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Abstract 

This paper presents the motivation, concept and 

implementation of a new interactive optimisation engine 

designed to be generic and be able to work with different 

building simulation tools. The key technological 

advances are the full interactivity and collaboration 

features built around a multi-objective optimisation 

algorithm that is fine-tuned for building design 

applications. The interactive features, including the 

ability to change optimisation criteria, search space and 

evaluation models on-the-fly, are unheard-of in other 

optimisation tools. An example design task is used to 

demonstrate the capability and advantages of these 

unique features. 

Introduction 

Optimisation has gained increasing attention amongst 

researchers and practitioners in the built environment. 

Many applications of optimisation techniques and 

development of tools incorporating optimisation 

functions have been reported in the area of building 

design. However, optimisation tools that are efficient for 

a broad range of applications, yet simple enough to use 

without the requirement of prior knowledge of 

optimisation, are hard to find.  

Another critical issue with the current optimisation tools 

is that to most users, they work as a black box. Once set 

up and running, the user cannot do much else except 

waiting to see if they get the desired results in the end or 

not. Innocent errors in the problem's setup or in the 

configuration of the algorithms can easily lead to 

significant time losses. 

In order to address these limitations, a brand new 

optimisation engine named JEA has been developed for 

building simulation users. The engine is operated by a 

set of standard APIs that are agnostic about simulation 

models or tools. It offers interactive control over 

algorithm configurations and optimisation problem 

definitions. Changes can be made on-the-fly without 

stopping the optimisation process. The engine can also 

be accessed via internet protocols to facilitate online and 

collaborative optimisation projects. These features are 

only possible because of key advances in the 

development of the algorithms and the problem 

representations, which will be described in the article. 

An example building design project is presented to 

demonstrate the advantages of using the new 

optimisation engine.  

An interactive approach 

As a decision-making process, design is intrinsically 

interactive and iterative. In order to use optimisation as 

an integral tool in the design processes, the users must 

have sufficient level of control over how the 

optimisation process works. Figure 1 shows the typical 

way that the optimisation process is used. In the three 

steps, the user has control over the setting up of the 

optimisation problem, and the analysis of the results, but 

has very limited opportunity to intervene during the 

optimisation run.  

 

Figure 1: Traditional optimisation process 

For building design applications, the optimisation run 

can take significant amount time depending on the 

complexity of the models and the design task. Quite 

often the process has to be restarted due to errors (or 

changes) in the problem setup, which inevitably leads to 

time loss.  

A solution to this issue is to allow the design problem set 

up to be reviewed and revised during the optimisation 

process, as illustrated in Figure 2. In this way, errors can 

be corrected, and changes of design context can be 

incorporated without abandoning the current progress.  

 

Figure 2: Interactive optimisation process 

Substantial changes must be made to the optimisation 

algorithms and the representation of the problems to 

achieve such interactivity. The following sections of the 

paper describe how it works and how it can be used to 

achieve the most flexible and efficient workflow.  

The optimisation engine  

GenOpt (Wetter, 2001) and MOBO (Palonen et al. 2013) 

are two established generic optimisation tools, each 

incorporating a range of algorithms and the ability to 

work with a number of building simulation programs. 

Our development, the JEA engine, differs from them in 
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two ways. First, the JEA engine provides only the search 

algorithms, and the associated data representation  for 

the optimisation problems. It does not include model 

manipulation or result extraction functions to work with 

simulation tools such as EnergyPlus. Instead, developers 

can use the engine to develop their own tools for specific 

optimisation applications.  

Second, the JEA engine offers only one optimisation 

algorithm instead of multiple choices. It is a constrained 

multi-objective algorithm based on Evolutionary 

Algorithms (EAs) and has been tuned for a broad range 

of problems found in applications in the built 

environment. This removes the confusion of which 

algorithm to choose for users. On the other hand, 

additional methods such as parametric analysis and 

uncertainty/sensitivity analysis are provided to aid the 

interactive design approach. 

Briefly, the new engine has features include: 

 highly efficient and versatile multi-objective 

optimisation algorithm based on the EAs, with 

flexible constraint handling strategy 

 suitable for both multi-objective and single 

objective problems, constrained or unconstrained 

 enabling full interactivity with on-the-fly adjustment 

of algorithm configuration, search space, 

optimisation criteria, and the evaluation models 

 simple JSON based Application Programing 

Interface (API) providing complete control of the 

engine, and data access for progress monitoring, 

solution inspection, and algorithm analysis.  

