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Abstract—The provision of cloud resources to meet user
demands in 5G wireless networks is a challenging task due to
the high workload predicted to be experienced by cloud service
providers (CSPs). Cloud federation has emerged as a paradigm
to support CSPs with resource limitations by borrowing surplus
resources of other CSPs in periods of high demands. The major
concern of each CSP with resource limitations is to borrow
resources from other federation participants in such a way that
cloud services are provided to the end-users with a desired grade
of service (GoS) as well as the overall profit is maximized. This
paper proposes an efficient mechanism based on the merchant
mode to dynamically facilitate optimal allocation of cloud re-
sources, maximizing the profit of CSPs as well as improving the
GoS. The robustness of the proposed optimal scheme is evaluated
by comparing it with the heuristic algorithm. The simulation
results demonstrate that at each trading window, the proposed
optimal scheme outperforms its heuristic counterpart. Moreover,
after 50 trading windows, the proposed approach results in
43.5% gain in net profit to CSPs as well as facilitating 3.35% of
additional resource.

Index Terms—Cloud computing, cloud federation, internet of
things, resource sharing, profit maximization.

I. INTRODUCTION

In future generation of wireless networks, the provision of
reliable connectivity is one of the primary concerns due to
the exponentially growing number of connected devices [1],
[2], [3]. In recent years, the advances in Internet of Things
(IoT) have shown promising solutions to dynamically sustain
network connectivity over global infrastructures [1], [3]. In
order to cope with the limited computational and storage
capabilities of diversely located devices, the integration of
IoT with cloud computing has shown promising developments
for a broad spectrum of applications [4], [5], [6]. Cloud
computing facilitates user access to a shared pool of virtually
unlimited available resources. Nevertheless, due the growing
demand from users to access cloud services, a performance
bottleneck is expected to be experienced by the federation
participants. In order to guarantee the global success of 5G,
the coupling of IoT and cloud computing is required to assure
maximum possible service provision reliability. Therefore,
assuming unlimited cloud resources for future generation of

wireless network design may not be able to meet the users’
expectations [7], [8], [9].

Exploiting the potential of cloud computing, cloud service
providers (CSPs) have to meet users’ requirements by de-
livering services in a flexible manner with acceptable delay
[10]. The end-users are mostly concerned about the cloud
services they require, the services cost and the grade of service
(GoS) experienced; regardless of the underlying infrastructure
[11]. Cloud federations have emerged as an appealing way
to isolate the underlying infrastructure from end-users and
deliver services with an improved degree of flexibility [12]. In
a cloud federation, independent CSPs collaborate dynamically
for load balancing, capacity management, efficient utilisation
of surplus resources, minimizing failures, improving GoS and
enhancing cost efficiency [13], [14]. Within the federation,
if a particular CSP’s available resources are insufficient to
fulfil all the requests due to high workload, it can borrow
resources from other CSPs having surplus resources on a pay-
per-use basis. Such an approach can minimise the possibility
of violating service level agreements (SLAs) and ensures high
level of service provision. In such a scenario, one of the
primary concerns is to select particular CSPs for borrowing
their resources in a cost effective manner as well as without
compromising on the target service denial probability.

In recent years, several research studies have focused on
cloud resource management and sharing. In [15], a game-
theoretic approach is considered to develop a resource shar-
ing model for profit maximization in a federation of cloud
providers. Another approach based on game theory for re-
source sharing in cloud federation leading to profit maxi-
mization is presented in [16]. In contrast to [15], the strat-
egy presented in [16] can determine the optimal criteria for
service provision to the end-users. Hassan et al. in [17] also
considered a game-theoretic approach and investigated the
energy consumption issues for federated cloud resources and
revenue management. The developed model aims to minimize
the energy expenditure by selecting low-energy-cost cloud
providers from the federation for resource sharing. In addition
to the game-theoretic approaches, auction mode is widely
studied in existing literature for resource sharing in cloud
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Fig. 1: Cloud services management model (a) generalized model comprising N number of federated cloud service providers
(CSP) (b) classification of N CSPs into K secondary cloud service providers (S-CSPs) and N − K primary cloud service
providers (P-CSP) at an ith trading window.

federation environments. Considering a broker-based market,
a strategy for resource requests outsourcing is proposed in
[18] to maximize the social welfare of the cloud federation. In
[19], a dynamic trading and scheduling algorithm is proposed
for optimal management and allocation of jobs with different
SLAs to a suitable cloud resource resulting in net profit maxi-
mization of each CSP. Within the context of cloud computing,
a comprehensive study on auction mechanisms can be found
in [20].

