
A Trust Management Framework for Network
Applications within an SDN Environment

Aliyu Lawal Aliyu, Peter Bull & Ali Abdallah
Centre for Cloud Computing

School of Computing & Digital Technology
Birmingham City University

Email: (Aliyu.Lawal-Aliyu, Peter.Bull & Ali.Abdallah)@bcu.ac.uk

Abstract—Software Defined Networking (SDN) is an emerg-
ing paradigm that changes the way networks are managed
by separating the control plane from data plane and making
networks programmable. The separation brings about flexibility,
automation, orchestration and offers savings in both capital and
operational expenditure. Despite all the advantages offered by
SDN it introduces new threats that did not exist before or
were harder to exploit in traditional networks, making network
penetration potentially easier. One of the key threat to SDN
is the authentication and authorisation of network applications
that control network behaviour (unlike the traditional network
where network devices like routers and switches are autonomous
and run proprietary software and protocols to control the
network). This paper proposes a mechanism that helps the control
layer authenticate network applications and set authorisation
permissions that constrict manipulation of network resources.

Keywords: SDN, Trust, Authentication, Authorisation, Se-
curity.

I. INTRODUCTION

Software Defined Networking is a new paradigm that sepa-
rates the control plane (intelligence) from the data plane (for-
warding plane) of network devices e.g routers and switches.
SDN brings about a major shift in how networks are managed.
With SDN, network management moves from implementing
high level network functionality with low-level device con-
figurations that are tedious and prone to error [1]. Network
functions are instead implemented with software that facilitates
automation, programmability, orchestration and debugging[2].

The separation of control and data plane requires the con-
troller to be logically centralised [3], and therefore maintain
global knowledge of all the network states, which provides
a means of developing more sophisticated network func-
tions like routing, switching, load balancing and intrusion
detection/prevention systems [4]. Centralisation brings about
performance bottlenecks and single point of failure coupled
with security issue if the centralised controller is compromised.
However there are proven concepts where the controller im-
plementation is distributed like ONIX [5], SmartLight [6] and
ONOS[7] to mitigate the issue of performance bottlenecks and
single point of failure. In addition redundancy, fail over, and
dependability can be achieved.

The main problem of SDN stems from the benefits it
provides [8]. Thus network programmability and control logic
centralisation. These introduce new faults and attack plane

and give way to new threats that were not present before or
difficult to exploit [9]. These new threats are discussed in [10],
where a severe threat among them is identified in terms of trust
between the network controller and the network application.
In SDN environments the controller abstracts the underlying
data plane for use by a network application. These network
applications are programs written to change and manipulate
the state of the network.

There is currently no access control mechanism in place that
verifies the interaction and association of network applications
with the controller [11]. With the controller being centralised
and having full knowledge of the network under control, if
a malicious application takes over the controller, the result
would be catastrophic. Some of the implications are redirection
of sensitive traffic, controller spoofing, DoS attack, network
reconnaissance attack, tampering with flow rules etc. So much
control is delegated to the controller that its compromise could
lead to hijacking the entire network operation [12].

SDN is a new network paradigm at an early stage with
the potential of becoming the next generation communication
network, much is expected on the side of availability and
dependability. Every secure communication network should
guarantee confidentiality, integrity, availability, authentication
and non-repudiation. This cannot be achieved without having
concrete threat mitigation techniques in SDN.

In this paper a trust mechanism is proposed for the net-
work application to interact securely with the controller. Each
network application has attributes (behaviour descriptors) and
functions it serves within the network. The trust mechanism
aims at giving applications the required privileges to run in
the network and not to exceed defined limit of operation.

The rest of the paper is organised as follows: Section II
explores the background of how network applications interact
with the controller. Section III deals with related work in
the field of controller to network application security. Section
IV provides an insight to the approach used to address the
identified gap using attributes in network applications. Section
V presents the proposed framework that will be used to
establish a secure relationship between the controller and
the network application. Finally, section VII concludes and
discusses future directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141207167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. BACKGROUND

The SDN paradigm supports third party development ef-
forts and consequently suffers from trust issues on deployed
OpenFlow applications. The violation of trust can leads to
different types of attacks, where the consequences are severe
and have impact on the entire network. Therefore trust vio-
lation is a threat and resides between the controller and the
application[13]. SDN networks are programmed with policies
that explicitly allow network applications to apply changes in
the network and no formal verification technique or semantics
to assess the trust of these applications[14]. Malicious applica-
tions can abuse these privileges and harm network operation.

