
Pre-emptive Flow Installation for Internet of Things
Devices within Software Defined Networks

Peter Bull
Ron Austin

and Mak Sharma
School of Computing, Telecommunications and

Networks
Birmingham City University

Birmingham, UK
Email: peter.bull@bcu.ac.uk

Abstract—The predicted prevalence of both Internet of Things
(IoT) based devices and the concept of Software Defined Net-
working (SDN) as a new paradigm in networking, means that
consideration is required for how they will interact. Current SDN
implementations operate on the principle that on receiving an
unrecognised packet, a switch will query a centralised controller
for a corresponding rule. Memory limitations within current
switch devices dictate that this rule can only be stored for a
short period of time before being removed, thus making it likely
that the relatively infrequent data samples sent from IoT devices
will have a transmission interval longer than this timeout.

This paper proposes a Pre-emptive Flow Installation Mecha-
nism (PFIM) that dynamically learns the transmission intervals
of periodic network flows and installs the corresponding rules
within a switch, prior to the arrival of a packet. A proof-of-
concept implementation shows this to have a significant effect on
reducing the delay experienced by these flows.

I. INTRODUCTION

The Internet of Things (IoT) and Software Defined Net-
working (SDN) have emerged in recent years as two areas of
major research and development effort in the area of computer
networking, and are set to change the way that networks
function and interoperate. These two areas are often considered
as separate entities, but their pervasive natures make the
likelihood of their interaction at some levels to be certain.
It is necessary to consider, therefore the implications of the
characteristics of each and the affect of such interactions.

The concept of the Internet of Things refers to the net-
working of a wide range of heterogeneous (often embedded)
devices, to allow the sharing of data, and where appropriate,
the reception of a data response, or actuating command. The
exact nature of the data provided by these devices is likely
to vary greatly, depending on the application in question (e.g.
in room temperature sensors, industrial manufacturing process
monitoring, etc.). This data will often have implicit perfor-
mance requirements, including, but not limited to, ensuring
that data samples are received in a timely manner. This places
a requirement on the network and associated devices to support
this performance.

Software Defined Networking differentiates from tradi-
tional networking approaches through the separation of the
data and control planes of the networks, thus allowing a greater

flexibility in network management and configuration. In an
SDN based system, switches are essentially ’dumb’ devices
that rely on a separate controller to provide rules for the way
in which network flows should be handled. The switch and
controller communicate via what is referred to as a southbound
interface, with the majority of current implementations for
this focusing on the Open Networking Foundation’s OpenFlow
protocol standard. When a new packet arrives at a switch for
which a rule does not exist, it is sent to the controller and a
decision returned to the switch. These rules are held within
the switch on either an Idle timeout (which will not expire
while packets are still being received), or a Hard timeout (after
which a rule will be deleted regardless of whether matching
packets are still being received). These flow rules contain a
large number of potential matching criteria (a maximum of 12
criteria in OpenFlow version 1.0 and 38 in version 1.5) and
therefore require larger amounts of memory than a standard
MAC address table. For this reason, idle timeout values for
flow rules are often kept relatively short (in the region of sub-
10 seconds), ensuring that memory is freed up once a flow has
stopped transmitting.

As Software Defined Networking grows in prevalence it
is increasingly likely that IoT gateway devices will function
based on these principles. This will bring benefits in terms
of flexibility in configuration and advanced Quality of Service
management. The nature of current SDN devices may, how-
ever, have a negative affect on the performance of IoT based
devices, which are likely to send relatively small amounts of
data at relatively infrequent intervals. Upon arrival of a new
packet at a switch, the initial querying of a controller is subject
to an additional delay, while a response is returned. If the
Idle timeout period is smaller than the transmitting interval of
the IoT device, then data packets will always be sent to the
controller. If data samples are sent at regular periods, however,
then this presents an opportunity to pre-emptively install flows
before the sample arrives, thus reducing traffic sent to the
controller and data packet latency.

The remainder of the paper is organised as follows. Section
2 presents a brief background review of IoT devices and their
data characteristics. Section 3 provides further detail of the
SDN concept and how it relates to the IoT. Section 4 presents
a proposed Pre-emptive Flow Installation Mechanism (PFIM).
Section 5 evaluates the proposed mechanism in terms of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141205295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

performance characteristics. Section 6 concludes and discusses
potential future work.