The majority of the existing work study the case where
the total demand from overloaded providers is higher than the
available resources for lease, thus game theoretic approaches
and auction theory was implemented to solve a variety of opti-
mization problems. However, the scenario when there is more
resources for secondary access than the secondary demand,
was not investigated. In addition, none of the aforementioned
studies have modeled the required demand as a function
of grade of service (GoS) target. To complement the well
established auction models and the existing literature we adopt
merchant mode to address how the secondary CSPs borrow the
resources from the primary providers to achieve certain GoS
considering lower demand than available resources. The main
contributions of this paper are as follows:
• A novel purchase approach for dynamic resource man-

agement in a cloud federation scenario.
• A formulation of a finite horizon and non-linear optimiza-

tion problem in merchant mode solved using stochastic
modeling.

• A versatile approach to automation of cloud service
provision within merchant mode.

Cloud services management model is described next. Sec-
tion III describes the problem formulations. In Section IV, we
present the analytical results. Finally, Section V summarizes
our conclusions and future work.

II. CLOUD SERVICES MANAGEMENT MODEL

A cloud services management model is shown in Fig. 1(a),
which comprises of N number of federated CSPs; where each
cloud provider offers services to a number of end-users. There
are two basic classes of workload considered by the cloud

providers which can be modeled by: (i) a delay system with
arrival (λd) where we assume that there is a finite queue length
(i.e., 0 < Lq <∞ where Lq is the queue length) and (ii) a loss
system with arrival (λl) with Lq = 0, i.e., no buffer capacity.
Assume the service rate is represented by µl and µd for the
loss and delay system respectively. Suppose CSPs divide their
resources into equal blocks rl and rd, where each block can be
a computational resource, a storage resource etc. Considering
the attainable performance thresholds, cloud providers within
the federation are required to dynamically maintain suitable
levels of certain parameters such as service denial probability
and delay tolerance. However, provision of services by CSPs to
the end-users in scenarios with high fluctuating workload is a
challenging task. In order to improve the efficiency of cloud re-
sources in such scenarios, CSPs may desire to share resources
among multiple providers. In high demand periods, CSPs with
limited resources, that are unable to meet users’ demands, may
borrow sequential (uninterrupted) resource blocks from other
providers within the federation to maintain a particular grade
of service. The CSPs which borrows resources is referred to
as secondary cloud service providers (S-CSPs) while the CSPs
which lease resources are referred to as primary cloud service
providers (P-CSPs). In such setting, P-CSPs offer resource
blocks to S-CSPs in return for monetary rewards. Typically, the
price per resource block is expected to vary from one P-CSP
to another depending on various factors such as the current
workload, the geographical location of servers etc.

Each P-CSP announce information related to its available
resources for lease and their respective prices at the start of
ith trade window, where i ∈ {1, 2, . . . , I} and I denotes the
total number of trading windows. Suppose zip̂ denote the state
of a p̂th CSP at the beginning of an ith trading window, where
p̂ ∈ {1, 2, . . . , N}; zip̂ = 0 or 1 refers to being overloaded or
underloaded, respectively. Let the announcement for sale of the
p̂th CSP’s resources at the start of an ith trading window is
represented by aip̂, where aip̂ = 1 refers to the announcement
that no resources are available for sale and aip̂ = 0 refers to
the announcement of available resources for sale. Suppose ti
denote the state of an ith trading window, i.e. ti = 0 means
the trading window is deactivated and ti = 1 represents an



activated trading window. The following condition is used to
determine the state of an ith trading window

ti =

1, if
(

1−
N∏̂

p=1

zip̂

)(
1−

N∏̂
p=1

aip̂

)
= 1

0, otherwise
(1)

In case of ti = 1, CSPs are classified into P-CSPs and S-
CSPs for an activated trading window, as shown in Fig. 1(b).
The aforementioned process is repeated by the global cloud
federation controller (GCFC) at each trading window. Our
merchant market is modeled so that trading is allowed between
the participants separately for each class of arrival in each of
successive trade windows. Once a S-CSP borrows resources
from a P-CSP, the S-CSP would use the purchased blocks for
the entire duration of the trading window after which the S-
CSP returns the resources to the P-CSP. Due to the availability
of multiple CSPs in the federation, each offering resource
blocks at different prices, the aim of the S-CSPs is to minimize
the total operating expenditure. The incentive to minimize
the operating expenditure is not only economical but also
due to regulations which could be imposed by the federation
arrangement. The federation controller may also consider to
set a particular operating expenditure (OpEx) limit to prevent
monopoly abuses. Therefore, the objective of our problem is to
maximize profit under limited expenditure. In order to dynami-
cally maintain the desired level of performance, we propose an
autonomous cloud services management model that is able to
make necessary borrowing from other CSPs in the federation,
making sure that the profit of S-CSPs is maximized. The next
section describes the problem formulation and presents the
proposed optimized resource sharing scheme.