When applications are instantiated with the controller, they
automatically inherit all the access rights to change, manip-
ulate or modify network state. This is a serious threat that
receives little attention and sparsely explored within literature.
The threat posed by third party applications arises from how to
verify the trustworthiness and reliability of a program module,
because network applications have access to critical network
resources like flow table, device configurations, memory, input
and output port.

Most network administrators that use third party applica-
tions assume same trust level similar to that of the controller
on the network applications [13]. This is because controller
modules must undergo series of tests and verification to make
sure that they are reliable and fit for use in a production
network. However it is difficult to ascertain the reliability and
trustworthiness of a third party application. A malicious or
compromised application can be a sink for various network
based or host based exploits. This can give way to control
plane attacks that can lead to code execution or information
disclosure.

Figure 1 shows a bug that resides between the controller
and the network application [10]. If there is no mechanism
or framework that authenticates the application when running
scripts in the network, some malicious application can take
advantage of this privilege and disrupt network operation
thereby violating the confidentiality, integrity and availability
of the network.

III. RELATED WORK

[15] implements a layer which sits between the controller
and data plane equipment called Trusted Oriented Controller
Proxy (ToCP) . The ToCp is responsible for comparing flow
rules from different controllers and installing the most trusted
one on the data plane devices. Their idea entails the use
of several redundant controllers connected to the ToCP, and
the ToCP gathers and analyses network configuration requests
from different controllers. And if ToCP trusts the request it
will then enforces it on the respective data plane devices.

This approach is more of controller to data plane security
rather than trust between controller and network application.
Nevertheless the ToCP monitors and analyses request coming
from network applications emanating from different con-
trollers. One of the limitation of ToCP is the added complexity
in accepting requests from multiple controllers. This brings

Fig. 1. Application to Control layer threat

latency issues in the mechanism which makes it not to scale
and suffer from performance issues as traffic increases in the
network. Distributed controller implementation brings issues
of timing, synchronisation, consistency and coordination[6].
ToCP lacks mechanism that checks the trustworthiness of the
network application itself not the configuration sent by the
network application.

Rosemary[16] is an SDN controller that is designed and
centred on security. It aims at providing control layer resiliency
in the event of a network application crashing, instabili-
ties or vulnerabilities. In some situations the failure of a
network application may halt the operation of the control
layer. Rosemary achieves this through application spawning
that provides containment and resiliency. Rosemary does not
provide trust between application and controller, but provides
a means of threat containment in case of malicious application
compromise. It has the capability to isolate the fault and keeps
the network operating system functional.

Another controller that provides security at the control
layer is the Security Enhanced Floodlight (SE-Floodlight)[17].
The control layer of the Floodlight controller is extended to
provide additional security features and tackles rule conflicts
in environments where multiple network applications are de-
ployed. The Northbound Application Programming Interface
(API) is used to provide the isolation between controller
and application process [18]. However, the Northbound API
has a weak authentication mechanism and without a defined
trust model for messages in transit [19]. The API lacks
appropriate authorisation mechanisms and can be taken over
by a malicious application. SE floodlight does not provide a
trust model that can be used to establish a trusted relationship



between controller and the respective network application.
The ability to segregate and isolate the different applications

running on the controller in order to provide logical segmenta-
tion to support authentication of the applications and to enforce
level of authorisation and privileges will be paramount to a
secure and dependable control layer.

IV. TRUST ATTRIBUTES

Every application that runs and make changes to network
configurations through the controller has attributes[20]. These
attributes are the building blocks and the main function of the
network application. Through these attributes the controller
can implement the changes to the underlying data plane
devices. Since the attributes are the point of concentration that
execute the logic in the network, the controller can utilise the
various attributes and establish an access control mechanism
based on trust that can authenticate and authorise this attributes
in the network. The attributes are functional descriptors that
define the several aspect of the network application.

There is no defined trust mechanism that helps establishes
a trusted relationship between the control and the various
network applications[10]. These attributes are key in deter-
mining the required privileges needed by a particular network
application to run on the network. Through the attributes,
limits and threshold can be set so that applications cannot
use network and computing resources beyond the allocated
portion.This resources include memory space, file space, CPU
execution time etc. And should execute within defined finite
time and set boundaries.

With the help of the attribute the controller can track appli-
cation behaviour and monitor the activities of the application.
Through this, security and reliability can be achieved by
checking whether an application is trusted or not. This paper
proposes a trust model that checks the various attributes of
an application and provide an authentication and authorisation
privileges for network applications to run securely with the
control layer.

