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Abstract Class decomposition describes the process of segmenting each class
into a number of homogeneous subclasses. This can be naturally achieved
through clustering. Utilising class decomposition can provide a number of
benefits to supervised learning, especially ensembles. It can be a computa-
tionally efficient way to provide a linearly separable dataset without the need
for feature engineering required by techniques like Support Ve]ctor Machines
(SVM) and Deep Learning. For ensembles, the decomposition is a natural way
to increase diversity; a key factor for the success of ensemble classifiers. In this
paper, we propose to adopt class decomposition to the state-of-the-art ensem-
ble learning Random Forests. Medical data for patient diagnosis may greatly
benefit from this technique, as the same disease can have a diverse of symp-
toms. We have experimentally validated our proposed method on a number of
datasets in that are mainly related to the medical domain. Results reported
in this paper shows clearly that our method has significantly improved the
accuracy of Random Forests.
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1 Introduction

Ensemble of classifiers, also known as multi-classifier systems (MCS) or com-
mittee of experts, has been long studied as a more accurate predictive model
than a single classifier [27]. It is usually being illustrated by its resemblance to
the democratic process of voting. As with politics, diversity of the voters can
enrich the final decision. However, when we look at the supervised learning
problem, applying the techniques on the same dataset will result in no di-
versity, and thus, in the ensemble being equivalent to only one classifier. The
solution taken is to vary the dataset, as in bagging [7] and boosting methods
[10], or to vary the classification techniques, as in stacking [32]. Some less com-
monly used solutions have worked on varying the output, like error-correcting
codes.

Over two decades of work has proved two ensemble learning techniques
to stand out, namely, Random Forest [8] and AdaBoost [15], or its variation
Gradient Tree Boosting [16]. More recently, a large scale evaluation of all of
these techniques and other state-of-the-art classification methods, has been
conducted [14]. The outcome of this evaluation has shown that on average
Random Forest is the most accurate classifier, followed by the single classifier,
Support Vector Machines. Motivated by this result, in this paper, we pro-
pose an important enhancement to Random Forest that has several benefits.
We use clustering within classes to decompose the classification problem to a
larger number of classes. The benefits gained from such a process can be sum-
marised as follows: (1) diversity will be boosted as class/instance association
is increased; (2) unlike feature engineering done in support vector machines,
class engineering is a computationally more efficient process that can lead
to linearly separable classes; and (3) in many machine learning problems, la-
belling is done at a higher granularity level, either because the finer level is not
known, or it is not significant to document it, e.g., it is good enough to label
a patient as being diagnosed with a disease, despite having many subtypes of
this disease.

Stimulated by these motives, we propose, develop and validate our class
decomposed random forest. Despite the specific application to Random Forest,
our method is applicable to any classification method, including single classifier
system. We first apply k-means clustering to instances that belong to each class
with varying the number of clusters (k). Once each class is decomposed in its
clusters (subclasses), we apply Random Forest to the newly class engineered
dataset. This process is iterative, as we tune the k parameter. For the work
reported in this paper, we used a fixed value for k in each iteration, however,
parameters can also be tuned such that the number of subclasses can vary
among different classes in the dataset.

In our experiments, we use a number medical datasets for patient diagnosis.
As discussed earlier, medical datasets can be a good representative of a higher
level granularity being used in labelling the data. Our method is proved to
have consistent improvement over traditional Random Forest, with tuning of
the k parameter. Despite having fixed k value among all classes for the one
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dataset, the method has exhibited higher accuracy. We believe that further
tuning of the parameter can even lead to higher accuracy.

The paper is organised as follows. Related work on previous attempts to
improve Random Forests and class decomposition is discussed in Section 2.
Our proposed method for enhancing Random Forests through class decom-
position is discussed in Section 3. A thorough experimental study validating
the proposed method for medical diagnosis is presented in Section 4. Finally,
the paper is concluded with a short summary and pointers to future work in
Section 5.