II. INTERNET OF THINGS DEVICES AND DATA
CHARACTERISTICS

As noted by [1] and [2], the Internet of Things (IoT) has
evolved from a large effort of research and development in
previous projects, such as those focused on Wireless Sensor
Networks, to recognise the fact that these networks cannot
be seen as isolated islands, but should contribute, through
the Internet, to a greater overall system infrastructure. Such
an infrastructure provides greater opportunities for big data
processing, intelligent control algorithms, and ultimately leads
to systems that are more dynamic and responsive to changing
conditions.

[3] discusses the range of pervasive devices or ’things’
that will contribute to the IoT, including, but not limited to
embedded sensors, actuators, RFID tags, etc. The nature of
these devices means that the traffic patterns that they create are
inherently different than that currently seen across the majority
of the Internet. As IoT devices are often battery powered,
energy conservation is of high importance. For this reason,
devices often spend large periods of time sleeping, waking
only briefly to transmit, or receive data.

With the exponential rise in data traffic caused by the
ever increasing number of IoT devices, the impact on the
network architecture could be profound. Some sensors transmit
data periodically, e.g. environmental sensors, whereas transport
applications may require continuous transmission of engine
data [4]. However, IoT devices in other scenarios (such as
healthcare) have a wide and varied range and may require
both quick burst and long burst data transmission.

Typically IoT devices access the Internet through a gate-
way device. For those nodes not operating with standard IP
addressing or associated protocols, this gateway can act as
a translator between protocols. As the use of protocols such
as 6LowPAN (IPv6 over Low power Wireless Personal Area
Networks) expand, however, the role of the gateway reverts to
that of a standard router.

Subsection II-A considers an example IoT scenario in
further detail.

A. IoT Example Scenario

The Smart Care Spaces project, as proposed by [5], in-
vestigates the use of IoT based technologies for the develop-
ment of less formal environments for medical patient care.
This is achievied through the use of sensors that monitor
the patient’s environment and patient mounted sensors that
monitor their physiological parameters, with an overall goal to
providing physicians with data on which to base interventions
or diagnoses. The devices used within this project range from
wall mounted temperature and light sensors, to mobile phone
based accelerometers and RFID based location tracking. Data
samples from these devices are transmitted to a gateway
device, which in turn forwards the data to a central point for
cloud based decision making. This provides a good illustration
of the variety of devices that could be in use within one small
setting and the variety of data that would contribute to network

ONF WHITE PAPER
Software-Defined Networking: The New Norm for Networks

7 of 12© Open Networking Foundation. All rights reserved.

Introducing Software-Defined Networking

Software Defined Networking (SDN) is an emerging network architecture

where network control is decoupled from forwarding and is directly

programmable. This migration of control, formerly tightly bound in individual

network devices, into accessible computing devices enables the underlying

infrastructure to be abstracted for applications and network services, which

can treat the network as a logical or virtual entity.

Figure 1 depicts a logical view of the SDN architecture. Network intelligence

is (logically) centralized in software-based SDN controllers, which maintain

a global view of the network. As a result, the network appears to the

applications and policy engines as a single, logical switch. With SDN,

enterprises and carriers gain vendor-independent control over the entire

network from a single logical point, which greatly simplifies the network

design and operation. SDN also greatly simplifies the network devices

themselves, since they no longer need to understand and process

thousands of protocol standards but merely accept instructions from the

SDN controllers.

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE LAYER

SDN
Control
Software

Network Device

Network Device Network Device

Network Device Network Device

Business Applications

Network Services

Control Data Plane interface
(e.g., OpenFlow)

APIAPIAPI

Perhaps most importantly, network operators and administrators can

programmatically configure this simplified network abstraction rather than

having to hand-code tens of thousands of lines of configuration scattered

among thousands of devices. In addition, leveraging the SDN controller’s

centralized intelligence, IT can alter network behavior in real-time and

deploy new applications and network services in a matter of hours or days,

FIGURE 1

Software-Defined Network

Architecture

Fig. 1. Software-Defined Network Architecture [10]

flows. When considering traffic patterns from these devices it
is apparent that the majority of devices used in this scenario
will likely be transmitting small and infrequent data samples.
To take an example, a temperature sensor, such as the NXP
LM75B temperature sensor [6] found on Arduino based sensor
nodes has an output resolution of 11 bits. Data samples for
temperature sensors also tend to be sent at relatively infrequent
intervals as the overall temperature of a room will not change
significantly in a small space of time.