III. PROBLEM FORMULATION

For the efficient operation of the cloud federation, the key
question for the CSPs is “how they should manage their re-
sources dynamically?”, based on time varying demand arising
from their users while satisfying a desired grade of service.
This is the central focus of this paper. In the previous section
we have described the cloud federation which is comprised
of |N | (N ≥ 2) CSPs, where overloaded service providers
(with ξc > ξd or εc > εd) borrow resource blocks from
the underloaded providers (with ξc ≤ ξd or εc ≤ εd) in the
federation facilitated by the global cloud federation controller
(GCFC). The GCFC tracks availability of the resources and
receives requests from CSPs. As |K| S-CSPs aim to borrow
additional resource blocks from |N−K| P-CSPs, the resource
borrowing is performed with the objective to either achieve
a desired service denial probability (ξd) or a desired delay
tolerance (εd) in each trading window. The GCFC perform
resource block management by borrowing resources from
|N − K| P-CSPs to maximize profit of the S-CSPs under
restricted operating expenditure scenario (b) which maybe
imposed by the federation. Table I lists the key notations used
in the paper. The objectives of the GCFC is to maximize
profit and to improve service quality of the cloud providers. At

TABLE I: Notation used

Notation description

i ith trade window

j jth type of service

k kth P-CSP

cijk Cost of resource block

yijk Number of resource blocks to be borrowed

ξdij Desired denial probability

βa
ijk

Number of resource blocks available P-CSPs

βr
ij

Number of resource blocks required to satisfy the desired
denial probability

πijk Expected profit for borrowing resource blocks

each trade window P-CSP broadcast their available resource
blocks {βa

ijk
} and the corresponding cost per block {cijk}

(where c > 0). The GCFC evaluates the expected profit
{πijk} which could be made from each resource acquisition.
However, to formulate the optimization problem, the we make
the following assumptions.

Assumption. Parameters which are assumed to be known to
the GCFC at each trade window are: arrival rates (λl and λd),
service rate (µl and µd), initial available resources (rlij and
rdij ), borrowing cost cijk, budget for borrowing bij , available
number of resources βa

ijk
and expected profit πijk.

Accordingly, profit maximization problem can be formally
defined as follows:

(P) : max
I∑

i=1

J∑
j=1

(N−K)j∑
k=1

πijk · yijk

s.t.

(C1A) : arg min
yijk
∀i,j,k

P
(
λl, µl, βr

ijk + rlij

)
≤ ξdij , ∀ij , k

for a denial system and

(C1B) : arg min
yijk
∀i,j,k

W
(
λd, µd, βr

ijk + rdij , Lq

)
≤ εdij , ∀ij , k

for a delay system.

(C2) : yijk ≤ βa
ijk, ∀ij , k

(C3) :

Kij∑
k=1

yijk ≤ βr
ij , ∀ij , k

(C4) :

Kj∑
k=1

cijk · yijk ≤ bij , ∀ij , k,

πijk in (P) is comprised of the expected revenue Rij and cost
cijk, which can be obtained simply by

πijk = Rijk − cijk. (2)



Although in some instances the cost of the resource block
exceeds the revenue of a S-CSP and this yields a negative
profit margin, however, for simplicity we consider Rijk > cijk
to generate a positive profit for each resource acquisition. The
inequality constraint (C4) implies that the GCFC optimizes
profit to S-CSPs not only by taking into account the cost
variations of the utility, but also by considering the budget
constraint (bij ) in every trade window.

A. Optimal algorithm

The above non-linear optimization problem is solved by two
steps as follows.
Step 1: Queueing analysis: The S-CSPs set their desired
denial probability for each upcoming trade window (e.g.,
ξd = 0.001 for a denial system) (e.g., εd = 0.01 sec. for
a delay system). The required resources βr

ij
of each S-CSP

is calculated according to the type of the arrival request to
achieve the desired denial probability or the desired delay
tolerance for ith trade window. For the zero delay tolerance
arrival requests, the well-known denial probability formula
[21] is used at the ith trade window of all S-CSPs. The denial
probability formula can be written as

ξ(rl) =

1

rl!