2 Related Work

Owing to its notable predictive accuracy, many extensions have been proposed
to further improve Random Forests. In [29], the use of five attribute good-
ness measures was proposed, such that diversity in the ensemble is boosted.
In addition to Gini index used in CART and random trees that make up
Random Forests, Gain ratio, MDL (Minimum Description Length), Myopic
ReliefF and ReliefF were used. Also unlike Random Forest in its traditional
form, weighted voting was proposed. Both extensions have empirically shown
potential in enhancing the predictive accuracy of Random Forests. In [21],
McNemar non-parametric test of significance was used to limit the number of
trees contributing to the majority voting. In a related work to this one, authors
in [30] used more complex dynamic integration methods to replace majority
voting. Stimulated by the low performance reported in high dimensional data
sets, weighted sampling of features was proposed in [3]. In [6], each tree in a
Random Forest is represented as a gene with the trees in that Random For-
est represent an individual. Having a number of trained Random Forests, the
problem has turned to be a Genetic Algorithm optimisation one. Extensive
experimental study has shown the potential of this approach. For more infor-
mation about these techniques, the reader is referred to the survey paper in
[13]. In a more recent work, diversification using weighted random subspacing
was proposed in [12].

Class decomposition has been proposed for a single classifier system, en-
hancing the performance of instance based classification in [1]. Adding to the
distance measure adopted in this class of classifiers, density and gravity were
proposed to assess point/cluster matching, i.e., instance labelling. In later work
such as [2], the technique was tailored to real-time human activity recognition,
which has been experimentally validated. Class decomposition for low variance
classifiers including Naive Bayes and linear classification methods have been
proposed in [31]. Such classifiers characterised by their lack of flexibility in their
decision boundary. Utilisation of class decomposition was proved to enhance
the performance, at the time of maintaining a low variance. More recently,
Polaka [26] has used class decomposition to boost the performance of three
classifiers (C4.5, Random Forests and Support Vector Machines) on a number
of medical datasets. With the motive that diseases can have more than one
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form, the class decomposition was only applied to the positive class. Both hier-
archical clustering and k-means were tested. When used with Random Forests,
k-means has resulted in a better accuracy when compared to hierarchical clus-
tering, as the accuracy has increased in all the 8 datasets used, as opposed to
only 3 datasets for the hierarchical clustering.

Having reviewed the closely related literature, we assert that the potential
of diversifying Random Forests using class decomposition has not been ex-
plored. Thus, this work augments the existing body of knowledge in this area
in the following ways.

– The proposed method is the first to apply class decomposition across all
classes in the dataset in multiple classifier systems. The other work that has
used class decomposition in Random Forests applied it to only the positive
class of medical diagnosis datasets [26]. We argue that the negative class
can also benefit from the class decomposition process, as healthy people
may still exhibit some symptoms of the disease under consideration for
diagnosis.

– Diversification of the ensemble has been motivated in this work, and as
such we hypothesise that applying clustering to all classes is beneficial
regardless of the quality of the produced clusters.

– Unlike the work in [31] that merged clusters after producing them, we have
not used the merging step, as this will decrease the chances for ensemble
diversification. This has not been an issue in the previous work that only
targeted single classifier systems with low variance.

3 Methodology

Our method is mainly based on decomposing the class labels for a given
dataset. In other words, finding the within-class similarities between different
instances/observations of a dataset and group them accordingly. With this ap-
proach, we can introduce more diversity to the dataset, aiming at improving
classification accuracy. Diversity can formally be introduced by increasing the
output space of the relationship between the feature vector X and the class
label set Y . If Y is decomposed to Y

′

, then |Y ′ | > |Y |, where |Y ′ | and |Y | are
the number of class labels after and before decomposition respectively, the set
relationship X × Y

′

> X × Y , producing enriched diversity in the dataset.

To motivate the discussion, assume that we have a dataset A with m num-
ber of instances x1,x2, ...,xm, where each instance xi is defined by an n number
of features as xi = (xi1, xi2, ..., xin). In a typical supervised machine learning
scenario, these instances are often labelled or categorised (i.e. by human ex-
perts in case of medical sets or from historic data i.e. banking details, customer
information etc). Formally, such dataset along with its labels may be repre-
sented as follows:
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A =
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xm1 ... ..., xmn









, Y =









y1
..
..
ym









(1)

where yi ∈ Rk represents the class or label of the ith training example and k
represents the number of unique classes in the data set. The aim of a learning
algorithm is to devise a function h(x) that maps an instance xi ∈ A to a class
yj ∈ Y . The learning algorithm is trained using a subset of A, often referred
to as the training set, while the remaining instances are used for testing how
good h(x) generalises. Intiutively speaking, h(x) = y would only be considered
a correct classification if the class of x = y.

