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ABSTRACT
In this study we investigate ways in which data sonification can
improve standard data analysis techniques currently employed in
the analysis of stem-cells using Fourier Transform Infrared (FTIR)
Spectroscopy. Four different sonification methods have been eval-
uated and their effectiveness has been evaluated through listen-
ing tests, designed to assess the discriminating capability of the
auditory technique. We identify FM synthesis driven by feature
extraction as the most perceptually relevant technique for the au-
ditory classification of FTIR data. Whilst this technique is not
commonly used in sonification research, it allows us to utilise the
most salient characteristics of the absorption spectra, leading to an
improved classification accuracy with a clear timbral differences
between differentiated and non-differentiated cell-types.

1. INTRODUCTION

The use of stem cells in biomedical applications is currently an
area of interest given the vast potential that stem cells offer as a
renewable source of material for the production of differentiated
human tissues. However, there are still a number of challenges in
stem cell biology and regenerative medicine, one of these being
the understanding of whether the process of differentiation begun.
This is a very important question due to the fact that undifferenti-
ated stem cells can cause tumour formation when transplanted into
a human host.

Current analytical methods used to discriminate between dif-
ferentiated and undifferentiated cells are very time consuming,
require the addition of potentially harmful exogenous biomark-
ers and the cells are typically destroyed in or order for them to
be analysed. Although their results are extremely useful for re-
search, these methods are impractical for the screening of live stem
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cells and differentiated progeny. Since the introduction of Fourier
Transform Infrared Spectroscopy (FTIR) an infrared absorption
spectrum can be recorded in much shorter time periods, without
the destruction of the sample, and more importantly, biological
samples can be classified based on their biochemical absorption
properties.

Whilst the majority of this classification is done using offline
machine learning techniques, it is also useful to provide analysts
with a means to rapidly search through large datasets of cells and
selectively evaluate the probability of differentiation. To do this
from the visual representation alone is very difficult, we therefore
consider novel ways of data representation using sound.

2. VIBRATIONAL SPECTROSCOPY

Vibrational spectroscopy, such as Raman and FTIR are excellent
techniques for the analysis of many materials due to their ease
of use and requirement for simple sample preparation. The in-
elastic (Raman) scattered light from molecules under irradiation is
wavelength-shifted with respect to the incident light by molecular
vibrations. The Raman spectrum is complementary to that of IR
where incident light is absorbed at the resonant frequency of the
bond or group, exciting vibrational modes. Different biomolecules
exhibit responses to different wavelengths of light; the resultant
spectrum can be thought of as a ”fingerprint” of the sample. Spec-
troscopic analysis allows the objective classification of biological
materials on a molecular level [1].

Vibrational spectroscopy has the ability to revolutionise the
diagnostic environment [2] by providing diagnostic systems based
upon molecular information. Raman and FTIR have been shown
possible of discriminating patients with differing severities of brain
cancer from 1 µl of human serum [3] and differentiating between
cancerous, metastatic and normal brain tissue [4]. Currently the
standard data analysis approach focuses upon the use of a dimen-
sionality reduction (e.g. Principal Component Analysis) followed
by a classifier (e.g. Discriminant Function Analysis, Support Vec-
tor Machine) [5], [6], [7]. This is a time consuming process not
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Figure 1: A typical Infrared absorption spectrum with subband di-
visions. Horizontal axis represents wavenumber (cm−1), vertical
axis intensity

suitable for real time analysis of spectra. An approach that enables
the real time classification of different samples with auditory feed-
back would further the clinical translation and enable spectroscopy
to achieve its potential.

2.1. Infrared Spectroscopy

Infrared (IR) Spectroscopy is the measure of how IR radiation in-
teracts with molecules, either through absorption, emission or scat-
tering. Waves of IR radiation have frequencies between(3x1012)-(
3 x 1014) Hz and are found in the IR spectral region of the electro-
magnetic (EMR) spectrum. For a molecule to absorb a wave of IR
radiation, the wave has to have an energy which matches the en-
ergy needed to excite the molecule from the ground state (v0) to an
excited vibrational energy state (v1). There is therefore a range of
spectral sub-bands which correlate with relevant molecular vibra-
tions. Figure 1 shows the division of these bands in an absorption
spectrum. Here, the bands represent the following molecular com-
ponents: 1, C-O carbohydrates 2, PO2- nucleic acids 3, lipids and
proteins 4, N-H (amide II) proteins 5, C=O (amide I) proteins 6,
C-H lipids 7, O-H/N-H proteins and carbohydrates.