A. Access Control

The attributes carry out the desired goals of the network
application. Applications do not have a limit to how many
attributes they can have to control network function. It is the
responsibility of the control layer to limit the operation and
execution of these attributes in order to have a controlled
and secured environment. The four main permission access
an application can have to exercise control over network
applications are Read, Write, Notify and System calls [13][21].

1) Read: This allows the application to learn about the
state of the network including topology, location of servers
and end hosts, reading flows, statistics of events, read packet
payload etc [22]. Having this permission allows the application
to map the network and track activities. Malicious applications
can carry out a reconnaissance attack just with the Read
permission.

It aids the attacker in knowing the next line of action
since network events and states are learned via the read
permission. There is a huge state space in just the Read
permission, it extends to learning how many switches are
communicating with the controller and the respective flow
table entries, buffer and memory space. Sensitive OpenFlow
information can be obtained via the Read permission.

2) Write: This gives OF applications the ability to
modify certain states of the controller and the switch. It
includes dropping flows, forwarding of flows to output
ports, set VLAN tags, set ques for QoS etc. The write
permission allows application to implement changes in the
network. Write permission gives application the ability
to tamper with various state space of events in both the
controller and the switch. For a rogue application to have
this permission, the consequences will be severe because
flow entries can be rerouted, deleted, forwarded to another
malicious for inspection etc. The impact is severe with
disruption or taking over the control of the entire network.

3) Notify: Notify permission delegates when an OF
application should receive notification of events as they occur
in real time or on-demand. Such notifications that can be
received are switch join or leave event, switch port status,
link status , total number of flows received or transmitted
on a port etc. Applications can subscribe to events and get
updates, a malicious application can subscribe to a certain
event and monitor the activity example whether server is
active and on which port number the communication is taking
place. It can be used in tracking whether certain services are
present in network.

4) System Call: This manages how an application makes
request to operating system resources. These resources include
CPU, RAM, Input and Output. The system comprises of the
code base on which the controller sits. Applications with this
permission can reserve memory and use disk space that is
supposed to be shared with other native applications.

A potential memory depletion attack can be launched with
this permission. An application can span it processes across
the various available cores of CPU for more than it required
time of execution making it difficult for other applications to
complete their task with the available processor resources.

The four permissions Read, Write, Notify and System Calls
can be viewed as access tokens that if an application has
unlimited access to, then controlling the entire network will be
easy. The proposed framework is aimed at constricting these
access permission to an application by narrowing the required
access needed only by the network application to run. An
application should not have full access to network resources
because a malicious application can drop event, put the system
into infinite loop, overwrite memory and take over network
control.



Fig. 2. Framework

V. PROPOSED FRAMEWORK

The proposed framework aims at establishing a trusted
relationship between the control layer and the network appli-
cations. This is achieved by authenticating the various network
applications and setting authorisation rules (privileges) as to
how network application can use network resources. Five
modules are introduced in the control layer. They are:

• Authentication Module
• Authorisation Module
• Trust Database
• Policy Database
• Monitoring and Evaluation Module
Figure 2 presents the framework in SDN architecture, the

application layer hosts the various network applications such
as routing, firewall, load balancer etc. The control layer is the
logic via which network elements in the infrastructure layer
are controlled. The infrastructure layer contains combination
of either physical or virtual forwarding elements e.g switches.

1) Authentication Module: Authentication is the first phase
in the framework and is triggered when an application initiates
a request to implement network changes via the control plane.
The control plane gets the request and starts the challenge
request for the credentials of the application. The applica-
tion responds back with the challenge response providing
the queried credentials and the controller further check the
authenticity of the application by consulting the data store in
Trust Database. Upon successful verification and validation of
the application credential, the controller either grant or deny
the application access to network resources.

Every network application that runs is associated with
attributes. These attributes are the building block of the appli-
cation. Through these attributes the controller can implement
the changes to the underlying data plane devices. The concept
is to use the attributes as subjects, so that they will serve as
credentials to verify the identity of the application.

The idea is to know the correct credentials to pair in
identifying the applications. With authentication, malicious
application cannot get access to the control plane because each
application has to be verified before granting access to the
network.

2) Authorisation Module: This deals with the specific per-
missions the application is allowed to execute on the network
after successful authentication. Permissions are stored in the
Trust Database and the authorisation module consults the
database for assigned privileges to applications. The main
permissions are Read, Write, Notify and System Calls. There is
huge state space of control delegated to these four permission
access. Applications should be given minimum access required
to carry out their functions.