To consider the healthcare scenario further, take the ex-
ample of a major incident occurring on a motorway and all
the emergency services are mobilised. All the vehicles on
the motorway will have IoT type devices and passengers will
have mobile devices connected to the internet by GSM or 4G.
Now consider if a major accident had occurred, there will
be an exponential change in data traffic as devices present
at the scene will all be sending messages [7]. IoT enabled
ambulances carrying patients to a nearby hospital could be
be transmitting patient data from the incident to the hospital.
In this scenario a wide variety of network traffic patterns are
present and an adaptive network, capable of real-time response
to changing network conditions is required.

III. SOFTWARE DEFINED NETWORKING

When configuring traditional network devices (e.g.
switches, or routers) the low level details of configuration and
features etc. (referred to as the control plane) are dependent on
the proprietary operating system of that device. This means that
networks can be difficult to reconfigure in a dynamic manner,
and complex to manage. Software Defined Networking (SDN),
as discussed in [8], aims to address this through the decoupling
of control and data planes to allow for the software based
configuration of devices, illustrated in Figure 1. The high level
architectural overview of SDN, provided by [9], goes on to
detail how it consists of three main principles/components:

• Decoupling of controller and data planes

• Logically centralised control

• Exposure of abstract network resources and state to
external applications

These principles work together to facilitate the control and
configuration of the network through a software based element,
thus allowing all the associated advantages (such as dynamic
control). A logically centralised controller provides a means of
monitoring the overall network performance and dynamically
adjusting configuration (be it re-routing traffic, or applying a
new bandwidth rate limit to a greedy flow, etc.).

Implicit in a wide variety of SDN literature is the use of
open standards as a means of facilitating greater interoperabil-
ity. There are a small number of proprietary SDN implementa-
tions, share the same architectural goals, but seek to leverage
vendor-specific device capabilities to gain performance or
functional advantages. Cisco, as an example, have proposed
an Application Centric Infrastructure (ACI) [11]. Within an
ACI based system, the network fabric consists of three major
components: the Application Policy Infrastructure Controller,
spine switches, and leaf switches. These components work
together to manage both the application of network policies
and the delivery of network traffic. Applications are specified
with explicit performance requirements, for which it is the ACI
networks responsibility to meet. Network applications can be
developed through an open interface, however, device infras-
tructure and low level network management is controlled by
the Application Policy Infrastructure Controller. This approach
leads to advantages in terms of network configuration and
performance, however, limits the interoperability of devices.
This paper will consider Software Defined Networks primarily
from their more open standards based definition due to the
wider overall applicability of developments in this area.

This section will consider aspects of SDN as they relate
to the relevant Standards, Controllers, and Switch Devices. It
concludes with a discussion of how these SDN principles relate
to the Internet of Things.

A. SDN Standards

The abstraction of control and data planes found within
Software Defined Networking means that standardised com-
munication protocols are required. While a number of SDN
standards have been proposed, the support within hardware has
largely been found to be limited to two standards; OpenFlow
and Cumulus Linux.

• The Open Networking Foundation (ONF) OpenFlow
standard [12] defines the format of messages between
the switch and controller. It also specifies a range of
mandatory and optional network device features (e.g.
flow matching criteria, VLAN tagging/detagging, ...).
When a packet arrives at a switch it is checked against
a flow table to identify the rules for how to treat that
type of traffic. If a corresponding rule is not found
in the flow table then the switch must communicate
with a controller device using the OpenFlow protocol
to request a rule for that flow.
The OpenFlow protocol has an active development
community and user base, with new versions of the
standard released periodically (version 1.5 being re-
leased in December 2014). More recent versions (from
1.3 onwards) include additional Quality of Service
based functionality (such as queue rate limiting) and
provide a wider range of flow matching criteria.

• Cumulus Linux [13] is a network device Operating
System, through which SDN objectives can be re-
alised. Linux based applications can be built on top
of this standard as a means of controlling the network
behaviour. It is argued that the use of a Linux based
Operating System for network devices provides a more
open development environment, as device hardware
does not need to be tailored towards a specific protocol
(such as is necessary, for example, with OpenFlow).

