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The problem of optimising the target detection performance of MIMO radar in the presence of clutter is considered.The increased
false alarm rate which is a consequence of the presence of clutter returns is known to seriously degrade the target detection
performance of the radar target detector, especially under low SNR conditions. In this paper, a mathematical model is proposed
to optimise the target detection performance of a MIMO radar detector in the presence of clutter. The number of samples that are
required to be processed by a radar target detector regulates the amount of processing burden while achieving a given detection
reliability.While SubspaceCompressiveGLRT (SSC-GLRT) detector is known to give optimised radar target detection performance
with reduced computational complexity, it however suffers a significant deterioration in target detection performance in the
presence of clutter. In this paper we provide evidence that the proposed mathematical model for SSC-GLRT detector outperforms
the existing detectors in the presence of clutter. The performance analysis of the existing detectors and the proposed SSC-GLRT
detector for MIMO radar in the presence of clutter are provided in this paper.

1. Introduction

A radar system is expected to search for designated targets
within a given region by detecting the existence of the
reflected components of that transmitted signal from the
target. For any radar system, signal detection is the primary
and the most important process. In the existing literature,
different signal detection models such as Generalised Likeli-
hood Ratio Test (GLRT) detector [1, 2] and Rao test detector
[3, 4] have been widely considered for their robustness. A
GLRT detector has attracted the interest of the researchers
due to its robustness, simplicity, and ability to display con-
stant false alarm rate (CFAR). Target detection performance
of a radar system can be significantly affected by variations
in target Radar Cross-Section (RCS). With Multiple Input
and Multiple Output (MIMO) antenna connections at the
radar system, it is possible to assure the existence of spa-
tiotemporal nature within the received signal. Subsequently,

MIMO radars obtained significant research attention within
the relevant research community [5–9]. In MIMO radars,
the received signal components from different transmitter-
receiver pairs are statistically uncorrelated. By exploiting the
uncorrelated nature of spatiotemporal received signals, the
effect of variation of target RCS can be optimised. In the
existing literature, authors have addressed different target
detection problems related to MIMO radars and proposed
solutions to enhance the target detection performance [10, 11].
The multiple transmitters and receivers of MIMO radars can
either be collocated or widely spaced. MIMO radars with
widely spaced antennas are capable of achieving improved
spatial diversity with respect to the target radar cross-section.
On the other hand MIMO radars with collocated antennas
are capable of providing improved waveform diversity and
increased accuracy in signal parameter estimation. However,
diversity of the signal statistics at the multiple receivers of a
MIMO radar is achieved at the cost of increased processing
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burden on the radar system. For a radar system, the time
taken by its detector to make a decision is relative to the
number of received signal statistics which are required to
be processed. The large number of signal statistics collected
by the multiple receiver antennas of MIMO radars imposes
huge processing burden and computational complexity on
the system. Compressive sampling has been addressed in
[8, 12–19] where the detection process is performed on
compressed received signal samples. The authors in [15] have
proposed compressive detection for MIMO radars to reduce
the processing complexity which is achieved as a trade-off
with the target detection performance. By exploiting the
target sparsity in the Doppler range, better target detec-
tion performance can be achieved with a fewer number of
received signal samples. A relatively new compressive signal
realisation technique called subspace compression has been
proposed in [20]. The authors in [8, 14] addressed a GLRT
detector known as Compressive GLRT (C-GLRT) detector,
which performs radar target detection over compressed
received signal samples. By using compressed received signal
samples, a C-GLRT detector has the ability to be faster
and operate at reduced computational complexity. However,
these traits are achieved as a trade-off between the radar
target detection performance and signal compressibility. For
an intended probability of detection, the degree of com-
pressibility gets poorer due to the time varying nature of
target detection environment. A time adaptive compressive
measurement schemehas been presentedwithin the subspace
of a Gaussian measurement matrix, named SSC scheme in
[14, 20]. As subspace compressivemeasurement scheme takes
control over this measurement matrix which is adaptive to
the signal subspace characteristics. A Subspace Compressive
GLRT (SSC-GLRT) detector is expected to give better target
detection performance compared to a C-GLRT detector.

