2004; Bouchachia 2011]
have applied statistical evaluation to monitor the performance and adapt accordingly.
Hulten, Spencer, and Domingos [Hulten et al. 2001] presented a system for concept
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adapting very fast decision trees - CVFDT. The adaptive Hoeffding tree monitors the
quality of the previous model and adapts the model in terms of the splitting features
in the tree. While Gaber and Yu [Gaber and Yu 2006] presents a STREAM-DETECT
technique that capture change in data streams by monitoring data distribution using
an online clustering deviation method.

N [N
Data Streams / Data Streams V
I I
I I
i _ _ i .
T~ ! s TN ‘ / \
CY Y b ()
} \ \ ) } ) ‘
| | /N
| NI A
S 1 S N[ ) i (
| ( ) \_ ./ | ( W
| { ) ) L ) N
! AN / ! N /
! _ ! -
I I
I I
I I
| Target ! .
Input Domain ! Domg,,in Input Domain ! Target Domain
I I
t0o t1 to t1
Time Time
(a) Concept Drift (b) Concept Evolution
N [N
Data Streams V Data Streams V
i I e
I I
. | J— - |
TN ‘ / N / N ! —.°
( \ L ) ( ) ANV
\ ) : u\\ /‘ \ ) : ‘:\ /‘
g S | N H N N S e
Ve W4 I TN T N\ \ I S
) \'\) o) = ( N NO)
{ ) | \ ) { y . N
\ y, i \_ \ Y o —
N 1 ~— N 1 \ _ ®
I I °
I I
I I
Input Domain | Target Domain Input Domain | Target Domain
I I
t0o t1 to t1
Time Time
(c) Concept Forgetting (d) Outliers/Anomalies

Fig. 10: Changes in Data Streams

The change is monitored between two time points ¢, and ¢;. Detecting concept drift
occurs over either a fixed window size, an adaptive window or combination of both.
One major problem with the fixed window is the selection of the window size. VFDT
[Domingos and Hulten 2000] and CVFDT [Hulten et al. 2001], for instance, applied
a sliding window of fixed size to handle data streams. A small size of window in sta-
ble data causes exhaustion of resources and increases the probability of false alarms.
While a long time window in fluctuating data might miss a crucial information and
result in slow reaction to the encountered changes. Unlike the fixed window approach,
an adaptive window is adjusted according to the detected changes. Thus, window size
either expands or shrinks upon the change indicator. Widmer and Kubat [Widmer and
Kubat 1996], for instance, applied a sliding window of adaptive size to monitor the in-
coming data. The assumption in this approach is that the most recent data is the most
important data. Therefore, the model is updated based on the most recent data appear-
ing in the most recent window. Klinkenberg and Joachims [Klinkenberg and Joachims
2000] proposed an SVM model that compares the error on various window sizes, then
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selects the size with minimum error. The third approach is based on the combination
of two different window sizes; one is fixed and the other is adaptive. The fixed win-
dow stores the baseline historical information, while the sliding window captures the
incoming data streams. Where statistical measures change between the two windows,
the change is detected [Dries and Riickert 2009; Ad4a and Berthold 2013]. Bifet and
Gavalda [Bifet and Gavalda 2006; 2007] proposed an adaptive sliding window tech-
nique - ADWIN and ADWIN2 - that maintains the size of windows according to the
rate of change. The main drawback of applying the combination of both windows is the
resource constrains. Figure 11 presents the taxonomy of concept drift approaches.
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Fig. 11: Summary of Concept Drift Approaches

Concept evolution. The other type of change is concept evolution, which refers to
the appearance of novel concept in the stream. Figure 10(b) represents an illustration
of concept evolution. Detecting a novel concept is a challenging task in data streams,
especially when dealing with data streams with concept drift. An efficient approach
has to be able to distinguish between the drifting of an existing concept and the ap-
pearance of an entirely new concept. The appearance of a new concept is followed later
in the stream by detection of the recurring data instances that belong to the novel
concept. Concept evolution techniques aim to capture the arrival of novel concepts and
incorporate the detected novel concept into the existing underlying concept. This inte-
gration allows further detection of recurring instances that belong to the novel concept.
Different approaches have been developed to distinguish between existing and novel
concepts.

In terms of the underlying concept, some approaches identified the underlying ex-
isting concept as a single model that represents only a single class, while others con-
sidered a multi-class underlying concept. Spinosa, Carvalho, and Gama [Spinosa et al.
2007] represented the underlying model by a single concept with all incoming data ei-
ther part of the underlying model or novel concept, as explained in Figure 12(a). This
approach assumes that there is only one “normal” class and any other classes are novel.
The cluster based system, named OLINDDA, is based on three models: normal profile
model, concepts that extend the normal profile, and novel concepts. Learning phases
in OLINDDA are offline and online. The normal model is built in the offline phase,
while the extension in the online phase detects minor changes in the normal model. A
novel concept is detected when incoming data is located away from the normal model
and also satisfies a specific validation criterion. A single model approach limits the
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capabilities of a concept evolution algorithm to differentiate only between existing and
novel concepts without considering the presence of multiple existing concepts. Thus,
other approaches have been developed to address the multi-class structure of an un-
derlying concept, illustrated in Figure 12(b). The techniques developed in [Masud et al.
2011; Faria et al. 2013; Hayat and Hashemi. 2010] are examples of stream learning ap-
proaches for novelty detection with multi-class underlying concept. ECSMiner [Masud
et al. 2011] applies an ensemble of classifiers to an incoming stream of equally sized
data chunks for prediction. The global decision boundary is defined as the union of local
decision boundaries for existing classes in the underlying model. The classifier model
in the ensemble classifier is dynamically updated to detect instances that are outside
the global boundary. If no classifier is able to predict the incoming data, then data is
stored in short memory for further processing. The novel concepts are detected when
data in a buffer maintains cohesion with other buffer data and separation from exist-
ing underlying concepts. This approach addresses the novelty detection in multi-class
underlying concepts, yet it requires all data chunks to be labelled to define the new
concept. Faria, Gama, and Carvalho [Faria et al. 2013] proposed the MINAS system
for concept evolution which applies unsupervised learning approaches. MINAS classi-
fies new incoming instances as known or unknown. Unknown instances are the ones
located outside the decision boundaries. The declared unknown instances are stored in
short time memory. Then, data in short memory is clustered in order to discover new
concepts. Hayat and Hashemi [Hayat and Hashemi. 2010] proposed an approach that
is based on the discrete cosine transform to build normal concepts of multi-classes with
sub-clusters. The distance measure is also applied to distinguish between existing and
novel concepts. The aforementioned approaches rely mainly on the distance measures
that predict novel concept based on its location from the decision boundaries. The new
concept is declared as novel if it is outside the global decision boundary which is the
union of local boundaries of clusters. Although the underlying concept contains multi
classes, creating a global decision boundary results in a similarity between multi-class
models and single class models. It combines all existing concepts in one concept and
defines the global boundary for the combined concepts. Thus, these approaches also
did not address the appearance of novel concepts that might exist outside the local
boundaries, yet inside the global boundary. Moreover, most of these approaches did
not consider the labelling cost of data streams when identifying novel concepts.