As identified by [14], the current leading southbound inter-
face in terms of wider community adoption and deployment is
the Open Networking Foundation (ONF) OpenFlow standard.
This is due to the fact that it is implementable on existing
network switch hardware, whereas Cumulus Linux requires
a different type of open platform based network device.
Subsection III-C discusses the current implementation options
for OpenFlow found within network switch devices.

B. SDN Controllers

An SDN controller is a logically centralised device that
is capable of configuring network switches based on different
flows observed within a network. This configuration tends to
be sent as a reply to a query from a switch when it encounters
a packet for which it does not currently have a corresponding
rule. Messages between switch and controller must conform
to a common standard, such as the previously mentioned
OpenFlow. As the switch cannot perform any actions on
incoming packets without having received a rule from the
controller, the response time of the controller will have a large
influence on overall network performance.

As identified by [14], there are a wide number of SDN
controllers currently available (for example POX, NOX, Bea-
con, Floodlight, Ryu), largely stemming from Open Source
projects. These differ primarily in terms of choice of under-
lying programming language and structure, and the effect that
this has on performance (typically measured in number of flow
installations per second).

As the control plane has been removed from SDN based
network devices and placed within a software based controller,
there is a need for replicating the advanced functionality of
other network devices (e.g. routers, firewalls, load balancers).
This has been termed Network Function Virtualisation (NFV).
To implement the full range of network functionality solely
within an SDN controller would be too complex to manage
efficiently. To interface between the SDN controller and vir-
tual network devices, another common interface is required,
referred to as the Northbound Interface. Unlike the Southbound
Interface, where a well-established standard (OpenFlow) ex-
ists, work on a common Northbound Interface is ongoing.

As a response to the somewhat fractured nature of SDN
controller development, the OpenDaylight project [15] has
been formed through the collaboration of multiple industrial
organisations (with members including Cisco, IBM, HP, Ju-
niper, etc.) and is offered under open source license. OpenDay-
light supports two northbound interface APIs, the OSGi (Open
Service Gateway initiative) framework and bidirectional REST.
The OSGi framework is used for applications that run in the
same address space as the controller. The REST (web based)
API is used for applications that do not run in the same address

space (or the same machine) as the controller. In addition, it
offers the use of different southbound interfaces (for example
OpenFlow, NETCONF, BGP, etc.) through plug-ins.

C. SDN Switch Devices

As SDN represents a new approach to networking, it
follows that the switch devices that will form the major
network component will also need adaptations to ensure their
compatibility. There are currently three main options for switch
devices, legacy switches running SDN enabled firmware, bare-
metal switches, or fully virtualised switches.

• Traditional, legacy network switch devices (i.e. those
supplied by the manufacturer with a custom, non-
open source Operating System) are dependent on the
switch manufacturer for software updates, and support
for SDN based standards can therefore vary. Like-
wise continued support for particular models is not
guaranteed. There are, however, a number of switches
commercially available through which support for
OpenFlow can be enabled (usually through firmware
update). As [14] notes, where support for SDN exists,
the majority of current legacy devices support version
1.0 of the OpenFlow standard, with a growing number
supporting version 1.3.

• Bare metal (otherwise referred to as white box)
switches are supplied without an Operating System
pre-installed. This allows the network designer to
choose the Operating System that they will use. There
are currently two major Operating Systems supported
by bare metal switch manufacturers; PicOS (which
supports OpenFlow) and Cumulus Linux.

• Virtualised SDN enabled switches allow for the con-
struction of Software Defined Networks without a
requirement for traditional networking hardware. Two
common examples of these are OpenVSwitch and
OFSoftSwitch (with OpenVSwitch also forming the
basis of the support for OpenFlow within PicOS)

IV. SDN AND IOT

As mentioned in Section II, IoT devices typically commu-
nicate through gateways, allowing access to other networks
and the wider Internet. It is at these gateways that IoT traffic
and SDN approaches will mix. The concept of SDN makes
no requirements on the traffic sources within the network, and
applications should therefore be able to remain agnostic to
the underlying network infrastructure. This means that IoT
devices would be able to send data through an SDN enabled
device without any additional configuration required. This does
not, however, place guarantees that all aspects of performance
would be equivalent to that of a traditional network.