With this simplification, it is clear that the main components that play
a critical role in devising an accurate mapping function with high accuracy
are: (1) the choice of learning algorithm, which is often influenced by the
type of data (i.e. dimension, size, etc); (2) the choice of features or attributes
to represent the training examples; and (3) the class labels. Although a lot
of work has been done regarding the first two components, to the best of
our knowledge very little work has been done in terms of class labels or class
decomposition. In this paper, our focus will be on the class labels of the training
samples as will be discussed in the following sections. But first, we will briefly
discuss the machine learning algorithm that we will be using in this work, and
consequently justify this choice.

3.1 Random Forests

The method we are proposing could be applied to any learning algorithm,
however, for the purpose of this paper, we chose Random Forests (RF). Over
the past few years RF proved to be one of the most accurate techniques and
is currently considered a state of the art. In a recent paper [14], RF came top
out of a 179 different classifiers of different families (i.e. Bayesian, Neural Nets,
Discriminant Analysis, etc) when used in classifying 121 different datasets from
the UCI repository.

Random Forests is an ensemble learning technique that has been success-
fully used for classification and regression. RF was developed by Brieman [8].
The method works as a set of independent classifiers (typically decision trees),
where each classifier casts a vote for a particular instance in a dataset, and
then majority voting is considered to determine the final class label.

The method combines Breiman’s bagging method [7], and the random se-
lection of features introduced by Ho ([17] and [18]) and Amit et al. [4]. The
decision trees in the ensemble are constructed using sampling with replace-
ment from the training set. With such technique, approximately 63.2% of the
samples are likely to appear in the training process (constructing each decision
tree) and these are referred to as in-bag sample, while the remaining ≈ 36.8%
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is often referred to as the out-of-bag sample and is used for testing the perfor-
mance of the forest. RF has several advantages over other learning techniques,
but one of its key advantages is its robustness to noise and overfitting. The
random selection of features is done at each node split for building the tree.
Typically this setting is

√
n, where n is the number of features. However, in

some implementations of Random Forests, log
2
(n) is used instead, encouraging

less features to be drawn at each node split for higher dimensional datasets.
Trees are allowed to fully grow without any pruning applied. As different set
of features are chosen at each node split, it is likely that all the features will be
used to build the one tree. However, each tree will have a different structure,
attributed to the bootsrap sampling applied and random selection of features
for goodness evaluation at each node split.

3.2 Class Decomposition

The idea of decomposing the class labels for a particular data set is based on
the assumption that within each class of instances, further clustering could
be identified. For example, in classical hand-written digit recognition, the
digit “8” could be written in so many different ways, which may or may not
share common characteristics, hence decomposing the set of instances that are
labelled as “8” into a set of clusters that share certain characteristics may
certainly improve diversity and consequently improve classification accuracy.
Similarly, in a medical dataset with hundreds of observations, assume that
each of these observations is labelled to indicate whether a disease is present
or not (i.e. 0, 1 respectively). Further class decomposition could be applied
and may lead to better representation of the data (i.e. a disease is present and
mild, present and severe, etc).

In this paper, and in order to achieve class-decomposition we used kmeans
clustering algorithm [24] aiming at minimising the within-cluster sum of squares
for each group of instances that belongs to the same class label (as will be dis-
cussed in the following sections). In other words, for a given dataset with a
feature set A as in Equation 1, we apply kmeans clustering algorithm to ob-
tain another set Ac with a new set of class labels Y

′

where Y
′

is defined as in
Equation 2

Y
′

= (y01, y02, ..., y0c, y11, y12, ..., y1c..., yk1, yk2, ..., ykc) (2)

where c is the number of clusters within each class in A. It should be noted
here that with such restructuring of the class labels which is applied accross
all labels (multi-class decomposition) , the number of unique class labels will
increase from k to ck. In addition, for any classifier h(x), where x belongs to
a class yi, h(x) = yij is considered as a correct classification ∀j ∈ 0, 1, ..., c.

