
JEA, An Interactive Optimisation Engine for Building Energy Performance Simulation

Yi Zhang
1
, Lubo Jankovic

2

1
Energy Simulation Solutions Ltd, Leicester, United Kingdom

2
Birmingham School of Architecture and Design, Birmingham City University, Birmingham,

United Kingdom

Abstract

This paper presents the motivation, concept and

implementation of a new interactive optimisation engine

designed to be generic and be able to work with different

building simulation tools. The key technological

advances are the full interactivity and collaboration

features built around a multi-objective optimisation

algorithm that is fine-tuned for building design

applications. The interactive features, including the

ability to change optimisation criteria, search space and

evaluation models on-the-fly, are unheard-of in other

optimisation tools. An example design task is used to

demonstrate the capability and advantages of these

unique features.

Introduction

Optimisation has gained increasing attention amongst

researchers and practitioners in the built environment.

Many applications of optimisation techniques and

development of tools incorporating optimisation

functions have been reported in the area of building

design. However, optimisation tools that are efficient for

a broad range of applications, yet simple enough to use

without the requirement of prior knowledge of

optimisation, are hard to find.

Another critical issue with the current optimisation tools

is that to most users, they work as a black box. Once set

up and running, the user cannot do much else except

waiting to see if they get the desired results in the end or

not. Innocent errors in the problem's setup or in the

configuration of the algorithms can easily lead to

significant time losses.

In order to address these limitations, a brand new

optimisation engine named JEA has been developed for

building simulation users. The engine is operated by a

set of standard APIs that are agnostic about simulation

models or tools. It offers interactive control over

algorithm configurations and optimisation problem

definitions. Changes can be made on-the-fly without

stopping the optimisation process. The engine can also

be accessed via internet protocols to facilitate online and

collaborative optimisation projects. These features are

only possible because of key advances in the

development of the algorithms and the problem

representations, which will be described in the article.

An example building design project is presented to

demonstrate the advantages of using the new

optimisation engine.

An interactive approach

As a decision-making process, design is intrinsically

interactive and iterative. In order to use optimisation as

an integral tool in the design processes, the users must

have sufficient level of control over how the

optimisation process works. Figure 1 shows the typical

way that the optimisation process is used. In the three

steps, the user has control over the setting up of the

optimisation problem, and the analysis of the results, but

has very limited opportunity to intervene during the

optimisation run.

Figure 1: Traditional optimisation process

For building design applications, the optimisation run

can take significant amount time depending on the

complexity of the models and the design task. Quite

often the process has to be restarted due to errors (or

changes) in the problem setup, which inevitably leads to

time loss.

A solution to this issue is to allow the design problem set

up to be reviewed and revised during the optimisation

process, as illustrated in Figure 2. In this way, errors can

be corrected, and changes of design context can be

incorporated without abandoning the current progress.

Figure 2: Interactive optimisation process

Substantial changes must be made to the optimisation

algorithms and the representation of the problems to

achieve such interactivity. The following sections of the

paper describe how it works and how it can be used to

achieve the most flexible and efficient workflow.

The optimisation engine

GenOpt (Wetter, 2001) and MOBO (Palonen et al. 2013)

are two established generic optimisation tools, each

incorporating a range of algorithms and the ability to

work with a number of building simulation programs.

Our development, the JEA engine, differs from them in

Optimisation run
Set up

problem

Review

results

User User

Optimisation run

Set up

problem

Review

results

User User

Adjust goals and

search space

Inspect

solutions

User

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141207715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

two ways. First, the JEA engine provides only the search

algorithms, and the associated data representation for

the optimisation problems. It does not include model

manipulation or result extraction functions to work with

simulation tools such as EnergyPlus. Instead, developers

can use the engine to develop their own tools for specific

optimisation applications.

Second, the JEA engine offers only one optimisation

algorithm instead of multiple choices. It is a constrained

multi-objective algorithm based on Evolutionary

Algorithms (EAs) and has been tuned for a broad range

of problems found in applications in the built

environment. This removes the confusion of which

algorithm to choose for users. On the other hand,

additional methods such as parametric analysis and

uncertainty/sensitivity analysis are provided to aid the

interactive design approach.

Briefly, the new engine has features include:

 highly efficient and versatile multi-objective

optimisation algorithm based on the EAs, with

flexible constraint handling strategy

 suitable for both multi-objective and single

objective problems, constrained or unconstrained

 enabling full interactivity with on-the-fly adjustment

of algorithm configuration, search space,

optimisation criteria, and the evaluation models

 simple JSON based Application Programing

Interface (API) providing complete control of the

engine, and data access for progress monitoring,

solution inspection, and algorithm analysis.

