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Abstract We revisit the multiple criteria ranking and sorting methods based on ordinal
regression, which accept preference information in the form of, respectively, pairwise
comparisons or assignment examples for some reference alternatives. Robust ordinal
regression methods consider the whole set of value functions reproducing these holistic
statements provided at the input. Its impact on the recommendation is expressed in
terms of the necessary and possible preference relations or assignments. We propose
methods for generating explanations of this impact, showing pieces of preference
information provided by the decision maker (DM), which led to the observed outcomes.
In particular, the minimal set of preference information pieces, called preferential
reduct, is identified to justify some result observable for the whole set of compatible
value functions (e.g., the truth of the necessary relation for some pair of alternatives).
Further, the maximal set of preference information pieces, called preferential construct,
is discovered to reveal the conditions under which some result non-observable for the
whole set of compatible value functions (e.g., the falsity of the possible relation for
some pair of alternatives) is possible. Knowing such explanations, the DM can better
understand the impact of each piece of preference information on the result and, in
consequence, get conviction about the obtained recommendation.
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Institute of Computing Science, Poznań University of Technology, 60-965 Poznan, Poland
e-mail: milosz.kadzinski@cs.put.poznan.pl

S. Corrente · S. Greco
Department of Economics and Business, University of Catania, Corso Italia, 55, 95129 Catania, Italy

S. Greco
Operations and Systems Management, University of Portsmouth, Portsmouth PO1 3DE, UK

R. Słowiński
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1 Introduction

A recommendation that is produced in the course of a decision aiding process results
from some cognitive activities aiming at exploring, interpreting, and debating about a
particular decision problem. These activities are often supported by a decision support
system (DSS), which is a computer-based information system intended to assist the
decision maker (DM) in constructive exchange of information between the DM and
the model of the decision problem, so as to get a solution being feasible and consistent
with the value system of the DM. As noted in Greer et al. (1994), there are three
main components of such a system, each playing a unique role in the decision aiding
process. These are user interface, simulation model, and explanation module. The role
of the user interface consists in querying the user for suitable inputs, acquiring knowl-
edge about the problem, and presenting the output. The simulation model performs
the analysis of the user’s queries and generates some numerical results. Finally, the
explanation module interprets these outputs and generates explanations.

These three components decide upon user acceptance of both a DSS and the recom-
mendation arrived with its use. In particular, the required input information should be
as simple as possible, and collected in a way that makes the DM convinced that her/his
needs, preferences and value (s)he seeks are taken into account when working out a
recommendation. Furthermore, the method itself should guarantee that the DM not
only learns about the problem, but also that (s)he is convinced about the psychological
convergence of the process and relative advantage of the indicated solution (Belton
et al. 2008). Finally, the explanations provided by the system should justify that the
recommendation is logical, valid, and correct. As noted by Kass and Finin (1988),
such explanations prove to be useful in the development and maintenance of DSSs by
making explicit the experts logic and assumptions.

Collecting the input information When it comes to collecting input information for
the decision problem (concerning criteria, alternatives, evaluations, and, in particular,
the DM’s preferences), the effort of making DSSs user friendly has been implemented
in different ways. Some of them support the DMs in structuring, decomposition and
recomposition of preferences between alternatives by eliciting all required inputs by
means of a dialogue conducted in the natural language [see, e.g., multi-attribute utility
decomposition (Humphreys and Wisudha 1981)]. Some other systems are based on
a verbal description of decision-making problems [see, e.g., verbal decision analysis
(Larichev 2001)]; the need for this stems from the experimental results revealing that
2/3 of DMs prefer to give the evaluations and preferences in a verbal form. By verbal,
we mean qualitative rather than quantitative, and ordinal rather than cardinal. In the
recent years, an increasing interest has been also assigned to ordinal regression methods
[see, e.g., UTA (Jacquet-Lagreze and Siskos 2001)]. They expect the DMs to specify
some examples of holistic judgments (e.g., pairwise comparisons or assignments to
classes) on a subset of reference alternatives, rather than direct parameter values used
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Preferential reducts and constructs 1023

in the preference model. Preference information given in terms of decision examples
is called indirect. Then, the DM’s preference model leading to the same decision as
the provided one is inferred. Such a compatible model is applied on the whole set
of alternatives to arrive at a recommendation. Decision aiding methods based on the
indirect preference information require relatively less cognitive effort from the DMs,
being consistent with the “posterior rationality” (March 1978) and with the learning
from examples used in artificial intelligence approaches (Furnkranz and Hullermeier
2010).

