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Abstract 
Material properties are often described as being characteristic and are quoted as such irrespective of 
scale.  However, although the testing of materials is sometimes assumed to be a mature field, there are 
issues related to the appropriateness of the test, the inherent suitability of the assumptions in 
determining the material property value, and indeed inherent microstructure of the material 
concerned.  Quasi-brittle materials by their very character show deviation from a truly elastic material 
and so challenge some of the assumptions being made; and this is true for nuclear graphites. 
Polygranular graphite is used in Advanced Gas-cooled Reactors (AGRs) primarily as a means of 
providing moderation for the nuclear reaction, but also as a major structural component in the form of 
the core bricks.  At present, in the nuclear industry, the prediction of when cracked graphite bricks 
will occur in a nuclear core is largely based on the measurement of mechanical properties from small 
samples, even though the volume of a typical brick is a factor of 104 greater than that of a typical 
flexural test sample.  For polygranular graphites, many models to predict the probability of failure 
have been generated and these are usually related to a uniaxial value and indeed most tests conducted 
determine uniaxial values.  If sample size restrictions apply, particularly for engineering ceramics, a 
biaxial stress geometry is sometimes used.  This is especially true if the material is used in 
applications that impose multi-axial stress fields and so to some extent better resemble the 
engineering duty and reflect the real performance criterion.  As an illustration, this paper will also 
discuss the evaluation and choice of different designs of biaxial test apparatus.  Further, for the 
preferred biaxial testing system, results will be presented that demonstrates the issues discussed above 
and shows the complexities involved in the small-scale dependence of geometry upon strength. 
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INTRODUCTION 
 
The testing of materials is sometimes assumed to be a mature field.  There are, however, 
issues relating to the appropriateness of the test, the inherent suitability of the assumptions in 
determining the material property value, and indeed inherent microstructure of the material 
concerned.  Quasi-brittle materials by their very character show deviation from a truly elastic 
material and so challenge some of the assumptions being made.  At present, in the nuclear 
industry, the prediction of when graphite bricks will crack in a nuclear core is largely based 
on the measurement of mechanical properties from small samples, even though the volume of 
a typical brick is a factor of 104 greater than that of a typical flexural test sample.  
 
For polygranular graphites, many models to predict the probability of failure have been 
generated and these are usually related to a uniaxial value and indeed most tests conducted 
determine uniaxial values.  If sample size restrictions apply, particularly for engineering 
ceramics, a biaxial stress geometry is sometimes used.  This is especially true if the material 
is used in applications that impose multi-axial stress fields and so to some extent better 
resemble the engineering duty and reflect the real performance criterion.  Thus, using a 
biaxial stress geometry is appealing in many respects, as it represents a more severe stress 
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state than uniaxial stress and is accordingly better suited to conservative design basis.  
However, whilst biaxial testing has attractions there are additional complications which are 
the subject of this paper. 
 
BIAXIAL TEST METHODS 
 
There are many test configurations available to determine the biaxial strength of a material.  
In this work, an extensive literature review was performed searching for all types of biaxial 
test.  After a brief evaluation, 11 candidate methods were identified: 
 

• Diametral Compression Test (e.g. see Awaji et al. 1987) 
• Ball on three ball (e.g. see Godfrey, 1985)  
• Ring on ring (e.g. see Fett et al. 2006) 
• Ball on ring (e.g. see Isgrò et al. 2003) 
• Internal Pressure Tube / Ring Test (e.g. see Perreux and Suri, 1997) 
• Bulge Test (e.g. see Imaninejad et al. 2004) 
• Cruciform Test (e.g. see Welsh and Adams, 2002) 
• Arcan test (e.g. see Doyoyo and Mohr, 2003) 
• Iosipescu Test (e.g. see Kumosa and Han, 1999) 
• Cold-Spin Test (e.g. see Brϋckner-Foit et al. 1993) 
• Scissor Arms Test (e.g. see Kumosa and Han, 1999) 

 
A selection process was undertaken to determine the most appropriate test from the 11 
candidate tests using a binary dominance method to weight each of the 17 identified selection 
criteria, including, for example, adaptability to different specimen geometries, potential for 
edge effects, suitability for brittle materials, etc.  The most suitable test for the given 
attributes was found to be the ball-on-three-ball test.  After selection, an experimental test 
programme was defined and the test apparatus was designed using SolidWorks and 
manufactured to fit existing high specification universal test machines (Lloyds EZ50). 
 
