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ABSTRACT

Automatic drum transcription (ADT) systems attempt
to generate a symbolic music notation for percussive in-
struments in audio recordings. Neural networks have al-
ready been shown to perform well in fields related to ADT
such as source separation and onset detection due to their
utilisation of time-series data in classification. We pro-
pose the use of neural networks for ADT in order to ex-
ploit their ability to capture a complex configuration of fea-
tures associated with individual or combined drum classes.
In this paper we present a bi-directional recurrent neu-
ral network for offline detection of percussive onsets from
specified drum classes and a recurrent neural network suit-
able for online operation. In both systems, a separate net-
work is trained to identify onsets for each drum class under
observation—that is, kick drum, snare drum, hi-hats, and
combinations thereof. We perform four evaluations utilis-
ing the IDMT-SMT-Drums and ENST minus one datasets,
which cover solo percussion and polyphonic audio respec-
tively. The results demonstrate the effectiveness of the pre-
sented methods for solo percussion and a capacity for iden-
tifying snare drums, which are historically the most diffi-
cult drum class to detect.

1. INTRODUCTION

Within the field of music information retrieval, automatic
music transcription systems seek to produce a symbolic
notation for the instruments in an audio recording. There
are a variety of areas in the educational, analytical and cre-
ative industries that would benefit from high quality mu-
sic transcription. To date, the majority of such systems
focus on transcription of pitched instruments, with rela-
tively few systems intended for the extraction of drum no-
tation. Automatic drum transcription (ADT) is useful in
determining the rhythm and groove inherent in recordings
consisting of either drum solos or polyphonic instrument
mixtures. While high classification accuracies have been
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demonstrated for isolated drum hits [9], the task of clas-
sification becomes more difficult when multiple different
drum instrument hits occur at the same time [10], and is
further complicated when other instrumentation is intro-
duced creating a polyphonic mixture.

1.1 Background

Using the categorisation presented in [7], the majority of
previous ADT systems can be understood as either seg-
ment and classify, match and adapt, or separate and detect.
Segment and classify methods [2,6,17] first divide record-
ings into regions using either onset detection or a metrical
grid derived from beat tracking; second, extract features
from the segments; and third perform classification to de-
termine the drum instruments in the segments. Match and
adapt methods [21, 22] first associate instruments to pre-
determined templates then iteratively update the templates
to reflect the spectral character of the recording. Sepa-
rate and detect methods [5, 13, 14, 16] attempt to sepa-
rate the music signal into the drum sources that make up
the mixture prior to identifying the onsets of each source.
To date, the most effective separate and detect method for
ADT has been non-negative matrix factorisation (NMF),
an algorithm that divides a recording into a number of ba-
sis functions and corresponding time variant gains. Sys-
tems have been proposed for both offline and online ap-
plications. Dittmar and Gärtner [3] proposed three types
of NMF—fixed, adaptive and semi-adaptive—which can
be used in online situations taking each frame as its own
NMF instance. For polyphonic audio, Wu and Lerch [20]
used harmonic basis functions to separate the drums under
observation from the mixtures and improved on standard
NMF by introducing new iterative update methods.

In addition to the above methods, ADT systems have
been proposed that do not fit in the above categorisation.
Paulus incorporated hidden Markov models to identify the
probability of drum events based on previous information
[15]. Thompson used support vector machines (SVM) with
a large dictionary of possible rhythmic configurations to
classify automatically detected bars [18].

1.2 Motivation

With the exception of [15, 18] the majority of recent ADT
systems rely on single basis functions for each instrument.
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Figure 1: Overview of proposed method. Features are in-
put to individual neural networks for each instrument, re-
sulting in activation functions. Drum onsets are found by
peak-picking the activation functions.

This has the potential to overfit to a specific playing tech-
nique associated with an individual instrument and fails
to recognise more subtle usage. The instrument with the
most varied playing techniques in the standard drum kit is
the snare drum (e.g., flam, rolls, ghost notes), which not
surprisingly is the most difficult to reliably detect. In ad-
dition, spectral overlap between basis functions may pro-
duce crosstalk between instruments such as snare drums
and hi-hats, which can result in noisy time-variant gains,
ultimately making peak picking more difficult.