Decision . Global decision
boundary / \ boundary p .
B |\ Novel ,\ \ (Novel)
bt I SN _ 4 \ /
i \ L5 A
| Single class \ ‘; i Multi-class |
\ Model /) | K _—Model _ / i
NN S/ N Y. \‘»//
(a) Single Class Model (b) Multi-class Model

Fig. 12: Underlying Concept Approaches for Concept Evolution

Concept evolution approaches are also categorised based on the action taken upon
novelty detection. Yeung and Chow [Yeung and Chow 2002] and Yang et al. [Yang et al.
2002] presented instance based algorithms that consider whether the incoming data
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is sufficiently close or far from the underlying concepts based on some appropriate
metric. Novelty detection in these techniques detect “filtered out” instances without
tracking data for the detection of normal concepts. While approaches in [Faria et al.
2013; Hayat and Hashemi. 2010; Masud et al. 2011; Spinosa et al. 2007] extend the
detection of “filtered out” instances by detecting the level of cohesion among these in-
stances to form a novel concept. Studies in [Masud et al. 2011; Al-Khateeb et al. 2012]
further integrated the novel concept with underlying ones in order to detect recurring
instances that belong to novel concept. Figure 13 summarises various approaches in
concept evolution.

The idea of concept evolution is also attached to concept forgetting. Dynamic envi-
ronments with non-stationary distributions require the forgetfulness of the observa-
tions not consistent with the actual behaviour of the nature [Gama et al. 2010]. Both
concept drift and concept evolution adapt the model to newer information, while con-
cept forgetting abandons old information. Forgetting mechanisms are necessarily with
data streams in order to preserve resources (i.e., memory) while dealing with the most
recent observations for better accuracy. The system performance relies on its capabil-
ities to learn changes and new concepts appear in the stream as well as forgetting
outdated concepts that became a burden on the system [Kifer et al. 2004]. Concept for-
getting, in this direction, is concerned about outdated concepts instead of observations.
It might use the same forgetting mechanisms, applied for observations, yet at concept
level. Whereas incremental learning manages the continuous learning of new concepts,
decremental learning focuses on forgetting abandoned concepts[Cauwenberghs and
Poggio 2001]. Figure 10(c) explains the concept forgetting in data streams.
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Fig. 13: Summary of Concept Evolution Approaches

Outliers. The other category of change that is explained in Figure 10(d) is out-
liers/anomalies. Many of the outliers are considered as noise, while others are of
paramount importance such as credit card frauds. Concept evolution in data streams
is closely related to the outlier detection. Outliers are defined as data instances which
deviate from underlying concepts. However, this definition also applies for novel con-
cepts. The main characteristic that differentiates between outliers and concept evolu-
tion is the cohesiveness among “filtered out” instances. The novel concept has to satisfy
a validation criterion that concerns mainly the separation of short memory instances
from underlying concepts as well as cohesion among these instances to form a novel
concept. In streaming settings, outlier detection under realistic assumptions is an un-
supervised learning approach because they are mostly rare to occur. Therefore it is not
possible to train the model on them beforehand. Different metrics have been developed
in literature to measure the deviation of incoming data from underlying concept that
define anomalies. The deviation measure such as distance and distribution have been
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applied pervasively for outlier detection. There are many techniques that studied out-
lier detections in data streams such as [Angiulli and Fassetti 2007; Assent et al. 2012;
Niennattrakul et al. 2010; Pokrajac et al. 2007]. Few studies have combined the detec-
tion of outliers with concept evolution such as in [Masud et al. 2011; Masud et al. 2013;
Al-Khateeb et al. 2012]. A detailed survey of outlier detection approaches is presented
in [Aggarwal 2013]

In a nutshell, evolving data streams may have encountered many kinds of change.
That includes concept drift, concept evolution, and concept forgetting. Concept drift
could be gradual, sudden, incremental, recurrent. In this section, we discussed vari-
ous kinds of changes and different approaches to detect each. The main target of these
approaches is to spot and identify the change. In the following section, we review tech-
niques to learn from rapidly changing data streams. Thus, we study the problem of
learning in an evolving streaming environment when changes occur.

4.2. Learning from changes

Adaptive learning. The evolving nature of data streams necessities the need of a
learning approach that is capable of accommodating the anticipated changes. Con-
tinuous learning in evolving data streams refers to the well-known term of incre-
mental learning or adaptive learning. There are two categories of adaptive learning;
blind/implicit learning or informed/explicit learning [Gama et al. 2010]. Techniques
for blind learning update the learner periodically without prior knowledge of the en-
countered changes. The adaptation occurs at fixed time intervals independent of the
kind of change. Unlike the blind approach, explicit/informed learning techniques are
triggered when change is detected. Therefore, informative learning based on the kind
of change is performed whenever change occurs.

An adaptation process in the blind approach is incremental without prior explicit
knowledge of the change itself. VFDT [Domingos and Hulten 2000] is a typical example
of blind learning where the decision tree leaves are updated periodically according to a
loss function. In contrast, informed learning requires explicit knowledge about change
to trigger the adaptation of the learner. Masud et al. [Masud et al. 2011], for instance,
applied an ensemble classifier for detecting concept evolution in data streams with
concept drift. The proposed system incorporates a new learnt model into a learner for
future prediction of recurring instances.

Blind learning has the advantage of the periodic update without relying on the de-
tection of change and its corresponding performance. However, there are also some lim-
itations with this kind of implicit learning. The adaptation may take different forms
based on the kind of change. For example, the action required for tuning the learner
in case of concept drift is different from the action required when a new concept has
emerged. Moreover, performing updates based on fixed time intervals strongly relies
on both the interval length and the rate of change. The response to change might be
slow if the interval size is big especially in data streams with high rates of change. On
the other hand, unnecessary updates might cause over use of resources in short time
intervals with stable data streams. Thus, the trade-off between the cost of updates and
the gain in performance has to be considered for choosing an adequate interval length
[Gama 2012]. On the other hand, informed/explicit learning only responds to the de-
tected changes. Based on the change detected, different actions are taken to respond
to the specified changes. The main limitation of this approach is its dependency on the
change detection. Learning only occurs when change is detected and is tightly related
to the detection performance. Either an incapability of detecting changes or a high
rate of false alarm in the detection technique might mislead the learning process. For
example, whenever the change detection fails to detect the appearance of new concept,
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the new concept and its recurring instances will be either misclassified or classified as
unknown.