Ball-on-Three-Ball Test Method 
 
The ball-on-three-ball test apparatus comprises of a thin disc sample supported on three 
equally spaced ball bearings and held in position using alignment pins.  The sample is loaded 
in the centre of the disc using another ball bearing, as illustrated in Figure 1.  During testing, 
the bottom surface of the sample is subject to a biaxial tensile stress.  Cheng et al. (2003) 
states that “the crack extension initiates exclusively on the tensile free surface” and also that 
“compressive stresses normal to a crack will not cause fracture in brittle materials”.  
Fracture of biaxial samples tested using this method is therefore likely to be initiated at a 
crack or flaw on or near the surface of the material under tensile-tensile loading. 
 
Analytical Solutions for ‘Ball on Three Ball’ Test  
 
There are numerous analytical solutions for the ball-on-three-ball test method, each of which 
appears to be very different in nature.  The most commonly used analytical solutions can be 
found in: Godfrey (1985); F394-78 Standard (1996); Ovri (2000); Higgs et al. (2000); Danzer 
et al. (2001); and Pagniano et al. (2005).  An evaluation of these solutions was undertaken 
and is briefly described below with Table 1 defining the variables used in the analytical 
solutions presented herein. 



 
FIGURE 1: Rendered SolidWorks drawing of the Ball on three ball test apparatus 

 

TABLE 1: Variables used in analytical solutions 

Variable type  Variable  Symbol  Variable type  Variable  Symbol  
Applied 

Condition  Load L 

Apparatus 
Conditions 

Diameter of ball Db 

Material 
Geometry  

Thickness T Poisson’s Ratio (Ball) νb 
Radius Rd Young's Modulus (Ball) Eb 

Material 
Properties  

Young’s Modulus 
(Disc) Ed Support Radius A 

Radius of ball  Rb 

Poisson’s Ratio (Disc) νd Contact Radius 
Approximations  

Godfrey  R 
Westergaard  b 

 
Investigation into the derivation of all these solutions revealed that they are similar in their 
manipulation of both material properties and experimental values.  They are in essence 
approximated based upon ‘cylindrical symmetrical thin-plate theory’ for truly elastic 
materials (Kirstein and Woolley, 1966) which predicts an infinite stress amplitude opposite to 
the load transfer point; and they can all be related to the master equation (Marshall, 1980) for 
the biaxial stress, s, such that: 
 

 [1] 
 
Our evaluation, however, has found that there are key differences regarding contact 
mechanics between the disc and the loading ball, and also the geometric factors used, Y.  For 
example, Pagniano (2005), Equation [2], suggests that the radius of uniform loading at centre 
is equivalent to the radius of the loading ball. 
 

  [2] 

 
However, another solution, proposed by Godfrey (1985), Equation [3], includes an 
approximation for the contact radius between the loading ball and the disc described by 
Equation [4] using Hertzian theory (elastic body interaction) and so takes into account the 
material properties of the indenter and the disc. 
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 [3] 

 

 [4] 

 
Interestingly, solutions suggested by Higgs et al. (2000), Equation [5], and Danzer et al. 
(2001) also require an approximation for the contact radius.  Both papers explain that 
Equation [4] is only valid for values of R which are larger than 1.7T. Values of R smaller than 
1.7T can be found by replacing the actual radius by an ‘equivalent radius’, b.  An 
approximation for this ‘equivalent radius’ is given by Westergaard (1926), Equation [6]. 
 

 [5] 

 
 [6] 

 
Further, ASTM F394-78 Standard (1996) and Ovri (2000) do not use any contact radius 
approximations.  Rather, these papers suggest the use of a hardened dowel to apply the load 
to the sample.  The area of applied load is therefore stated as the radius of the dowel.  In order 
to apply these solutions to the ball-on-three-ball method, it may be necessary to substitute an 
approximation for the contact radius.  However, it should be noted that ASTM have now 
withdrawn this standard. 
 