Optimisation Process 

Evolutionary Algorithms (EAs) are a well-known group 

of nature inspired algorithms for operational research. 

The methods, their strengths and limitations, are 

extensively covered in the literature, such as (Bäck,  

1996). EA was chosen as the main algorithm in JEA, for 

its robustness, versatility and efficiency in handling 

mixed continuous and discrete, constrained, nonlinear, 

multimodal, multi-objective problems often seen in 

building applications. 

Figure 3 shows an overview of the EA process 

implemented in JEA. Each EA process (project) starts 

with initializing the engine instance and creating the first 

set of solutions based on random sampling. The 

solutions are evaluated, using external simulation models 

if necessary, and ranked based on the optimisation 

criteria. "Good" solutions are selected for generating 

new cases using the crossover and mutation operators, 

and continue going through the evolution cycle until one 

of the termination criteria is met.  

The EA process is "generation" based, i.e. there is a clear 

starting point for each iteration. This gives the 

opportunity for applying user interaction, which we will 

discuss in length in this paper. Before that, let us first 

look at the three techniques that are essential for 

achieving the efficacy and interactivity in JEA: the 

integer-based encoding scheme, the constrained multi-

objective ranking method, and the Pareto archived global 

elitism strategy.  

 
Figure 3: The EA process as implemented in JEA 

 

Integer-based Encoding Scheme 

Three encoding schemes are commonly used in the EAs:  

binary encoding, integer encoding, and real value 

encoding. Real value encoding not only represents a 

solution using the problem variables’ native values, 

continuous or discrete, it can also capture the 

relationship between variables by imposing a data 

structure (such as a tree in the case of Genetic 

Programming). To take advantage of real value 

encoding, prior knowledge of the problem is essential, 

and the problem-specific operators should be used, 

which makes it less suitable for generic optimisation 

engines.  

The optimisation problems in building design normally 

have both discrete (e.g. window construction types) and 

continuous variables (e.g. insulation thickness), albeit 

the continuous variables rarely require high resolutions. 

Considering the depth of shading overhang, for example, 

a value of 1.123m does not differ much from either 

1.10m or 1.15m in the practical sense, due to the 

presence of measurement and other uncertainties. 

Binary encoding is canonical to Genetic Algorithms. A 

solution is represented by a string of binary digits (bits). 

If 10 bits are used to encode one continuous variable, it 

is effectively discretized into 1024 values with the 

variable's given domain. The benefit of using binary 

encoding is that the algorithm can use a standard set of 

crossover and mutation operators, disregarding the 

problem it is solving. The drawbacks, however, are that 
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the mapping between the encoding and the actual values 

is not intuitive and often inefficient. 

Integer encoding represents a solution with the indices of 

the values of each design variables. This representation 

is natural for discrete variables, whose values are already 

defined as a list. For continuous variables, however, the 

user needs to specify the values to use manually. For 

example, the values for the depth of overhang must be 

defined as 0.0, 0.1, 0.2, up to 1.0, instead of to just give 

the range [0.0, 1.0]. The reward of making the extra 

effort is that the algorithm will not waste time on 

chasing the minute increments between the specified 

values, leading to much faster convergence (Zhang, 

2012). In JEA, the integer encoding is the method of 

choice. 

Constrained Multi-objective Ranking 

The ranking method determines how the EA judges the 

relative quality of the solutions. JEA uses Non-

dominated Sorting from NSGA-II (Deb et al. 2002), 

integrated with Stochastic Ranking (Runarsson and Yao, 

2000), for constrained multi-objective problems. 

NSGA-II is one the best known and widely used 

algorithms for multi-objective optimisation. The key 

trick is the Non-dominated Sorting method (hence the 

name), which is proven to be highly effective in ranking 

competing objectives. It also works well with single-

objective problems, which makes it perfect for our 

purpose. One deficiency of the original NSGA-II 

algorithm, however, is that it does not provide a way of 

efficient constraint handling. 

Constraint handling is a topic that attracts lots of 

attention from algorithm designers. The efficiency of 

constraint handling is measured by not only how quickly 

feasible solutions are found, but also the quality of those 

feasible solutions. If a strategy pushes too hard for 

meeting the constraints, it may hamper exploration for 

better objective values. On the other hand, if it is too 

lenient, too much time may be wasted on infeasible 

solutions. The balance depends on the nature of the 

problem, so a perfect strategy may not exist. However, 

from our research we found one of the best strategies in 

terms of robustness of adaptability to different problems, 

is Stochastic Ranking.  