A major potential issue that presents is the delay introduced
by an SDN enabled switch querying a controller for the
installation of a corresponding rule. Within most traffic flows
this additional delay would only be experienced in this initial
setup process, while the rule is installed. The flow rules stored
within a flow table on an SDN switch contain a large number
of potential matching criteria (a maximum of 12 criteria in

OpenFlow version 1.0 and 38 in version 1.5) and therefore re-
quire larger amounts of memory than a standard MAC address
table. These rules could take between 12 and 243 bits to store
for OpenFlow version 1.0 (assuming 6 bits are used for the
port number, allowing up to 64 ports). This also assumes that a
switch supports using a single bit to indicate wildcard matching
criteria, as this is not mandatory within the OpenFlow standard,
but dependent on vendor implementation. OpenFlow version
1.5 includes support for a wider range of criteria (including
IPv6 addresses), resulting in a larger minimum of 38 bits
and maximum of 1082 bits per rule. To address the potential
memory issues that this creates, OpenFlow rules are typically
set with a small Idle timeout value (in the region of below
10 seconds), meaning that if a flow has not transmitted within
this time, then it is removed from the flow table.

Considering the relatively infrequent data sample transmis-
sion found within IoT based devices discussed in Section II,
and identified within the example scenario in Subsection II-A,
it is likely that the Idle timeout value set at a switch will be
smaller than common IoT device transmission intervals. This
will result in an additional delay for the data packets every
time that a data sample is sent, while the controller is queried
for the matching rule. It will also place additional burden on
the controller to deal with this request.

This additional delay for packets could have a serious
impact on the performance of IoT systems. Taking the ex-
ample of systems that contain both sensors and actuators, a
finely balanced control algorithm, with soft or hard real-time
deadlines, could malfunction given additional, unpredictable
delays. If the TCP algorithm was used for transmissions then
additional, excessive delay could be interpreted as loss, causing
unnecessary retransmissions in the network.

Subsection IV-A considers Idle timeout values in further
detail.

A. Analysis of Varying Idle Timeout Values in a Software
Defined Network

A simple network simulation was created using Python
scripting to allow an examination of the effect of varying
Idle timeout on flow table sizes and the number of flow rules
prematurely removed, before transmission has finished. Flow
installations and removals are simulated based on the char-
acteristics of network traffic being transmitted. Three traffic
classes are used for this simulation; Continuous, Bursty, and
Periodic.

• Continuous traffic transmit for a set period, with no
breaks in transmission.

• Bursty traffic flows have periodic pauses for between
1 and 5 seconds (such as might be experienced with
buffering data flows).

• Periodic flows have long breaks between transmission
of between 5 and 30 seconds, such as is common with
IoT sensor based devices.

The simulation creates 100 traffic flows with pseudo ran-
dom values for their traffic class, starting time of transmission,
and period for which they transmit. This is intended to give
a simple variety to network traffic patterns, but does not

0

10

20

30

40

50

60

70

N
u
m

b
er

 o
f

F
lo

w
 R

u
le

s

Time (ms)

Number of F low Rules Insta l led w i th Varying

Idle Timeout Intervals (OpenFlow 1 .0)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

0

1000

2000

3000

4000

5000

6000

7000

8000

M
em

o
ry

 U
se

d
 (

b
it

s)

Time (ms)

Amount of Memory Used by F low Rules w i th

Varying Idle Timeout Intervals (OpenFlow 1 .0)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

Fig. 2. Number of Flow Rules Installed - OF 1.0

display the more complex behaviours that would be found
within real network traffic. For the purpose of this experiment
the exact amount of data transmitted is not relevant, just
the length of time that the flow is active for. Flow rule
sizes are assigned pseudo-randomly between the minimum
and maximum allowed for OpenFlow versions 1.0 and 1.5,
as detailed in Subsection IV. This reflects the fact that both
general and specific rules may be required.

The simulation ran for 120 seconds, with values taken at
1ms intervals. Idle timeout values of 1, 3, 5, 10, 15, and 20
were used for separate iterations of the simulation (note that
a seed value was set to ensure that the pseudo-random values
created for flow were maintained the same for each iteration).

