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Abstract—A key challenge for large scale activity recog-
nition on mobile phones is the requirement for producing
non-static classifiers that cater for differences in individual
user characteristics when performing similar activities in a
diverse environment. A static classifier is fixed throughout
the system lifetime and does not adapt to different users or
environmental changes. Therefore, a personalized recognition
model is desirable for each user of the system to ensure accurate
recognition in a diverse population of people. One of the main
approaches for personalization of activity recognition is the
generation of the classification model from user annotated data
on mobile itself. However, giving the resource constraints on
such devices there is a need to examine the effects of system
parameters such as the feature extraction parameter that can
affect the performance of the system. Thus, this paper examines
the effects of feature vector lengths and varying data set sizes on
the classification accuracy of four selected supervised machine
learning algorithms running on off the shelf mobile phones.
Our results show that out of the three feature vector lengths
of 32, 64 and 128 considered, the 128 vector length yields the
best accuracy for all the algorithms tested. Also, the time taken
to train the algorithms with samples of this length is minimal
compare to 64 and 32 feature lengths.

Index Terms—activity recognition, smartphone, accelerome-
ter sensor data, machine learning algorithms.

I. INTRODUCTION

Sensor rich mobile phones are gradually becoming com-
monplace items in the hands of billions of people world-
wide. The ubiquity and the improved processing and storage
resources on these phones are making them suitable for
sensor data gathering and processing to infer meaningful
information about the phones internal and external envi-
ronment, which include their users activities, locations and
interactions. A typical smartphone is equipped with a number
of integrated sensors such as accelerometer, microphone,
camera, gyroscope, GPS and many others depending on
the manufacturer and model. These sensors can facilitate
different types of sensor data mining applications such as
activity and behavioural sensing, environment sensing, road
and traffic monitoring and health monitoring [1]. Recognition
of user activities, an important task in pervasive computing is
moving from the use of traditional wearable sensors [2], [3],
[4] to mobile platforms [5] due to the aforementioned ca-
pabilities of smartphones. Recognition of different activities
provides contextual information to computing platforms for
adapting their functions to the user contexts. For example,
a device is configured to increase the screen font size if
discovered that the user is walking to make it easy to
read the screen or a device may do self-management to
conserve resource usage by switching off radios like WiFi
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and bluetooth if discovered the user is running. Similarly,
activity recognition is useful for fitness and health monitoring
[6], social networking [7] and commercial application like
activity based advertising [8].

One of the fundamental steps in performing context
recognition with mobile phones is the collection of data
for training classification algorithm. In many of the previ-
ous work, activity recognition is performed by collecting
sensor data from many subjects carrying mobile phones,
uploads the data for training and generates a classification
model on remote systems. However, the need to personalise
classification model to each user requires algorithm to be
trained on the mobile using the user generated data only.
Furthermore, giving the resource constraints on such devices
there is a need to examine the effects of system parameters
such as the feature extraction parameter that can affect the
performance of the system. Therefore, we examine the effects
of feature vector of different lengths and varying data set
sizes on the accuracy and time required to train four selected
algorithms (J48, Naive Bayes, PART and KNN) directly on
a mobile phone with a view to identify which algorithm is
more suitable for incremental update with additional data
and also to select the optimal feature vector lengths to
represent the raw data. We employed Fast Fourier Transform
(FFT) algorithm computation of Discrete Fourier Transform
(DFT) to extract frequency domain feature from the raw time
series accelerometer data. FFT feature extraction method for
accelerometer data has been shown to perform better than
statistical features extraction methods like mean, standard
deviation and variance [9].

The rest of this paper is organised into 5 sections. In
Section 2, we present related work in activity recognition
system. Section 3 discusses the experimental set-up and
method. The results and discussion are presented in section
4 followed by conclusion and future work in section 5.