Stochastic Ranking is a probabilistic strategy to rank 

solutions according to different objective and constraint 

functions. Its original form is designed for one objective 

against one constraint. In order to make it work with 

NSGA-II, the following steps are taken: 

1. All constraints are scaled (normalised) and then 

aggregated so that the infeasibility (constraint 

violations) is measured as a value in [0, 1]. 

2. Infeasibility is used as an additional objective and 

sorted with Nondominated Sorting with all other 

objectives. This produces an initial ranking order of 

all solutions. 

3. Stochastic Ranking is then applied to the initial rank 

of each solution (treated as its objective value) and 

its aggregated infeasibility value. This produces the 

final ranking of the solutions. 

The benefit of this slightly complex arrangement is that 

it works well with problems with any number of 

objectives (including single objective) and constraints, 

and unconstrained problems. The user can use a single 

parameter, what we call "Objective Bias", to control the 

level of the push for feasibility.  

Pareto Archived Global Elitism 

Evolutionary algorithms are stochastic in nature. The 

user has little control over which direction or what 

solutions to explore next. Quite often promising 

solutions may appear in one generation and then 

disappear for good in the subsequent iterations. Elitism 

is a method for preserving good solutions. Basically, it 

selects cases from a pool of known solutions and inserts 

them back into the working population.  

In Pareto Archived Elitism, all known solutions on the 

global Pareto Front are stored. They form the pool from 

which the elitism operator picks "elites". In JEA, the 

maximum number of elites and whether they can include 

infeasible solutions can be controlled by parameters.  

The combination of the encoding scheme, the ranking 

method, and the elitism strategy makes JEA highly 

effective in solving complex optimisation problems, 

which we have seen in many examples. Since we are 

developing a separate paper to compare JEA with other 

optimisation algorithms, it will not be discussed here for 

the time being. 

Implementation of Interactivity 

The main advances we have achieved with JEA is the 

interactivity, i.e. the ability user has to adjust or modify 

the optimisation process when it is running. To the 

authors' knowledge, no other optimisation tools have 

achieved the same level of on-the-fly interactivity as 

JEA has.  

We consider that there is five levels of interactivity, 

ordered by increasing complexity to implement: (1) 

progression control, (2) algorithm settings, (3) 

evaluation metrics, (4) search space, and (5) evaluation 

model. Most existing optimisation tools has partial 

progression control (level 1). For example, in GenOpt 

the user can start and stop an optimisation process at 

will. Many EA-based tools, MOBO included, has live 

algorithm settings control (level 2), which means the 

user can change algorithm settings on-the-fly. In this part 

of the paper, we explain in detail what the different 

interactivity levels are and how they are implemented. 

Level 1: Progression Control 

The basic level of interactivity is to start, pause, resume, 

stop or cancel the optimisation process by the user. EAs 

are iteration-based algorithms, therefore simple to 

include checkpoints in the process loop to check for 

user's commands. Furthermore, it is possible to support 

resuming the EA process after the computer on which 

the engine is running being shut down and rebooted. 

JEA persists engine state and all process data in the file 



system at the end of each iteration. The stored states can 

then be used to resume the process on user's request. 

The EA process (referred to as the "project") can be 

controlled using a set of commands following the form 

as in List 1, which contains the command, a project ID, 

and further data fields. The "problem", "config", 

"smdata" and "filter" fields are optional and can be 

omitted. In fact, only the "Create", "Update" and 

"Report" commands need the additional fields. List 2 

shows an example "Start" command. 

 
List 1. "Create" command in JSON 

 

 
List 2. "Start" command in JSON 

  

Figure 4: State flow of an EA project and commands 

The full set of commands for JEA include "Create", 

"Update", "Start", "Pause", "Resume", "Terminate", 

"Cancel", "Reset", and "Delete" for procession control, 

plus "Status", "Report", and "Data" for data access. 

Figure 4 shows the state flow of the EA project and the 

corresponding commands. 

Level 2: Algorithm Settings 

EAs are highly customizable heuristic algorithms. This 

is considered a significant advantage by experienced 

users, as they can tailor the algorithm to suit the 

characters of the problem at hand. However, very few 

users can tell immediately what configuration of the 

algorithm would work best for a new project. The ability 

to adjust settings after seeing how the algorithm behaves 

is very useful to users. 

The current version of JEA supports on-the-fly update of 

the following parameters: 

 Search method: optimisation (NSGA-II), exhaustive 

search (Parametrics), or random sampling 

 Population sizes: adjustable depending on the 

complexity of the problem and the available 

computing resources/budget. 