Adaptive learning is also categorised based on the adaptation response. The adapta-
tion reaction is either revolutionary or progressive. In the revolutionary approach, the
learner is retrained and reconstructed with the most recent important data. The ex-
isting model is discarded and totally replaced with a new model from new data [Gama
et al. 2014; Street and Kim 2001; Gama et al. 2004]. Alternatively, new data adapts
existing models incrementally in the progressive approach in order to react to the
changes in the stream. An example is the OLINDDA system [Spinosa et al. 2007] that
applies online and incremental learning for extensions of existing concepts or discov-
ering novel concepts.

Figure 14 summarises different approaches for adaptive learning.

( Blind \)
\_ [Domingos and Hulten 2000]
Learning
startegy / y
Informed \
\ [Masud etal. 2011] J
Adaptive learming
( Retraining
4{ [Gama et al. 2014; Street and
Kim 2001; Gama et al. 2004]
4’{ Learning action —
4’{/ Incremental \]
\ [Spinosa et al. 2007]

Fig. 14: Summary of Adaptive Learning Approaches

A special category of incremental learning is active learning. Active learning focuses
on labelling only few data instances in order to enhance the learner accuracy. In data
stream settings, it is impractical to assume the availability of labels while a stream
evolves. Many approaches have been proposed for efficient active learning techniques
in data streams, such as in [Widyantoro and Yen 2005; Masud et al. 2012; Huang
and Dong 2007]. Studies in [Huang and Dong 2007; Fan et al. 2004; Lindstrom et al.
2013] developed an active learning approach based on the change detection method.
When the system detects change in a data streams, that triggers active learning to
inquire for true labels. Other approaches built on an assumption that part of the data
streams is labelled while the other part is unlabelled [Li et al. 2012]. Recent work in
[Zliobaite et al. 2014] presents a framework for active learning in data streams with
concept drift. The developed system learns in batches while saving the labelling cost.
The main target of active learning is to keep the trade-off between minimising the cost
of labelling while maximising the gain in performance.

All in all, we reviewed state-of-the-art-techniques in data stream mining. Ap-
proaches for data stream mining focuses mainly on the non-identical distribution
feature of data. Techniques for data stream mining include handling data streams,
learning from data streams and capturing change in evolving data streams. Incoming
data in activity recognition typically streams from sensors. In the following section,
we discuss the intersection between stream mining and activity recognition areas of
research. That also includes the mapping of terminologies between the two fields of
study.

5. ACTIVITY RECOGNITION TECHNIQUES USING DATA STREAM MINING

This section focuses on the intersection of the two fields of research: stream mining and
activity recognition. State of the art activity recognition techniques address the de-
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pendency nature of activity data, while approaches in stream mining focus on the non-
identically distributed streaming data. Traditional activity recognition approaches are
based on the assumption that the processed data is stationary. This assumption is vio-
lated when dealing with real time sensory data that is typically evolving over time.
Data streams approaches deal with non-identically distributed data and also con-
straints imposed in the streaming nature, e.g. infinite number, high speed, concept
drift etc. However, most of the stream mining approaches have not been used to ad-
dress activity recognition. Activity recognition in data streams approach is an over-
lapping between stream mining and activity recognition when both i.i.d. conditions
of independent and identically distributed are violated. The developed techniques for
activity recognition in data streams have to be adaptable and flexible, to accommodate
for the evolving nature of activities.

Some approaches in data stream mining might be seen as applicable for activity
recognition [Fong et al. 2016; Zliobaité et al. 2016]. Particularly, mining sequential
data streams could be considered for activity recognition. This approach deals with
sequential data streams as ordered chunks with or without a notion of time. Although
techniques in this approach consider the dependency in data, two major core differ-
ences make these techniques incompatible with activity recognition. According to the
previously explained approaches in Section 4, most techniques in sequential data pro-
cessing aim to find interesting/frequent patterns instead of mining the sequential pat-
terns in order to predict classes of incoming data. This is different from the main target
of activity recognition which is the prediction of incoming activities with sub-targets
that might also be included in some cases for finding the interesting patterns. In data
stream mining, few studies have addressed the actual mining of sequential patterns
in data streams. Yet, these techniques assume that the sequential data is in a transac-
tional form which assumes that the stream is segmented and each segment is assigned
to one well-defined class. This assumption is not valid for activity recognition when a
stream of data representing a sequence of performed activities arrives with no bound-
aries in-between. Activities also can be interleaving, such se pauses while walking or
recurrent, such as running while bouncing the ball in a basketball court. Although se-
quential stream mining is conceptually related to activity recognition, its techniques
are not applicable for activity recognition because of the aforementioned core differ-
ences in terms of the learning target and domain definition. It is also important to
emphasis the relationship between time series as a special type of data streams that
has a time notation and activity recognition.

5.1. Time Series and Activity Recognition

Most techniques that are developed for time series focus on handling/simplifying time
series representation (such as SAX) or aligning different time series in order to find
similarities (such as DTW). Special characteristics of data streams, such as concept
drift, have attracted less attention in the time series community. A variety of time
series methods are applied for activity recognition. Some of these methods focus on
transforming raw time series into an efficient representation such as [Wanigatunga
et al. 2016] where authors applied symbolic aggregate approximation (SAX) to ac-
celerometer data for activity pattern visualisation. In [Liu et al. 2015], the authors
used a feature vector of shapelet, which is computationally expensive, hence cannot
be applied in streaming environment. Converting raw time series into an efficient pre-
sentation is followed by applying a similarity measure for classification. K- nearest
neighbour (KNN) is commonly used for time series classification. KNN shows effective
performance in time series in general especially when using dynamic time warping
(DTW). [Seto et al. 2015] applied a modified DTW for activity recognition to avoid fea-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Z. Abdallah et al.

ture extraction and domain knowledge. However, the model is overfitted and handles
only atomic activities. [Chen et al. 2013] proposed a new DTW measure, DTW-D, that
targets Semi supervised learning for many applications, including activity recognition.
Subwindow Ensemble Model [Zheng et al. 2013] used an ensemble of classifiers trained
on features made up of coarse summary statistics computed from different temporal
scales. Kogeh [Hu et al. 2013] built an alignment-free time series classification frame-
work that requires only weakly-labeled data. The framework applies a threshold-based
approach to distinguish between patterns inside a single time series. It also reduces
the computation of 1-NN by constructing data dictionary. The framework showed fast
and accurate performance compared to traditional time series techniques for seven
different applications including activity recognition.