For the purpose of illustration, consider the data sets A and Ac shown in
Equation 3, where Ac is equal to A but with its class labels decomposed into
c subclasses:
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A =
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(3)

Let us now assume that we applied a learning algorithm to both datasets
A and Ac, which results in the classification functions Φ and Φc respectively.
Suppose also that we applied Φ and Φc to a testing set resulting in h and hc

confusion matrices shown in (4).

h =





a b
a 50 0
b 0 50



 , hc =













a1 a2 b1 b2
a1 10 5 0 0
a2 4 31 0 0
b1 0 0 18 6

b2 0 0 9 17













(4)

We can measure the performance of Φ and Φc using the confusion matrices
denoted by h and hc 4. Lets assume for simplicity that c = 2 (number of
subclasses within each class label), the number of instances in the testing set
is 100 and that classification accuracy of both functions is 100%. Measuring
the performance of the learning algorithm when applied to the set A (Φ), we
simply sum up all the diagonal elements of the confusion matrix h and divide
it by the total number of observations (i.e. 100), as shown in Equation 5

Accuracy(φ(A)) =
(
∑m

i=0
hii

)

/m (5)

where m is the number of instances in the dataset, and in many types of
data sets m is often greator than n. Notice however that computing the accu-
racy for Φc using the confusion matrix hc, is slightly different from Equation
5. Here, we not only sum all the diagonal elements in the confusion matrix,
but also all elements within the same clusters even if they are off-diagonal of
the matrix. In Equation (4) for hc, all elements that are considered as correct
classifications are highlighted with bold font face.

3.3 Putting it together

Algorithm 1, depicts the method presented in this paper which could be sum-
marised by four major steps:

1. Pre-process input data (i.e. the feature set A of the given dataset).
2. Decompose the class labels of A using kmeans and store the resulting set

in Ac.
3. Apply Random Forests to both datasets and compare the results for pa-

rameter tuning.
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4. If parameter tuning is needed, repeat (2) and (3). Otherwise, terminate
the process with current settings.

In Algorithm 1 RF and RFC represent the application of Random For-
est on the original dataset and the decomposed dataset respectively. At the
same time, bestRF and bestRFC represents the best performing random for-
est on the original dataset A and the clustered dataset Ac respectively. In other
words, bestRF is considered to be the best performing Random Forest (e.g.
among all RF ′s) subject to the k value and the corresponding number of trees
in the iteration, while bestRFC is considered to be the best ensemble classi-
fier subject to the same parameters but when performed on the decomposed
dataset.

Algorithm 1 Compute bestRF, bestRFC (Multi-Class Decomposition)
Require: minK,maxK,minNTree,maxNTree, treeIncrement

bestRF ← 0
bestRFC ← 0
k ← minK
i← 0
while k < maxK do

Ac ← kmeans(A, k)
for (n = minNTree, n < maxNTree, n = n+ treeIncrement) do

RF ← randomForest(A,n)/2
RFC ← randomForest(AClust, n)/2
if (RF > bestRF ) then

bestRF ← RF
end if

if (RFC > bestRFC) then

bestRFC ← RFC
end if

end for

k ← (k + 1)
end while

Notice that although there are several parameters that can be tuned in
order to improve the accuracy of the Random Forests, we held all these pa-
rameters fixed, and only changed the number of trees in the Random Forests
to vary between minNTree and maxNTree trees. In addition, we varied the
number of clusters (k) value subject to the size of the training set. This sim-
plification is needed to assess the value of class decomposition when fixing the
number of parameters.

It is worth pointing out here that in Algorithm 1 we apply class decompo-
sition (clustering) to all available classes in the dataset (multi-class decompo-
sition). In this paper and in order to compare the predictive accuracy of our
technique to the previously proposed method by [26] we have applied single-
class decomposition, where only positive classes in the datasets have been
decomposed. Algorithm 2 is similar to Agorithm 1 apart from the change
to the clustering algorithm, where we pass which class to be decomposed
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(kmeans(A, class, k)) as a paramter. In such scenario, the class to be decom-
posed is chosen to be the postive class in a binary classification problem (e.g.
presense of a disease such as cancer, etc..).