Clutter is comprised of all the reflected return signals
from the extraneous background environment that arrive at
the radar detector. Clutter returns appear on the samedomain
as the target returns. The presence of clutter is known to
cause increased false alarms and hence compromise the target
detection performance of the radar detector at a constant
false alarm rate [21]. The deterioration in target detection
performance is significantly increased when compressive
sampling is used. In the existing literature, authors proposed
using Doppler shift caused due tomoving targets to negotiate
clutter [22, 23]. While this approach yields performance
gains in the case of fast moving targets and airborne radars,
alternative approaches need to be investigated for ground
based radars with slow moving targets.

In most of the existing research, the presence of clutter
has not been addressed by the authors in the context of
CompressiveGLRT techniques.Themain contribution of this
paper is providing a detailedmathematical model to optimise
the target detection performance of C-GLRT and SSC-GLRT
detectors for a MIMO radar detector in the presence of
clutter by exploiting the known knowledge of the clutter
subspace. The proposed mathematical model is applied to
Compressive and Subspace Compressive GLRT detection
schemes and the corresponding target detection performance
gains are measured. The target detection probabilities of the
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Figure 1: System model for a bistatic MIMO radar.

proposed and conventional GLRT detectors in the presence
of clutter are plotted to demonstrate the superiority of the
proposed model. The proposed compressing sensing tech-
niques find their applications in resource constrained security
applications with limited processing capabilities. The rest of
the paper is organised as follows. In Section 2, the system
model and the signal models for binary hypothesis testing
are introduced. In Section 3, the test statistic for a GLRT
detector in the presence of clutter is derived. In Section 4,
the proposed mathematical model for SSC-GLRT detector in
the presence of clutter is derived.The performance evaluation
and simulation results are given in Section 5. Conclusions and
future work are summarised in Section 6.

2. Signal Model and Hypothesis Testing

2.1. SignalModel. As aforementioned, the problem of interest
which is considered in this paper is detecting the presence of a
target using ground based bistatic MIMO radar. The MIMO
radar is assumed to have 𝑁

𝑡
transmitting antennas and 𝑁

𝑟

receiving antennas. Each receiving antenna is assumed to
have 𝑁

𝑎
array elements. It is assumed that each transmitting

antenna transmits𝑁
𝑝
coherent pulses per transmitting cycle

(Figure 1).
In the presence of a target within a cluttered background,

the received signal at each receiver element can be expressed
as a combination of target return, clutter return, and noise.
Hence the received signal at each MIMO receiver can be
mathematically modelled as

y
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(1)

where y
𝑖
is the received signal at the 𝑖th receiver antenna and

it is of dimensions (𝑁
𝑝
𝑁
𝑎
× 1), S is the steering vector of

dimensions (𝑁
𝑝
𝑁
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× 𝑁
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), H represents the clutter subspace

and is of dimensions (𝑁
𝑝
𝑁
𝑎
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), a
𝑖
is the unknown

complex value accounting for target backscattering power



The Scientific World Journal 3

and channel propagation between transmitter, target, and the
receiver and it is of dimension (𝑁

𝑡
𝑁
𝑡
× 1), and b

𝑖
is the

unknown complex amplitude of the clutter return which is of
dimensions (𝑁

𝑡
×1). Finally,w

𝑖
denotes the noise component

which is of dimensions (𝑁
𝑝
𝑁
𝑎
× 1).

In (1), the clutter subspace matrixH is a priori unknown.
Detection algorithms suffer deterioration in the detection
performance in the presence of unknown clutter. The knowl-
edge of clutter is necessary to achieve reliable detection
rates and hence clutter estimation is necessary prior to
target detection. To estimate clutter, the knowledge of a
set of 𝐾 secondary data which are free of target returns is
necessary:

y
𝑖,𝑘

= Hb
𝑖
+ w
𝑖,𝑘
, 𝑘 = 1, 2, . . . , 𝐾. (2)

In the existing literature, the authors have addressed the
problem of clutter estimation from the available secondary
data [24–27]. For the rest of this paper, it is assumed that a
reliable clutter estimate is available to the target detector with
clutter being relatively time invariant.