EVALUATION OF ANALYTICAL SOLUTIONS 
 
For each of the most commonly used analytical solutions, an evaluation was undertaken using 
MathCAD for the test apparatus illustrated in Figure 1.  For notionally the same applied load 
the solutions were shown to give rise to large differences in predicted biaxial strength as 
shown in Figure 2. This graph demonstrates the difference in calculated values for biaxial 
strength by imputing the same variables into the six solutions.  Bizarrely, three analytical 
solutions yield a negative biaxial strength. Evidently these solutions can not be valid for the 
conditions of the experiment. It is a likely that these solutions are applied to experiments 
using different materials or indeed samples of a very different geometry.  Further modelling 
of the solutions using surface plots, illustrates the issue of scale when applying these 
solutions. Figure 3 shows that as the thickness of the sample increases, the sensitively to load 
decreases. 
 
Figures 4a and 4b illustrate the issue regarding the contact approximation for the solutions. 
Figure 4a (solution from Godfrey (1985)) shows that this solution would predict a decrease is 
sensitivity as the thickness increases. The solution from Pagniano (2005) (Figure 4b) again 
predicts a decrease is sensitivity as the thickness increases. Additionally however, when large 
balls are use to support the disc, a negative biaxial strength is calculated.  Evaluation of the 
suitability of the solutions reveals that, for this investigation, only Godfrey (1985), Pagniano 
et al. (2005) and Higgs et al. (2000) could be applied to this test arrangement. Preliminary 
calculations using the solutions suggested by these three papers do yield encouraging results, 
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albeit with concerns regarding the scale of the samples. The remaining three solutions are 
evidently not suitable for the testing of graphite using the suggested sample geometry.  
 

 
 

FIGURE 2: Biaxial strength of possible biaxial 
strength solutions 

 
 

 
 
FIGURE 3: Relationship between load, sample 
thickness and biaxial strength (Godfrey, 1985) 

 

        
FIGURE 4a: Relationship between load, tip 
radius and biaxial strength (Godfrey, 1985) 

FIGURE 4b: Relationship between load, ball radius 
and biaxial strength (Pagniano, 2005) 

 
EXPERIMENTAL DETAILS 
 
The material investigated is EY9 grade graphite. The material is supplied in bars of 25.4mm 
diameter to allow easy machining into suitably sized specimens. Typical properties of the 
graphite are summarised in Table 2.  
 

TABLE 2: Typical properties of investigated graphite 
Property EY9 (Williams et al. 1993) 

Porosity (%) 17 
Elastic Modulus (GPa) 13.1 

Density (kg/m3) 1677.0 (measured) 
Tensile Strength (MPa) 14.11 (measured) 

Compressive Strength (MPa) 51.0 
 
Samples of EY9 grade graphite were prepared in thicknesses of 1, 2, 3, 4, 5 and 8 mm with a 
common diameter of 25mm. These samples were machined using a lathe. The material was 
first cut to the correct diameter. The individual specimens were then cut at the correct 
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thickness using a ‘parting off tool’. This process ensures that the faces of the sample parallel 
and the thickness is as accurate as possible. The specimens are then smoothed using fine 
silicon carbide paper.  
 
The three ball bearing supports and loading ball were held in the correct position using 
grease. The sample was positioned using the pins on the base. The loading ball was lowered 
into a starting position just above the surface of the sample. A compression test was started, 
using a speed of 0.5mm/minute. The test continued until the specimen fractured, the load at 
this point (maximum load) is the value required to calculate the biaxial strength of the 
sample. NEXYGEN MT materials testing software was used to display and record properties 
of each test. 
 
Determination of the materials uniaxial strength was achieved using the brittle ring test. This 
test comprises a ring sample which is compressed between two loading plates until fracture. 
Kennedy (1993) suggests that the brittle ring test results yield “realistic estimates of strength 
for actual components”. The solution suggested by Kennedy to calculate the uniaxial strength 
of a sample is; 
 

   [6a, 6b]  

 
Where, P is the applied load, a is the inner radius of the sample, b is the outer radius of the 
sample, h is the thickness of the sample and Kt is a value read from a plot in Petterson (1953). 
Brittle ring samples were placed in the testing machine between two loading plates before a 
compression test was conducted at a speed of 0.5 mm/min. The test continued until fracture 
of the specimen occurred; the maximum load at this point was recorded 
 