Arriving at a recommendation As far as the way of translating the DM’s preferences
to a recommendation is concerned, the decision aiding methods need to be transparent,
i.e., they should clearly reveal the correspondence between the elicited information and
the final evaluations of alternatives. Let us mention the Even Swaps approach (Ham-
mond et al. 1998) as an exemplary implementation of such a transparency. An even
swap is interpreted as a value trade-off, where a change of performance on one crite-
rion is compensated by a comparable change on some other criterion, and thus a new
alternative with these revised performances is equally preferred to the initial one. The
DM is required to list her/his objectives explicitly by providing a sequence of swaps
which are acceptable for her/him. As a result, the method provides a practical means
for making trade-offs among any set of objectives across a range of alternatives. By
simplifying the mechanical elements of trade-offs, it leads to the final decision through
a sequence of choices supposed to be intuitive for the DM.

From another perspective, the decision rule approach (Greco et al. 2004; Slowinski
et al. 2009), represents the preferences in terms of “if . . . then” decision rules such
as, e.g., “if the maximum speed of car x is at least 175 km/h and its price is at most
$12,000, then car x is comprehensively at least medium”. Thus, apart from requiring
the DM to provide information in the form of examples of decisions, this approach
employs a very natural and easily interpretable way of formulating conclusions. Each
decision rule is a straightforward scenario relating evaluation of an alternative on
selected criteria and its class assignment.

When it comes to ordinal regression methods, there is typically more than a single
preference model instance compatible with the holistic statements. To avoid arbitrary
selection of a single compatible instance, robust ordinal regression (ROR) has been
proposed (Corrente et al. 2013; Greco et al. 2008). It allows taking into account all
compatible preference model instances, and provides the DM with two results, the
necessary and possible recommendation for the set of considered alternatives. The
necessary recommendation is supported by all compatible instances of the preference
model, while the possible recommendation is supported by at least one of them. In this
way, the DM is forced to confront her/his value system with the results of applying
the inferred model on the set of alternatives.

Explaining the recommendation Explanation of the recommended decision requires
construction of arguments through which the DM will convince herself/himself and
other stakeholders about its logic and validity. The issue of generating explanation
of the outcome of a decision model has motivated a great variety of studies. In par-
ticular, Papamichail and French (2003) present a general framework for developing
explanation facilities in evaluation systems with the use of natural language generation
techniques. Ouerdane et al. (2010) aim at adapting argumentation-based approach for
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providing the reasons underlying the chosen course of action. Apart from explaining
the motivations, goals or results, such a mix of argumentation theory and decision
aiding allows taking advantage of the expressive nature of the language used as well
as handling incomplete or even contradictory pieces of information. Labreuche (2011)
introduces a general framework for explaining the results of multi-attribute value the-
ory. It is focused on the selection of arguments to be presented in the case where the
decision model is based on the weights assigned to criteria. Some other representative
works on providing convincing explanations to accompany recommendation can be
found in Amgoud and Prade (2009), Carenini and Moore (2006), Klein (1994), and
Labreuche et al. (2011).