Applying time series classification for activity recognition might encounter a number
of challenges which are:

— Segmentation: Most literature on time series classification assumes that the be-
ginning and ending points of the pattern of interest can be correctly identified [Hu
et al. 2013]. This assumption is unrealistic for activity recognition in data streams
when data arrives as a continuous sequence of multi-layered of concurrent and over-
lapped activities. Segmentation of a time series into a sequence of physical activity
types rather than classifying an entire time series as a single activity type is essen-
tial. The quality of segmentation directly influences the recognition results.

— Complex activities: Activity patterns are complex, repetitive and represented
with different lengths. Time series techniques work well when the task is to match
the overall shape of a time series. However they perform poorly on activities with
repetitive patterns [Zheng et al. 2013]. The basic machine-learning task involves
classifying a time series as a single physical activity type [Zheng et al. 2013]. Using
time series to classify complex activities could be challenging. Moreover, data used
for time series are arranged to be of same length. For example, in the world’s largest
collection of time series datasets, the UCR classification archive, all datasets con-
tain only equal-length data [Chen et al. 2015]. This assumption is not applicable for
activity recognition.

— Personalisation: Time series representing activities can change from one person
to another. Therefore, a classified time series activity can belong to more than one
well-defined class. Some people tend to have pauses of standing while walking; oth-
ers may walk as fast as jogging. The current solution to preprocess such data re-
quires human intervention in order to keep only data that represent the activity of
interest [Hu et al. 2013].

— New activities: In real-life streaming data, new activities that have not been
trained with the classification model might evolve over time. Detecting new activi-
ties and assimilate them into the classification model will enhance the classification
accuracy. We found no reference in the literature of using time series techniques for
detecting new activities.

Real time activity recognition might also be related to activity recognition in data
streams. Techniques for real time recognition focus mainly on enhancing the response
time by simplifying both data processing and model structure. In an early study,
Karantonis et al. [Karantonis et al. 2006] implemented a real time classification to dis-
tinguish between activity and rest, before classifying further lower level activities. The
classification technique is based on a hierarchical binary structure for broad classifica-
tion at the top level. Sub-classification occurs at the lower levels. The resource aware
techniques are performed onboard sensors and target real time recognition. CeneMe
[Miluzzo et al. 2008] represents a system for real time recognition of contextual ac-
tivity using off-the-shelf, sensor-enabled mobile phones. The algorithms used by the
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CenceMe classifiers run on the phone and the backend server according to the split-
level classification design. The backend server classification presents a higher level
of contextual recognition of activities. The activity-recognition algorithm presented in
[Parkka et al. 2010] is based on a binary decision tree classifier to automatically recog-
nise physical activities on a portable device. The labelled data is provided to evaluate
the system performance and update the decision tree threshold values with the user’s
own data.

Although the response time of these techniques seems to resemble one for stream
mining techniques, none of the other performance characteristics of data streams have
been addressed in these techniques. Particularly, they have no notion for handling
infinite, high speed, and mostly unlabelled data streams. Moreover, these approaches
lack the consideration of concept drift, outliers, or concept evolution that are known
phenomena in data streams. These approaches are not flexible for personalisation and
adaptation with the evolving activities.

Some terms in activity recognition have their corresponding meanings in stream
mining, yet in different settings and with different contexts. A typical example of this
is outlier detection. Hawkins [Hawkins 1980] defined an outlier in general as: “An out-
lier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism”. Outliers in data stream
mining correspond to abrupt changes in data streams from the underlying concepts.
Outliers can be referred to as noise, anomalies, and abnormalities. The term of out-
lier detection in activity recognition refers to sudden activity such as fall detection.
Detection of sudden activities resemble outlier detection as they both aim to find the
unusual events in data. The term of “sudden activity” or “fall detection” is pervasively
discussed in activity recognition, especially for elderly people aids [Lustrek and Kaluza
2009; Mubashir et al. 2013; Bakar et al. 2016].

Novelties are considered as a special category of outliers, yet with aggregated data
points [Aggarwal 2013]. However, in this survey we suggest a separation between the
two concepts, outliers and novelties. By definition, outlier is an unusual event that is
completely different from the underlying/known concepts. It is mostly expressed as a
set of individual data points that correspond to noise, sensor failure, etc. Outliers can-
not be aggregated under a single concept as they have different natures and different
causes. On the other hand, novelty data represent novel concept which still have some
commonality with existing underlying concepts. Though the novel concept is different
from the underlying concept, they still preserve some common similarities. Examples
of outliers are noise, credit card fraud, or sudden falls in activity recognition which are
entirely different from the underlying concepts. While novelties are about discovering
new “normal” concepts such as discovering a new category of credit card transaction
or a new activity that the user started performing recently. There are two main dif-
ferences between outliers and novelties. First, novelties represent novel concepts that
have not been seen by the system before. Yet, novel concepts are neither completely
different nor abnormal from the underlying concepts. Thus, new concepts might ap-
pear in the middle of existing ones. Moreover, novel concepts are represented by a
set of aggregated instances, while outliers instances are mostly irregular that appear
separately and most of the time with no relation to other detected outliers.

The term “novelties” is also referred to as concept evolution and novelty detection.
In stream mining approaches, concept evolution, as introduced earlier in Section 4.1,
is the process of monitoring the data streams in order to discover the appearance of
novel concepts. The term of concept evolution is analogous to detecting novel activity
in activity recognition. In contrast to concept evolution, some concepts became out-
dated and no longer relevant to the target domain. These concepts require an adaptive
mechanism to forget the abandoned concepts. The term of concept forgetting has been
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presented for data streams in [Gama et al. 2010]. Concept forgetting is also relevant
to activity recognition whereas activities are no longer performed by users. Forgetting
abandoned activities aims to update the model continuously to reflect the most recent
changes in data and remove outdated/abandoned activities.

Another term that is well-known in stream mining is concept drift. It primarily
refers to the change in data distribution while a stream evolves. This change could
be gradual or sudden that happens once or recurring. A typical data stream evolves
over time. Thus it requires an effective approach to handle the drift and accommodate
for the most recent changes in the stream. In activity recognition, the definition of
concept drift is relevant, yet in a different context. The deviation between input and
target domains in an activity stream occurs as activities are performed in a different
way from one user to another. When the recognition model (target) is different from the
incoming data (input), this deviation resembles concept drift for activity recognition.
More precisely, approaches addressing concept drift in activity recognition are termed
as model personalisation. The personalisation process targets the adaptation of the
recognition model to fit data for a particular user.

The process of learning from aforementioned changes is done with adaptive learn-
ing in data streams which include incremental and active learning. The anatomy of
adaptive learning in data streams is model adaptation in activity recognition. The
goal of adaptive learning in data streams is the same of model adaptation in activity
recognition, which is continuous learning to adapt to the most recent changes in the
evolving data. The concept of model adaptation in activity recognition applies also to
incremental and active learning.