Algorithm 2 Compute bestRF, bestRFC (Single-Class Decomposition)
Require: minK,maxK,minNTree,maxNTree, treeIncrement, class

bestRF ← 0
bestRFC ← 0
....
while k < maxK do

Ac ← kmeans(A, class, k)
..
..

end while

..

4 Experimental Study

The aim of this experimental study is to establish the usefulness of class de-
composition when applying Random Forests to medical diagnosis datasets. To
achieve this aim, we applied multi-class decomposition to 7 real datasets from
the medical diagnosis domain, varying the two parameters (number of clusters
k, and number of tree in the ensemble), as discussed in the previous section.
We have also applied single-class decomposition to 5 datasets, these sets have
been chosen out of the 7 used sets because they are binary classification prob-
lems. Description of the used datasets, discussion of the results, and details of
the implementation environment are discussed in details in this section.

4.1 Datasets

Seven datasets have been selected for testing the method presented in this
paper. All these sets are from the medical domain as can be seen in Table 1, and
most of it have been downloaded from the UCI repository [5]. These include
(1) Breast Cancer Wisconsin (Original) Data Set [25], (2) Heart Disease [28],
(3) Lung Cancer [19], (4) Mammographic Mass Data Set [11], (5) Parkinsons
Data Set [23], (6) Pima Indians Diabetes [5], (7) Thyroid 1. Table 1 summarises
the main Charasteristics of these datasets.

As can be seen in Table 1, these sets vary in terms of number of instances
(from 32 to 7000 instances), number of attributes (from 5 to 56 attributes)
and number of class labels (i.e. 2 and 3 classes). Notice that the data sets
highlighted in bold font in Table 1 have been used to apply single-class de-
composition. In other words, for comparision purposes between our method

1 https://archive.ics.uci.edu/ml/machinelearningdatabases/thyroiddisease/annReadme
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Table 1 Sets used for experiments

No Dataset Size Number of Attributes Number of Classes
1. Breast Cancer Wisconson 569 31 2
2. Heart 269 13 2
3. Lung Cancer 32 56 3
4. Mammographic 961 5 2
5. Parkinsons 195 23 2
6. Diabetes 768 8 2
7. Thyroid 7198 21 3

and the single class decomposition, we held the settings of all parameters the
same, and the only change is related to the chosen data sets, where only those
with binary classes have been considered.

4.2 Experiments Setup

In this subsection, we will use an illustrative example of running our method
on the widely used Optical Recognition Character set (OCR) dataset from
the UCI repository [5]. This illustration serves two purposes: (1) establishing
the generality of the method for applying it to other domains; and (2) exem-
plifying the methodology used in the evaluation when applied in the medical
diagnosis domain. The feature set of every dataset A used in this experiment
was subject to pre-processing where appropriate, in particular normalisation
where features values are standardised in the range of 0 to 1 as can be seen in
Equation 6

zi =
xi −min(x)

max(x)−min(x)
(6)

Where xi represents the ith value of feature/ attribute x in the dataset,
and max(x),min(x) represent the maximum and minimum values in feature
x. This step is important in particular to supress the sensitivity of kmeans
algorithms to outliers. Once data is normalised then kmeans clustering algo-
rithm was applied to it (Equation 7), resulting in a new set with its class labels
decomposed into a set of sub-classes k.

A
′

= normalize(A) + cluster(A) (7)

For each dataset, Random Forest was applied to it twice. One time on the
original data set (i.e. set A in Equation 7) and we refer to this experiment as
RF , and the other time, Random Forest was applied to the clustered version
of the dataset (i.e. A

′

), and we refer to this as RFC, denoting clustered based
Random Forest. All parameters were held fixed apart from number of trees in
the Random Forests and the k value. This allowed us to establish the usefulness
of class decomposition. Figure 1 depicts these settings.
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Fig. 1 Experiment setup, single run

We used hold-out method in evaluating the predictive accuracy of the
method. As can be seen in Figure 1, the size of the training set is almost
66% of the total size of the set (20,000), and each observation in the set has
16 attribute. It can be observed that our method (RFC) is winning in all set-
tings over (RF ) according to Figure 1. The improvement in this experiment is
statistically significant; adopting the paired t-test, the p -value is 6.932×10−7

with 95% confidence, and using the Wilcoxon signed rank test [33], the p-value
0.005889.