(
λl

µl

)rl

rl∑
n=0

1

n!

(
λl

µl

)n
. (3)

In (3) we assume that at every trade window the capacity of
a S-CSP belongs to one of the states {0, 1, · · · , n}. rl is the
existing cloud computing capacity. Given the existing capacity,
the total required resource blocks βij to achieve the desired
denial probability can be calculated by

βij = g−1
(
P
(
λl, µl, rlij

))
, (4)

where g−1(·) the inverse function of ξ(rl) is used to derive
the required capacity over the existing capacity. The problem
is solved iteratively by performing a search over different
values of βij as shown in Algorithm 1. βr

ij
is then obtained

by subtracting rlij from βij .
For the arrival requests with delay tolerance greater than

zero, (5) is used for each S-CSP and at each trade window.

ε(rd) =
1

λd
· Lq (5)

where

Lq =
1

(rdµd − λd)rd
· (rdλd/µd)r

d

rd!(1− λd/µd)
P0 (6)

with

P0 =

rd−1∑
l=0

(rdλd/µd)l

l!
+

(rdλd/µd)r
d

rd!(1− λd/µd)

 . (7)

Given the existing capacity rd, the total required resource

Algorithm 1: Computing required resources for de-
nial system.

1 Initialization: let number of trading windows = I
2 for i ← 1 : I do
3 for j ← 1 : length (ξd) do
4 ξc = P(λl, µl, rlij)
5 βij = rlij
6 while ξc > ξd do
7 ξ(w) = P(λl, µl, rlij)
8 βij = βij + 1

9 return Required resource blocks

Algorithm 2: Computing required resources for delay sys-
tem.

1 Initialization: let number of trading windows = I
2 for i ← 1 : I do
3 for j ← 1 : length (εd) do
4 εc = W(λd, µd, rdij , Lq)
5 βij = rdij
6 while εc > εd do
7 εc = W(λd, µd, rdij , Lq)
8 βij = βij + 1

9 return Required resource blocks

blocks βij to achieve the desired delay tolerance is given by

βij = g−1
(
W
(
λd, µd, rdij , Lq

))
, (8)

and the solution is provided iteratively by Algorithm 2.
In a nutshell, the computational approach used in Algorithm

1 and 2 is to evaluate the required resources (of one CSP) of a
simulated system, introducing random variations of a specific
probability distribution to the parameter values at each trade
window.

Step 2: Optimization: Given the information obtained in the
previous step, the borrowing selection performed by the GCFC
are made subject to achieving the maximum profit to S-CSPs.
The spending capacity of the S-CSP is constrained by budget
bij . If the acquired resources βa

ijk
are insufficient to meet

the desired denial probability (desired delay tolerance) (i.e.,
βr
ijk
−βa

ijk
> 0), then the GCFC perform borrowing from the

remaining resources from the set βa
ijk
6∈ {βa

ij1
, βa

ij2
, . . . , βa

ijJ
}

for which the profit is maximum. If the desired performance
is met, then the GCFC ends the process of borrowing new
resource for the current trading window. Algorithm 3 summa-
rizes the optimal solution.

B. Heuristic algorithm

In this section, the borrowing problem under budget con-
straint is solved by a random algorithm (Algorithm 4). Algo-



Algorithm 3: Optimal resource borrowing under limited
budget.

1 bij , cijk, βa
ijk

and βr
ijk

are obtained ∀i, j, k.
2 for i← 1 : I do
3 for k = 1 : (N −K) do
4 Solve the nonlinear stochastic problem (P) s.t.

(C1A or C1B), (C2), (C3) and (C4).

5 return Profit of the cloud service operator

rithm 4 performs borrowing randomly from the set {βa
ijk
}, to

satisfy the demand βr
ij

. The constraints (C2), (C3) and (C4)
are satisfied by using

yijk =


βa
ijk
, βr

ij
≥ βa

ijk
, bij ≥ cijk

βr
ij
, βr

ij
< βa

ijk
, bij ≥ cijk

0, bij < cijk or βr
ij

= 0.