II. RELATED WORK

Mobile based activity recognition is gaining research
momentum owing to the availability of inertial sensors on
today’s smartphone. Some of the existing work that consider
the effects of system parameters on the activity recognition
accuracy is [9]. The study examines the effects of users,
device models and orientation differences on recognition ac-
curacy of k nearest neighbour classification algorithm using
data collected from mobile phones accelerometer, gyroscope
and compass sensors. They collected data under different
scenarios to show the impact of their experiment parameters
on the classification accuracy. To elicit the effects of device
orientation on classification accuracy, data collected with
phone placed at horizontal orientation was used for training
while the data collected when the phone was placed at
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vertical orientation was used for testing. Again, for the device
independent test scenario, data from one phone model is
used as training while the data from another phone model
was used for testing. In the user independent test, a leave-
one-out approach is used where a user data is left out
during training and then used for testing the generated model
from the rest of the users data. Their results show that,
with simple features such as mean, variance and standard
deviation, the user dependency test records 91% accuracy,
while the phone dependency test reached 96% accuracy for
the same phone model and 95% with different phone models.
The orientation effects test was low with 83% accuracy. They
further considered including more sophisticated features like
FFT and autocorrelation and the observed an increase of
accuracy of up to 1-2% across all the test scenarios. To
improve further on the orientation effects test accuracy, they
use both linear acceleration that is devoid of gravitational
force and earth coordinates reference to collect new set
of data. This new dataset yielded 93% for the orientation
test and user dependency test increased to 95%. The earth
coordinate system data gives a further accuracy of up to
97% for both the orientation effects and the user dependency
test. This study does not consider the effect of feature vector
lengths in these experiments. In addition, the data processing
is performed off the phone on a desktop machine unlike
our experiment, which is carried out on the mobile phone
directly.

Another study [10] performed a comparative analysis of
different classifier algorithms for activity recognition with
mobile phone’s accelerometer data. They selected variety
of algorithms from the seven categories of classification
algorithms in Weka to build model for two different data
collection strategies adopted. The data collected with phone
placed in the shirt pocket was used to compare accuracies of
IBK, Naive Bayes, Rotation Forest, VFI, DTNB and LMT
algorithms while the data collected when the phone was
placed in the palm position was used to compare accuracies
of SMO, NNge, ClaaasificationViaRegression, FT, VFI, IBK
and Naive Bayes algorithms. Out of all the algorithms tested,
they reported IBK and IB1 to give the best accuracy for the
hand’s palm data and VFI gives the lowest accuracy. For the
shirt pocket’s data, rotation forest algorithm was reported
to give best accuracy while simple logistic regression gives
the lowest accuracy. In all, the accuracies of hand palm’s
position is reported to be better overall. This study shows the
relative performance of the algorithms but does not consider
any system parameters such as feature length that makes one
algorithm to perform better than the others .

Authors in [11] conducted a study to investigate the
impact of user differences on the accuracy of classification
algorithms when the data collected from one user is used
for training and separate data from another subject is used
for testing. They induced three types of models from the
data collected to show the impact of each on the accuracy
of classifier algorithms like J48 Decision Trees, Random
Forest, IBk, J-rip, Voting Features Interval (VFI) and Logistic
Regression. The first, called the impersonal model was
induced by using training data from set of subjects who are
not targeted to use the model afterwards. This implies that
the training set is totally different from the test set. This
is achieved by designating data from a number of subjects

for training and data from one specific subject as testing
data. The personal model on the other hand is generated
by using part of the data collected from a particular subject
for training and another part of the same data for testing.
This yielded a model that is personalised to the intended
user only. The last model generated is called hybrid model
where the data collected from set of subjects are used for
training and part of the data from the same set of subjects
are used for testing. The hybrid model can be seen as a
combination of the two other models. The result from the
experiment shows that the personal model performance in
terms of recognition accuracy across all the algorithms tested
is the best, while the hybrid model came second best and
the impersonal model performs worst. The best performing
algorithm for the personal model is reported to be Multi-
Layer Perceptron reaching an accuracy of 98.7% and its
worst performing algorithm was J-rip with 95.1% accuracy.
The best performing algorithm for the hybrid model was
K-nearest neighbour which yields an accuracy of 96.5%
and worst performing algorithm was VFI with 76%. The
impersonal model has random forest algorithm performing
best with an accuracy of 75.9% while multilayer perceptron
gives the worst accuracy of 67.8 %. This experiment shows
the superiority of personal model in activity recognition and
support the notions of the need for solving the population
diversity problem [12] encountered in large scale activity
recognition involving diverse user population.

Several other activity recognition systems on mobile phone
have been reported in the literature. Kose et al. [13] imple-
mented a modified KNN algorithm called clustered KNN that
uses smaller training sets on a mobile phone. Bartolo et al.
[14] proposed an online training and classification approach
that uses data stream mining. The benefit of data stream
mining is that the training data are only observed once and
no need to store all training records on the phone. A recent
survey of various mobile based activity recognition system
is presented in [5].