This experiment is given for illustration purposes, and thus we have only
used one run. To ensure consistency of the results when applied on the medi-
cal diagnosis datasets, each experiment was repeated 10 times, averaging the
results.

4.3 Implementation & Working Environment

All datasets used in these experiments (Table 1) were divided into two sets,
training set with 66% of the samples and testing set which represents the
remaining 34% of the set, adopting a hold-out methodology in assessing the
performance of the techniques. The datasets were randomly splitted within
the class labels of the observations in order to balance the class distributions
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within the splits (i.e. training, testing). A typical result of one experimental
run is shown in Table 2. Notice here, that the best performing Random Forests
results are selected (i.e. the ones with the best k values and the number of
trees).

Table 2 Results of one experimentś run (multi-class decomposition)

No Dataset Best k values RFC RF Win-Lose
1. Breast Cancer Wisconson 3 93.78 93.78 Tie
2. Heart 3 82.42 84.62 Lose
3. Lung Cancer 1 70 70 Tie
4. Mammographic 3 85.58 84.97 Win
5. Parkinsons 3 93.94 90.91 Win
6. Diabetes 2 75.86 74.71 Win
7. Thyroid 3 99.55 99.51 Win

A computational framework was implemented using R and randomForest
package [22] which implements Brieman and Cutler Random Forest for Classi-
fication and Regression2. The experiment was carried out using Mac machine
(OS X) with 16 GB of RAM and 2.6 GHz Intel Core i7. For both multi-class
and single class decomposition we set the minimum k value to equal 2, while
the maximum is set to equal 8. For the Lung cancer data set, we set k value
to vary between 1 and 2, due to the very small size of the set. Notice that
when k equals one then, both RF and our method RFC must result in the
same classification accuracy as can be seen in Table 2. The maximum k value
was set to equal 8 for these sets, because it turned out – experimentally – that
increasing the value beyond this number does not improve the performance
of our method. In [26], it was found that only 2 or 3 clusters for the positive
class decomposition in a number of biomedical datasets are able to produce
highest possible separable clusters. For validation purposes, we increased this
number to 8. However, our study is consistent with the results reported in
[26] that found only 2 or 3 clusters are adequate for biomedical datasets, and
that clustering with k equals 4 through 10 yielded less separable clusters (in
the case of multi-class decomposition). It is worth mentioning that diversity
created by clusters is an important motive behind our method, and hence we
experimented with up to 8 clusters.

4.4 Results & Discussion

A single run over the datasets according to the above framework shows clearly
that re-engineering the class labels improves the Random Forest performance
as shown in Figure 1 and as can be clearly seen in Figure 2.

2 http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
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Fig. 2 Parkinsons Dataset, single run

As mentioned earlier, in order to ensure consistency of the results, the
experiment was repeated 10 times for each set, and the results were averaged.
Here, we also compare our approach to Random Forest and to AdaBoost.
Table 3 summarises the results for all medical sets used in this paper.

Table 3 Average results of 10 runs, multi-class decomposition

No Dataset Size k values RFCavg RFavg AdaBoostavg
1. Breast Cancer Wisconson 596 2 to 7 96.735 95.957 88.238
2. Heart 269 2 to 7 82.637 82.089 84.066
3. Lung Cancer 32 1 to 2 68.956 66.737 63.000
4. Mammographic 961 2 to 7 83.835 83.181 82.147
5. Parkinsons 195 2 to 7 94.998 91.363 90.154
6. Diabetes 768 2 to 7 78.198 77.931 71.072
7. Thyroid 7198 2 to 7 99.561 99.671 99.323
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RFCavg represents the results based on our method, while RFavg repre-
sents classical Random Forest (i.e. without class decomposition), andAdaBoostavg
represents the AdaBoost method. The results shown in Table 3 shows clearly
that re-engineering class labels improves the performance of Random Forests.
The improvement has an appropriate statistical significance for the application
domain; adopting the paired t-test, the p-value is 0.06189 with 95% confidence,
and for the Wilcoxon signed rank test, the p-value = 0.03125. It is important
to note here, that these results have been achieved with minimum parameter
tuning. Thus, there is a clear potential for even further improvement. It is
also clear from Table 3 that our proposed method outperformed the evidenced
highly accurate ensemble classifier (AdaBoost). These results are also statisti-
cally significant, adopting the paired t−test, the p-value is 0.03427 with 95%
confidence, and the Wilcoxon signed rank test yielded a p-value of 0.04688.