(9)

Note that when
∑
βa
ijk
≤ βr

ij
, the heuristic algorithm performs

as well as the optimal algorithm. We also note that when∑Jij

k=1 β
a
ijk

> βr
ij

, the heuristic algorithm may still provide
outcome in line with the optimal method in terms of achieved
profit, however, this is a result of random variation with
probability 

1

J
, βa

ijk
≥ βr

ij
,∀ij

1

D
,
∑
m

{β̄a
ij lm, ∀l,m} ≥ β

r
ij ,∀ij

(10)

where {β̄a
ij lm, ∀l,m} ⊂ {β

a
ijk, ∀ij , k} and D =

∣∣∣{β̄a
ij ..}

∣∣∣
is the number of subsets in the set {β̄a

ij ..} which satisfy

the demand. Of course, the probability is 1 if
∑Jij

k=1 β
a
ijk
≤

βr
ij
,∀ij .

Once the problem is solved, either by the optimal or the
heuristic algorithm, the new access denial probability can be
calculated as

ξc = P

λl, µl,

rlij +

Kij∑
k=1

yijk

 (11)

and the new delay is calculated by

εc = W

λd, µd,

rdij +

Kij∑
k=1

yijk

 . (12)

To compute the required resource, the non-linear constraints,
C1A and C1B are solved iteratively using Algorithm 1 and 2,
respectively. The optimization problem is then solved with the
remaining constraints by the revised simplex method given
in Algorithm 3. Algorithm 3 is clearly a polynomial time
(O(n)) while the heuristic algorithm (Algorithm 4) is quadratic
(O(n2)) with number of P-CSP (N −K) or exponential time
(O(2n)) with number of trading windows (I).

Algorithm 4: Heuristic resource borrowing under limited
budget.

1 bij , cijk, βa
ijk

and βr
ijk

are obtained ∀i, j, k.
2 for i← 1 : I do
3 Set yijk ← {φ}, where {φ} is an empty set.
4 Set counter←

∑
k yijk.

5 Choose a random integer n ∈ {1, 2, . . . , (N −K)}.
6 for all P-CSPs k = n : (N −K) and 1 : (n− 1) do
7 if (0 < βa

ijk
) ≤ (βr

ij
- counter) &

(cijk ∗ βa
ijk

) ≤ bij then
8 yijk ← βa

ijk
.

9 counter← counter +
∑
yijk.

10 bij ← bij −
∑

(yijk ∗ cijk).

11 else if (βa
ijk

> 0) & cijk ≤ (bij − counter) &
(βa

ijk
∗ cijk) ≥ bij then

12 yijk ←
⌊
bij
cijk

⌋
(where bxc means floor of x.

13 counter← counter +
∑
yijk.

14 bij ← bij −
∑
yijk. ∗ cijk.

15 else if counter ≤ βr
ij

& βa
ijk

> 0 &
βa
ijk
≥ (βr

ij
− counter) & (βa

ijk
∗ cijk) ≤ bij then

16 yijk ← βr
ij
− counter.

17 counter← counter +
∑
yijk.

18 bij ← bij −
∑
yijk. ∗ cijk.

19 break
20 else if counter ≤ βr

ij
& βa

ijk
> 0 &

βa
ijk
≥ (βr

ij
− counter) & (βa

ijk
∗ cijk) ≥ bij then

21 yijk ← min

{⌊
bij
cijk

⌋}
.

22 counter← counter +
∑
yijk.

23 bij ← bij −
∑
yijk ∗ cijk.

24 else
25 yijk ← 0.

26 return Profit of the cloud service operator

IV. RESULTS AND ANALYSIS

This section demonstrates the performance of the proposed
resource sharing scheme for profit maximization. In order to
build the simulation platform, a cloud federation comprising 8
CSPs is considered. CSPs are assumed to have heterogeneous
resources and the total resource capacity of each CSP is
modeled by unif(30,40); where unif() is a function denoting
the uniform random distribution. Similarly, the workload of
each CSP is generated as a uniformly distributed random
variable, as in [10], [22]. In the simulations, the workload
is modeled by unif(8,120). The arrival rate of users’ requests
for resource blocks is modeled in such a way that it reflects
a high workload and, for a given desired service denial
probability, at least one CSP within the federation is unable to
meet the users’ demands. Within a particular trading window,
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Fig. 2: A comparison of profit made with heuristic and optimal
resource selection per trading window.