Optimisation Process

Evolutionary Algorithms (EAs) are a well-known group

of nature inspired algorithms for operational research.

The methods, their strengths and limitations, are

extensively covered in the literature, such as (Bäck,

1996). EA was chosen as the main algorithm in JEA, for

its robustness, versatility and efficiency in handling

mixed continuous and discrete, constrained, nonlinear,

multimodal, multi-objective problems often seen in

building applications.

Figure 3 shows an overview of the EA process

implemented in JEA. Each EA process (project) starts

with initializing the engine instance and creating the first

set of solutions based on random sampling. The

solutions are evaluated, using external simulation models

if necessary, and ranked based on the optimisation

criteria. "Good" solutions are selected for generating

new cases using the crossover and mutation operators,

and continue going through the evolution cycle until one

of the termination criteria is met.

The EA process is "generation" based, i.e. there is a clear

starting point for each iteration. This gives the

opportunity for applying user interaction, which we will

discuss in length in this paper. Before that, let us first

look at the three techniques that are essential for

achieving the efficacy and interactivity in JEA: the

integer-based encoding scheme, the constrained multi-

objective ranking method, and the Pareto archived global

elitism strategy.

Figure 3: The EA process as implemented in JEA

Integer-based Encoding Scheme

Three encoding schemes are commonly used in the EAs:

binary encoding, integer encoding, and real value

encoding. Real value encoding not only represents a

solution using the problem variables’ native values,

continuous or discrete, it can also capture the

relationship between variables by imposing a data

structure (such as a tree in the case of Genetic

Programming). To take advantage of real value

encoding, prior knowledge of the problem is essential,

and the problem-specific operators should be used,

which makes it less suitable for generic optimisation

engines.

The optimisation problems in building design normally

have both discrete (e.g. window construction types) and

continuous variables (e.g. insulation thickness), albeit

the continuous variables rarely require high resolutions.

Considering the depth of shading overhang, for example,

a value of 1.123m does not differ much from either

1.10m or 1.15m in the practical sense, due to the

presence of measurement and other uncertainties.

Binary encoding is canonical to Genetic Algorithms. A

solution is represented by a string of binary digits (bits).

If 10 bits are used to encode one continuous variable, it

is effectively discretized into 1024 values with the

variable's given domain. The benefit of using binary

encoding is that the algorithm can use a standard set of

crossover and mutation operators, disregarding the

problem it is solving. The drawbacks, however, are that

Create initial population

through random sampling

Project Start

New population

Run simulation on

each solution

Calculate evaluation

metrics

Rank solutions within

population

Store solutions and

evaluation info in the

archive

Create new variants

by crossover and

mutation

Select solutions for

producing new

Add existing best

solutions from the

archive

Terminate?

Simulation

Model

Project Finish

the mapping between the encoding and the actual values

is not intuitive and often inefficient.

Integer encoding represents a solution with the indices of

the values of each design variables. This representation

is natural for discrete variables, whose values are already

defined as a list. For continuous variables, however, the

user needs to specify the values to use manually. For

example, the values for the depth of overhang must be

defined as 0.0, 0.1, 0.2, up to 1.0, instead of to just give

the range [0.0, 1.0]. The reward of making the extra

effort is that the algorithm will not waste time on

chasing the minute increments between the specified

values, leading to much faster convergence (Zhang,

2012). In JEA, the integer encoding is the method of

choice.

Constrained Multi-objective Ranking

The ranking method determines how the EA judges the

relative quality of the solutions. JEA uses Non-

dominated Sorting from NSGA-II (Deb et al. 2002),

integrated with Stochastic Ranking (Runarsson and Yao,

2000), for constrained multi-objective problems.

NSGA-II is one the best known and widely used

algorithms for multi-objective optimisation. The key

trick is the Non-dominated Sorting method (hence the

name), which is proven to be highly effective in ranking

competing objectives. It also works well with single-

objective problems, which makes it perfect for our

purpose. One deficiency of the original NSGA-II

algorithm, however, is that it does not provide a way of

efficient constraint handling.

Constraint handling is a topic that attracts lots of

attention from algorithm designers. The efficiency of

constraint handling is measured by not only how quickly

feasible solutions are found, but also the quality of those

feasible solutions. If a strategy pushes too hard for

meeting the constraints, it may hamper exploration for

better objective values. On the other hand, if it is too

lenient, too much time may be wasted on infeasible

solutions. The balance depends on the nature of the

problem, so a perfect strategy may not exist. However,

from our research we found one of the best strategies in

terms of robustness of adaptability to different problems,

is Stochastic Ranking.