Some of the issues that have been addressed in both stream mining and activity
recognition, yet under different settings and with resembling meanings, are sum-
marised in Table II. The table shows a subset of stream mining terminologies and
its corresponding related terms in activity recognition.

Table II: Terminology Mapping between Stream Mining and Activity Recognition

Stream mining

Meaning

Activity recognition

Meaning

Learning from concept
drift

The detection and re-
sponse of change in a
data stream

Model personalisation

The tuning of the model
to suit a personal way
of performing activities

Concept evolution

The discovery of new
concepts in the stream

Detecting novel activ-
ity

The discovery of new
activities

Outlier detection

Detection of abnor-
mal instances in data
stream

Sudden activity detec-
tion

The detection of sud-
den changes in activity
data

Concept forgetting

The decremental learn-
ing of outdated con-
cepts

Forgetting abandoned
activity

The decremental learn-
ing of abandoned activ-
ities

Few studies have considered activity recognition in streaming environments. Krish-
nan and Cook [Krishnan and Cook 2014] developed an efficient technique for handling
streaming data based on windowing technique. This system is based on the fact that
different activities can be characterised by different window lengths. Sensors deployed
in this study are binary motion sensors installed in a smart home environment. An-
other study that also deploys binary sensors in a smart home environment is presented
in [Rashidi and Cook 2010]. In this study, authors applied a tilted time window to find
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sequential patterns from streaming data using multiple time granularity. The tech-
nique adapts window size, not the classifier model, for boosting the recognition accu-
racy. Unlike the aforementioned techniques, Gomes et al. [Gomes et al. 2012b; 2012a]
have developed an on-board data stream mining technique for mobile activity recogni-
tion. The developed system predicts activities in the stream and adapts the model to
fit a user’s profile. Do et al. [Do et al. 2013] built a logic based framework for recog-
nising basic and complex activities from mobile sensors. Recently, Lockhart and Weiss
[Lockhart and Weiss. 2014] have presented the Actitracker system for mobile activity
recognition. Actitracker builds a general/universal classifier that could be replaced by
a personalised model for a particular user. The system collects data with fixed time
windows and transmits data for backend server for processing. More details of these
techniques and other state-of-the-art activity recognition techniques along with the re-
search gaps are discussed in the following sections. Based on the aforementioned dis-
cussion of stream mining and activity recognition, the next section discusses in depth
key techniques in activity recognition, Section 6, followed by analysis and discussion
of research gaps, Section 7, and future direction in this area of research, Section 8.

6. KEY TECHNIQUES

In this section, we review key techniques in activity recognition. Krishnan and Cook
[Krishnan and Cook 2014] proposed a sliding window based approach for recognis-
ing streaming activities from motion sensors events in a smart home environment.
The learning classifier applies Support Vector Machine (SVM) for modelling activities.
The main focus of this study is on the techniques for handling data streams. The study
evaluated different windowing techniques for analysing a stream of activities. The per-
formance is evaluated on a fixed size window with both time based weighting and mu-
tual information weighting. It also includes the classification probabilities of activities
that are previously recognised in the preceding window. The developed technique han-
dles the ‘other’ class activity that does not correspond to any known activity classes. It
explicitly trains the model offline for transitional activities and other unknown activi-
ties. Then, it gathers them all in one ‘other’ activity class and incorporates it with the
model. While this study has been added to the field of activity recognition, research is
still required to address other research gaps.

The approach addressed the important research of activity recognition in streaming
settings. However, the developed approach did not allow personalisation or adapta-
tion with the evolving streams. Thus, the classifier is built with training data, with
no flexibility to be adapted and personalised post the deployment. The recognition
of ‘other activity’ is not for detecting the emergence of a novel activity in the stream.
The ‘other activity’ category adds more activities corresponding to transitional and un-
known activities to the offline model during the training. Moreover, incorporating the
‘other’ activity into the model causes more confusion in recognising both known and
unknown activities. Also, the system takes an average of 4 days to learn the different
activity models for each technique. Moreover, a smart home environment requires in-
stallation of sensors in fixed laboratory settings which limits the application of activity
recognition.

Another activity recognition system in smart home settings is presented in [Rashidi
and Cook 2010]. Rashidi and Cook developed a system that recognises activities from
unbounded input data: a stream rather than a transactional format. The aim of this
study is to find the sequential patterns in the stream of data of a smart home environ-
ment. Sensors deployed for this study are also binary motion sensors. The proposed
system applies a tilted window technique for handling data collection. The tilted win-
dow with an approximation approach applies a relaxed threshold in order to find the
sequential patterns in the stream. The tilted window stores the records in order of
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time; the oldest records are kept at the highest granularity. For mining patterns in
the stream, an extension of DVSM [Rashidi et al. 2011] method has been proposed.
After mining the sequenced patterns, the system updates the tilted time window with
the most recent patterns. The system combines sequential processing and data stream
mining for activity recognition. Nevertheless, the proposed technique adapts only the
tilted window rather than updating the recognition model. The main focus of this sys-
tem is handling the stream with the adequate tilted window for recognising interesting
patterns. Explicit recognition of sequenced activities in a data stream is not considered
in this study. Furthermore, no techniques have been adapted for dealing with concept
drift, concept evolution, and concept forgetting in data streams. Stream mining from
smart home binary sensors with less constrained devices is less challenging than mo-
bile devices with limited resources that require online learning and recognition in real
time.

MARS [Gomes et al. 2012b; 2012a] stands for Mobile Activity Recognition System. It
is an incremental system for predicting activities in data streams on the mobile device.
The learning process in MARS is divided into two phases: training and recognition. In
the training phase, a user performs activities and annotates them interactively while
data is collected from mobile sensors. The collected annotated data is saved for build-
ing the model offline. In the recognition phase, the incoming unlabelled data is then
classified based on the offline built model. The study compared the results of both
static decision tree and incremental Naive Bayes for evaluating system performance.
The proposed algorithms are light-weight thus can be deployed on mobile devices. Al-
though, MARS has presented an early system that combines activity recognition with
stream mining, some challenges still need to be addressed. The system assumes the
availability of labelled data for each user. Each individual has to collect and annotate
data representing the personalised activities for building the model. When new subject
uses the system, the model has to be retrained with the data collected and annotated
for this particular user. This assumption is impractical in streaming settings where
the majority of data is unlabelled. Moreover, retraining the entire model for recognis-
ing the user specific activities is a time consuming process that may not be applicable
in streaming settings. The developed system also lacks the description of techniques
for handling the streaming nature of data. Online and incremental adaptation of the
model to include entirely new activities or forget abandoned activities has not been
considered in this study.