 Reproduction: crossover and mutation rates 

 Selection pressure: tournament size 

 Constraint handling: ranking bias between 

constraints and objectives 

 Elitism strategy: tolerance for infeasible solutions 

 Termination criteria: number of iterations, time and 

cost budget. 

It is worth noting that the ability to switch between 

different algorithms, e.g. from NSGA-II to full 

parametrics and back, is probably unique to JEA. The 

reasons for doing this is explained in the use case. List 3 

is an example algorithm configuration. 

 
List 3. Algorithm configuration example 

Level 3: Evaluation Metrics 

In each iteration of the optimisation process, assessing 

and comparing the quality of the competing solutions is 

done by calculating the evaluation metrics (objective and 

constraint functions) from the simulation results. The 

evaluation metrics are then used by the the optimisation 

algorithm to rank existing solutions for producing new 

solutions. Sophisticated ranking methods are often 

necessary for dealing with multi-criteria optimisation 

problems. 

In an optimisation project, the actual design goals are 

expressed in the form of objective and constraint 
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    "config": { 
        "algorithm": "NSGA2", 
        "sampleSize": 0, 
        "sampleOption": "RANDOM", 
        "initPopSize": 10, 
        "evolvePopSize": 10, 
        "maxPopSize": 10000, 
        "mutationRate": 0.2, 
        "crossoverRate": 1, 
        "tournamentSize": 2, 
        "objectiveBias": 0, 
        "elitismTolerance": 0, 
        "maxGenerations": 100, 
        "maxEvaluations": 1000, 
        "maxComputingTime": 100, 
        "maxWallTime": 24 
    } 

{ 
    "command": "Start", 
    "projectID": "circle" 
} 

{ 
    "command": "Create", 
    "projectID": "circle", 
    "problem": {...}, 
    "config": {...}, 
    "smdata": {...}, 
    "filter": null 
} 



functions. For example, if energy performance, comfort 

level and cost are of concern, three objectives may be 

assigned to the optimisation problem, i.e. "to minimise 

energy consumption, discomfort and cost". However, 

any of the following formulations are possible, too: 

 to minimise energy consumption and discomfort, 

subject to limited cost (two objectives and one 

constraint); 

 to minimise cost, subject to energy consumption and 

discomfort not exceeding certain levels, respectively 

(one objective, two constraints); or even, 

 to find any solution that energy consumption, 

discomfort and cost are all below their respective 

limit (no objective, three constraints). 

There are apparently more ways to formulate the 

problem, and they can be equivalent from the user's 

point of view. However, optimisation algorithms may 

treat constraints and objectives in very different ways, 

depending on the ranking methods used. The 

formulation of the optimisation problem affects how the 

search process progresses, therefore has a significant 

impact on the solutions, and how quickly they are found. 

Choosing the right objectives and constraints for a 

project is not easy for even the most experienced users. 

Furthermore, the design criteria may change due to the 

emergence of new information or on client's request. The 

ability to adjust the evaluation metrics on-the-fly helps 

the user to avoid losing all solutions that have been 

explored when such changes happen. JEA will simply 

adopt the new metrics and re-rank the existing solutions 

without interrupting the optimisation process.  

There are three types of evaluation metrics the user can 

specify in JEA: 

 User Metrics ("userMetrics") are values calculated 

from simulation results for user's own reference 

only. They can be visualised, but not used in the 

optimisation process. 

 Objectives ("objectives") are values to be minimised 

or maximised by the optimisation process. 

 Constraints ("constraints") are values with a defined 

acceptable range. The optimisation process will try 

to push solutions to fall within this range. 

List 4 shows an example of evaluation metrics 

definition. The only constraint ("s1") in the example 

calculates the geometrical distance of the solution to the 

point (50, 50), and requires the distance to be less than 

30. If the distance is larger than 30, a penalty is applied 

to the solution. Since computing of the evaluation 

metrics is trivial, they can be recalculated whenever 

necessary. The user can submit new metric definitions 

by calling the "Update" command. 

 

 
List 4. Evaluation metrics definition example 

Level 4: Search Space 

Another common challenge in setting up optimisation 

problem is deciding on the search space. The search 

space for optimisation is defined by the available options 

of each design variables. Normally the larger (more 

options) the search space is, the longer it takes to find 

the optimal solutions. Performing a global sensitivity 

analysis may help to eliminate less important variables. 

The likely regions where optimal solutions are may also 

emerge from experimenting with the model. The latter is 

more akin to the human design process. 

