
Proceedings of the 2nd AES Workshop on Intelligent Music Production, London, UK, 13 September 2016

JSAP: INTELLIGENT AUDIO PLUGIN FORMAT FOR THE WEB AUDIO API

Nicholas Jillings and Ryan Stables

Digital Media Technology Lab
Birmingham City University

nicholas.jillings@mail.bcu.ac.uk, ryan.stables@bcu.ac.uk

ABSTRACT

Plugins are commonplace in audio production environments,
however a common standard has not been developed for the
web, utilising the Web Audio API. In this study we define
a standard that can be deployed in web-based production
environments by defining the plugin structure and host in-
tegration. The standard facilitates a novel method of cross-
adaptive processing where features are transmitted between
plugin instances instead of audio routing, saving on multi-
ple calculations of features. The project will also enable the
collection and delivery of semantic information to further
the field of Intelligent Music Production.

1. INTRODUCTION

The Web Audio API [1] defines a cross-browser interface
for real-time audio processing. The API is supported on
all major desktop browsers and has led to a wide range
of applications, including additive synthesisers [2] and full
production suites1. Web Audio API plugin standards have
been proposed before, such as Web Audio API eXtension
(WAAX) [3] or Tuna2. These build audio effects nodes sim-
ilarly to the Web Audio API’s defined nodes, which are too
restrictive for a full plugin standard. The Web Audio Mod-
ules (WAM) [4] define a processor / editor interface, how-
ever these assume the plugin processor is entirely custom
DSP code and does not support the use of the streamlined
audio nodes.

JSAP3 (JavaScript Audio Plugin) is a new standard to
build audio plugins for the web. It defines both the host in-
terface (PluginFactory) and the plugin structure
(BasePlugin) with all audio processing performed using
the web audio API. The standard also defines a novel feature
sharing method for building auto-/cross- adaptive effects as
well as linking plugins with the session through semantic
terms.

2. ARCHITECTURE

Audio processing is performed using the web audio API.
Therefore each plugin instance holds an audio graph, called
the ‘sub-graph’. This is private to the plugin and cannot be
controlled directly unless exposed by design. Each plugin
instance defines a number of input and output connection

1Soundtrap uses the web audio API, available at https://www.
soundtrap.com/

2Available at https://github.com/Theodeus/tuna/
3Available at: http://www.semanticaudio.co.uk/jsap

points (which are web audio nodes). Each connection point
can carry multiple channels depending on the configuration
of the audio API stream passing through.

All parameters are defined within the plugin by building
a custom parameter object. This object supports floating
point numbers, text, boolean and event (button) style inter-
face objects as well as ranges. The parameters are stored
locally to the plugin are are accessed by calling getParam-
eters() on the plugin instance, returing a JavaScript object
holding the parameters and their respective values. Like-
wise the converse setParameters() accepts an object holding
parameter name / value pairs, facilitating easy manipulation
of multiple parameters at once.

Each plugin can also build a custom graphical user inter-
face (GUI), returning a HTML tree for the host to display. If
no GUI is generated in the plugin, or the host cannot show
the desired GUI, the host must still display all the parame-
ters. This can be styled as the host wishes.

The PluginFactory is a parent node defining the in-
terface to all plugin instances and prototypes. The factory
has a built-in asynchronous loader for downloading, parsing
and storing prototypes from external JavaScript files. The
plugin instances are loaded into SubFactories which hold a
chain of plugins. The SubFactory, on construction, is passed
two audio nodes defining the start and stop points of the
chain. New plugin instances are inserted into this chain.
Plugins can be moved around the chain, deleted or moved
to other SubFactory instances.

3. FEATURES AND SEMANTICS

The PluginFactory can be provided links to data stores al-
lowing plugins to connect to semantic networks or other
functions without defining these connections themselves.
The factory also handles inter-plugin feature sharing.

Cross-adaptive plugins are defined as plugins whose pa-
rameters are controlled by another audio channel’s infor-
mation [5, 6]. Early systems used external microphones
and analog components [7], a style still used in live en-
vironments [8, 9]. Other effects perform all-channel com-
putations [10, 11] which could be classed as a large auto-
adaptive effect as no external channels are used.

For all cross-/auto- adaptive effects, the control signals
are calculated based on audio features. If multiple plugins
request the same feature from the same audio stream, tra-
ditional systems would waste resources re-calculating the
same feature since the audio would be routed and feature
extraction handled locally. With the factory, the requested

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141206949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.soundtrap.com/
https://www.soundtrap.com/
https://github.com/Theodeus/tuna/
http://www.semanticaudio.co.uk/jsap


Proceedings of the 2nd AES Workshop on Intelligent Music Production, London, UK, 13 September 2016

plugin calculates the desired features and sends them to the
factory which dispatches the features to the correct plugin.
This messaging system also saves handling potentially com-
plex audio routing paths as well as saving on the complexity
of internally building and managing a feature extraction. All
plugin outputs are attached to a JS-Xtract feature extraction
unit [12].