Stochastic Ranking is a probabilistic strategy to rank

solutions according to different objective and constraint

functions. Its original form is designed for one objective

against one constraint. In order to make it work with

NSGA-II, the following steps are taken:

1. All constraints are scaled (normalised) and then

aggregated so that the infeasibility (constraint

violations) is measured as a value in [0, 1].

2. Infeasibility is used as an additional objective and

sorted with Nondominated Sorting with all other

objectives. This produces an initial ranking order of

all solutions.

3. Stochastic Ranking is then applied to the initial rank

of each solution (treated as its objective value) and

its aggregated infeasibility value. This produces the

final ranking of the solutions.

The benefit of this slightly complex arrangement is that

it works well with problems with any number of

objectives (including single objective) and constraints,

and unconstrained problems. The user can use a single

parameter, what we call "Objective Bias", to control the

level of the push for feasibility.

Pareto Archived Global Elitism

Evolutionary algorithms are stochastic in nature. The

user has little control over which direction or what

solutions to explore next. Quite often promising

solutions may appear in one generation and then

disappear for good in the subsequent iterations. Elitism

is a method for preserving good solutions. Basically, it

selects cases from a pool of known solutions and inserts

them back into the working population.

In Pareto Archived Elitism, all known solutions on the

global Pareto Front are stored. They form the pool from

which the elitism operator picks "elites". In JEA, the

maximum number of elites and whether they can include

infeasible solutions can be controlled by parameters.

The combination of the encoding scheme, the ranking

method, and the elitism strategy makes JEA highly

effective in solving complex optimisation problems,

which we have seen in many examples. Since we are

developing a separate paper to compare JEA with other

optimisation algorithms, it will not be discussed here for

the time being.

Implementation of Interactivity

The main advances we have achieved with JEA is the

interactivity, i.e. the ability user has to adjust or modify

the optimisation process when it is running. To the

authors' knowledge, no other optimisation tools have

achieved the same level of on-the-fly interactivity as

JEA has.

We consider that there is five levels of interactivity,

ordered by increasing complexity to implement: (1)

progression control, (2) algorithm settings, (3)

evaluation metrics, (4) search space, and (5) evaluation

model. Most existing optimisation tools has partial

progression control (level 1). For example, in GenOpt

the user can start and stop an optimisation process at

will. Many EA-based tools, MOBO included, has live

algorithm settings control (level 2), which means the

user can change algorithm settings on-the-fly. In this part

of the paper, we explain in detail what the different

interactivity levels are and how they are implemented.

Level 1: Progression Control

The basic level of interactivity is to start, pause, resume,

stop or cancel the optimisation process by the user. EAs

are iteration-based algorithms, therefore simple to

include checkpoints in the process loop to check for

user's commands. Furthermore, it is possible to support

resuming the EA process after the computer on which

the engine is running being shut down and rebooted.

JEA persists engine state and all process data in the file

system at the end of each iteration. The stored states can

then be used to resume the process on user's request.

The EA process (referred to as the "project") can be

controlled using a set of commands following the form

as in List 1, which contains the command, a project ID,

and further data fields. The "problem", "config",

"smdata" and "filter" fields are optional and can be

omitted. In fact, only the "Create", "Update" and

"Report" commands need the additional fields. List 2

shows an example "Start" command.

List 1. "Create" command in JSON

List 2. "Start" command in JSON

Figure 4: State flow of an EA project and commands

The full set of commands for JEA include "Create",

"Update", "Start", "Pause", "Resume", "Terminate",

"Cancel", "Reset", and "Delete" for procession control,

plus "Status", "Report", and "Data" for data access.

Figure 4 shows the state flow of the EA project and the

corresponding commands.

Level 2: Algorithm Settings

EAs are highly customizable heuristic algorithms. This

is considered a significant advantage by experienced

users, as they can tailor the algorithm to suit the

characters of the problem at hand. However, very few

users can tell immediately what configuration of the

algorithm would work best for a new project. The ability

to adjust settings after seeing how the algorithm behaves

is very useful to users.

The current version of JEA supports on-the-fly update of

the following parameters:

 Search method: optimisation (NSGA-II), exhaustive

search (Parametrics), or random sampling

 Population sizes: adjustable depending on the

complexity of the problem and the available

computing resources/budget.

 Reproduction: crossover and mutation rates

 Selection pressure: tournament size

 Constraint handling: ranking bias between

constraints and objectives

 Elitism strategy: tolerance for infeasible solutions

 Termination criteria: number of iterations, time and

cost budget.