2.2. Stem Cells in Biomedicine

The use of stem cells in biomedical applications is currently an
area of interest given the vast potential that stem cells offer as a
renewable source of material for the production of differentiated
human tissues. However, there are still a number of challenges in
stem cell biology and regenerative medicine, one of these being
distinguishing stem cell and differentiated cell phenotype. This
is important due to the fact that undifferentiated stem cells can
cause tumour formation when transplanted into a human host. Cur-
rent analytical methods used to discriminate between differenti-
ated and undifferentiated cells are very time consuming, require
the addition of potentially harmful exogenous biomarkers and the
cells are typically destroyed in order for them to be analysed. Al-
though their results are extremely useful for research, these meth-
ods are impractical for screening stem cells and their differentiated
progeny.

Since the introduction of FTIR, an infrared absorption spec-
trum can be recorded in much shorter time periods, without the de-
struction of the sample, and more importantly, biological samples
can be classified based on their biochemical absorption properties.

Recent studies have shown the applicability of FTIR to monitor the
bio-molecular changes associated with the differentiation of stem
cells into specialised cell populations therefore, showing the po-
tential of the technique to monitor stem cell and differentiated cell
phenotype, without the need for biomarkers/labels [8] [9] Whilst
the majority of this classification is done using offline machine
learning techniques, it is also useful to provide analysts with a
means to rapidly search through large datasets of cells and selec-
tively evaluate the probability of differentiation. To do this from
the visual representation alone is very difficult, we therefore con-
sider novel ways of representation using an auditory representation
via sonification.

2.3. Scientific Data Sonification

Data sonification is, in general terms, the use of non-speech audio
signals to convey information or perceptualise data [10]. Auditory
perception of complex, structured information could have several
advantages in terms of temporal, amplitude, and frequency reso-
lution when compared to visual representations and often opens
up possibilities for an alternative or complement to visualisation
techniques [11]. These advantages include the capability of the hu-
man ear to detect patterns, recognise timbres and follow different
strands at the same time. This would offer, in a natural way, the
opportunity of rendering different, interdependent variables into
sound in such a way that a listener could gain relevant insight into
the represented information or data.

In particular in the medical context, there have been several
investigations using data sonification as a support tool for classifi-
cation and diagnosis from working on sonification of medical im-
ages to converting EEG to tones, including real-time screening and
feedback on EEG signals [12][13][14]. The technique described in
this work aims to combine single and multi-dimensional data soni-
fication techniques with data abstraction and classification. Signal
analysis and features extraction techniques have been employed
to select the most effective parameters to potentially discriminate
between two set of samples (differentiated and non differentiated
cells). Those parameters have then been used to drive different
sonification algorithms.

3. METHODOLOGY

The challenge of providing auditory feedback for IR spectroscopy
is two-fold, we first need to identify statistically relevant charac-
teristics of the absorption spectra and secondly need to map these
features to perceptually relevant synthesis parameters. To explore
this, we have implemented 4 different methods of sonification,
each based on a commonly used synthesis technique. In order to
evaluate the performance of each of the methods of synthesis, two
experiments were conducted in order to get subjective feedback.
In total, 35 subjects took part in the experiment, all with normal
hearing. The participants were from either an analytical chemistry
background or from an audio production background. The par-
ticipants were both male and female, aged between 18-40, with
normal hearing.

3.1. Experiment 1: Similarity

To gauge the relative dissimilarity between the audio from differ-
entiated and non-differentiated samples generated using 4 different
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synthesis techniques, subjects were presented with pairs of sam-
ples and asked to rate the similarity on a continuous scale, ranging
from 0 ≤ n ≤ 1. If the pair was considered to be completely
dissimilar, a value of 0 was given, if the listener judged the pair
to very similar, a value of 1 was given. Each listener was pre-
sented with 20 pairs, randomly chosen from a set of 311 samples
for each synthesis technique. For each pair, the samples were gen-
erated using the same sonification technique, then the techniques
were compared. The pairs consisted of either two samples from
the same cell type, or two samples from different cell types. For
a technique to perform well, the listener would have to assign a
high value to pairs from the same cell type and a low scores to
pairs from different cell types. when all tests were completed, the
scores were analysed in order to compute similarity measurements
for each synthesis technique.