For optimisation, level 4 interactivity means that the 

search space of the optimisation problem can be adjusted 

during the process. The user can change the definition of 

the design variables, e.g. by adding or removing options 

in the variables, or even adding or removing variables in 

the optimisation problem. The challenge for the 

algorithm is to maintain encoding consistency of the 

existing solutions while incorporating variable definition 

changes. 

JEA implements support for alternating search space by 

allowing the user to specify a "mask" to the initial search 

space. The mask defines a sub-space within the original 

search space. The algorithm operates within the effective 

        "userMetrics": [ { 
                "name": "v1", 
                "caption": "User metric 1", 
                "unit": "-", 
                "formula": "f1 + f2" 
            } 
        ], 
        "objectives": [ { 
                "name": "t1", 
                "caption": "Objective 1", 
                "unit": "-", 
                "direction": "Minimize", 
                "formula": "f1" 
            }, { 
                "name": "t2", 
                "caption": "Objective 2", 
                "unit": "-", 
                "direction": "Minimize", 
                "formula": "f2" 
            } 
        ], 
        "constraints": [ { 
                "name": "s1", 
                "caption": "Constraint 1", 
                "unit": "-", 
                "formula":  
     "Math.sqrt(Math.pow(f1-50, 2) + Math.pow(f2-50, 2))", 
                "lb": 0, 
                "ub": 30, 
                "min": 0, 
                "max": 100, 
                "weight": 1 
            } 
        ] 



search space, whereas all solutions are encoded in the 

original space to ensure encoding consistency.  

Figure 5 shows the operations of refining the search 

space. It starts with the whole domain with a coarse 

mesh, progressing to smaller regions with finer meshes 

in three steps.  

 
Figure 5: Result of exploring with different mesh sizes 

List 5 shows how this is done using the mask strings. In 

Step 1 the "valueStr" specifies the original search space, 

whereas the "maskStr" defines the same domain with a 

coarser mesh (0.1 vs. 0.01). In step 2 the mesh size is 

reduced to 0.05, at the same time the search boundary is 

reduced to [0.2, 0.8]. In step 3, Boundary and mesh size 

are further reduced to [0.2, 0.5] and 0.01, respectively.  

 
Step 1 

 
Step 2 

 
Step 3 

List 5. Example variable definition showing the use of 

value masks 

The interactive control of the search space can have 

many uses, including layered and collaborated search 

strategies. These will be topics for future development.  

Level 5: Evaluation Model 

The ultimate level of interactivity is the ability to modify 

or change the model used for evaluating solutions. At 

present, it is not feasible to devise a consistent strategy 

for the optimisation algorithm to handle model changes. 

Instead, the decision of what to do when a model is 

changed is delegated to the user. 

JEA is implemented as a generic optimisation engine 

that is agnostic about which model or simulation tool is 

connected to it. To evaluate a solution, JEA sends a set 

of values for the corresponding design variables to the 

model, and expects a set of result values (see List 6 and 

7) as defined in the optimisation project. How the result 

values have come about is not the engine's concern. If 

the model is changed by the user during the optimisation 

process, the user should decide whether the modification 

invalidate the existing solutions or not. If the impact is 

small, i.e. the ranking of the existing solutions would not 

differ much should all solutions be re-simulated, the 

optimisation process may carry on as before; otherwise, 

it may be better to start a new optimisation run. 

 
List 6. Definition of evaluation results 

 
Simulation request 

 
Simulation result 

List 7. Example data exchange between optimisation 

engine and simulation model 

Why is model definition change useful, though? Having 

a model-unaware engine gives tool developers excellent 

opportunity to create hybrid optimisation approaches, 

which is essential for complex projects that require 

collaboration between multiple disciplines.  

        { 
                "name": "Gen-101", 
                "projectName": "circle", 
                "resultSet": { 
                        "C-37_50": { "f1": 37, "f2": 50 }, 
                        "C-44_31": { "f1": 44, "f2": 31 }, 
                        ... 
                        "C-41_22": { "f1": 41, "f2": 22 } 
                } 
        } 

        { 
                "name": "Gen-101", 
                "projectName": "circle", 
                "jobSet": { 
                        "C-37_50": {"y": "0.5", "x": "0.37"}, 
                        "C-44_31": {"y": "0.31", "x": "0.44"}, 
                        ... 
                        "C-41_22": {"y": "0.22", "x": "0.41"} 
                }, 
                "eventType": "Request" 
        } 