It is worth noting that the ability to switch between

different algorithms, e.g. from NSGA-II to full

parametrics and back, is probably unique to JEA. The

reasons for doing this is explained in the use case. List 3

is an example algorithm configuration.

List 3. Algorithm configuration example

Level 3: Evaluation Metrics

In each iteration of the optimisation process, assessing

and comparing the quality of the competing solutions is

done by calculating the evaluation metrics (objective and

constraint functions) from the simulation results. The

evaluation metrics are then used by the the optimisation

algorithm to rank existing solutions for producing new

solutions. Sophisticated ranking methods are often

necessary for dealing with multi-criteria optimisation

problems.

In an optimisation project, the actual design goals are

expressed in the form of objective and constraint

Unknown

Unknown

Initializing

Created

Evolving Paused

/ Pause

Terminated Canceled

/ Delete / Delete

Error

/ Terminate / Cancel / Cancel

/ Create

/ Start

/ Resume
/ Start

/ Reset

/ Terminate

/ Create

/ Delete

/ Reset

 "config": {
 "algorithm": "NSGA2",
 "sampleSize": 0,
 "sampleOption": "RANDOM",
 "initPopSize": 10,
 "evolvePopSize": 10,
 "maxPopSize": 10000,
 "mutationRate": 0.2,
 "crossoverRate": 1,
 "tournamentSize": 2,
 "objectiveBias": 0,
 "elitismTolerance": 0,
 "maxGenerations": 100,
 "maxEvaluations": 1000,
 "maxComputingTime": 100,
 "maxWallTime": 24
 }

{
 "command": "Start",
 "projectID": "circle"
}

{
 "command": "Create",
 "projectID": "circle",
 "problem": {...},
 "config": {...},
 "smdata": {...},
 "filter": null
}

functions. For example, if energy performance, comfort

level and cost are of concern, three objectives may be

assigned to the optimisation problem, i.e. "to minimise

energy consumption, discomfort and cost". However,

any of the following formulations are possible, too:

 to minimise energy consumption and discomfort,

subject to limited cost (two objectives and one

constraint);

 to minimise cost, subject to energy consumption and

discomfort not exceeding certain levels, respectively

(one objective, two constraints); or even,

 to find any solution that energy consumption,

discomfort and cost are all below their respective

limit (no objective, three constraints).

There are apparently more ways to formulate the

problem, and they can be equivalent from the user's

point of view. However, optimisation algorithms may

treat constraints and objectives in very different ways,

depending on the ranking methods used. The

formulation of the optimisation problem affects how the

search process progresses, therefore has a significant

impact on the solutions, and how quickly they are found.

Choosing the right objectives and constraints for a

project is not easy for even the most experienced users.

Furthermore, the design criteria may change due to the

emergence of new information or on client's request. The

ability to adjust the evaluation metrics on-the-fly helps

the user to avoid losing all solutions that have been

explored when such changes happen. JEA will simply

adopt the new metrics and re-rank the existing solutions

without interrupting the optimisation process.

There are three types of evaluation metrics the user can

specify in JEA:

 User Metrics ("userMetrics") are values calculated

from simulation results for user's own reference

only. They can be visualised, but not used in the

optimisation process.

 Objectives ("objectives") are values to be minimised

or maximised by the optimisation process.

 Constraints ("constraints") are values with a defined

acceptable range. The optimisation process will try

to push solutions to fall within this range.

List 4 shows an example of evaluation metrics

definition. The only constraint ("s1") in the example

calculates the geometrical distance of the solution to the

point (50, 50), and requires the distance to be less than

30. If the distance is larger than 30, a penalty is applied

to the solution. Since computing of the evaluation

metrics is trivial, they can be recalculated whenever

necessary. The user can submit new metric definitions

by calling the "Update" command.

List 4. Evaluation metrics definition example

Level 4: Search Space

Another common challenge in setting up optimisation

problem is deciding on the search space. The search

space for optimisation is defined by the available options

of each design variables. Normally the larger (more

options) the search space is, the longer it takes to find

the optimal solutions. Performing a global sensitivity

analysis may help to eliminate less important variables.

The likely regions where optimal solutions are may also

emerge from experimenting with the model. The latter is

more akin to the human design process.

For optimisation, level 4 interactivity means that the

search space of the optimisation problem can be adjusted

during the process. The user can change the definition of

the design variables, e.g. by adding or removing options

in the variables, or even adding or removing variables in

the optimisation problem. The challenge for the

algorithm is to maintain encoding consistency of the

existing solutions while incorporating variable definition

changes.

