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ABSTRACT
Audio production encompasses more than just mixing a se-
ries of input channels. Most sessions involve tagging tracks,
applying audio effects, and configuring routing patterns to
build sub-mixes. Grouping tracks together gives the engi-
neer more control over a group of instruments, and allows
the group to be processed simultaneously using audio ef-
fects. Knowing which tracks should be grouped together is
not always clear as this involves subjective decisions from
the engineer in response to a number of external cues, such
as the instrument or the musical content. This study intro-
duces a novel way to automatically route a set of tracks
through groups and subgroups in the mix. It uses openly
available linked databases to infer the relationship between
instrument objects in a DAW session, utilising graph theory
and hierarchical clustering to obtain the groups. This can be
used in any intelligent production environment to configure
the sessions’ routing parameters.

1. INTRODUCTION

Audio production is a complex task with many decisions
needed to be undertaken by the engineers to achieve an end
mix. If only gain coefficients exists, then a mix can be sum-
marised as an n-dimensional vector, where n is the num-
ber of channels [1]. Introducing digital effects, panning and
routing adds even more complexity to this model. Grouping
allows the engineer to create sub-mixes, which can them-
selves be mixed further into the final mix space, effectively
partitioning the mix-space.

This paper introduces a novel method to automatically
group a set of given tracks based on their instrument meta-
data. The paper will give a brief overview of intelligent
systems in section 2. The model will then be described in
section 3, along with examples on each stage. The paper
concludes with an evaluation of the tool in section 5.

2. BACKGROUND

Automated music production systems generally provide pa-
rameter recommendations from the audio signals [2,3]. These
return environment control signals to the mix which map
directly onto the parameters. Intelligent systems can in-
stead recommend parameters or provide intuitive mappings,

rather than directly control parameters [3, 4]. These tools
aim to reduce the high dimensional problem of mixing into
a lower number of dimensions. This is achieved by taking
some contextual information, such as a semantic descrip-
tor or user ratings, to build a low-dimensional interface for
users to explore. This reduces the burden on engineers with-
out removing the user control, as long as linearity is pre-
served.

Web-based knowledge stores are readily available to ob-
tain semantic relationships. However instrument-based on-
tologies are not readily agreed upon [5], with individual in-
struments being linked to various categories based on cre-
ator preference. Therefore there is no exhaustive and peer-
reviewed resource. Wikipedia holds a vast amount of in-
formation on instrument data which can be queried using a
SPARQL end-point at DBPedia1. Each page on wikipedia
have subject tags, which are subjects and categories contain-
ing that page. Each subject connects back to super-subjects
and so forth. These are linked using the Simple Knowledge
Organisation System (skos)2 broader tags.

Graphs allow data to be represented as a structure and al-
low the relationship between vertices to be examined. These
vertices can then be classified together by clustering based
on distances to other vertices [6], or constructed based on
distances to other data points [7].

Music production encompasses more than just mixing
decisions, it also requires structuring a mix session. [8] shows
sessions with more groupings per track tend to be perceived
as better mixes, with higher perceptual ratings. It also shows
tracks are grouped together because they are similar, with
the group name representing the tracks included, such as
‘vocals’, ‘Drums’ or ‘Guitars’. Tracks can also be grouped
based on their acoustic similarity [8, 9] or based upon a se-
mantic descriptor, such as the instrument and genre [10,11].