2.2. Hypothesis Testing. The performance measure of a radar
receiver, while being dedicated to detect the existence or
nonexistence of targets within a region of interest, is the
degree of reliability on such decision making. The two possi-
ble outcomes of this decision making process are occurrence
or nonoccurrence of a phenomenon representing existence
and nonexistence of the target, respectively, which is mod-
elled as a binary hypothesis testing problem.The two possible
hypotheses are 𝐻

0
and 𝐻

1
, where 𝐻

0
represents the absence

of the target and 𝐻
1
represents the presence of the target.

The corresponding signal models of these hypotheses are
[14, 21]

𝐻
0
: y = Hb + w,

𝐻
1
: y = Sa +Hb + w.

(3)

The amplitude vector a and the noise variance are assumed
to be unknown to the radar receiver, while noise is assumed
to be AWGN. The test statistic for the GLRT detector
is generated from the log-likelihood ratio function within
which the unknown parameters are estimated using Maxi-
mum Likelihood (ML) estimator. For a desired false alarm
rate (𝑃fa), a threshold 𝛾 is generated which is compared
with the likelihood ratio function such that a decision
regarding the presence or absence of the target can be
made.

3. GLRT Detector in the Presence of Clutter

Clutter signal returns are spread across frequency spectrum
and away from zero frequency. Clutter returns are often
known to lead to increased false alarm rates. With relatively
small target Radar Cross-Sections (RCS), it is often the case
where the signal strengths from target returns are weaker
than the clutter returns and hence makes target detection
process more difficult at a constant false alarm rate (CFAR).
Hence careful considerations of the effect of clutter returns

are to be included in target detection design process to
maintain the required CFAR. For the received signal models
described in (3), the joint probability density functions for
the unknown parameters under hypotheses 𝐻

0
and 𝐻

1
are

defined as
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(4)

It is assumed that the radar target detector does not have
the knowledge of the noise variance, represented by 𝜎2,
and the complex amplitudes of clutter and target returns
which are represented by b and a, respectively. To formulate
the test statistic, the unknown parameters are estimated by
maximising the unknown parameter values for a given set
of received signal samples. The Maximum Likelihood (ML)
estimator estimates these unknown parameters from the log-
likelihood function which is denoted by Γ.The log-likelihood
functions under hypotheses 𝐻

0
and 𝐻

1
are summarised

as

Γ (y | b,𝜎2, 𝐻
0
) = −𝑁 log (𝜋𝜎2)
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2
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) ,

(5)

Γ (y | a, b,𝜎2, 𝐻
1
) = −𝑁 log (𝜋𝜎2)

−
1

𝜎
2
((y − Sa −Hb)𝐻 (y − Sa −Hb) +

𝐾

∑
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y𝐻
𝑘
y
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) .

(6)

3.1. ML Estimate of Noise Variance. Let the ML estimates
of the noise variance, 𝜎2, under hypotheses 𝐻

0
and 𝐻

1
be

denoted by �̂�2
0
and �̂�2

1
, respectively. The corresponding ML

estimates can be obtained from the partial derivatives of (5)
and (6) with respect to 𝜎2:

𝜕

𝜕𝜎2
(Γ (y : b,𝜎2, 𝐻

0
)) = 0, (7)

𝜕

𝜕𝜎2
(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0, (8)
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and thus, by solving (7) and (8), ML estimates of 𝜎2 under
hypotheses𝐻

0
and𝐻

1
can be summarised as

�̂�
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0
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𝑁
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) , (9)
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𝑘
) .

(10)

3.2. ML Estimate of Clutter Return. Let the ML estimates
of the unknown complex amplitude of the clutter signal
return under hypotheses 𝐻

0
and 𝐻

1
be denoted by b̂

0
and

b̂
1
, respectively. As aforementioned, the corresponding ML

estimates can be obtained from the partial derivatives of (5)
and (6) with respect to b:

𝜕

𝜕b
(Γ (y : b,𝜎2, 𝐻

0
)) = 0, (11)

𝜕

𝜕b
(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0. (12)

Solving (11) and (12), it can be observed that ML estimate
of the complex amplitude of the clutter signal return is
independent of 𝜎2. ML estimates of b under hypotheses 𝐻

0

and𝐻
1
can be summarised as

b̂
0
= (H𝐻H)

−1

H𝐻y, (13)

b̂
1
= (H𝐻H)