        "evalResults": [ { 
                "name": "f1", 
                "caption": "Model output 1", 
                "unit": "-" 
            }, { 
                "name": "f2", 
                "caption": "Model output 2", 
                "unit": "-" 
            } 
        ] 

                "maskStr": "[0.2:0.01:0.5]", 

                "maskStr": "[0.2:0.05:0.8]", 

        "variables": [ { 
                "name": "x", 
                "caption": "x variable", 
                "valueStr": "[0:0.01:1.0]", 
                "maskStr": "[0:0.1:1.0]", 
                "valueType": "Number" 
            }, { 
                "name": "y", 
                "caption": "y variable", 
                "valueStr": "[0:0.01:1.0]", 
                "maskStr": "[0:0.1:1.0]", 
                "valueType": "Number" 
            } 
        ]  



Within one optimisation project, different models can be 

used to evaluate the solutions in many different ways. 

For example, EnergyPlus, TRNSYS, Radiance and 

Spreadsheets can be employed at the same time to assess 

different evaluation metrics of the same solution. 

Dynamic simulation models and simplified surrogates 

can be used alternatively to accelerate exploration. The 

output from one optimisation project can be the 

evaluation input of another, forming a hybrid algorithm. 

Even subjective assessment (e.g. on aesthetics) may be 

included in the optimisation process.  

The implementation of model level interactivity, 

including the functions of running simulations and 

collecting results, needs to be done on the client's side by 

tool developers. And, more research is required to realise 

the full potential of the generic optimisation engine. 

Nevertheless, the new development has brought about 

possibilities that have never been seen before.  

Optimisation as a Service 

JEA may be accessed as a library, or online through its 

RESTful API. The online version that we call 

"Optimisation as a Service", or OAAS, further supports 

project sharing and collaboration.  

With an online service on which the whole data set of an 

optimisation project is accessible from anywhere with 

internet connection, collaborations between a team of 

users would become possible. One useful scenario can 

be that an energy modeller creates the simulation model 

and sets up an optimisation project; the designer 

(architect, for example) operates the project to explore 

different design options, adjusting design criteria as 

needed, and instructs the modeller to make changes to 

the model when necessary. Advisors can be called in 

anytime when support is required, or the progress (in the 

form of a set of design solutions identified thus far) can 

be shown live to the clients.  

 

Figure 6: Online optimisation service  

The online optimisation service is accessed using HTTP 

requests to the service's URL. All operations described 

previously such as creating, updating, starting, pausing 

or cancelling an optimisation project are addressable 

following a REST pattern. For example, to start the 

project "MyProject", the request is: 

 
List 8. Example RESTful API command for starting a 

project 

For creating and updating operations, project definition 

and engine configuration data need to be sent to the 

server. In these cases, the requests must be must include 

the required data in JSON format as the payload. 

Examples of the requests are available online. 

Once the optimisation process has started (with "Start" 

command), the engine will generate a set of cases 

awaiting simulation. The user, with a client software, 

instructs the server to retrieve the pending cases, run the 

simulations, and submit the results back to the server. On 

the server, the optimisation process will continue once 

all the expected results are received. In this arrangement, 

the user (with client software) is responsible for 

executing simulation and provide to the server with the 

expected results. The user can run simulations locally or 

use suitable online services, or input results manually.  

The main driver for the development of optimisation as 

an online service is to facilitate collaboration. Subject to 

the implementation in the client tools, it is possible for 

different users to collaborate by producing partial 

simulation results that collectively form the evaluation of 

the solutions. The access information of the service, the 

full details of the API and the example code are 

available at www.ensims.com/jea.  

Example Application 

We use a low energy building design case to 

demonstrate the key functions and the interactive process 

of the new optimisation engine. The case represents a 

challenging design task with multiple design goals, 

which are used interchangeably as constraints or as 

objectives to find the desirable solutions. The search 

space is gradually refined to accelerate the process. This 

example also gives a comparison between the new 

interactive approach and the traditional search strategies. 

The Optimisation Problem 

The model we used was developed as part of an on-

going project on retrofitting residential houses to the 

Passivhaus standard. The houses to be retrofitted are of 

the type known as Wimpey No-Fines, characterised by 

concrete construction without the sand fraction. In the 

UK, approximately 300,000 dwellings were built using 

this method since the Second World War (Reeves and 

Martin, 1989). The original buildings had no thermal 

insulation.  