3.2. Experiment 2: Clustering

As an additional measure of perceptual relevance, a multi-stimulus
test was conducted in which subjects were presented with a group
of 6 samples, some of which were taken from differentiated cells
and some of which were taken from non-differentiated cells. Sub-
jects were asked to put each of the samples into one of two possible
subgroups, thus partitioning the samples based on empirical per-
ceptual features. The ratio of cells from each group varied from
1:5 to 5:1 and the subjects were unaware of the group ratios. The
classification error was then calculated and the sonification tech-
niques were compared. Users were presented with 15 groups of 6
samples, each group was randomly selected from the dataset. For
each group, only one synthesis technique was used to generate the
samples.

4. SONIFICATION TECHNIQUES

In total, 4 techniques were explored, each with varying degrees
of abstraction from the original absorption spectra. This is in-
tended to demonstrate the perceptual salience of common soni-
fication techniques when applied to spectroscopy data.

4.1. Peak-Spectral Formant Synthesis

The most intuitive approach used in the experiment was a simple
formant synthesis technique. Here, the spectral envelope was used
to derive the centre-frequencies and bandwidths of a set of five
formant filters. The number of filters was fixed as each of the
samples had a static number of bands. Here, each of the filters are
defined using the transfer function:

Hn(z) =
1

(1 − c0z−1)(1 − c1z−1)
(1)

Where c0 and c1 are parameters calculated from the center-
frequency and bandwidth of each formant. The individual filters
are then combined using Eq 2 and used to process an impulse train,
with a fixed f0 of 1KHz.

H(z) =

N−1∑
n=0

Hn(z) (2)

In order to provide audible data, the peaks from the absorption
spectra were rescaled in frequency to range between 20Hz-20KHz
and normalised in amplitude.

4.2. Concatenative Synthesis

In order to directly control the timbre of the synthesised wave-
form, the absorption spectra were simply concatenated in the time
domain over a period of 3 seconds. Here, the f0 is set to 1KHz,
which is a function of the sample rate and the FFT-size. This is
modified using linear interpolation. In this method, the waveforms
can be characterised by their cepstral representation. This shows
the resulting harmonic configuration, caused by the relative peaks
in the absorption spectra.

4.3. Time-series f0 Conversion

One of the most frequently used approaches in data sonification
is the use of an empirically derived trajectory for time-domain f0
modulation. Here, the data is normalised and the amplitude of the
absorption spectra is rescaled using Eq. 3 and optionally quantised
to pitch classes.

yn = Pmin +
(xn − qmin)(Pmax − Pmin)

qmax − qmin
(3)

In our case, qmin and qmax are set to 0 and 1 and pmin and pmax
are set to 20 and 20,000 respectively, allowing us to cover the ma-
jority of the auditory spectrum. In our implementation, we chose
not to apply quantisation to allow for more variance in resulting
waveforms.

4.4. Feature Selection

In an attempt to maximise the classification accuracy through ab-
straction of the parameter set, the most salient properties of the
absorption spectra were selected using variable ranking. This tech-
nique is designed to isolate the most highly correlated feature vec-
tors with a target set, thus assigning scores based on a feature’s
ability to discriminate between two classes. To do this, an ex-
tended feature-matrix was extracted from the absorption spectra
which consisted of sub-band spectral moments (e.g: spectral cen-
troid, skew, kurtosis) and their corresponding inter-band ratios.
Each of the feature vectors were then ranked using the mutual in-
formation metric, given in Eq. 4

r(i) =
∑
xi

∑
y

P (X = xi, Y = y)log
P (X = xi, Y = y)

P (X = xi)P (Y = y)

(4)
Where, P (X = x, Y = y) refers to the joint distribution of x
and y, and P (X = x) and P (Y = y) are the probability density
functions of x and y respectively. The top three descriptors were
then used as control signals for parameters of an FM synthesizer.
These features were

1. Kurtosis Ratio between bands 6 and 3 (r = .548)

2. Kurtosis ratio between bands 6 and 5 (r = .491)

3. Skew of band 4 (r = .442)

Where the Kurtosis ratio is given in Eq 5 and the Skew is given in
Eq 6.

xi = K(bi[3])
K(bi[5])

, K(y) = ( 1
N

∑N−1
i=0 [ yi−µ

σ
]4) − 3 (5)
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xi =
1

N

N−1∑
i=0

[
yi − µ

σ
]3 (6)

Using the rescaling described in Eq. 3, the top three features were
used to control the f0, the modulation index and the modulation
frequency respectively.