A unique feature for our method is its applicability to multi-class problems,
as discussed earlier in the paper. Thus, for the special case of binary classifica-
tion problems, we run a set of experiments using the 5 binary datasets we use
in this experimental work to compare the predictive accuracy of our technique
to the previously proposed method by [26] to perform class decomposition on
the positive class only. To ensure consistency, we used the same experimen-
tal setup which includes repeating the experiment 10 times for each set, and
then averaging the results. Table 4 shows the superiority of our method (de-
noted by RFCavg) over the single-class decomposition method (RFCSavg) in
3 out of the 5 datasets. Paired t-test with 95% confidence revealed that the
results are of minor statistical significance with p-value = 0.6298, and using
the Wilcoxon signed rank test, the p-value = 0.625. Class decomposition over
the positive class has helped improve the performance, as previously reported
in [26]. However, it is worth noting that our method is more generic in terms
to its applicability to all classification problems, and thus the results prove the
potential of the new technique.

Table 4 Average results of 10 runs and comparision with the proposed method

No Dataset # of Classes RFCavg RFCSavg Difference
1 Breast Cancer Wisconson 2 96.73 96.27 +0.47
2 Heart 2 82.64 84.07 -1.43
3 Mammography 2 83.83 82.85 +0.98
4 Parkinsons 2 95.00 95.23 -0.23
5 Diabetes 2 78.20 76.63 +1.57

This enhancement in the medical diagnosis results can be attributed to a
number of reasons. Most medical diagnosis datasets have a high granularity
of labelling the data. As we can see in the 7 medical datasets used in this
experimental study, only 2 or 3 class labels were used. Even with appropriate
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level of labelling, inherent subclasses can be always discovered at later stage.
This is especially true in the medical domain. In recent years, a number of
flu viruses have been affecting the world of travel and business. Modelling flu
in a binary classifier that predicts the existence of one of the viruses can be
achieved. However, precision can be enhanced, if class decomposition of the
flu is applied, resulting in a multi-class problem. Finally, medical diagnosis is
a complex process with a high degree of uncertainty and non-linearity, a class-
decomposed data can simplify the process by looking at cohesive subclasses,
instead of modelling more complex higher granular set of classes.

5 Conclusion & Future Work

This paper proposed adopting class decomposition using clustering instances
that belong to the same label separately. The outcome of these clustering
processes is a fine grained labelled dataset, that ultimately diversifies among
individual trees in the trained Random Forests. Naturally, medical diagnosis
datasets can further benefit from clustering by grouping the instances sharing
similar feature values in one subclass (cluster). The proposed technique has
been validated experimentally over 7 medical datasets, showing its potential
in enhancing the predictive accuracy of Random Forests in medical diagnosis.

We can indicate a number of future directions to further enhance the per-
formance of the proposed method. Optimising the number of clusters per class
can further enhance the performance. Some classes are in need to fine-grained
decomposition where the number of clusters can be high; where some others
may not need any class decomposition. The nature of the dataset can deter-
mine whether or not clustering is needed and the optimum number of clusters.
This can be objectively measured using one of the cluster quality measures
(e.g., DBI [20]). Also other clustering techniques can be used instead of k-
means.

Another direction of future work is to investigate cluster proximity among
different classes when classifying unseen instance. Currently, if an instance
is assigned to a cluster that belongs to one class, it is assigned the label of
the parent class. However, there is a possibility of having a cluster that has
proximity to other classes. This is especially true in medical datasets, when
symptoms of the different diseases have high degree of similarity.

Finally, as the proposed technique converts binary classification problems
to multi-class ones, Error COrrecting Code (ECOC) ensemble methods [9] can
be applied to further diversify the classification from the output side. This is
especially interesting investigation, as artificial classes (clusters) can enrich
possible combination of binary classification problems for the ECOC.
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