Figure 7 shows the appearance of the actual houses and 

the model in DesignBuilder. The model was built using 

data from detailed site survey and then calibrated with 

utility bills (Jankovic and Basurra, 2016). Only one 

semi-detached house of the two is used in this example.  
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Figure 7: Houses to be retrofitted (from Jankovic and 

Basurra, 2016) 

The task is to identify a set of retrofitting solutions 

encompassing a range of technical and behavioural 

parameters. From the decision maker's (e.g. the house 

owner's) point of view, there are three goals: reduce 

carbon emissions, improve comfort, and not to break the 

bank. The technical and behavioural parameters 

considered are listed in Table 1. The construction costs 

of all technical options are considered, despite that for 

the purpose of demonstration costs figures may not 

accurately reflect the present market price. 

Table 1: Design Variables 

Variable values count 

Infiltration (ACH) 0.6, 1.0, 2.0, 3.0 4 

Insulation (mm) 0, 100, 150... 270 6 

Boiler (-) Gas, Biomass 2 

Light fittings 

(W/m
2
) 

5.0, 3.0, 2.0, 1.0 4 

PV east roof (%) 0% - 80% 9 

PV west roof (%) 0% - 90% 10 

Room Temp. (°C) 16.0, 16.5, ..., 

24.0 

17 

Clothing (clo) 0.8, 0.9, ..., 1.4 7 

 Total: 2.06×10
6
 

 

The total search space size of this project is just over 2 

million, which is not a big problem for optimisation but 

well beyond the scope that a user can effectively explore 

manually. We want first to see if the optimisation 

algorithm in JEA is working correctly.  

Efficacy of the Optimisation Algorithm 

To test the effectiveness of the optimisation algorithm, 

we first run a random sample of 1,000 cases, whose 

carbon and cost metrics are shown in Figure 8a. We then 

run JEA using the NSGA-II option with a population 

size of 10. Operational carbon emission and cost are 

used as two objectives, whereas discomfort hours (≤ 

1,500hrs), according to ASHRAE55 Fanger's PMV 

model with designated clothing, is used as a constraint. 

After 500 cases have been evaluated, the result chart is 

shown in Figure 8b. The difference between Figure 8a 

and 8b is very clear.  

 

a. 1,000 random sample 

 

b. 500 optimisation output 

Figure 8: Comparison between random sample and 

optimisation outputs 

Looking at the best solutions found in both processes, at 

100 evaluations, NSGA-II has already produced a set of 

results (circles in Figure 9) that are better than those 

from the 1,000 randomly selected cases (crosses in 

Figure 9), except the point at £20,000 and -0.2 

tonne/year. Allowing the optimisation process to run to 

500 evaluations, a set of 69 solutions emerges to form a 

clean trade-off line between carbon and cost. This trade-

off line (the "Pareto front") shows what has to be 

compromised in one objective, in order to meet the 

target in another. By inspecting the individual solutions, 

the user can gain insight on how design parameters 

impact on the objectives and constraints, too. 

In Figure 9, the visual difference between the solutions 

after 100 evaluations and after 500 evaluations does not 

appear significant. If the target is to meet carbon 

neutrality (CO2 ≤ 0), however, the best solution found 

after 100 evaluations would cost £20.6K. Compared to 

the best solution found after 500 evaluations that would 



cost  £17.8K, the reduction of £2.8K (14%) is 

significant.  

 

Figure 9: Best solutions found in 500 and 100 

evaluations using NSGA-II, and in 1,000 random sample 

Another indicator of the efficacy of NSGA-II is that in 

the random sample, only 277 of the 1,000 cases (28%) 

meet the comfort criterion, whereas, in the results of 

NSGA-II, 448 of the 500 cases (90%) evaluated to meet 

the same criterion. This shows that the optimisation 

algorithm in JEA handles constrained problems 

effectively. 

Example of Search Manoeuvre 

Next, we use an experiment to simulate a more complex 

use case on which the interactive features can be 

demonstrated. At the start the project, the same design 

criteria as in the previous section are used, i.e. carbon 

and cost as objectives, and discomfort hours as a 

constraint. In the middle of the project, the "client" 

changes their mind and no longer wants to install a 

biomass boiler. The new question is thus to find out 

whether carbon neutrality is achievable with the existing 

gas boiler, and what the minimum cost of the rest of 

retrofitting is. Some compromise on thermal comfort is 

acceptable.  