3. AUTOMATIC CHANNEL ROUTING

Automatically deriving a session structure using semantic
labels requires knowledge of each instrument in the mix
and their relationship to each other. Tracks can be tagged
with metadata to identify their instrument. Tracks with the

1http://dbpedia.org/snorql
2https://www.w3.org/2004/02/skos/
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Figure 1: The full graph for four instruments: Acoustic Gui-
tar, Electric Guitar, Piano and Snare Drum. The root Musi-
cal instruments is red, the instruments green and the nodes
in the simple paths blue. This gives every possible subject
which contains these four instruments to a depth of 4, show-
ing the complexity of linked data stores. Cutting the graph
gives a focused scope.

same instrument are placed into a group together. This sim-
plifies the process however a threshold on whether smaller
groups should be discouraged could be implemented. A fi-
nal list of the individual instruments is used as the input
to the system. These instrument names map directly onto
wiki pages, which can be queried using DBPedia. Once
the page is known, the subjects which contain the page can
be identified by traversing along the skos:broader tags.
For example the ‘Piano’ is a member of the subject ‘String
Instruments’, which itself is a member of ‘Musical Instru-
ments’. These can be represented in a directional graph G,
where the vertices are the pages (subjects and instruments)
and the edges their relationships. The first problem is the
number of nodes this creates; the ‘Piano’ node can link to
over 310 subjects and 432 relationships when traversing just
4 levels. However, instruments should share a number of
subjects between them.

Many subjects are captured which are not related to mu-
sic and could distort the clustering process. The Musical in-
struments subject page is used as a subject root node (v0) to
help identify relevant information. The instrument vertices
are referred to vinst and must link back to the root v0 vertex.
If a subject is within the path between any instrument and
the root subject, it is kept in the graph. Any vertices which
do not match this criterion are discarded, giving the graph
G1 ⊂ G, G1 = (V1, E1). Figure 1 shows the full graph
G for four instruments with the subgraph G1 highlighted to
show the extent of the cut.
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Figure 2: Forced neighbourhood graph G2 from G1, de-
picted in figure 1

3.1. Instrument similarity

The instruments and subjects are stored as vertices, there-
fore instrument similarity can be calculated using graph the-
ory techniques. The similarity between two vertices can be
evaluated by analysing the overlap in their neighbourhoods
Γ (v) using the Jaccard similarity coefficient [6], equation
1.

w(v, u) =
|Γ (v) ∩ Γ (u) |
|Γ (v) ∪ Γ (u) |

(1)

Since G1 is a relational graph, each instruments neigh-
bourhood will be intentionally small, as each instrument
may only be a direct ancestor of some subjects. Therefore,
to get the best similarity score, each instrument vertex’s
neighbourhood should be made of every subject vertex it has
a path to in G1. This flattened graph is called G2 and has
the same vertices as G1, V2 = V1. Edge {vinst, vj} ∈ E2 if
a path between vinst and vj exists in G1.

Now each instruments’ neighbourhood is comprised of
every subject vertex it could connect to. Subjects which are
common have a high number of connections, whilst spe-
cific subjects will connect to only a few instruments. How-
ever, instruments with similar subjects, and therefore sim-
ilar neighbourhoods, should be themselves similar to each
other. The flattened representation of figure 1 is given in
figure 2 and shows the subject relationship to the four in-
struments. The subjects Organology and Gaiaphones are
universally common to the four instruments and have been
pushed centrally. Whilst the more specific subjects Key-
board instruments and Amplified Instruments are pushed out-
wards as they connect to one instrument only (Piano and
Electric Guitar respectively).

The Jaccard similarity coefficient w can be calculated
for every pair of instrument vertices. A coefficient w =
1 means identical neighbourhoods, and w = 0 means no
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Ac. Gtr El. Gtr Piano Sn. Drum
Ac. Gtr. 0.000 0.294 0.750 0.875
El. Gtr. 0.294 0.000 0.783 0.886
Piano 0.750 0.783 0.000 0.793
Sn. Drm 0.875 0.886 0.793 0.000

Table 1: The distance matrix of the four instruments in
figures 1 and 2.

commonality. This similarity measure can be converted into
a distance measure by 1−w and stored as an n-by-n matrix
D, where n is the number of instrument vertices.