−1

H𝐻 (y − Sa) . (14)

3.3. ML Estimate of Target Return. The complex amplitude
of the radar signal which is backscattered from the target is
unknown to the radar detector. Let the ML estimate of the
target return under hypotheses 𝐻

0
and 𝐻

1
be denoted by â

0

and â
1
, respectively. From (5) and (6),

𝜕
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(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0. (16)

Hypothesis 𝐻
0
is based on the assumption that there is no

target return. From (16) it can be observed that the ML
estimate of the target return â

0
under hypothesis𝐻

0
is

â
0
= 0. (17)

ML estimate of â
1
can be obtained from (16) and (14) as

𝜕

𝜕a
((y − Sa −H (H𝐻H)

−1

H𝐻 (y − Sa))
𝐻

⋅ (y − Sa −H (H𝐻H)
−1

H𝐻 (y − Sa))) = 0.

(18)

Therefore theML estimate of complex amplitude of the target
return can be summarised by solving (18) as

â
1
= (S𝐻 (P𝐻P) S)

−1

(S𝐻 (P𝐻P) y) , (19)

where P = I −H(H𝐻H)
−1H𝐻.

By using the ML estimates of the unknown parameters,
the test statistic can be obtained as

𝜁 =

(y −Hb̂
0
)
𝐻

(y −Hb̂
0
) + ∑ y𝐻

𝑘
y
𝑘

(y − Sâ −Hb̂
1
)
𝐻

(y − Sâ −Hb̂
1
) + ∑ y𝐻

𝑘
y
𝑘

. (20)

4. Proposed Subspace Compressive GLRT
Detector in the Presence of Clutter

In Section 3, we derived the test statistic for a GLRT detector
for MIMO radar to detect the presence of a target using
a given set of received signal samples in the presence of
clutter. The processing requirement within a radar receiver
is a function of the number of targets that are required
to be dissociated from the given set of received signal
samples. In other words, to provide a preset level of target
detection reliability, the required number of received signal
samples varies nonlinearly with the number of targets that
are required to be dissociated. With limited computational
capacity within a radar receiver, such increase in processing
complexitymay lead towards resource saturation, hence lead-
ing towards a trade-off with the target detection reliability. To
reduce the processing burden, C-GLRT has been proposed
by authors in the existing literature. In C-GLRT, the received
signal samples are compressed by projecting them onto a
projection matrix Φ. While C-GLRT has the ability to make
a decision over existence or nonexistence of the target based
on compressed received signal samples and hence reducing
the computational complexity, it however suffers a significant
deterioration in the target detection performance. Moreover,
the target detection performance is further deteriorated in
the presence of clutter. Subspace compression techniques are
known to give better trade-off between the performance and
compressibility when compared to conventional compression
techniques. Hence a SSC-GLRT is expected to give a better
target detection performance than a C-GLRT. The signal
subspace for the radar target returns is expected to be sparse
in nature. The projection matrix for SSC-GLRT is modelled
to exploit this sparse nature of the received signal samples.
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In this section, we derive a new mathematical framework
to obtain the test statistic for SSC-GLRT detector which is
expected to improve the target detection performance in the
presence of clutter.

4.1. Signal Model. Unlike a C-GLRT which uses a random
projection matrix to compress the received signal samples,
for SSC-GLRT, we derive the projection matrix based on the
knowledge of the signal subspace. The projection matrix Φ
for SSC-GLRT can be derived as

Φ = G (S𝑇S)
−1

S𝑇, (21)

where G is the random measurement matrix.
For SSC-GLRT, the compressed received signal model

under hypotheses 𝐻
0
and 𝐻

1
can be obtained from (3) and

(21) as

𝐻
0
: y = ΦHb +Φw,

𝐻
1
: y = ΦSa +ΦHb +Φw.

(22)

SSC-GLRT detector uses the received signal models as
described in (22) to make a decision regarding the existence
or nonexistence of a target. As mentioned in Section 3, the
unknown parameters are statistically estimated using ML
estimator. The joint probability density functions for the
unknown parameters for SSC-GLRT under hypotheses 𝐻

0

and𝐻
1
are defined as

𝑓 (y : b,𝜎2, 𝐻
0
) = (

1

𝜋𝜎2
)

𝑁
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𝜎
2
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y
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𝐻
)
−1

y
𝑘
)) .