CSPs are categorized into P-CSPs and S-CSPs depending on
their workload. CSPs that are unable to meet their users’
demands are classified as S-CSPs, whereas, CSPs with surplus
resources are categorized into P-CSPs. Two types of systems
are considered - denial system and delay system; which have
been presented in Algorithm 1 and Algorithm 2 respectively
to estimate the number of required resources for a S-CSP to
meet its users’ demands. In order to evaluate efficiency of
the proposed optimal solution presented in Algorithm 3 for
profit maximization under restricted budget, we compare the
performance of the optimal solution with a heuristic model
given in Algorithm 4. In the simulation model, the budget of
each CSP is considered to be 50. Although, in the simulations
we consider a fixed budget, the proposed model is capable
of leading to an optimized solution for dynamically changing
available budget of CSPs. Depending on the workload, once
the CSPs are categorized into P-CSPs and S-CSPs, the latter
are expected to lease resources from the former in order to
provide services to the end-users with minimized blocking
probability and maximized profit.

Considering the aforementioned simulation settings and
10 trading windows, Fig. 2 illustrates comparative perfor-
mance analysis of the heuristic and optimal resource selection
schemes within the context of the profit made per trading
window. It can be observed from the results that the optimal
resource allocation scheme results in profit maximization for
every trading window as compared to its heuristic counterpart.
Moreover, in order to estimate the overall performance gain, 50
trading windows are considered for setting up the simulations
and, it is found that on average, the optimal approach leads
to 25.35% profit gain per trading window compared to the
heuristic solution.

In order to gauge performance of the proposed optimal
scheme compared to the heuristic approach in terms of the
total profit made for a number of trading windows, simulation
results are shown in Fig. 3. Considering a range set of the
number of trading windows, that spans from 5 to 50, it can
be noticed from the results that at the 50th trading window,
S-CSPs can achieve net profit gain of 43.5% by utilizing the
proposed strategy for optimal resource allocation.
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Fig. 3: A comparison of total profit made with heuristic and
optimal resource selection for a number of trading windows.
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Fig. 4: A comparison of the total number of resource blocks
borrowed with random and optimal resource selection for a
number of trading windows.

In the earlier discussion, the superior performance of the
proposed optimal scheme over the heuristic approach has been
demonstrated in terms of profit maximization. Nevertheless,
further investigation is required to strengthen such analysis by
taking into account the number of resource blocks borrowed
by S-CSPs. Therefore, a comparison of the proposed optimal
scheme with heuristic approach in terms of the number of
resource blocks leased by S-CSPs from P-CSPs is shown in
Fig. 4. It can be observed from the results that the optimal
scheme leads to a higher number of borrowed resource blocks
under the restricted budget and at the same time maximizes the
overall profit. As an example, the optimal solution results in
3.35% additional resource allocations after 50 trading windows
compared to the heuristic algorithm.

One of the primary aim of cloud federations is to facilitate
resource sharing so that S-CSPs can guarantee minimum
possible service denial probability. Therefore, the impact of
desired service denial probability and available budget on the
expected profit of the S-CSPs is required to be analyzed.
Fig. 5 shows such analysis, where the desired service denial
probability is considered as 0 ≤ ξl ≤ 0.8 and available budget
is modeled as 0 ≤ b ≤ 200. It is found from the analysis
that increasing the available budget or decreasing the desired
service denial probability can result in a higher profit of the
S-CSPs. The analysis presented in Fig. 5 demonstrates that
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Fig. 5: Expected profit of the S-CSPs for resource borrowing
at one trading window with desired service denial blocking
probability as a function of budget.

the proposed formulation can assist the CSPs to efficiently
choose suitable level of service denial probability and budget
for expected revenue generation.

V. CONCLUSION

As networking has become major innovation driver for the
Internet of Things (IoT), cloud computing has attracted a
remarkable interest from research community not only because
of its ability to lower costs and increase revenue, but also
because it can improve existing computing services. In this
context we have proposed a framework to model merchant
market in a cloud federation scenario. The model categorizes
and computes the required resource blocks to meet a certain
GoS for cloud federation participants. We have focused pri-
marily on delivering the CSP’s demand by using an automated
purchasing mechanism with the aim to maximize profit to
overloaded service providers. To solve the problem we have
developed two algorithms; an optimal and a heuristic solution.
The optimal algorithm is evaluated against heuristic model.
Our analytical results revealed that our approach leads to
higher profit to CSPs, especially when the underutilized com-
putational resources of the P-CSPs are higher than the demand
from the S-CSPs. By adding the functionalities of types of
demand and types of services provided by the CSP into our
framework, we can conclude that our automation model is
more versatile than those available in the literature. Although
we have focused on maximizing profit, our framework could
easily be modified to optimize other measures such as, cost and
energy. Another contribution of this paper is that it provides
a complementary approach to the well studied auction mode.
As a future work, our model could be jointly implemented
with auction mode to provide an all-round framework for
automation of cloud federation market within 5G.
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