A. Traditional Supervised Approach to Activity Recognition

The generic architectural framework for activity recog-
nition involves four basic tasks i.) Sensor Sampling and
Filtering ii.) Segmentation and Feature Extraction iii.) Train-
ing and testing of classification algorithms iv) Model De-
ployment. The first step in inertial based AR is the sensor
sampling step. The accelerometer, which is the most widely
used inertial sensor, is often employed here. During this
stage, it may be necessary to cater for offset produced by
some devices. If a device produced non-zero values for the
x and y axis and does not give -9.8g for the z axis when
placed flat on table with the face pointing upward, then there
is need to calibrate the phone to determine the offset to scale
the readings to appropriate values for each of the axis. The
calibration step determines the accurate scaling factor and
offset parameters for the three accelerometer axes. The values
obtained are used to cancel out the offset produced by the
sensor. Filtering or smoothing sub-step eliminates unwanted
noisy data occasionally produced by the sensor. The noise is
an erroneous variation from the expected value of a sensor.
Many standard methods exist such as moving average and
exponential average smoothing for the time domain signal,
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and Gaussian and Butterworth filtering for the frequency
domain signal. Segmentation phase segments the reading
into chunks from which features are extracted. Segmentation
can be performed using a timed window in which sensor is
sampled for a fixed amount of time to form a segment from
which features are extracted. Another approach is to collect a
fixed number of samples into, for example, an array of fixed
size. The features extracted from the raw sample segment can
be time domain or frequency domain. Time domain features
include mean, standard deviation and variance. Frequency
domain features include, FFT component, spectral energy
and principal frequency [15]. A class label of the activity is
appended to the extracted feature to form an instance in the
data. The training phase uses appropriate learning algorithms
on the collected data to generate a model that can be used to
recognize unseen data. Training is performed on the device
used for data collection or on another system where the data
has been transferred. Key performance parameters for this
process includes, features used, segmentation type in form
of window size and phone model [16].

III. METHODOLOGY

A. Data Collection Procedure

We collected the data with a module of the application
that sampled accelerometer sensor data on a Sony Xperia E
1505 smartphone. The phone has Qualcomm MSM7227A 1
GHz processor codenamed Snapdragon. It also has 1000MB
of RAM, 1530mAh battery and runs Android 4.1.1 Jelly
Bean. Each data point from the phone’s accelerometer sensor
consists of three axes x, y, z values. These values represent
the motion components along each axis. Figure 1 shows
the data collection application. The interface allowed the
selection of feature vector length and the activity label of
the current data collection session.

Fig. 1. Data Collection Interface

To elicit the effect of feature vector lengths and the amount
of training data on the accuracy and time required for training
the selected algorithms on a mobile phone, we performed the
data collection in three phases for each defined feature vector
length. We have 32, 64 and 128 vector lengths. For a given

vector length, we collect 1 minute of data for each activity
to form the first data set, followed by another 30 seconds
of data for each activity to form the second dataset and an
additional 30 seconds worth of data to form the third data
set. We repeated this process for each of the defined vector
length for each activity performed by the user. When users
launch the application, they are presented with a screen for
selecting the vector size and the activity class they are about
to perform. Upon initializing the capture process, the user
put the phone into the pants pocket and starts performing
the selected activity. We selected pants pocket because other
studies [17], [9], [18] have established this to be the most
suitable position to record the impacts of user movements on
the accelerometer sensor. An Android service is started that
asynchronously performs sensor sampling, feature extraction
and storage into a file within a background thread.

B. Feature Extraction

This stage is performed by extracting features from the raw
time series x, y, z accelerometer values. The sampling rate of
the accelerometer is set to the Android provided constant that
gets the sensor data as fast as possible. Orientation effects
on the data are eliminated by computing the magnitude of x,
y, z components of each accelerometer data. A combination
of fixed amount of this magnitude values i.e. 32, 64 or 128
are combined into a vector. This time series sample stored
in a vector array of real value is converted to frequency
domain samples of the same length by making use of Fast
Fourier Transform (FFT) algorithm computation of Discrete
Fourier Transform (DFT). The FFT computation is based on
the decimation-in-time radix 2 algorithm.