When it comes to justifying the outcomes of ROR, Labreuche et al. (2012) investi-
gate whether Even Swaps can be generalized to construct convincing explanations of
the necessary preference relation (Hammond et al. 1998). A sequence of such swaps
can be seen as the reasoning steps allowing to highlight why alternative a is neces-
sarily preferred to alternative b, or, in general, why alternative a is the best choice.
The authors set up a framework for providing such minimal explanations, proving
both its practical usefulness in terms of binary domains considered for the value of
criteria as well as questionability of the technique in the absence of any restriction on
the size of the criteria domain. In the latter case, the sequence of preference-swaps
may not be bounded. On the contrary, Greco et al. (2013) applies decision rules to
explain the necessary and possible preference relations. These rules aim at explain-
ing preference relations in terms of a minimal conjunction of elementary conditions
concerning evaluations on particular criteria that imply their truth. For example, the
preference, either necessary or possible, of alternative a over alternative b can be sup-
ported by a decision rule indicating the role of a strong preference on criterion g1 and
at least mild preference on criterion g2. In this way, the DM is provided with argu-
ments on the role of particular criteria in the decision model, which enables her/him
to better understand the conditions for the necessary and possible relations. It is worth
noting that due to iterative way of working with ROR methods, the DM can easily
see the consequence of an increment of preference information on the necessary and
possible recommendations. This observation stimulates elicitation of new preference
information or increases the DM’s conviction that the current recommendation is the
best.

Aim of the paper As discussed above, the use of ROR methods is intuitive for both
the required indirect preference information and exhibition of a set of results derived
from applying the whole set of compatible preference model instances. In this paper,
we reconsider the task of generating explanations of the outcomes of ROR methods
designed for supporting multiple criteria ranking and sorting problems. Without loss of
generality, we focus on an additive value function preference model which is of partic-
ular interest in multiple criteria decision aiding (MCDA) because of an intuitive inter-
pretation of numerical scores of alternatives and straightforward translation of pieces
of preference information to the final result (see, e.g., Doumpos 2012; Lahdelma and
Salminen 2012). Contrary to Greco et al. (2013) and Labreuche et al. (2012), the con-
structed explanations do not refer to the evaluations of alternatives but rather directly
to preference information provided by the DM. Even if the required preference infor-
mation is easily definable, like a set of pairwise comparisons or assignment examples,
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it is processed in a way preventing the DM from seeing the exact relations between
the provided preference information and the obtained recommendation. This is par-
ticularly true if the set of exemplary judgments is relatively great. Thus, analyzing the
ranking recommendation one could ask the following reasonable questions:

– in case alternative a is necessarily preferred to alternative b, what are the minimal
sets of pairwise comparisons provided by the DM that induce a necessary preference
for a pair (a, b) in consequence of using all compatible value functions;

– in case alternative a is not even possibly preferred to alternative b, what are the
maximal sets of the provided pairwise comparisons that admit a possible preference
relation for a pair (a, b) in consequence of using at least one compatible value
function;

– in case alternative a is ranked at positions between P∗(a) and P∗(a) (P∗(a) ≤
P∗(a)) by all compatible value functions, what are the minimal sets of the provided
pairwise comparisons that imply such a ranking interval, and what are the maximal
sets of provided pairwise comparisons that admit a being ranked higher than P∗(a)

or lower than P∗(a).

Furthermore, in the context of sorting problem, the following analogous questions
are relevant:

– in case alternative a is necessarily assigned to class Ch , what are the minimal sets of
assignment examples provided by the DM that induce such a necessary assignment;

– in case alternative a is possibly assigned to an interval of classes [CL , CR], what are
the minimal sets of the provided assignment examples that imply such a possible
assignment, and what are the maximal sets of assignment examples that admit a
being assigned to a class worse than CL or better than CR .

Answering these questions facilitates understanding of the correspondence between
the output of the preference model and the revealed preferences, making these rela-
tions more transparent and intelligible for the DM. The arguments are formulated
with respect to the previously provided exemplary judgments, being in this way con-
sistent with intuitive reasoning of the DMs, and not forcing them to reason in terms of
some abstract parameters of the model or evaluations of the alternatives. From such
explanations, the DM learns about the impact of particular pieces of original prefer-
ence information or their subsets, and gains insights into her/his preferences, which
enhance the trust in the obtained recommendation. This confrontation makes the DM
more conscious about the conditions for the necessary and possible outputs of ROR,
leading her/him also to better understand the employed model. Moreover, the pro-
vided explanations constitute a starting point for a more thorough analysis. In case the
DM does not accept some implications between the provided input and the obtained
recommendation, (s)he can remove or revise some pieces of preference information.