The system presented in [Do et al. 2013] applies logic based stream reasoning com-
bined with an Artificial Neural Network (ANN) for recognising both complex and ba-
sic activities. The system comprises four components: Client, WebServer, data stream
manager system (DSMS), and reasoning server. The client collects data from mobile
sensors and trains the Artificial Neural Network for recognising basic activities. The
collected data from a user’s mobile phone (client) is transmitted to the WebServer
which uses the GPS data to recognise the user’s location. The WebServer sends all data
to the server. It also facilitates the connection between the client and backend server.
DSMS collects and stores data for the reasoning server component. The recognition
of complex activities and ambiguity reasoning occur at the reasoning server compo-
nent. The system tracks complex activities for suggesting a healthier user lifestyle.
Despite the efficiency of the developed system, personalisation and adaptation are not
considered in this study. Also, the reasoning on a backend server requires additional
connectivity requirements and does not preserve a user’s data privacy.

Actitracker [Lockhart and Weiss. 2014] is a recent system that is being developed
for activity recognition application in the health domain. A universal model is built
initially from general and impersonal data. Then, the user has the options of either to
train the model with the personalised data or instead deploy the universal model. For
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model personalisation, the system retrains the model with sufficient amount of per-
sonalised annotated data collected for a particular user. Streaming data is collected
from mobile sensors with a fixed size window of 10 seconds. The collected data is sent
to a backend server for processing and classification. Various classification algorithms
are applied: decision trees (C4.5 and Random Forest), instance-based learning (KNN),
neural networks, Naive Bayes and Logistic Regression (LR). The Actitracker system
only uses Random Forest models (which were shown to perform very well) [Weiss et al.
2014; act 2012]. Data is classified with a personalised random forest if available; with a
universal random forest model otherwise. The developed system is available on the ap-
plication store and ready to download for mobile devices. The data is shared with activ-
ity recognition researchers via publicly available datasets [Lockhart and Weiss. 2014].
This system uses a fixed window size technique to handle data streams. However, the
personalised model is neither automated nor incremental. A collection of personalised
activities requires not only annotation for each activity but also retraining the entire
model to suit the personalised user. Training a model in such way is impractical in
streaming settings that require automated and incremental approaches for ‘adjusting’
the model to fit a particular user. Moreover, the annotation process is time consuming,
erroneous, and not applicable for a streaming environment. Therefore, selecting only
the most profitable data with the minimum effect on performance is crucial for effec-
tive recognition. The system also lacks the consideration of discovering new activities
or deleting irrelevant activities.

The technique developed in [Nguyen et al. 2015] aims to detect novel activities with
limited labelled data. It requires model training on the available data that represents
the new concepts. The technique uses a combination of feature-based and attribute-
based learning to leverage the relationship between existing and new activities. The
approach is also extended with adding a random sampling to address the imbalanced
data problem. Three public datasets are used to evaluate the effectiveness of the tech-
nique in recognising new activities. This work is a pioneer in addressing the very im-
portant challenge of recognising novel activities. However, it has many limitations that
require further development. The technique still requires labelled data to train the
model beforehand on a new activity. Also, it lacks the capability to handle streaming
data. The dynamics of the recognition includes adding new activities but not deleting
abandoned ones.

The technique developed in [Abdallah et al. 2015] is an extension of [Abdallah et al.
2012] that addresses activity recognition in data streams. The system builds a flexi-
ble and lightweight framework that can be refined with the evolving activities along
the stream. The technique addresses the personalisation of activity recognition system
to fit the user personalised way of performing activities. The stream is captured by a
fixed-size sliding window whilst detecting concurrent activities occurring in a single
window. The developed technique applies incremental learning to refine the recogni-
tion model continuously with recent changes in the evolving activities. It also applies
active learning for addressing the scarcity of annotated data by labelling only a small
amount of data. The technique contains three components of modelling, recognition
and personalisation across two phases of offline and online learning. The modelling
component builds the initial base-line framework from historical data. The recognition
component integrates the baseline framework with an ensemble classifier for recog-
nising the incoming data stream. While the personalisation component updates the
baseline framework continuously through batch active and incremental learning. The
technique provides a lightweight solution that can be implemented on a mobile device
for real time recognition. Although the developed technique addresses many research
challenges, it still requires further extensions for model adaptation to add and remove
activities while the stream evolves.
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Some key techniques have been applied for personalised activity recognition yet in
static environments. Although having an improved accuracy with personalised models,
these techniques are incapable of handling the evolving nature of the incoming data
streams. Moreover, the prediction relies on the static model built offline. This model
cannot be pruned or expanded after deployment. We discuss in the following two key
systems for personalised activity recognition.

Zhao et al. [Zhao et al. 2011] developed a cross-people motion activity recognition
system. This developed smart phone based activity reporting system can accurately
recognise the daily activities of stationary, walking, running, upstairs, and downstairs,
and report the accumulated time of each activity. More significantly, the system is con-
cerned about the calibration free and personalised problem. The algorithm learns a
binary decision tree model for one person from his labelled samples, transfers its struc-
ture to another person and automatically adapts its non-determinate nodes with the
unlabelled samples of the new person, thus accomplishing the cross-people knowledge
transfer task. The system consists of two components, the first one is the TransDT
layer (Transfer Decision Tree), and the other one is the EM Algorithm layer (Expec-
tation Maximization Algorithm). TransDT is a binary decision tree learnt off-line and
built on a well-labelled training set. In this layer, the system constructs a classifier as
well as finds the attributes that can distinguish one class from others. The EM layer
corresponds to transferring and adapting the TransDT model to a personalised one.
When having collected sufficient unlabelled samples from a new user, the algorithm
classifies them with the TransDT model and then uses the result as the initial con-
dition of the EM algorithm. After the EM algorithm, the unlabelled samples are well
labelled. So the system can update the non-terminal nodes of the TransDT model and
thus form the personalised model.

Parkka et al. [Parkka et al. 2010] developed an activity recognition system based on
a decision tree classifier that automatically recognises physical activities on a portable
device, online. The model is personalised by updating the decision tree threshold val-
ues with a user’s own data. The central device in data collection and activity recogni-
tion is a personal digital assistant (PDA). The application receives data over a Blue-
tooth connection, computes feature signals from raw data online, classifies the data in
a second-by-second basis online, and stores the data on a memory card. The human
movements are quantified with Nokia wireless motion bands using the 3-D accelerom-
eter signal and Bluetooth connection for data transfer to the PDA. Only ankle sen-
sor data are used for computing the feature signals. The time-domain features were
computed from the most recent samples, and the frequency-domain features were com-
puted from the same samples and one added zero for an efficient fast Fourier transform
(FFT) implementation. The structure of the binary decision tree includes four nodes
with one threshold value in each node. The personalised algorithm searches for an op-
timum decision boundary between the activities falling left and right in each node. It
takes 3-10 minutes of new data with annotation and uses that for updating the thresh-
olds in each node. The algorithm requires only a few comparisons and thus consumes
very little battery power. Personalising the training model by adjusting the thresholds
is a key contribution, however a long delay up to 10 seconds is required for updating
the model.