5. RESULTS

In order to evaluate each system’s ability to produce audible dif-
ferences between the two cell types, the results from the listen-
ing tests were analysed and the perceived dissimilarity across the
two types was calculated for each technique. The results from the
first experiment are shown in Figures 2 and 3, where Figure 2 il-
lustrates the similarity measurements shown for each sonification
technique. Here, each technique is divided into pairs consisting
of two of the same sample (a), and pairs consisting of different
samples (b).
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Figure 2: The relative similarity scores of paired listening tests.
For each sonification technique, a represents samples taken from
the same cell type and b represents samples taken from different
cell types.

From this data, we can then compute the subjective difference
measurement for each technique using Eq. 7, thus demonstrating
the relative success of each model. This measurement is illustrated
in Figure. 3.

sd =

[
ā+ (1 − b̄)

2

]2
(7)

Where ā, and b̄ represents the respective means of the pair
groups a and b.

Both of these figures suggest the feature selection technique
significantly outperforms the other methods of sonification with a
score of 0.68. To evaluate this further, the results from the cluster-
ing experiment are displayed in Figure 4. Here, the classification
accuracy is given over the full range of selected samples for each
technique.
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Figure 3: The subjective difference across each of the sonification
techniques, measured using audio from two cell-types, computed
using Eq. 7.
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Figure 4: Subjective classification accuracy taken from listeners
assigning labels to groups of six samples.

Generally, people were able to group the samples from the
feature selection method with a higher degree of accuracy. Here,
the accuracy for the feature selection technique was 91.9%, this is
11% higher than the nearest technique. Whilst this demonstrates
that participants were able to successfully classify samples from
this sonification technique, there is also a high variance, suggesting
results were somewhat inconsistent.

6. DISCUSSION

From the listening test results, it is evident that the most salient
technique is the feature selection method. Whilst this is not a com-
monly used algorithm in sonification research, the additional layer
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(a) Class 1: Sample 1 (b) Class 1: Sample 2 (c) Class 1: Sample 3

(d) Class 2: Sample 1 (e) Class 2: Sample 2 (f) Class 2: Sample 3

Figure 5: Sonograms from audio samples created using FM-synthesis driven by feature extraction. Here, class 1 represent non-differentiated
samples and class 2 represent differentiated samples.

of abstraction caused by the feature selection process allows us
to use the most salient characteristics of the absorption spectra,
rather than some arbitrary features, derived implicitly through the
synthesis technique. The feature selection process allows us to ef-
fectively improve the classification accuracy, thus creating clear
timbral differences between the two cell-types.

This effect is demonstrated in Fig. 5, here the spectrograms
show a clear difference between the harmonic content of the dif-
ferentiated and non-differentiated cell types. In class 1 there are
much fewer harmonics, whereas in class 2 the spectral peaks are
much more densely populated, leading to a higher inharmonicity
measure. Perceptually, this means the timbre of the differentiated
cells is much rougher, with a very distorted sound. This timbral
variance between cell types is also reflected in the results, Figure
2, for example shows the technique is capable of producing sounds
that are perceived as different when different cell types are soni-
fied and sounds that are perceived as similar when samples from
the same cell type are sonified.

7. CONCLUSION

Whilst the evaluation procedure is still at an early stage, the pre-
liminary results indicate that the feature selection method signifi-

cantly out performs the other 3 techniques in terms of perceptual
relevance, and ultimately subjective classification accuracy. The
combination of feature extraction and FM synthesis, with timbre
parameters controlled by kurtosis and skew ratios of selected bands
in the absorption spectrum, demonstrates promising results in the
auditory discrimination of differentiated and undifferentiated cells
for stem cell research.
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