JEA implements support for alternating search space by

allowing the user to specify a "mask" to the initial search

space. The mask defines a sub-space within the original

search space. The algorithm operates within the effective

 "userMetrics": [{
 "name": "v1",
 "caption": "User metric 1",
 "unit": "-",
 "formula": "f1 + f2"
 }
],
 "objectives": [{
 "name": "t1",
 "caption": "Objective 1",
 "unit": "-",
 "direction": "Minimize",
 "formula": "f1"
 }, {
 "name": "t2",
 "caption": "Objective 2",
 "unit": "-",
 "direction": "Minimize",
 "formula": "f2"
 }
],
 "constraints": [{
 "name": "s1",
 "caption": "Constraint 1",
 "unit": "-",
 "formula":
 "Math.sqrt(Math.pow(f1-50, 2) + Math.pow(f2-50, 2))",
 "lb": 0,
 "ub": 30,
 "min": 0,
 "max": 100,
 "weight": 1
 }
]

search space, whereas all solutions are encoded in the

original space to ensure encoding consistency.

Figure 5 shows the operations of refining the search

space. It starts with the whole domain with a coarse

mesh, progressing to smaller regions with finer meshes

in three steps.

Figure 5: Result of exploring with different mesh sizes

List 5 shows how this is done using the mask strings. In

Step 1 the "valueStr" specifies the original search space,

whereas the "maskStr" defines the same domain with a

coarser mesh (0.1 vs. 0.01). In step 2 the mesh size is

reduced to 0.05, at the same time the search boundary is

reduced to [0.2, 0.8]. In step 3, Boundary and mesh size

are further reduced to [0.2, 0.5] and 0.01, respectively.

Step 1

Step 2

Step 3

List 5. Example variable definition showing the use of

value masks

The interactive control of the search space can have

many uses, including layered and collaborated search

strategies. These will be topics for future development.

Level 5: Evaluation Model

The ultimate level of interactivity is the ability to modify

or change the model used for evaluating solutions. At

present, it is not feasible to devise a consistent strategy

for the optimisation algorithm to handle model changes.

Instead, the decision of what to do when a model is

changed is delegated to the user.

JEA is implemented as a generic optimisation engine

that is agnostic about which model or simulation tool is

connected to it. To evaluate a solution, JEA sends a set

of values for the corresponding design variables to the

model, and expects a set of result values (see List 6 and

7) as defined in the optimisation project. How the result

values have come about is not the engine's concern. If

the model is changed by the user during the optimisation

process, the user should decide whether the modification

invalidate the existing solutions or not. If the impact is

small, i.e. the ranking of the existing solutions would not

differ much should all solutions be re-simulated, the

optimisation process may carry on as before; otherwise,

it may be better to start a new optimisation run.

List 6. Definition of evaluation results

Simulation request

Simulation result

List 7. Example data exchange between optimisation

engine and simulation model

Why is model definition change useful, though? Having

a model-unaware engine gives tool developers excellent

opportunity to create hybrid optimisation approaches,

which is essential for complex projects that require

collaboration between multiple disciplines.

 {
 "name": "Gen-101",
 "projectName": "circle",
 "resultSet": {
 "C-37_50": { "f1": 37, "f2": 50 },
 "C-44_31": { "f1": 44, "f2": 31 },
 ...
 "C-41_22": { "f1": 41, "f2": 22 }
 }
 }

 {
 "name": "Gen-101",
 "projectName": "circle",
 "jobSet": {
 "C-37_50": {"y": "0.5", "x": "0.37"},
 "C-44_31": {"y": "0.31", "x": "0.44"},
 ...
 "C-41_22": {"y": "0.22", "x": "0.41"}
 },
 "eventType": "Request"
 }

 "evalResults": [{
 "name": "f1",
 "caption": "Model output 1",
 "unit": "-"
 }, {
 "name": "f2",
 "caption": "Model output 2",
 "unit": "-"
 }
]

 "maskStr": "[0.2:0.01:0.5]",

 "maskStr": "[0.2:0.05:0.8]",

 "variables": [{
 "name": "x",
 "caption": "x variable",
 "valueStr": "[0:0.01:1.0]",
 "maskStr": "[0:0.1:1.0]",
 "valueType": "Number"
 }, {
 "name": "y",
 "caption": "y variable",
 "valueStr": "[0:0.01:1.0]",
 "maskStr": "[0:0.1:1.0]",
 "valueType": "Number"
 }
]

Within one optimisation project, different models can be

used to evaluate the solutions in many different ways.