The organization of the paper is the following. In the next section, we introduce
basic concepts and notation that will be used in the paper. In Sect. 3, we remind
existing multiple criteria ranking and sorting methods based on ROR, and we define
the models that we refer to in our approach. In Sect. 4, we discuss how to compute
explanations of the obtained necessary and possible outcomes in terms of the DM’s
preference information. For the purpose of illustration, we will consider the problem of
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evaluating democracy regimes of different countries. We will refer to it in the following
sections to illustrate different aspects of the proposed framework. In Sect. 5, we focus
on the computational cost of the proposed procedures. In Sect. 6, we discuss how to
use the provided explanations within the constructive approach to decision aiding. The
last section concludes the paper.

2 Notation

We shall use the following notation:

– A = {a1, a2, . . . , ai , . . . , an}—a finite set of n alternatives;
– AR = {a∗, b∗, . . .}—a finite set of reference alternatives, on which the DM accepts

to express holistic preferences; we assume that AR ⊆ A;
– G = {g1, g2, . . . , g j , . . . , gm}—a finite set of m evaluation criteria, g j : A → R

for all j ∈ J = {1, 2, . . . , m}; although real-coded they may have ordinal or
cardinal scales;

– Ch, h = 1, . . . , p—pre-defined preference ordered classes such that Ch+1 is pre-
ferred to Ch , h = 1, . . . , p − 1; H = {1, 2, . . . , p};

– X j = {x j ∈ R : g j (ai ) = x j , ai ∈ A}—the set of all different evaluations on g j ,
j ∈ J ; without loss of generality, we assume that all criteria have an increasing
direction of preference, i.e., the greater g j (ai ), the more preferred alternative ai on
criterion g j , for all j ∈ J and ai ∈ A;

– x1
j , x2

j , . . . , x
n j (A)

j —the ordered values of X j , xk
j < xk+1

j , k = 1, . . . , n j (A) − 1,
where n j (A) = |X j | and n j (A) ≤ n; consequently, X = ∏m

j=1 X j is the evaluation
space.

To represent DM’s preferences, we shall use a model in the form of an additive
value function:

U (a) =
m∑

j=1

u j (g j (a)) (1)

where the marginal value functions u j , j ∈ J , are monotone, non-decreasing and
their sum is normalized, so that the additive value (1) is bounded within the interval
[0, 1]. Note that for simplicity of notation, one can write u j (a), j ∈ J , instead of

u j (g j (a)). Consequently, the basic set of constraints E AR

BASE defining conditions on the
monotonicity and normalization of general additive value functions has the following
form:

[B1] u j

(
xk

j

)
− u j

(
x (k−1)

j

)
≥ 0, k = 2, . . . , n j (A), j = 1, . . . , m,

[B2] u j

(
x1

j

)
= 0, j = 1, . . . , m,

∑m
j=1 u j

(
x

n j (A)

j

)
= 1.

⎫
⎬

⎭
E AR

BASE

Defined in this way, the general non-linear monotonic marginal value functions, with
all criteria values being their characteristic points, do not involve any arbitrary or
restrictive parametrization. However, the selection of the form of marginal value func-
tions involves a trade-off between their flexibility and simplicity. Thus, instead of
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general marginal value functions, we can use piecewise linear or even linear ones.
Then, for each u j , j = 1, . . . , m, we need to define the number of characteristic

points γ j . The intervals [x1
j , x

n j (A)

j ] are divided into γ j − 1 equal sub-intervals with
the endpoints:

gs
j = x1

j +
(

x
n j (A)

j − x1
j

)
(s − 1)/(γ j − 1), s = 1, . . . , γ j .