Figure 2 shows the number of flow rules installed for each
Idle timeout value using OpenFlow 1.0. From this it is clear
that once a number of flows have begun starting and stopping
transmission (as seen around 45 seconds into simulation),
smaller intervals result in a much reduced number of flows
in the flow table (with 43 rules installed with a 1 second Idle
timeout, and 66 rules with a 20 second timeout at the end of
the simulation). This is similarly evidenced in Figure 3, which
gives an indication of the difference in memory usage these
number of flow rules could make. Note that while a relatively
small difference in overall size is observed here (between 4945
bits and 7402 bits after the simulation has completed), this
would have a significant effect in real switches where flow
count would be orders of magnitude larger than used in this
simulation.

Figure 4 and Figure 5 show that the larger flow rule sizes
found within OpenFlow 1.5 exacerbate this problem further,
within an even greater difference between the size of flow
tables with the different Idle timeout values.

Table I shows the negative effect of the shorter timeout
values, with a 1 second timeout resulting in 887 premature
flow removals (using OpenFlow 1.0), and only 9 removals with
a 20 second timeout. Each of these premature flow removals
will result in additional delay for the packets involved and
additional load on the controller. It is clear from this that

0

10

20

30

40

50

60

70

N
u
m

b
er

 o
f

F
lo

w
 R

u
le

s

Time (ms)

Number of F low Rules Insta l led w i th Varying

Idle Timeout Intervals (OpenFlow 1 .0)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

0

1000

2000

3000

4000

5000

6000

7000

8000

M
em

o
ry

 U
se

d
 (

b
it

s)

Time (ms)

Amount of Memory Used by F low Rules w i th

Varying Idle Timeout Intervals (OpenFlow 1 .0)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

Fig. 3. Amount of Memory Used by Flow Rules - OF 1.0

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f
F

lo
w

 R
u

le
s

Time (ms)

Number of F low Rules Insta l led w i th Varying

Idle Timeout Intervals (OpenFlow 1 .5)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

0

5000

10000

15000

20000

25000

30000

35000

40000

M
em

o
ry

 U
se

d
 (

b
it

s)

Time (ms)

Amount of Memory Used by F low Rules w i th

Varying Idle Timeout Intervals (OpenFlow 1 .5)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

Fig. 4. Number of Flow Rules Installed - OF 1.5

0

10

20

30

40

50

60

70
N

u
m

b
er

 o
f

F
lo

w
 R

u
le

s

Time (ms)

Number of F low Rules Insta l led w i th Varying

Idle Timeout Intervals (OpenFlow 1 .5)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

0

5000

10000

15000

20000

25000

30000

35000

40000

M
em

o
ry

 U
se

d
 (

b
it

s)

Time (ms)

Amount of Memory Used by F low Rules w i th

Varying Idle Timeout Intervals (OpenFlow 1 .5)

1 Second

3 Seconds

5 Seconds

10 Seconds

20 Seconds

Fig. 5. Amount of Memory Used by Flow Rules - OF 1.5

selecting an appropriate timeout value will need to be balanced
based on application requirements and switch device memory
resource availability. This is not an ideal solution, however,
and thus an alternative mechanism that would support both
the lower memory utilisation of the small timeout values, and
the low number of premature flow removals found with larger
timeouts is required.

TABLE I. TOTAL PREMATURE FLOW REMOVALS

Total Premature
Flow Removals

OF 1.0 OF 1.5
1 Second 887 1082
3 Seconds 278 347
5 Seconds 155 194
10 Seconds 45 63
20 Seconds 9 7

V. A PROPOSED PRE-EMPTIVE FLOW INSTALLATION
MECHANISM (PFIM)

The problems identified in Subsection IV relate to the fact
that flow rules are not present within the flow table at the time
in which packets arrive. If data samples are being transmitted
at regular periods, however, then it should be possible to pre-
emptively install the flow prior to the packets arrival.

[16] uses pre-emptive flow installation as a means of
ensuring that real-time applications are scheduled appropri-
ately within the network, allowing them to complete within
the deadlines required (and not scheduling tasks that will
miss deadlines and waste network resources). This approach,
however, requires explicit knowledge of the application perfor-
mance requirements/characteristics, thus is not readily appli-
cable to IoT based systems as it would hinder their dynamic
construction.