For the example set of four instruments in figures 1 and
2, the distance matrix is shown in table 1. It is clear that
the matrix is symmetric since w (vi, vj) = w (vj , vi) and
w (vi, vi) = 1. The Acoustic Guitar and Electric Guitar are
predictably very similar, with only 5 specific subjects from
a union size of 17 subjects. The Piano and Snare Drum
are expectedly not very similar to any other of the given
instruments.

Hierarchical clustering is then performed on this dis-
tance measure, allowing for a distance relationship to be
created. The result from the clustering can then be flattened
into a set of discrete clusters. The number of clusters, k rep-
resents the number of distinct groups to create. From [11]
a suitable measure for k can be k = min

(
bN2 − 1c, 1

)
.

Using the four instruments, the system recommended two
groups: C0 = {Acoustic Guitar,Electric Guitar} andC1 =
{Piano, Snare Drum}.

3.2. Naming groups

The clusters make up the groups, with each instrument con-
tained inside a member of the group. Traditionally groups
are named and labelled within a DAW to represent the group,
such as ‘Drums’ or ‘Vocals’. The names can be found by
identifying the nearest common subject to each of the in-
struments in the group. This should therefore be a sub-
ject which is representative of every instrument within that
group.

To identify this subject, the G1 graph is cut to only in-
clude the paths and nodes of the instruments inside the k-th
group, such that Gk

3 ⊂ G1. Figure 3 shows this subgraph
of G1 for a cluster containing Acoustic Guitar and Electric
Guitar. The distance between two vertices is the number
of vertices needed to traverse to reach the target from the
source. This is defined as δ (vi, vj). If vi does not have a
path to vj then δ =∞.

The nearest common subject vertex for cluster Ck is de-
fined as sk and can be found using equation 2. Each vertex
in Gk

3 which is a subject is evaluated. The vertex with the
smallest total distance from every instrument vertex vinst
in cluster Ck is the nearest comment vertex sk. The group
name is then given as the label attributed to this subject. In
figure 3 this is the ‘Guitars’ subject and can be confirmed
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Figure 3: The cluster subgraph Gk
3 formed from a cluster

holding Acoustic Guitar and Electric Guitar
.

visually from the two instruments in the cluster Acoustic
Guitar and Electric Guitar.

sk = argmin
j

[ ∑
vinst∈Ck

(δ (vinst, vj))

]
(2)

An output of a 14 track input is depicted in figure 4.
Tracks with the same instrument have been grouped together
into Electric Guitars, Snare Drum, Drum Kit and Tom-tom
drum. The final list of instruments to group are then pro-
cessed to identify the final layer of groups, giving two super-
groups. These groups then route to the master output.

4. CONCLUSION

This paper has presented a novel way of automating the
practice of subgrouping in music production by utilising
publicly maintained knowledge stores. The results shows
that using such data can be useful so long as appropriate re-
lationships are examined. These relationships can be anal-
ysed and interpreted using graph theory, specifically utilis-
ing techniques to measure the similarity between vertices.
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Figure 4: Complete output from a set of test tracks. 6 groups are recommended for the 14 tracks, judged only from their
instrument labels.

For this case, vertex similarity leads to instrument similar-
ity.

5. FURTHER WORK

Evaluating the performance is in itself a subjective problem.
There does not exist a single, correct grouping of instru-
ments available, only anecdotal results [10, 11]. However if
a target or ‘ideal’ graph is identified then graph similarity
techniques can be used.

Comparing two graphs together is not a trivial prob-
lem, with multiple metrics being available. A popular com-
parison metric is the size of the maximum common sub-
graph [12], tries to find the largest portion of two graphs
which are isomorphic. In a tree, one false vertex may dis-
card entire leafs, severely minimising the size of sub-graph
that can be found.

The graph edit distance (GED) is a suitable measure-
ment for comparing two graphs [12]. GED attempts to find
the smallest number of edits required to convert GA into
GB . Edits usually incorporate inserting and removing of
edges and vertices. By attributing a cost to these actions,
it is possible to evaluate how similar two graphs are. [12]
gives suitable costs for each edit operation.
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