(23)

While the measurement matrix Φ is known to the radar
detector, the noise variance and the complex amplitudes of
the clutter and target returns are the unknown parameters.
For the probability density functions as defined in (23), the
log-likelihood functions for SSC-GLRT under hypotheses𝐻

0

and𝐻
1
are expressed as

Γ (y : a, b,𝜎2, 𝐻
0
) = −𝑁 log (𝜋𝜎2)

−
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(24)

Γ (y : a, b,𝜎2, 𝐻
1
) = −𝑁 log (𝜋𝜎2)

−
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𝜎
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((Φ
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) .

(25)

4.2. ML Estimate of Noise Variance. Let the ML estimates of
the noise variance𝜎2 under hypotheses𝐻

0
and𝐻

1
be denoted

by �̂�2
0
and �̂�2

1
, respectively. The corresponding ML estimates

can be obtained from the partial derivatives of (24) and (25)
with respect to 𝜎2:

𝜕

𝜕𝜎2
(Γ (y : b,𝜎2, 𝐻

0
)) = 0, (26)

𝜕

𝜕𝜎2
(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0. (27)

Solving (24), (25), (26), and (27), ML estimates for 𝜎2 under
hypotheses𝐻

0
and𝐻

1
can be summarised as
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0
=

1

𝑁
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−1
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𝑘
(ΦΦ
𝐻
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y
𝑘
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(28)

�̂�
2

1
=

1

𝑁
((Φ
−1

(y −ΦSa −ΦHb))
𝐻

⋅ (Φ
−1

(y −ΦSa −ΦHb)) +∑ y𝐻
𝑘
(ΦΦ
𝐻
)
−1

y
𝑘
) .

(29)

4.3. ML Estimate of Clutter Return. The ML estimates of
the complex amplitude of the clutter signal returns under
hypotheses 𝐻

0
and 𝐻

1
which are denoted by b̂

0
and b̂

1
can

be obtained from the partial derivatives of (24) and (25) with
respect to b:

𝜕

𝜕b
(Γ (y : b,𝜎2, 𝐻

0
)) = 0, (30)

𝜕

𝜕b
(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0. (31)

Solving (30) and (31) and rearranging terms, we can obtain
the ML estimates b̂

0
and b̂

1
as

b̂
0
= Vy, (32)

b̂
1
= V (y −ΦSa) , (33)

where V = ((ΦH)
𝐻
(ΦΦ
𝐻
)
−1
(ΦH))

−1
(ΦH)

𝐻
(ΦΦ
𝐻
)
−1.

4.4.ML Estimate of Target Return. Target return is the energy
gathered by the radar receiver which is backscattered from
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Figure 2: 𝑃
𝐷
comparison of a conventional GLRT detector and the

proposed GLRT detector in the presence of clutter.

a target. Hypothesis 𝐻
0
is based on the assumption that the

target is absent. Hence, under 𝐻
0
, the complex amplitude

of the target return has zero magnitude. However, under
hypothesis 𝐻

1
, the ML estimate of the target return which is

denoted by â
1
can be obtained as

𝜕

𝜕a
(Γ (y : a, b,𝜎2, 𝐻

1
)) = 0. (34)

Solving (34) as aforementioned, theML estimate of the target
return â

1
for SSC-GLRT detector in the presence of clutter

can be obtained as

â1 = ((ΦS)𝐻 P (ΦS))
−1

(ΦS)𝐻 𝑃y, (35)

where P = ((I −ΦHV)
𝐻
(ΦΦ
𝐻
)
−1
(I −ΦHV)).