A Pre-Emptive Flow Installation Mechanism (PFIM) is
thus proposed that will dynamically learn the periodic patterns
of IoT based traffic and install flows within an SDN based
switch, prior to the arrival of packets. This mechanism is
formed of three main components; flow monitoring, flow
periodicity checking, and flow installation.

Flow monitoring requires that the controller monitors and
records the time of arrival of packets, or more specifically,
the request from a switch to a controller for a rule associated
with a packet. A flow should be identified here, as shown in
Algorithm 1, based on source IP address, port number and
switch identification.

On packet in;
flow = SourceIPAddress:SourcePortNumber:SwitchID;
if flow is new then

create flow record;
record packet arrival time;

else
flow record exists;
append packet arrival time to flow record;

end
Algorithm 1: PFIM Flow Monitoring

Flow periodicity checking is necessary to establish whether
packets from a flow are arriving at regular intervals. While

it may be possible to establish complex patterns through a
pattern recognition algorithm, this work focuses on those flows
that transmit at regular intervals. This will help to reduce
the computational load on the controller, and therefore limit
associated effects on delay. Algorithm 2 shows how periodicity
is established once a sufficient number of samples has been
observed, and if a baseline standard deviation threshold not
exceeded. The exact value used for this threshold will be
dependent on the timing accuracy of the devices generating
traffic within a particular system.

for each record in flow records do
if number of times observed > minimum number of
samples then

Calculate mean of times;
Calculate standard deviation of times;
if standard deviation < threshold then

Store flow installation timing requirements;
end

end
end

Algorithm 2: PFIM Flow Periodicity Check

Algorithm 3 details the flow installation procedure,
whereby flows are installed at a pre-set amount of time before
they are due to arrive at the switch. Note that the amount of
time prior to packet arrival that a flow is installed could be
calculated based on the maximum variance in packet arrival
times, and the maximum delay in transmitting and installing
the flow within the switch, but that is outside the scope of this
work. For the purposes of later experimentation, this is taken
as a fixed value.

On timer expiration;
for each record in flow records do

if (current time + pre-empt value) - previous flow
installation time >= flow mean then

Send flow installation message to switch;
end

end
Algorithm 3: PFIM Flow Installation

OpenFlow protocol version 1.5 introduces the concept of
scheduled bundle messages. These are messages that can be
sent to a switch to be activated at a specific time. This could
allow the PFIM to send scheduled flow installation messages
for periodic flows at any time before installation is required,
without the flow being installed and expiring prematurely. As
mentioned in Section III, however, support for implementations
of the OpenFlow protocol is currently limited to versions 1.0
and 1.3, so this is not currently possible to implement.

VI. SIMULATION-BASED EXPERIMENTATION RESULTS

A proof-of-concept implementation of the proposed PFIM
detailed in Section V was created using the POX controller
for the purposes of experimentation. This implementation is
based on the L3 Learning Switch example included within
standard releases of POX. A simple example scenario using
two hosts, one switch, and one controller was created using
the Mininet emulation environment. While Mininet has been
identified by [17] as not providing reliable performance results

0

5

10

15

20

25

30
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

R
T

T
 D

el
ay

 (
m

s)

Data Sample Number

RTT Delay of PFIM vs Standard L3 Learning

Control ler

Standard

L3

Learning

Controller

L3

Learning

Controller

with PFIM

Fig. 6. RTT Delay of PFIM vs Standard L3 Learning Controller

for all complex network topologies, simpler topologies, such
as used here, have been successfully validated. Additionally
results can be taken as general indications of performance,
rather than strict identifiers of values that can be observed
from a real hardware-testbed.

For the purposes of this experimentation the ping tool was
used to generate packets from Host 1 to send to Host 2 at a
period of once every 5 seconds and measure the total Round
Trip Time (RTT). This generates a single flow, which can then
be clearly analysed for performance. The Idle timeout value
for flow rules was set to 1 second, as this was observed in
Subsection IV-A as providing the best performance in terms
of memory utilisation.

For this experiment, 5 occurrences of a flow installation
request were observed before deciding whether a flow was
transmitting periodically. In a real implementation, experimen-
tation would be required to determine the minimum number
of packet instances received in order to determine accurately
whether a flow was periodic.

Flows were installed 500ms before a packet was due to
arrive at a switch to allow for variations in packet arrival times.
In further implementation this could be refined further based on
the jitter tolerance allowed for flows to be considered periodic.