RESULTS AND DISCUSSION 
 
The biaxial strength of EY9 graphite was calculated using three equations, all of which 
yielded different relationships between biaxial strength and sample thickness (shown in 
Figure 5). Higgs et al. Godfrey and Pagniano et al. showed an increase in biaxial strength as 
the thickness of the specimen increased, however, the Pagniano equation did result in lower 
strength values than Godfrey. Godfrey (WG) (Using Westergaard’s approximation for 
contact radius) showed a roughly consistent value for biaxial strength as the thickness 
increased as did Higgs et al. (WG). Generally, the mean biaxial strength of a material tends to 
be lower than the uniaxial strength. Brocklehurst (1977), states that the biaxial strength of 
polycrystalline graphite is approximately 80 – 85% of the uniaxial strength. Brocklehurst 
goes on to explain that “flaw mechanism of failure is that under a under a biaxial stress there 
is a greater chance of the larger flaws being critically oriented to a critical stress”. 
 
Test data using the ball on three ball method suggest that the biaxial strength is generally 
higher than the uniaxial strength. This relationship contradicts the general relationship stated 
by Brocklehurst, that the biaxial strength is lower than the uniaxial strength.  
 
The relationship shown by the five equations does not adhere to the theory of brittle fracture, 
whereby an increase in volume will result in a decrease in strength.  This effect is attributed 
to the probability that a larger sample will be likely to contain critical flaws. A possible 
explanation for this effect is that as the thickness of the specimen increases, the sample 
experiences more compressive force from loading.  Whilst the volume of the specimen is 

2)(
)(3

abh
baP

nom -
+

=
p

s tnomKss =max



increased, the tensile area remains relatively constant. If this theory is correct, it could be 
concluded that the ball on three ball test method is not valid for samples which are subject to 
large amounts of compressive force.  There was evidence of localised plastic deformation, 
caused by large compressive stresses at the point of loaded.  This was particularly evident in 
the 8 mm thick samples which shows Hertzian cone cracking, resulting in a ‘cup and cone’ 
feature at the point of contact between ball and disc.  
 

 
FIGURE 5: Calculated biaxial strength of EY9 grade graphite at varying thicknesses 

 

A total of 10 brittle ring tests were undertaken for EY9 grade graphite.  The average uniaxial 
strength was calculated as 14.443 with a standard deviation of 1.1044. Brocklehurst states 
that the compressive strength of graphite is typically 3 to 4 times higher than the tensile 
strength. EY9 Grade graphite has a compressive strength of 51.02 MPa (Williams et al. 
1993), while the average tensile strength was calculated at 14.443. Using the aforementioned 
relationship yields an acceptable value of 3.53.  The approach undertaken in this paper has 
also be applied to other materials such as POCO graphite (Easton, 2007) and Duratec 750 
(Kipling, 2008).  The results of these tests support the findings of this paper. 
 
CONCLUSIONS 
 
The biaxial strength values for EY9 grade graphite were higher than would have been 
predicted based on the materials uniaxial strength. The relationship between biaxial strength 
and sample thickness was also contrary to the expected trend. These results can be attributed 
to the stress distribution of the material. Finite element analysis on the ‘ball on three ball’ 
showed that the region of maximum tensile stress is very small, almost pin like Higgs et al. 
(2000). This effect also increases the effect of surface defects, since a flaw around the area of 
highest stress would have a large effect on the calculated strength of the material.  
 
Disregarding the 8mm samples, which appears are subject to a more complex stress field 
during loading, the most appropriate results are generated using the solutions suggested by 



Godfrey and Higgs and the contact approximation from Westergaard. The values for biaxial 
strength are higher than would be expected taking into consideration the relationship stated in 
Brocklehurst. These solutions do however yield the lowest calculated values for biaxial 
strength and are closest to the expected relationship between uniaxial and biaxial strength.  
 
Analytical assumptions are likely to contribute to the higher calculated stress. The solutions 
are primarily used to calculate the biaxial strength of ceramics such as alumina, silicon nitride 
and glass. In each case the material being tested is brittle. Whereas graphite is commonly 
regarded as quasi brittle and it is unlikely that the analytical assumptions will take account of 
this factor. 
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