For example, EnergyPlus, TRNSYS, Radiance and

Spreadsheets can be employed at the same time to assess

different evaluation metrics of the same solution.

Dynamic simulation models and simplified surrogates

can be used alternatively to accelerate exploration. The

output from one optimisation project can be the

evaluation input of another, forming a hybrid algorithm.

Even subjective assessment (e.g. on aesthetics) may be

included in the optimisation process.

The implementation of model level interactivity,

including the functions of running simulations and

collecting results, needs to be done on the client's side by

tool developers. And, more research is required to realise

the full potential of the generic optimisation engine.

Nevertheless, the new development has brought about

possibilities that have never been seen before.

Optimisation as a Service

JEA may be accessed as a library, or online through its

RESTful API. The online version that we call

"Optimisation as a Service", or OAAS, further supports

project sharing and collaboration.

With an online service on which the whole data set of an

optimisation project is accessible from anywhere with

internet connection, collaborations between a team of

users would become possible. One useful scenario can

be that an energy modeller creates the simulation model

and sets up an optimisation project; the designer

(architect, for example) operates the project to explore

different design options, adjusting design criteria as

needed, and instructs the modeller to make changes to

the model when necessary. Advisors can be called in

anytime when support is required, or the progress (in the

form of a set of design solutions identified thus far) can

be shown live to the clients.

Figure 6: Online optimisation service

The online optimisation service is accessed using HTTP

requests to the service's URL. All operations described

previously such as creating, updating, starting, pausing

or cancelling an optimisation project are addressable

following a REST pattern. For example, to start the

project "MyProject", the request is:

List 8. Example RESTful API command for starting a

project

For creating and updating operations, project definition

and engine configuration data need to be sent to the

server. In these cases, the requests must be must include

the required data in JSON format as the payload.

Examples of the requests are available online.

Once the optimisation process has started (with "Start"

command), the engine will generate a set of cases

awaiting simulation. The user, with a client software,

instructs the server to retrieve the pending cases, run the

simulations, and submit the results back to the server. On

the server, the optimisation process will continue once

all the expected results are received. In this arrangement,

the user (with client software) is responsible for

executing simulation and provide to the server with the

expected results. The user can run simulations locally or

use suitable online services, or input results manually.

The main driver for the development of optimisation as

an online service is to facilitate collaboration. Subject to

the implementation in the client tools, it is possible for

different users to collaborate by producing partial

simulation results that collectively form the evaluation of

the solutions. The access information of the service, the

full details of the API and the example code are

available at www.ensims.com/jea.

Example Application

We use a low energy building design case to

demonstrate the key functions and the interactive process

of the new optimisation engine. The case represents a

challenging design task with multiple design goals,

which are used interchangeably as constraints or as

objectives to find the desirable solutions. The search

space is gradually refined to accelerate the process. This

example also gives a comparison between the new

interactive approach and the traditional search strategies.

The Optimisation Problem

The model we used was developed as part of an on-

going project on retrofitting residential houses to the

Passivhaus standard. The houses to be retrofitted are of

the type known as Wimpey No-Fines, characterised by

concrete construction without the sand fraction. In the

UK, approximately 300,000 dwellings were built using

this method since the Second World War (Reeves and

Martin, 1989). The original buildings had no thermal

insulation.

Figure 7 shows the appearance of the actual houses and

the model in DesignBuilder. The model was built using

data from detailed site survey and then calibrated with

utility bills (Jankovic and Basurra, 2016). Only one

semi-detached house of the two is used in this example.

online
jEA

EA

RESTful API

Project Data Store

Model files

JSON

Designer

Modeller

Advisor / Observer

http://{base url of the service}/start/MyProject

http://www.ensims.com/jea

Figure 7: Houses to be retrofitted (from Jankovic and

Basurra, 2016)

The task is to identify a set of retrofitting solutions

encompassing a range of technical and behavioural

parameters. From the decision maker's (e.g. the house

owner's) point of view, there are three goals: reduce

carbon emissions, improve comfort, and not to break the

bank. The technical and behavioural parameters

considered are listed in Table 1. The construction costs

of all technical options are considered, despite that for

the purpose of demonstration costs figures may not

accurately reflect the present market price.

Table 1: Design Variables

Variable values count

Infiltration (ACH) 0.6, 1.0, 2.0, 3.0 4

Insulation (mm) 0, 100, 150... 270 6

Boiler (-) Gas, Biomass 2

Light fittings

(W/m
2
)

5.0, 3.0, 2.0, 1.0 4

PV east roof (%) 0% - 80% 9

PV west roof (%) 0% - 90% 10

Room Temp. (°C) 16.0, 16.5, ...,

24.0

17

Clothing (clo) 0.8, 0.9, ..., 1.4 7

 Total: 2.06×10
6

The total search space size of this project is just over 2

million, which is not a big problem for optimisation but

well beyond the scope that a user can effectively explore

manually. We want first to see if the optimisation

algorithm in JEA is working correctly.