Flows stopped being installed pre-emptively after 15 in-
stallations, to allow for the fact that the source may have
stopped transmitting, after which, the controller started the
packet observation process from the beginning. The number of
pre-emptive installations performed will be system dependent,
but could also increase the longer that a flow remains active.

Figure 6 shows a comparison between using a standard
L3 learning controller, and the controller using the proposed
PFIM. Clear patterns can be seen where the controller is
observing the packet arrivals, and once pre-emptive flow instal-
lations begin, the RTT delay experienced drops significantly,
from around 10ms to less than 1ms. Likewise the variation in
delay can be seen to reduce as the controller is not needing to
be queried upon every packet arrival at the switch.

VII. CONCLUSION AND FUTURE WORK

This paper has presented a discussion of potential per-
formance issues that may arise from the combination of
IoT device traffic patterns and current SDN implementations.
Through the introduction of a proposed Pre-emptive Flow
Installation Mechanism it has been shown that the patterns
of periodic data transfers can be observed by a controller and
flow rules installed prior to the arrival of packets at a switch,
thus negating the added delay that comes from querying a
controller. This has been demonstrated through a proof of
concept implementation within the POX controller framework.

Future work will focus on testing within larger topologies,
across multiple switches, and within a hardware-based test-
bed. This will include the mixing of IoT device traffic with
other real network traffic as a means of observing the resulting
behaviour and adapting the proposed mechanism accordingly.

REFERENCES

[1] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor
networks towards the Internet of Things: A survey,” in 2011 19th Inter-
national Conference on Software, Telecommunications and Computer
Networks (SoftCOM), 2011, pp. 1–6.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] W. He, G. Yan, and L. D. Xu, “Developing vehicular data cloud services
in the IoT environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, 2014.

[5] A. Thomas, P. Moore, C. Evans, H. Shah, M. Sharma, S. Mount,
F. Xhafa, H. Pham, L. Barolli, A. Patel, A. Wilcox, C. Chapman,
and P. Chima, “Smart care spaces: pervasive sensing technologies
for at-home care,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 16, no. 4, pp. 268–282, 2014.

[6] NXP, “LM75B - Digital temperature sensor and ther-
mal watchdog,” Tech. Rep., 2015. [Online]. Available:
http://www.nxp.com/documents/data sheet/LM75B.pdf

[7] M. P. R. S. Kiran, P. Rajalakshmi, K. Bharadwaj, and A. Acharyya,
“Adaptive rule engine based IoT enabled remote health care data
acquisition and smart transmission system,” in 2014 IEEE World Forum
on Internet of Things, WF-IoT 2014, 2014, pp. 253–258.

[8] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and a Layered
Taxonomy of Software-Defined Networking,” IEEE Communication
Surveys & Tutorials, vol. 16, no. 4, pp. 1955–1980, 2014.

[9] Open Networking Foundation, “SDN Architecture Overview version
1.1,” Tech. Rep., 2014.

[10] Open Networking Foundation, “Software-Defined Networking: The
New Norm for Networks,” Tech. Rep., 2012.

[11] Cisco, “Application Centric Infrastructure Overview: Implement a Ro-
bust Transport Network for Dynamic Workloads,” Tech. Rep., 2013.

[12] Open Networking Foundation, “OpenFlow Switch Specification version
1.0,” Tech. Rep., 2009.

[13] Cumulus Linux, “Cumulus Linux 2.5.1 - User Guide,” Tech. Rep., 2015.
[14] D. Kreutz and F. Ramos, “Software-Defined Networking: A

Comprehensive Survey,” arXiv preprint arXiv: . . . , p. 49, 2014.
[Online]. Available: http://arxiv.org/abs/1406.0440

[15] Linux Foundation, “OpenDaylight - An Open Source Community and
Meritocracy for SoftwareDefined Networking,” Tech. Rep., 2013.

[16] L. Liu, J. Li, and J. Wu, “TAPS: Task-aware preemptive flow schedul-
ing,” in IEEE 20th International Workshop on Local & Metropolitan
Area Networks (LANMAN), 2014, pp. 1–2.

[17] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Mininet Performance Fidelity Benchmarks,” Tech. Rep., 2012.