Neural networks are capable of associating complex
configurations of features with both individual or com-
bined classes. They have also demonstrated excellent per-
formance in fields related to ADT, such as source separa-
tion [8, 11,12] and onset detection [1, 4]. Other supervised
learning techniques such as SVMs have been incorporated
in ADT systems [14, 18, 19], however neural networks are
capable of capturing the association of class labels with
time-series data and producing clean activation functions
for the subsequent peak-picking stage. We therefore pro-
pose to extend the use of neural networks to ADT in or-
der to exploit their well-known prowess for class separabil-
ity and their ability to capture the variety of playing tech-
niques associated with each instrument class under obser-
vation.

The remainder of this paper is structured as follows:
Section 2 outlines our proposed methods for ADT. The
evaluation and results are outlined in Section 3 and Sec-
tion 4 presents a discussion of these results. Conclusions
and possible future work are provided in Section 5.

2. METHOD

An overview of our proposed method for ADT is presented
in Figure 1. For each percussive instrument under ob-
servation, features obtained from the audio recording are
input into the pre-trained neural networks iteratively by
frame. We then select the peaks from the resulting acti-
vation functions to determine the location of onsets for the
corresponding instruments.

2.1 Neural Networks

Recurrent neural networks (RNN) incorporate information
from previous time steps that allow for temporal infor-
mation to be understood. Bi-directional neural networks
(BDRNN) include information from future time steps by
combining two RNNs: the first is a standard backwards di-
rectional RNN that incorporates present and previous time
information; the second RNN is instead positioned to incor-
porate information from present and future time positions,
achieved by reversing the order of the input time steps. As
BDRNNs are unsuitable for online applications, we propose
two separate models: an RNN for online usage and a BDRNN
for applications that can operate offline. An overview of
both neural networks is given in Figure 2.

2.1.1 Recurrent Neural Network

The RNN architecture is represented in Figure 2 by the solid
lines. For an RNN with L layers, the equation for each layer
l is:

al0(t) = fl(a
l−1
0 (t)W l

0 + β(al0(t− 1)U l
0) + bl0), (1)

where β = 0 for l = L, and 1 otherwise. With layer l out-
put a, the weight matrices W and U and the bias matrices
b. The transfer function is determined by the layer, and is
defined as:

fl(x) =

{
2/(1 + e−2x)− 1, l 6= L
y = ex/(

∑
ex), l = L.

(2)

2.1.2 Bi-directional Recurrent Neural Network

The additional BDRNN connections are represented by
dashed lines in Figure 2. For a BDRNN with L layers, the
equation for each hidden layer l is:

a
l
n(t) = fl(a

l−1
n (t)W

l
n + a

l
n(t − 1)U

l
n + a

l−1
(1−n)Z

l−1
(1−n) + b

l
n) (3)

where the layer is defined as forward directional when
n = 0 and backwards directional when n = 1. Z is an
additional weight matrix. The output layer for time t can
then be defined as:

aL0 (t) = fL(aL−1
0 (t)WL

0 + aL−1
1 (t)WL

1 + bL) (4)

2.2 Input Features

Following the approach in [20], input audio (mono .wav
files sampled at 44.1 kHz with 16-bit resolution) is trans-
formed into a 1024 x n spectrogram representation using
the short-time Fourier transform (STFT), in which n is the
numbers of frames. The STFT is calculated using a Han-
ning window with a window length of 2048 samples and a
hop size of 512 samples.
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Figure 2: Overview of the proposed bi-directional recurrent neural network (BDRNN) and recurrent neural network (RNN).
Solid lines represent the RNN connections and dashed lines are additional BDRNN connections. Tan sigmoid layers are shown
as curved rectangles and soft max layers are represented by circles. The weight matrices are denoted as W , U and Z and
the biases as b. The output of layer two of the backwards directional recurrent neural network is denoted by a21.

2.3 Architecture

The neural network architectures in each instrument are
identical, consisting of three dense hidden layers of 50
neurons. This configuration was chosen as it achieved the
highest results in preliminary testing. The neural networks
are trained using target activation function representations
created from training data annotations. The first row of the
activation function frames in which onsets occur are set to
one and all other frames are set to zero. The networks are
trained with a learning rate of 0.05 using truncated back
propagation through time, which updates the weights and
biases iteratively using the output errors. A maximum it-
eration limit is set to 1000, and the weights and biases are
initialised to random non-zero values between±1 ensuring
that training commences correctly. To prevent overfitting,
a validation set is created from 10% of the training data. If
no improvement is demonstrated on the validation set over
100 iterations, then training is stopped. The performance
measure used is cross entropy combined with a softmax
output layer, as this proved to be the most effective config-
uration.