By using the ML estimates of the unknown parameters,
the test statistic can be obtained from (28) and (29) as

𝜁 =

(y −ΦHb̂
0
)
𝐻

(ΦΦ
𝐻
)
−1

(y −ΦHb̂
0
) + ∑ y𝐻

𝑘
(ΦΦ
𝐻
)
−1

y
𝑘

(y −ΦSâ −ΦHb̂
1
)
𝐻

(ΦΦ
𝐻
)
−1

(y −ΦSâ −ΦHb̂
1
) + ∑ y𝐻

𝑘
(ΦΦ
𝐻
)
−1

y
𝑘

. (36)

5. Simulations

In this section, we demonstrate the performance of the
proposed mathematical model for a MIMO radar target
detector in the presence of clutter. As a measure of radar
target detection performancewe denote the terms probability
of detection (𝑃

𝐷
)which is defined as the percentage of cases in

which the true presence of targets is detected and Probability
of False Alarm (𝑃fa) which is defined as the percentage of
cases in which the presence of targets is falsely assumed.
The experiments are conducted based on Monte Carlo
simulations averaged over 10000 samples. A ground based
bistatic MIMO radar is considered with 𝑁

𝑡
= 1 transmitting

antenna and 𝑁
𝑟

= 3 receiving antennas. It is assumed
that each receiving antenna has 𝑁

𝑎
= 4 array elements

and the transmitting antennas transmit 𝑁
𝑝

= 5 coherent
pulses per transmitting cycle.The received signal samples are
considered to be corrupted by clutter and noise. While noise
is assumed to be zero-mean Gaussian, clutter is assumed
to follow Rayleigh distribution. Simulations are conducted
under CFAR with 𝑃fa maintained at 10−4. In Figure 2, the
target detection performance of the conventional GLRT and
the proposed GLRT detectors in the presence of clutter is
plotted.Theperformance of theGLRTdetector in the absence
of clutter is also plotted for comparative reasons. A clear loss
of target detection performance for a conventional GLRT
detector in the presence of clutter can be observed from the
figure while the proposed GLRT detector demonstrated a
significant improvement in the target detection performance.
Similarly in Figures 3 and 4 the target detection perfor-
mance of the proposed C-GLRT and SSC-GLRT detectors is

plotted. While conventional SSC-GLRT detectors are known
to reduce the computational complexity of the radar detector
while providing target detection performances which are
comparable to conventional GLRT detectors, however, when
tested in the presence of clutter, a severe loss of target
detection performance has been observed. From Figures 3
and 4 it can be clearly observed that our proposed C-GLRT
and SSC-GLRT detectors achieve significantly higher target
detection rates with reduced computational complexities. In
Figure 5 the computational complexities of a conventional
GLRT detector and the proposed SSC-GLRT detector are
compared. The computational complexities are measured as
a function of the number of arthematic operations involved
for a given set of received signal samples during the target
detection process.

6. Conclusion

In this paper, we have proposed a novel mathematical model
to optimise the target detection performance of a MIMO
radar in the presence of clutter. A GLRT detector is known
to provide robust performance. The proposed mathematical
model is tested on the conventional GLRT detector in the
presence of clutter and a significant improvement in the
target detection performance has been observed. A GLRT
detector however requires a large number of received signal
samples to provide optimal detection performance at CFAR.
Compressive sensing forGLRTdetector has been investigated
to reduce the computational complexity of the target detector.
From the simulation results, it can be clearly observed
that a C-GLRT detector, while reducing the computational
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comparison of a conventional C-GLRT detector and

the proposed C-GLRT detector in the presence of clutter at 50%
compression.
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Figure 4:𝑃
𝐷
comparison of a conventional SSC-GLRT detector and

the proposed SSC-GLRT detector in the presence of clutter at 80%
compression.

complexity, also suffers a significant loss of target detection
performance. C-GLRT detector is tested in the presence of
clutter and a further deterioration in the target detection
performance has been observed. Our proposed mathemat-
ical model, when tested on C-GLRT detector, produced a
significant improvement in the target detection performance.
However, a SSC-GLRT detector in known to provide superior
target detection performance when compared to C-GLRT
detector. Hence, a SSC-GLRT detector has been tested in the
presence of clutter and our proposed mathematical model
has been applied to produce a clear improvement in target
detection performance. Results are plotted for each of the
three aforementioned detectors where the ideal performance,
performance in the presence of clutter, and performance
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Figure 5: Comparison of computational complexities at different
compression ratios.

of the proposed model in the presence of clutter can be
compared. It can be clearly observed that our proposedmodel
provides significant performance gains in each of the three
cases. Dynamic clutter suppression for SSC-GLRT detector
is believed to provide better performance if added as signal
preprocessing which we intend to investigate in our future
work.
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