The system supports several ontologies allowing data
to be collected using the standard and stored in a linked
database. [13] show how using plugins with a semantic store
can benefit audio production, where producers enter terms
describing the desired sound and the plugin sets the param-
eters to match.

The PluginFactory can be fed global information such
as tempo, audio sample rate, user information and certain
events. The SubFactories are then fed track specific terms
such as track name, instrument, group name and audio event
locations. Most of these can be described using the studio,
event and timeline ontologies. Each plugin itself is given
these semantic descriptions enabling it to understand its lo-
cation. Each plugin also constructs its own semantic in-
formation either in definition (name, plugin type etc.) or
through use (paramter movement events, effect transforms
etc.).

4. DEPLOYMENT

The code is in a single JavaScript file available from http:
//www.semanticaudio.co.uk/jsap/ as well as ex-
amples and documentation.

A first use-case of the standard is online4 where the
SAFE plugins [13] have been converted into JSAP plug-
ins. These plugins will be used to extend the SAFE dataset
through more targeted collection of terms.

5. CONCLUSION

This paper introduces the JSAP standard for building intel-
ligent audio plugins for the web audio API. The standard in-
troduces the two main components that developers will have
to use to host and build plugins. The novel feature sharing
should enable more complex effects to be built along with
the power of the semantic web to drive the next generation
of audio effects.

6. REFERENCES

[1] P. Adenot and C. Wilson, “Web Audio API,” 2013.

[2] L. Teaford, “Designing synthesizers with web au-
dio,” in Proceedings of the 2nd Web Audio Conference
(WAC-2016) (J. Freeman, A. Lerch, and M. Paradis,
eds.), (Atlanta, GA, USA), April 2016.

[3] H. Choi and J. Berger, “WAAX: Web audio api exten-
sion.,” in NIME, pp. 499–502, 2013.

4http://dmtlab.bcu.ac.uk/nickjillings/safe-js/

[4] J. Kleimola and O. Larkin, “Web audio modules,” in
Proceedings of the Sound and Music Computing 2015,
2015.

[5] J. D. Reiss, “Intelligent systems for mixing multichan-
nel audio,” in 2011 17th International Conference on
Digital Signal Processing (DSP), pp. 1–6, IEEE, 2011.

[6] V. Verfaille, U. Zolzer, and D. Arfib, “Adaptive digital
audio effects (A-DAFx): A new class of sound trans-
formations,” IEEE Transactions on audio, speech, and
language processing, vol. 14, no. 5, pp. 1817–1831,
2006.

[7] D. Dugan, “Automatic microphone mixing,” Jour-
nal of the Audio Engineering Society, vol. 23, no. 6,
pp. 442–449, 1975.

[8] E. Perez-Gonzalez and J. Reiss, “Automatic gain and
fader control for live mixing,” in IEEE Workshop on
applications of signal processing to audio and acous-
tics, (New Paltz, NY, USA), pp. 1–4, October 2009.

[9] E. Perez-Gonzalez and J. Reiss, “Automatic mixing:
live downmixing stereo panner,” in Proceedings of the
7th International Conference on Digital Audio Effects
(DAFx07), (Bordeux, France), pp. 63–68, September
2007.

[10] A. Clifford and J. Reiss, “Calculating time delays of
multiple active sources in live sound,” in Audio En-
gineering Society Convention 129, Audio Engineering
Society, 2010.

[11] J. A. Maddams, S. Finn, and J. D. Reiss, “An au-
tonomous method for multi-track dynamic range com-
pression,” in Proceedings of the 15th International
Conference on Digital Audio Effects (DAFx-12), 2012.

[12] N. Jillings, J. Bullock, and R. Stables, “JS-Xtract: A
Realtime audio feature extraction library for the web,”
in 17th International Society for Music Information
Retrieval Conference (ISMIR 2016), August 2016.

[13] R. Stables, S. Enderby, B. De Man, G. Fazekas, and
J. Reiss, “SAFE: A system for the extraction and re-
trieval of semantic audio descriptors,” in 15th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR 2014), 2014.

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

http://www.semanticaudio.co.uk/jsap/
http://www.semanticaudio.co.uk/jsap/
http://dmtlab.bcu.ac.uk/nickjillings/safe-js/

	 Introduction
	 Architecture
	 Features and Semantics
	 Deployment
	 Conclusion
	 References