2.4 Onset Detection

Once a drum activation function θ has been generated for
each drum class under observation, the onsets must be
temporally located from within θ. We adopt the method
from [4] for onset detection in the BDRNN. To calculate on-
set positions, a threshold is first determined using the mean
of all frames and a constant λ:

T = mean(θ) ∗ λ. (5)

If the current frame n is determined to be both a peak and
above the threshold T then it is accepted as an onset Γ:

Γ(n) =

{
1, θ(n− 1) < θ(n) ≥ θ(n+ 1) & T < θ(n)
0, otherwise.

(6)
For online applications using the RNN, where future infor-
mation can not be used within the peak picking process,
the threshold is determined by taking the mean of the cur-
rent frame and the previous ρ frames with an onset being
accepted if the current frame is greater than the threshold
and the previous frame. We selected ρ = 9 after initial in-
formal testing. Due to the iterative classification of each
frame, onsets may be detected in adjacent frames. We
therefore disregard onsets detected within 50 ms of each
other to ensure false positives are not obtained for a drum
event that has already been detected.

3. EVALUATION

We conduct four evaluations intended to test the presented
systems in a variety of different contexts in which an ADT
system could be used. The first evaluation, termed auto-
matic, aims to demonstrate system performance on drum
solo recordings in a general purpose way where no prior in-
formation about the test track is known. Following [3], the
second evaluation allows information from the test tracks
to be used to aid in transcription of drum solo recordings
in a semi-automatic manner. This scenario could be used
for compositional or educational purposes either for iden-
tifying an arrangement of a specified drum solo that has
been resequenced in another recording, or in a studio situ-
ation in which a single drum kit is being used. The third
and fourth evaluations aim to evaluate the systems in poly-
phonic mixtures, where instruments other than the drums
under observation are found. Mixtures containing other
drums (e.g., floor toms, ride cymbal) are used in the third
evaluation and additional harmonic accompaniment (e.g.,
guitars, keyboards) is found in the fourth. These evalua-
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Precision Recall F-measure
kick snare hi-hat mean kick snare hi-hat mean kick snare hi-hat mean

BDRNN 0.912 0.834 0.795 0.847 0.929 0.901 0.729 0.853 0.909 0.852 0.738 0.833
RNN 0.890 0.856 0.741 0.829 0.909 0.851 0.788 0.849 0.884 0.833 0.729 0.816

PFNMF 0.934 0.633 0.939 0.835 0.931 0.889 0.743 0.854 0.926 0.699 0.811 0.812
AM1 0.934 0.633 0.939 0.835 0.931 0.889 0.743 0.854 0.926 0.699 0.811 0.812
AM2 0.937 0.651 0.893 0.827 0.934 0.886 0.786 0.868 0.929 0.713 0.805 0.816

Table 1: Precision, recall and F-measure results for the automatic evaluation using the IDMT-SMT-Drums dataset, includ-
ing the PFNMF, AM1 and AM2 systems and the proposed BDRNN and RNN systems. The highest accuracy achieved in each of
the categories is highlighted bold.

tions are termed percussive mixtures and multi-instrument
mixtures respectively.

3.1 Evaluation Methodology

Standard precision, recall, and F-measure scores are used
to measure system performance. Precision and recall are
determined from detected drum instrument onsets, with
candidate onsets determined as correct if found within 50
ms of annotations. Only kick drum, snare drum and hi-hat
onsets are taken into consideration. The mean F-measure
is calculated by taking the average of the individual instru-
ment F-measures. We set the λ parameter used in neural
network peak picking using grid-search across the dataset.