7. RESEARCH CHALLENGES

Upon discussing the wide range of approaches proposed for activity recognition, we
present the research gaps that have not been addressed or partially addressed in the
literature. One of the main limitations that encounters the recognition system is the
static nature of the classification model. Studies demonstrated that deployment of a
personalised model for activity recognition outperforms the system of applying a gen-
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eral model [Weiss and Lockhart 2012]. It can easily be seen that models that are built
for general activity recognition would need to be tuned and adapted to suit the evolv-
ing data of activities. Each individual has his/her own personalised way of performing
activities. Thus, the significance of personalising the training model in real time be-
came crucial in activity recognition in order to improve the recognition accuracy for a
specific user. Personalisation is the process of tuning the general model to represent
a user’s particular way of performing various activities. Personalisation updates the
current existing model without changing the core activity types. Therefore, the person-
alisation process only ‘tunes’ current activities for a particular user in an incremental
manner. Few studies in activity recognition considered the personalisation issue. Most
of these studies addressed the personalisation by retraining of the entire model with
a particular user’s annotated data. Few studies considered the incremental and auto-
mated approach for personalisation. Moreover, a data stream is an unbounded flow of
data that is mostly unlabelled. Personalisation methods in activity recognition require
annotation of recent data to update the model. However, the scarcity of labelled data as
well as the time consuming process of labelling each data instance are in conflict with
the streaming nature of activity recognition of sensory data. Alternatively, the recog-
nition of activities needs to consider batch labelling for only the most profitable data
in batch active learning approach. Thus, the time and resource consumptions are only
limited for the most profitable data. Handling the streaming nature of data is crucial
for processing and responding to a streaming activity in almost real time.

Moreover, in a real life application, activities that a user performs evolve over time.
Therefore, the set of activities represented in the model has to be updated to reflect
the change in the performed activities. That includes adding new recognised activities
and also understanding activities that are no longer relevant to that particular user.
Model adaptation is a key criterion of the robustness of any activity recognition system.
There is no notion of adaptation/refinement of the classifier models in the literature.
Models do not include activities that may emerge over a period of time (post the data
collection) or changes in a user’s patterns, which are both completely realistic in the
context of a mobile user. The adaptation process needs to update the recognition model
over time to reflect changes in a real life user’s activities in real time.

The deployment of inexpensive sensors for collecting data for activity recognition
coupled with stream mining techniques has resulted in the development of the wide
variety of applications. Sensors could be either onboard the mobile device itself, body
worn or embedded in a smart environment. Using mobile devices with limited re-
sources for recognition of streaming activities became a hot topic of research in per-
vasive and ubiquitous computing. Two approaches have been applied for mobile based
recognition systems. Firstly, the phone transmits the data to the backend sever with
the server applying the activity recognition model and transmitting the results back to
the phone. The second method involves implementing the activity recognition model
directly on the mobile device. Given the computational power of these everyday de-
vices, this is certainly a feasible option. One key advantage of this method is that it
removes the need for a server and therefore save transmission time and allows real
time prediction. Today’s mobile devices make the solution perfectly scalable, and en-
sures the user’s privacy, since the sensory data is kept locally on the device.

Time and accuracy are well-known critical factors used in judging the performance
of any real-time activity recognition technique. Building a classifier that accurately
recognises physical activities on a mobile device in real time is a key research issue.

7.1. Comparison of the State-of-the-art Activity Recognition Techniques

In Table III, we present a comparison of the different activity recognition systems
addressing the aforementioned research issues. It is demonstrated that there are many
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significant missing research gaps that need to be addressed for the development of
an efficient activity recognition system. Although the pervasive techniques in activity
recognition are deployed in a static environment, we focus in this comparison on the
missing gap in recent approaches for streaming environment.

Data collection platforms vary from one system to another. Data is collected from
either mobile, body worn, or smart environment sensors. The processing platform is
related to the recognition application and response time. Processing data on a backend
server or on a PC implies two factors. The model is not light-weight. Therefore it has to
be implemented on a high performing device, such as a PC. The other factor is the real
time recognition as the implementation on a backend server or PC causes a delay in
transmitting data back to the user and thus does not maintain a real time recognition.

Few of these systems considered real time adaptation for activity recognition. Recog-
nition systems use a static training model which is built offline to recognise incoming
data. The technique in [Abdallah et al. 2015] has the ability to expand the model after
it is already deployed. When new activity was urged or any current activity aban-
doned, current techniques could not be adapted accordingly. Reflecting the change in
activities in real time is also a crucial research issue. Only an approach in [Krishnan
and Cook 2014] and [Nguyen et al. 2015] considered the discovery of ‘other’ or ‘new’
activity. The recognition of these activities is different from recognising novel activities
from an evolving stream. In [Krishnan and Cook 2014], the technique has to build a
static model offline that represents other transitional and unknown activities. It ex-
plicitly trains the model offline for transitional activities and other unknown activities.
Then, it gathers them all in other activity class and incorporates it with the model. The
technique developed in [Nguyen et al. 2015] also requires labelled data representing
the novel activity. Therefore, these approaches are not detecting the emerging of novel
activities from data stream with no labelled data representing the novel concepts.

Two approaches for model personalisation are presented in Table III. The first is a
complete reconstruction of the learning model with the personalised data, while the
other aims only on tuning the model to suit a particular user. There is a little focus
on the personalisation of the learning models in activity recognition. Retraining the
model is not applicable for streaming environments. In the other incremental learning
approach, offline models in [Parkki et al. 2010] and [Zhao et al. 2011] are refined by
tuning the model with incoming data. However, they both deployed in non-streaming
environments. Moreover, the Piarkka et al. technique performs the personalisation of-
fline with long delays. Therefore, none of these systems is representing a real time ap-
proach to resolve the personalisation issue in a streaming environment. The approach
in [Abdallah et al. 2015] addresses the personalisation of activity recognition model
yet in streaming environment. The personalisation in this approach is more applicable
for streaming data as it applies an incremental learning approach for personalisation
instead of retraining the entire model as in [Gomes et al. 2012al.