For instance a monitoring application that report ports
events and gather statistics about link status should not be
given access to system calls. Because that is not part of its
primary function, so any suspicious request to system calls
from that application should be denied and refused in the
future.

3) Trust Database: This is the data store that both the
authentication and authorisation modules consult. In addition
trust values are assigned to various networking applications.
The value assigned is subjective and based on the assessment
of the network administrator. The trustworthiness is assigned
after successful authentication of the network application.
After which the trust value is reviewed periodically, based on
the behaviour of the application.

Trust takes various values of trust (distrust) which can be
represented in a numerical range (0 - 100) or hierarchical order
e.g high, medium or low. The database is the most sensitive
asset in the framework, as such adding extra layer of security
is paramount. Some of the possible security measures that can
be applied are containerisation[23] or replication [6].

4) Policy Database: This is the module that defines the
implementation of the global network policy. It governs the
implementation of the access policies. Example:

i).If the application fails authentication:
Action→Deny or forward to administrator.

ii). If an application is explicitly allowed by an Adminis-
trator:

Action→Grant access with warning.

5) Monitoring and Evaluation Module: The relationship
that exists between controller and the network applications
needs to be reviewed and evaluated periodically. This is
due to dynamic nature of SDN environment, if there is a
variation, deviation or anomaly from the main function of the
application then the relationship between the controller has to



be reviewed. Either the application is quarantined and revert to
normal operational behaviour or the application will be flagged
and considered rogue. There are instances where trusted and
authenticated application can be malicious, but with granular
monitoring full visibility of the application behaviour can be
observed and reports can be sent to a secured monitoring
server or station for further analysis.

The framework aims at improving the security and relia-
bility of the control layer. Control layer resiliency is key to
uninterrupted network operation. The transition of traditional
network to all SDN network is hampered by many security
threats and vulnerabilities out of which trust violation stands
out as the most severe. .

VI. EVALUATION

Attributes are behaviour descriptors and they vary from
one application to another. They form the building blocks
of an application and they can be used as subjects when
authenticating and authorising an application. Two network
application are selected to assess the feasibility of the proposed
framework. They are :

1) IP Blacklist Application
2) Learning Switch Application
Each application will go through the framework modules,

the implemented modules decide whether an application is
trusted and verified to carry out network operation. Two
scenarios will be presented where on the first instance an
application is permitted with only the required access and the
second scenario the application is denied.

A. IP Blacklist Network Application

This application denies access to certain IP addresses
that are considered malicious or threat to sensitive network
resources. The application works by installing flows on
edge switches via the controller, these flows instruct the
edge switches to forward any Domain Name System (DNS)
request to the controller. When there are matching flows
with this criteria the switches forward the DNS queries to
the controller, upon receiving these queries by the controller.
The controller consults a database containing malicious and
harmful IP addresses, if a match is found then that request
is denied else the query will go successfully without any
interruption.

1) Scenario: To test the application against the framework,
the following scenario is adapted to show how the control layer
is secured against unauthorised access. The blacklist applica-
tion when initiated will go through the Authentication Module,
this module will verify the authenticity of the application by
sending challenge request to the application, upon receiving
the right credentials from the application access is granted
and Authorisation permissions are assigned to the application.
These permissions are set before hand in the Authorisation
Module for every application and are subjective based on the
assessment of the network administrator.

Fig. 3. IP Blacklist Scenario

The blacklist application has only two permission set which
are (read and write) due to the nature of its behaviour and
functionality. The read permission allows the application to
make sense of the presented IP addresses which are checked
against a backend database, upon verification the application
write flows to the edge switches whether to drop or to allow
the communication.

It would be an anomaly for the application to make sys-
tem calls or receive notification about link status or switch
join/leave information. Because the permissions Notify and
System Call are not enabled for this application. Any contrary
or strange network access by the application would be mon-
itored and access would be denied if there is deviation. This
functionality is implemented by the monitoring and evaluation
module, the framework assigns trust level to the application
based on how consistent and uniform the behaviour of the
application is. Network application can start in a trusted
domain and end up in the untrusted domain due to changing
behaviours and anomalies. Figure 3 depicts the process as
described.

B. Learning Switch Network Application

This application maintains a mapping of host MAC address
and associated switch port. The application learns the location
of the host when packets are received from the switch port.
This helps the switch keeps a lookup table that binds the source
MAC address and the incoming switch port. Upon receiving
a packet the switch carries out a lookup operation of the
packet destination MAC address, if the destination address is
contained in the table the switch forwards it to the respective
port otherwise the switch add that port in its MAC address
table and flood the packet to all ports except the one the packet
was received.