C. Training and Model Induction

The training and evaluation of the classifier models are
performed directly on a mobile phone. The algorithms tested
are from Weka implementation [19]. They were easy to
incorporate into our application since the Weka API are
available in Java and we used Java to develop our An-
droid application. All the Weka classification algorithms
are grouped into the base package called weka.classfier
and each sub-group of the algorithms were further grouped
into sub-packages. For example, all the rules based al-
gorithms are in weka.classifier.rules. A specific algorithm
from this can then be invoked by instantiating an ob-
ject of a specific class such as weka.classifier.rules.PART,
weka.classifier.rules.DecisionTable and so on.

IV. RESULTS AND DISCUSSION

The accuracy of the algorithms and time taken to train
and evaluate them on the mobile phone are presented in this
section. The amount of data collected within the allocated
period for collections vary according to the feature vector
lengths sizes. Of the three windows, 32 rapidly collect more
data follow by 64 and 128 vector lengths. It has been shown
that a small amount of 3 seconds worth of personal data from
an accelerometer is adequate to induce a personalised model
on a mobile phone [14],[11], therefore our data collection
is performed in 30 seconds interval for each feature vector
length under consideration. Table I shows the data collected
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TABLE I
ACCURACY OF THE FOUR ALGORITHMS WITH VARYING DATASET SIZES

AND FEATURE VECTOR LENGTHS

Algorithms 539 dataset 1034 dataset 1298 dataset
J48 76.44 73.02 76.04

Naive Bayes 74.40 67.89 70.18
PART 77.37 72.24 74.88

IBk (KNN) 80.15 74.95 75.81
32 Feature Vector Length Accuracy (%)

Algorithms 393 dataset 546 dataset 720 dataset
J48 87.53 87.55 85.56

Naive Bayes 84.99 85.35 73.47
PART 89.06 87.36 85.29

IBk (KNN) 90.84 91.76 87.92
64 Feature Vector Length Accuracy (%)

Algorithms 191 dataset) 295 dataset) 385 dataset)
J48 93.19 93.56 92.21

Nave Bayes 90.58 90.85 89.87
PART 93.72 95.25 93.77

IBk (KNN) 91.10 92.54 92.99
128 Feature Vector Length Accuracy (%)

with each feature length settings and the accuracies obtained
for the four algorithms.

The accuracies are recorded separately for the 32, 64 and
128 feature vector lengths in the table from top to bottom
respectively.

Similarly, table II shows the time taken to train and
perform a 10 fold cross validations on each of the algorithms
giving the varying dataset sizes and the vector lengths shown
from top to bottom in the table.

TABLE II
TRAINING AND EVALUATION TIME ON THE FOUR ALGORITHMS

Algorithms 539 dataset 1034 dataset 1298 dataset
J48 29972 72467 96362

Naive Bayes 6935 13382 17412
PART 54876 248914 314477

IBk (KNN) 4780 14259 23231
32 Feature Vector Length Time (ms)

Algorithms 393 dataset) 546 dataset) 720 dataset)
J48 25617 36616 62559

Naive Bayes 11643 13873 18437
PART 45422 72994 143199

IBk (KNN) 5387 9483 15532
64 Feature Vector Length Time (ms)

Algorithms 191 dataset) 295 dataset) 385 dataset)
J48 16425 25893 39677

Nave Bayes 9246 14231 18583
PART 28253 52661 82132

IBk (KNN) 4089 8479 13263
128 Feature Vector Length Time (ms)

The data collection session is carried out in three phases
across the three feature lengths. We first collect 1 minute
worth of data for each activity class making a total of 4
minutes for the four activities of walking, running, stationary
and jumping. This data is then used to train and evaluate
the four algorithms under consideration and the result is
recorded. Another 30 seconds worth of data is collected
in the second and third phase for each activity and the
model training and testing are performed. These procedure is
repeated for each feature vector length to obtain the results.

According to the results in the first part of table I, the

overall classification accuracy rate of 80.15% is obtained
from IBk algorithm for the 32 feature vector length using the
first dataset. PART, J48 and Naive Bayes algorithms accura-
cies range between 74-77%. However, while we expect the
accuracies of all the algorithms to increase with additional
data, their accuracies degrade with more data in datasets 2
and 3 although the accuracies obtained in dataset 3 are better
than those of the second dataset. We opine that the decrease
in the accuracies with additional data is caused by the non-
discerning information in the small vector lengths.