Efficacy of the Optimisation Algorithm

To test the effectiveness of the optimisation algorithm,

we first run a random sample of 1,000 cases, whose

carbon and cost metrics are shown in Figure 8a. We then

run JEA using the NSGA-II option with a population

size of 10. Operational carbon emission and cost are

used as two objectives, whereas discomfort hours (≤

1,500hrs), according to ASHRAE55 Fanger's PMV

model with designated clothing, is used as a constraint.

After 500 cases have been evaluated, the result chart is

shown in Figure 8b. The difference between Figure 8a

and 8b is very clear.

a. 1,000 random sample

b. 500 optimisation output

Figure 8: Comparison between random sample and

optimisation outputs

Looking at the best solutions found in both processes, at

100 evaluations, NSGA-II has already produced a set of

results (circles in Figure 9) that are better than those

from the 1,000 randomly selected cases (crosses in

Figure 9), except the point at £20,000 and -0.2

tonne/year. Allowing the optimisation process to run to

500 evaluations, a set of 69 solutions emerges to form a

clean trade-off line between carbon and cost. This trade-

off line (the "Pareto front") shows what has to be

compromised in one objective, in order to meet the

target in another. By inspecting the individual solutions,

the user can gain insight on how design parameters

impact on the objectives and constraints, too.

In Figure 9, the visual difference between the solutions

after 100 evaluations and after 500 evaluations does not

appear significant. If the target is to meet carbon

neutrality (CO2 ≤ 0), however, the best solution found

after 100 evaluations would cost £20.6K. Compared to

the best solution found after 500 evaluations that would

cost £17.8K, the reduction of £2.8K (14%) is

significant.

Figure 9: Best solutions found in 500 and 100

evaluations using NSGA-II, and in 1,000 random sample

Another indicator of the efficacy of NSGA-II is that in

the random sample, only 277 of the 1,000 cases (28%)

meet the comfort criterion, whereas, in the results of

NSGA-II, 448 of the 500 cases (90%) evaluated to meet

the same criterion. This shows that the optimisation

algorithm in JEA handles constrained problems

effectively.

Example of Search Manoeuvre

Next, we use an experiment to simulate a more complex

use case on which the interactive features can be

demonstrated. At the start the project, the same design

criteria as in the previous section are used, i.e. carbon

and cost as objectives, and discomfort hours as a

constraint. In the middle of the project, the "client"

changes their mind and no longer wants to install a

biomass boiler. The new question is thus to find out

whether carbon neutrality is achievable with the existing

gas boiler, and what the minimum cost of the rest of

retrofitting is. Some compromise on thermal comfort is

acceptable.

Here is how we did the experiment. The optimisation

project starts as before. We assume that after 150

evaluations (Figure 10a), client's new instructions come

in. The search space is adjusted by removing the

biomass boiler option. We set cost and comfort as

objectives, and carbon ≤ 0 as a constraint, to reflect the

new requirement. After further 80 evaluations (Figure

10b), it becomes clear that "zero carbon" is a stringent

constraint (this can be seen from the random sample),

especially when one of the key low carbon technologies,

biomass, is taken out. The optimisation engine may use a

little help to find some feasible solutions first.

Using the pattern that has already emerged from the

existing evaluations, and conventional wisdom, it is

quite clear that throwing in all low-carbon technology

and reducing heating demand to the minimum will give

us the best chance to meet the zero carbon target. So we

pause the search process, apply masks to the design

variables so that only the best air tightness, insulation,

lighting, and maximum amount of PV are selected. Only

the behavioural variables remain. We further limit the

range of heating temperature setting to 16-20°C. The

remaining size of the search space after masking is 63,

small enough for an exhaustive search (a full parametric

run). This method is the same principle as the "seeding"

strategy in optimisation, where certain suboptimal

solutions are inserted into the existing pool to influence

the search process.

 A. after 150 evaluations B. after 230 evaluations

 C. after 293 evaluations D. after 350 evaluations

 E. after 650 evaluations F. after 750 evaluations

Figure 10: Progress of the interactive experiment

After "seeding" (Figure 10c), we have answered the first

question: yes, the zero carbon target is achievable

without a new biomass boiler. The next question is what

the minimum cost is. The search space is reset to its

original size except for biomass, and the search

continues. Soon new (better) solutions emerge from the

seeds (Figure 10d).