The scarcity of labelled data requires incorporating active learning with recognition
for labelling only a small amount of data that is most informative. Relying on less
labelled data has not been addressed by the majority of the systems. The system de-
veloped in [Abdallah et al. 2015] proposed an approach that incorporates active learn-
ing based on the recognition confidence. However, the rate of triggered active learning
inquiries still requires further improvement as it increases significantly with highly
fluctuating data especially with numerous transition activities.

8. FUTURE RESEARCH DIRECTIONS

The research work surveyed in this paper stimulates different areas of research direc-
tions for extensions. In this section, we provide pointers to some of the key research
directions that can be outlined as follows.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Activity Recognition in Evolving Data streams A:33

Enabling personalisation in activity recognition benefits the research area for accu-
rate and efficient recognition. With an efficient personalisation, activity recognition
becomes widely available and accurate across users, as there is no need to train
the recognition system on each user’s way of performing activities. General models
are automatically customised for a user’s personalised activities at real time and
on limited resource devices. The capability of personalisation supports an improved
and accurate recognition across many applications. These applications include per-
sonalised advertisements, lifestyle monitoring, and elderly people monitoring.

The capturing of novel activities and dynamic adaptation with evolving activi-
ties enables the development of reliable systems for activity recognition that can
learn new knowledge and forget outdated knowledge. With the adaptation tech-
nique, there is no need to define a set of activities to recognise. The automatically
adaptable technique is a self-learner that monitors the stream and understands the
evolving data. This approach is a significant contribution in activity recognition as
it creates less dependency on the historical annotated data. This future direction
of this feature is to enable an independent technique that requires almost no prior
knowledge to recognise activities. The feature can be extended for detecting and
recognising activities on the fly with evolving streams. The dynamic adaptation fea-
ture can incrementally create the model with detected activities once they arrive
and without prior training.

Building a holistic approach for activity recognition that integrates the personal-
isation of existing activities with the adaptation for novel detected and forgotten
activities. The holistic approach creates a single framework for detecting both ma-
jor and minor changes in activities while a stream evolves.

A big challenge in activity recognition is to collect sufficient amount of labeled data
to train the learning model. The annotating process is expensive, time-consuming
and erroneous. An incremental and active learning approach that addresses this
problem has been previously developed as aforementioned. The initial model in the
developed approach is built with a small amount of labeled data. The model is con-
tinuously accumulated through incremental learning. Active learning asks only for
labels of informative samples. This approach opens the door for a wider range of
applications in activity recognition as it allows learning from unlabeled data, which
is pervasively available. The research in this direction is still new and promising as
it aims at less supervision in the recognition process.

An accurate recognition of activities can be combined with a context aware frame-
work for recognising higher level and more complex activities. A future activity
recognition tiered approach has to leverage all available information for context
aware recognition. Building a context aware technique for activity recognition en-
ables a wide range of applications that concern not only the activity of the user, but
also the context of surrounding environment, to be able to provide the user with
accurate and opportune information.

Context aware in adaptive activity recognition should consider the dynamics of
both activities and context in streaming environment. For example, when reasoning
about the mode of transportation as a context of an activity, the recognition of the
context has to assume that the activity is not static, i.e., the user can be walking,
sitting or standing in the train. Extending the adaptation definition to include ac-
tivities and their contexts is important in many application. One example is the
detection of transport congestion when detecting the dynamics of activities while
changing the mode of transpiration.

Activity prediction is a natural extension of activity recognition. Unlike activity
recognition that reasons about the current activity, activity prediction forecasts the
upcoming activities in the timeline. Moreover, combining the adaptation capabilities
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of personalisation and detection of novel activities with activity prediction provide
interesting and challenging areas of research.

— Benefiting from the dynamic and adaptive recognition, the recognition technique
could be applied to a wide range of users, to provide crowdsourcing information
based on their performed activities. Aggregating on the recognised activities from
users’ devices on a higher level platform, such as the cloud, enables a wider per-
spective of understanding the performed activities based on different criteria, such
as location based activity recognition on the cloud.

It is worth noting that some steps have been taken towards realising the afore-
mentioned directions. However, the research done is still short in providing reliable
solutions that address the different research challenges collectively and cohesively. It
is expected that with the rise in the Internet of Things (IoT) in the coming years, activ-
ity recognition will be a core component in many IoT applications [Perera et al. 2014].
Thus, fulfilling the needs of such applications would require robust activity recognition
systems.

9. SUMMARY AND CONCLUSION

In this survey, we reviewed state-of-the-art approaches for the two overlapped research
areas concerning activity recognition in stream mining. We first introduced the area
of activity recognition in general. We reviewed the variety of sensors applied for ac-
tivity recognition along with the different kinds of activities to be predicted. Then, the
known term of i.i.d. in statistical and probability theory that refers to independent and
identically distributed- ness is introduced. A key challenge with learning from sensors
in a streaming environment is that it requires learning beyond identically distributed
and independent sensory data. We then illustrated the position of this survey from the
two active areas of research in techniques concerning the distribution of data (stream
mining) and techniques concerning data dependency (activity recognition).

Activity recognition techniques along with different approaches are depicted in de-
tail. We survey two main categories of activity recognition. The first category focuses on
the learning approaches; the other one concerns the dynamic capabilities beyond the
learning process. Most of the developed techniques in activity recognition are based
on supervised learning, however few studies apply unsupervised and semi-supervised
approaches given the limited availability of labelled data. Beyond learning, different
approaches for adapting the initial model are discussed. This includes adaptation for
model personalisation or for adding/removing activities. The dynamic capabilities are
related to the concept of transfer learning in terms of transfer between the static do-
main of modelling to the dynamic streaming deployment domain.

Deployment of activity recognition in streaming settings imposes many challenges.
In order to understand the limitation and constraints imposed with stream mining for
activity recognition, we survey state-of-the-art techniques for stream mining. Stream
mining techniques correspond to the distribution oriented approach. Data that evolves
in the stream is not identically distributed. In the literature, many approaches have
addressed for the handling of high speed and infinite stream of data. We reviewed in
this paper different techniques developed for handling streaming data. Unlike tradi-
tional machine learning approaches, new approaches have been developed to address
the streaming nature of data. Various kinds of changes may encounter data streams
over time. We presented in this paper the methods of both tracking these changes and
learning from these changes.

Upon surveying the main approaches for both activity recognition and stream min-
ing, we presented the overlap between the two research areas. We first presented a
conceptual mapping between the two areas to demonstrate the connection. We then
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discussed techniques that considered activity recognition with data streams. The re-
search gaps based on the discussed state-of-the-art approaches were illustrated. Then,
the key techniques in the literature that target subset of the research gaps were pre-
sented in detail along with a comparison between them. Finally, the paper concluded
with a description of the contribution of this survey in addressing the discussed re-
search gaps with linkage to the research future directions.
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