3.1.1 Automatic Evaluation

To test the generalisation of the proposed system, we un-
dertake the automatic evaluation, using the IDMT-SMT-
Drums dataset [3]. This dataset consists of 95 tracks (14
real drum tracks, 11 techno drum tracks, and 70 wave drum
tracks) with individual kick drum, snare drum and hi-hat
recordings. The average track length is 15 seconds, and
in total there are 3471 onsets. Using three-fold cross val-
idation the dataset is split into training and testing data,
resulting in approximately 89,000 and 37,000 frames, re-
spectively. Mean precision, recall and F-measure scores
are taken across tested folds for each system under eval-
uation. The proposed neural network systems are evalu-
ated alongside the three methods proposed in [20]: PFNMF,
which uses fixed percussive basis functions in conjunction
with harmonic basis functions within a NMF framework;
AM1, which iteratively updates the percussive basis func-
tions of PFNMF; and AM2, which updates the PFNMF basis
functions and activation functions in an alternating fash-
ion. Each of the NMF systems are initialised by taking
the mean of each of the basis functions derived from the
individual tracks.

3.1.2 Semi-automatic Evaluation

In order to test the systems ability to adapt to a specific sit-
uation, we undertake the semi-automatic evaluation. We
again utilise the IDMT-SMT-Drums dataset, however in
this context we provide the systems exclusively with in-
dividual drum hits that are used in the overall track un-
der analysis. For a performance comparison in this evalua-
tion, we also test the worth of training the neural networks
using mixed drum hits (e.g., kick drum and hi-hat played

together). The proposed methods are evaluated alongside
the semi-adaptive online NMF technique CD as presented
in [3]. As the evaluation procedures herein are identical to
those in [3] the results from this work have been incorpo-
rated for comparison.

3.1.3 Percussion and Multi-instrument Evaluations

To test how well the proposed system can identify drums
within various types of mixtures, we perform the percus-
sion and multi-instrument evaluations, using the same pro-
cedure as in the automatic evaluation. For these evalua-
tions, we use the ENST minus one dataset as it contains
drum tracks with additional drum instruments (e.g., floor
tom, ride cymbal) and techniques (e.g., ghost notes, flams,
rolls) as well as accompaniment tracks. The ENST mi-
nus one dataset contains 64 recordings performed by three
drummers; two drummers performed 21 tracks each and
the third drummer performed 22 tracks. The BDRNN and
RNN are provided recordings of two of the drummers as
training, while testing on the third. The average track
length is 55 seconds with a total of 22,410 kick drum, snare
drum and hi-hat onsets, resulting in 210,000 and 105,000
frames for training and testing respectively in each fold.
We mix the accompaniment and drum recordings in the
dataset using the same ratios ( 13 and 2

3 , respectively) as
in [7, 15, 20]. The evaluation procedures in these two eval-
uations are identical to those in [7, 15, 20], and as such the
results from these studies have been used for comparison
herein.

Method Mean F-measure
RNN (individual drums) 0.634

BDRNN (individual drums) 0.700
RNN (mixed drums) 0.955

BDRNN (mixed drums) 0.961
CD 0.950

Table 2: Mean F-measure results for the semi-automatic
evaluation. BDRNN and RNN systems are trained on indi-
vidual drum hits (individual drums) or mixtures of drum
hits (mixed drums) and are compared with that of the CD

method in [3].
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Figure 3: Kick drum, snare drum, hi-hat and mean instrument F-measure results for the BDRNN and RNN. Results for
percussion mixture (left) and multi-instrument mixture (right) evaluation scenarios are compared to those obtained in [7,15,
20].

3.2 Results

3.2.1 Automatic Results

The proposed BDRNN achieved a higher mean instrument F-
measure than existing ADT methods in the first evaluation,
which focuses on drum solos. Table 1 demonstrates that
the neural network approaches achieved the highest scores
in six of the twelve categories, with the largest relative im-
provement being the snare F-measure and precision. As
expected, the RNN achieved lower F-measure scores than
the BDRNN for all instruments, however the results matched
those of the other evaluated systems. The three methods
proposed in [20] achieved similar results as previously ob-
tained on the IDMT-SMT-Drums dataset. Initial tests re-
vealed that the best performance for all three algorithms
was achieved with the rank parameter set to 1 and an offset
coefficient of 0.2. AM1 showed no improvement on PFNMF

in this instance, however AM2 did slightly improve.

3.2.2 Semi-Automatic Results

Table 2 shows the results of the semi-automatic evaluation
scenario with both systems compared to the results of the
CD system obtained in [3]. Training the neural networks
using individual drum hits alone resulted in low accura-
cies, however when training includes mixed drum instru-
ment signals (e.g., kick drums and hi-hats playing at the
same time) both the BDRNN and RNN achieve the highest
results of the tested systems.