1) Scenario: When the learning switch application is in-
stantiated, the controller queries for application credential. The
application supplies the credentials (subjects which are part of
the identified attributes from the application). Upon receiving
the credentials the controller runs a quick check against the
database to match the presented credentials, in this case the
learning switch application failed to provide the matching
credentials and as a result access is denied. The responsibility
of the framework is to make sure unauthorised applications
are denied access to sensitive network resources.

Third party applications are on the rise in SDN environment
and with the advent of cloud computing where infrastructures
are virtualised and shared among many tenants a remote
adversary can install application in your container or virtual
partition. The resulting effect would be severe if there is no
framework that verify the authenticity of network applications
that make network changes.

VII. CONCLUSION & FUTURE WORK

The proposed trust framework aims at addressing a vulnera-
bility in the SDN architecture that exists between the controller
and the network applications. The SDN paradigm supports
third party application deployment and consequently suffer
from trust issues on implemented Open-Flow applications. The
violation of trust can lead to different types of attacks and the
consequences are severe and heavily impact the entire network
operation. In SDN environment, networks are programmed
with policies that explicitly allow network applications to
implement changes in the network and malicious applica-
tions can abuse these privileges and harm network operation.
The proposed framework introduce modules that verify the
authenticity of the network applications and assign privilege
permissions. The framework monitors verified applications
overtime and re-evaluate controller to application trust rela-
tionship in case an anomaly is detected. Future work will look
into implementing the framework on testbed and report about
reliability, performance implication of the various stages of
verification and the scalability of the proposed framework.

REFERENCES

[1] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” Communications Magazine, IEEE,
vol. 52, no. 7, pp. 116–123, 2014.

[2] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered
Taxonomy of Software-Defined Networking,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 1, pp. 1–29, 2014.

[3] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: a
retrospective on evolving SDN,” in Proceedings of the first workshop
on Hot topics in software defined networks. ACM, 2012, pp. 85–90.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in Proceedings of
the 9th USENIX conference on Operating systems design and implemen-
tation OSDI, vol. 10, 2010, pp. 1–6.

[6] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira, “On the design
of practical fault-tolerant SDN controllers,” in 2014 Third European
Workshop on Software Defined Networks. IEEE, 2014, pp. 73–78.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[8] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined
Networking: A Comprehensive Survey,” IEEE Journal &
Magazine, vol. 103, no. 1, pp. 14–76, jan 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6994333

[9] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assess-
ment,” Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN ’13, pp. 151–152, 2013.

[10] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking - HotSDN ’13, pp. 55–60, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491185.2491199

[11] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
sdn? implementation challenges for software-defined networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[12] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and
M. Tyson, “Fresco: Modular composable security services for software-
defined networks.” in NDSS, 2013.

[13] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a
secure controller platform for openflow applications,” Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software
defined networking - HotSDN ’13, p. 171, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491185.2491212

[14] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A nice
way to test openflow applications,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, 2012,
pp. 127–140.

[15] S. Betge-Brezetz, G. B. Kamga, and M. Tazi, “Trust support for SDN
controllers and virtualized network applications,” 1st IEEE Conference
on Network Softwarization: Software-Defined Infrastructures for Net-
works, Clouds, IoT and Services, NETSOFT 2015, pp. 0–4, 2015.

[16] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in Proceedings of the 2014
ACM SIGSAC conference on computer and communications security.
ACM, 2014, pp. 78–89.

[17] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software defined network control layer.” in NDSS, 2015.

[18] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A Survey of Security
in Software Defined Networks,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 1–33, 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7150550

[19] A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems
and solutions analysis,” 2015 International Conference on Protocol
Engineering (ICPE) and International Conference on New Technologies
of Distributed Systems (NTDS), pp. 1–5, 2015. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7293514

[20] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[21] A. Ferguson, a. Guha, and C. Liang, “Participatory networking: An
API for application control of SDNs,” Sigcomm, pp. 327–338, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2486003

[22] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[23] A. Manu, J. K. Patel, S. Akhtar, V. Agrawal, and K. B. S. Murthy,
“Docker container security via heuristics-based multilateral security-
conceptual and pragmatic study,” in IEEE International Conference on
Circuit, Power and Computing Technologies (ICCPCT), 2016, 2016, pp.
1–14.