However, after another 300 evaluations (Figure 10e), the

lowest cost solution found still costs nearly £24K, £4.5K

(23%) higher than otherwise achievable with a new

biomass boiler, as indicated in the first 150 evaluations

(Figure 10a). The client reconsiders the options and

decides to go for biomass, again. Since the hypothetical

£0

£5,000

£10,000

£15,000

£20,000

£25,000

£30,000

£35,000

£40,000

£45,000

£50,000

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

R
e

n
o

va
ti

o
n

 C
o

st
 (

G
B

P
)

CO2 Emission (ton/year)

NSGA2 - 500 Evals NSGA2 - 100 Evals RANDOM - 1000 Evals

project has nearly run out of time, we change the design

criteria back to the original, reduce the search space so

known high-cost elements and the behavioural variables

are removed, and then run the search process for 100

more evaluations. The final results are shown in Figure

10f. The lowest cost for meeting the zero carbon target is

just over £16K in the end, and the occupants of the

house can set the heating temperature to a comfortable

22°C.

Discussion

Although the project above is fabricated, it reflects the

fluid nature of most real design projects. For the simple

model used here, keeping previous results and control

the search algorithm on the fly may not be necessary.

We could have achieved the same results by restarting

the optimisation process each time. However, for more

complex models on which a few hundred evaluations

may take days to complete, abandoning results would be

wasteful, and any aid for finding the right solutions

quicker would be valuable.

The second point is that optimisation methods used in

the design process are tools, not the solutions. The user

is the one who is using it to achieve desirable results. A

substantial amount of the knowledge of different search

methods and the optimisation problem at hand is

essential. When algorithms fail to deliver results, the

first thing to check is whether the question put to it is

correct. In the majority of cases, answers fail to emerge

because of wrong questions being asked. Some part of

the experiment above is a good example of such failings

(see Figure 10b).

On the other hand, if used effectively, optimisation can

be one of the most helpful tools in design. It can explore

the complex relations between design variables and

criteria, and reveal the deepest secrets in the model. JEA

is aimed to be a versatile tool and will continue to

evolve.

Conclusion

This paper describes the development of an optimisation

engine, JEA. It is generic optimisation tool designed to

work with other modelling and simulation tools. The

most important novel feature is the interactivity JEA

supports, which allows users to:

 control the progression of the search process

 adjust configuration and parameters of the

algorithms

 add, remove or change optimisation criteria

 refine search space and adjust design options

 switch and combine simulations models

 and, collaborate online with other users.

How each of these interactive features is achieved is

presented in the paper, and the technical basis of the

main optimisation algorithm, a constraint-handling and

Pareto archived NSGA-II, is also explained in detail.

A zero-carbon retrofit design case is presented to

demonstrate the use of the optimisation engine and its

interactive features. The effectiveness of the

optimisation algorithm is compared with a random

search. Then, a hypothetical design scenario where the

design requirements change during the process is

described, highlighting the unique features of JEA.

Discussions are made about the importance of good,

effective tools, and how optimisation can be utilised.

JEA is available online and free for personal use.

References

Bäck, T. 1996. Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms, Oxford Univ.

Press

Deb, K., Pratap. A, Agarwal, S., and Meyarivan, T.

2002. A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Transaction on

Evolutionary Computation, 6(2), 181-197.

Jankovic, L., Basurra, S., (2016) Taking a Passivhaus

certified retrofit system onto scaled-up zero carbon

trajectory. In Proceedings of Zero Carbon Buildings

Today and in the Future 2016, Birmingham City

University.

Palonen, M., Hamdy, M., Hasan, A. 2013. MOBO a new

software for multi-objective building performance

optimization. BS2013, the 13th Conference of the

International Building Performance Simulation

Association, France, August 26-28 2013

Reeves, B. R. and Martin, G. R. (1989) The structural

condition of Wimpey No-Fines low-rise dwellings.

Building Research Establishment, Garston, Watford.

Runarsson, T. P. and Yao, X. 2000. Stochastic Ranking

for Constrained Evolutionary Optimisation. IEEE

Transactions on Evolutionary Computation. 4(3):

284-294.

Wetter, M. 2001. GenOpt - A generic optimization

program. Proc. of the 7th IBPSA Conference,

volume I, pages 601-608. Rio de Janeiro, 2001.

Zhang, Y. 2012. Use jEPlus as an efficient building

design optimisation tool, CIBSE ASHRAE Technical

Symposium, Imperial College, London UK – 18th

and 19th April 2012