3.2.3 Percussion and Multi-Instrument Mixture Results

Figure 3 shows the results of the BDRNN and RNN meth-
ods as compared to those achieved by the Gillet [7] and
Paulus [15] systems, as well as the results of the PFNMF,
AM1, and AM2 systems in [20]. The results are shown for
both scenarios: percussive mixtures (left figure) and multi-
instrument mixtures (right figure). In both evaluations, the
neural network approaches achieve high snare F-measures
relative to the other systems, and the BDRNN achieves the
highest snare F-measure for the multi-instrument mixture

evaluation. Figure 4 shows the mean precision and re-
call scores of the neural network systems in comparison
to the other evaluated systems. The highest recall scores
are achieved by the BDRNN and RNN for both percussion
and multi-instrument mixtures. While the neural networks
achieved lower mean F-measure scores, this high recall
demonstrates the potential worth of the clean activation
functions.

4. DISCUSSION

The results show that the proposed neural network systems
achieve higher results for a solo drum dataset in offline and
online situations in both automatic and and semi-automatic
evaluations. The offline bi-directional recurrent neural net-
work architecture outperformed the online recurrent neural
network architecture in all evaluations, demonstrating the
worth of additional future information for applications that
allow it. The high results for the snare drum class achieved
throughout the evaluation indicate the ability of the neural
networks to associate multiple different frequency bases to
the same class making them well suited to detect a variety

BDRNN     RNN      PFNMF       AM1         AM2       Gillet        Paulus                                
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Figure 5: Comparison between neural network activa-
tion function and PFNMF time-variant gain: (top) Mixed
spectrogram containing kick drum, snare drum and hi-hat;
(middle) BDRNN snare drum activation function and found
onsets; (bottom) PFNMF snare drum time-variant gain and
found onsets.

of playing techniques for a given instrument (e.g., flams,
rolls, ghost notes). An example of the instrument-specific
focus achievable by neural networks is shown in Figure 5,
where spectral overlap exists between the snare drum and
hi-hats. While the PFNMF output for this particular example
shows the effect of crosstalk, the BDRNN is able to achieve
a less noisy activation function.

Although high F-measures for the kick drum and hi-
hat were achieved by both the RNN and BDRNN methods,
they had lower scores than other techniques for all situa-
tions other than the semi-automatic drum transcription test.
The precision scores for the kick drum and hi-hat were the
main factor in the lower F-measure score. As shown in Ta-
ble 1 and Figure 4, the BDRNN and the RNN achieved the
highest mean recall scores for all tests using the ENST mi-
nus one dataset, which indicates that the methods benefit
from a simplified peak picking process due to clean ac-
tivation functions. However, F-measures scores for these
tests indicate that the BDRNN and RNN were not as success-
ful as other systems—a somewhat expected result as this
dataset contains polyphonic mixtures. The addition of a
pre-processing stage similar to [20] could remove these
sources prior to ADT and potentially improve results for
the BDRNN and RNN methods. Another area for possible
improvement would be to evaluate the worth of different
input features such as MFCCs, which have already been
demonstrated to be successful in conjunction with neural
networks in the related task of onset detection [1].

5. CONCLUSIONS AND FUTURE WORK

We have presented two neural network based approaches
for ADT: the BDRNN for off-line usage and the RNN on-
line applications. Results from the conducted evaluations

demonstrate that the proposed methods are capable of out-
performing existing ADT systems on drum solo recordings
in both automatic and semi-automatic situations. The abil-
ity to learn a rich representation of drum classes enables
the neural networks to detect multiple playing techniques
within the same class. Evaluations were also carried out on
polyphonic mixtures in which the neural network achieved
high snare F-measures relative to existing approaches. To
improve performance of the proposed methods for poly-
phonic audio, an additional pre-processing source separa-
tion stage could be introduced into the system to separate
the desired drums from additional instrumentation prior to
ADT. Furthermore, additional time step connections to ad-
ditional previous and future time steps may potentially in-
crease the accuracy of the system. One method for doing
this is by using long short-term memory cells within the
neural network architecture which have already proven to
be effective for onset detection [4]. Further evaluation will
be carried out to determine performance when additional
drum classes are present, as well as testing other input fea-
tures.
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