Moreover, we can see that IBk outperforms all the other
algorithms across the three datasets except for the J48 that
slightly outperforms it in the third dataset. The performance
of IBk can be attributed to the nature of the data that are
very correlated and since IBk is an instance based algorithm
it is able to leverage this to discern the closeness in the data
samples. The assumption of Naive Bayes on the indepen-
dence of each feature makes it perform worse on all the
dataset because the feature instances are dependent on each
other. Figure 2 and 3 shows the relative performance of the
algorithms and the time taken to train the models for the 32
feature vector length. As indicated in figure 3, IBk takes the
smallest amount of time across all the three datasets during
training and evaluation. This is understandable because it
does not build a model from the data and the dimension of
each data sample is manageable for comparison operation
inherent in the IBk algorithm. This result indicates that 32
feature vector lengths does not enable the algorithms to
benefit from incremental update in terms of adding more
training data.

Fig. 2. Accuracy of 32 Feature Vector Length

Fig. 3. Time Taken on 32 Feature Vector Length

The 64 feature vector length results as shown in middle
part of table I have IBk as the most accurate and least
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time consuming to train and evaluate. Unlike the 32 feature
vector length whose performance degrades across all the
algorithms in dataset 2 and 3, the 64 feature vector length
accuracy slightly increases for all the algorithms in dataset
2 except for the PART which decreases slightly as captured
in figure 4. However, the increase does not extend to the
third dataset. IBk takes the minimal amount of time during
training and evaluation followed by Naive Bayes, J48 and
PART respectively as shown in figure 5. This result indicates
that 64 vector length captures more distinguishing data that
aid the algorithms in discerning the differences among the
activity better than the 32 vector length.

Fig. 4. Accuracy of 64 Feature Vector Length

Fig. 5. Time Taken on 64 Feature Vector Length

The 128 vector length gives the best accuracies across all
the algorithms as indicated in figure 7 and bottom part of
table II. The training time is also minimal compared to other
vector lengths. We can attribute this to the relatively smaller
amount of data set collected within the same period for other
vector lengths. This shows that it takes more time to collect
more data with long vector length but the training time of the
algorithm depends on the amount of data samples. Invariably,
the long vector length captures information that is more
discerning and thereby enables the algorithms to perform
better on the recognition task. As indicated in figure 7, the
highest time for the 128 vector length is below 90000msec
compared to 32 vector length with 300000msec (figure 3)
and 140000msec for the 64 vector length (figure 5).

V. CONCLUSION AND FUTURE WORK

From the analysis presented above, it is clear that 128
vector length yields the best result for all the algorithms
tested and required the least amount of time to train and
evaluate. The reduced training time can be attributed to

Fig. 6. Accuracy on 128 Feature Vector Length

‘

Fig. 7. Time Taken on 128 Feature Vector Length

the small amount of samples collected within our defined
time. However, since this is the same time used for other
vector lengths, it implies that its performance over them is
justifiable. In terms of accuracy of the algorithms, IBk is
the best on the average, followed by PART, J48 and Naive
Bayes respectively. Nevertheless, the time requirements of
PART is the highest followed by J48, Nive Bayes and IBk.
The performance of IBk has been reported in other previous
work for online activity recognition task [2], [13]. None of
the algorithms shows any significant increase in accuracy
with additional data suggesting that they are not amenable to
incremental update. With these results, we can conclude that
the more the feature vector length the better the discerning
information they contain for the accurate performance of
classification algorithm. Also, while it takes longer time to
collect large data samples for long feature lengths, the length
of the feature vector does not have a significant impact on
the training and evaluation time of the algorithm. The sample
size has more effect on the training time. In addition, the
results also show that a minimal amount of personal data is
adequate to recognize activity of a user. The main issue with
collecting personal data is the duplication of efforts for all
users.

With these results in mind, we plan to evaluate more
algorithms and incorporate additional activities to determine
whether similar trend is applicable with a view to select the
most appropriate vector length. Furthermore, the issues of
personalised recognition on a mobile device will be given
attention to develop algorithm to solve the problem. Such
algorithm should eliminate user burden and perform an
automatic adaptation to reflect changes in individual activity
data.
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