Here is how we did the experiment. The optimisation 

project starts as before. We assume that after 150 

evaluations (Figure 10a), client's new instructions come 

in. The search space is adjusted by removing the 

biomass boiler option. We set cost and comfort as 

objectives, and carbon ≤ 0 as a constraint, to reflect the 

new requirement. After further 80 evaluations (Figure 

10b), it becomes clear that "zero carbon" is a stringent 

constraint (this can be seen from the random sample), 

especially when one of the key low carbon technologies, 

biomass, is taken out. The optimisation engine may use a 

little help to find some feasible solutions first.  

Using the pattern that has already emerged from the 

existing evaluations, and conventional wisdom, it is 

quite clear that throwing in all low-carbon technology 

and reducing heating demand to the minimum will give 

us the best chance to meet the zero carbon target. So we 

pause the search process, apply masks to the design 

variables so that only the best air tightness, insulation, 

lighting, and maximum amount of PV are selected. Only 

the behavioural variables remain. We further limit the 

range of heating temperature setting to 16-20°C. The 

remaining size of the search space after masking is 63, 

small enough for an exhaustive search (a full parametric 

run). This method is the same principle as the "seeding" 

strategy in optimisation, where certain suboptimal 

solutions are inserted into the existing pool to influence 

the search process. 

 

 A. after 150 evaluations B. after 230 evaluations 

  

 C. after 293 evaluations D. after 350 evaluations 

 

 E. after 650 evaluations F. after 750 evaluations 

Figure 10: Progress of the interactive experiment 

After "seeding" (Figure 10c), we have answered the first 

question: yes, the zero carbon target is achievable 

without a new biomass boiler. The next question is what 

the minimum cost is. The search space is reset to its 

original size except for biomass, and the search 

continues. Soon new (better) solutions emerge from the 

seeds (Figure 10d). 

However, after another 300 evaluations (Figure 10e), the 

lowest cost solution found still costs nearly £24K, £4.5K 

(23%) higher than otherwise achievable with a new 

biomass boiler, as indicated in the first 150 evaluations 

(Figure 10a). The client reconsiders the options and 

decides to go for biomass, again. Since the hypothetical 
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project has nearly run out of time, we change the design 

criteria back to the original, reduce the search space so 

known high-cost elements and the behavioural variables 

are removed, and then run the search process for 100 

more evaluations. The final results are shown in Figure 

10f. The lowest cost for meeting the zero carbon target is 

just over £16K in the end, and the occupants of the 

house can set the heating temperature to a comfortable 

22°C. 

Discussion 

Although the project above is fabricated, it reflects the 

fluid nature of most real design projects. For the simple 

model used here, keeping previous results and control 

the search algorithm on the fly may not be necessary. 

We could have achieved the same results by restarting 

the optimisation process each time. However, for more 

complex models on which a few hundred evaluations 

may take days to complete, abandoning results would be 

wasteful, and any aid for finding the right solutions 

quicker would be valuable. 

The second point is that optimisation methods used in 

the design process are tools, not the solutions. The user 

is the one who is using it to achieve desirable results. A 

substantial amount of the knowledge of different search 

methods and the optimisation problem at hand is 

essential. When algorithms fail to deliver results, the 

first thing to check is whether the question put to it is 

correct. In the majority of cases, answers fail to emerge 

because of wrong questions being asked. Some part of 

the experiment above is a good example of such failings 

(see Figure 10b). 

On the other hand, if used effectively, optimisation can 

be one of the most helpful tools in design. It can explore 

the complex relations between design variables and 

criteria, and reveal the deepest secrets in the model. JEA 

is aimed to be a versatile tool and will continue  to 

evolve.  

Conclusion 

This paper describes the development of an optimisation 

engine, JEA. It is generic optimisation tool designed to 

work with other modelling and simulation tools. The 

most important novel feature is the interactivity JEA 

supports, which allows users to: 

 control the progression of the search process 

 adjust configuration and parameters of the 

algorithms 

 add, remove or change optimisation criteria 

 refine search space and adjust design options 

 switch and combine simulations models 

 and, collaborate online with other users. 

How each of these interactive features is achieved is 

presented in the paper, and the technical basis of the 

main optimisation algorithm, a constraint-handling and 

Pareto archived NSGA-II, is also explained in detail. 

A zero-carbon retrofit design case is presented to 

demonstrate the use of the optimisation engine and its 

interactive features. The effectiveness of the 

optimisation algorithm is compared with a random 

search. Then, a hypothetical design scenario where the 

design requirements change during the process is 

described, highlighting the unique features of JEA. 

Discussions are made about the importance of good, 

effective tools, and how optimisation can be utilised. 

JEA is available online and free for personal use. 
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