Then, the monotonicity constraints [B1] should be formulated in the following way:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u j

(
gs

j

)
− u j

(
gs−1

j

)
≥ 0, j = 1, . . . , m, s = 1, . . . , γ j ,

u j

(
xk

j

)
=u j

(
gs−1

j

)
+

(
u j

(
gs

j

)
−u j

(
gs−1

j

)) (
xk

j − gs−1
j

)
/
(

gs
j − gs−1

j

)

for all xk
j ∈

[
gs−1

j , gs
j

]
, j = 1, . . . , m, k = 1, . . . , n j (A).

(2)

3 Robust ordinal regression based on multi-attribute value theory

The majority of MCDA methods require specification of precise numerical values for
parameters of the preference model. It is not always realistic to assume that the DM
can provide exact values for all these parameters. Thus, disaggregation procedures that
enable model inference with exemplary judgments on a set of reference alternatives
have been proposed. However, usually there is more than a single model compatible
with the given holistic judgments. The traditional disaggregation approaches force
selecting a single such model for working out a recommendation. Such a choice is
rather arbitrary, requiring either the use of some pre-defined rules or participation of
the DM. Instead of defining or selecting the single model, ROR enables analysis of the
whole set of compatible preference model instances. Examination of its application on
the set of alternatives A leads to identifying the necessary and possible consequences
confirmed by all or at least one compatible preference model instance, respectively.

3.1 Robust ordinal regression for multiple criteria ranking

As far as methods designed for dealing with multiple criteria ranking problems are
concerned, ROR has been implemented for the first time in UTAGMS (Greco et al.
2008). It enables the DM to provide pairwise comparisons for some reference alter-
natives. The comparison of a pair (a∗, b∗) ∈ BR ⊆ AR × AR may state the strict
preference, weak preference, or indifference denoted by a∗ �DM b∗, a∗ �DM b∗,
and a∗ ∼DM b∗, respectively. Let each pairwise comparison from BR be denoted by
BR

k , k = 1, . . . , |BR|. The set of constraints E AR

PI−RANK given below translates such a
reference pre-order provided by the DM to a value function:

U (a∗) ≥ U (b∗) + ε if a∗ �DM b∗,
U (a∗) = U (b∗) if a∗ ∼DM b∗,
U (a∗) ≥ U (b∗) if a∗ �DM b∗,

⎫
⎬

⎭
BR

k , k = 1, . . . , |BR|
⎫
⎬

⎭
E AR

PI−RANK
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where ε is an arbitrarily small positive value.
The pairwise comparisons provided by the DM form the input data for the ordinal

regression that finds the whole set of value functions being able to reconstruct these
judgments. Such value functions are compatible with the preference information. Pre-
cisely, a set of such compatible value functions U AR

RANK is defined by a set of constraints

E AR

RANK given below:

E AR

PI−RANK,

E AR

BASE.

}

E AR

RANK (3)

Thus, compatible value functions need to be monotonic and normalized (see E AR

BASE)

and reproduce DM’s pairwise comparisons (see E AR

PI−RANK). If ε∗ = max ε, s.t.

E AR

RANK, is >0 and E AR

RANK is feasible, the set of compatible value functions is
non-empty. Otherwise, the provided preference information is inconsistent with the
assumed preference model.

Necessary and possible preference relations UTAGMS applies all compatible value
functions U AR

RANK, and defines two binary relations in the set of alternatives A:

– Necessary weak preference relation, �N, that holds for a pair of alternatives (a, b) ∈
A × A, in case U (a) ≥ U (b) for all compatible value functions;

– Possible weak preference relation, �P, that holds for a pair of alternatives (a, b) ∈
A × A, in case U (a) ≥ U (b) for at least one compatible value function.

The following linear programs need to be solved to assess whether the relations
hold:

Maximize : ε (4)

s.t.

U (b) − U (a) ≥ ε,

E AR

RANK,

}

EN(a, b)

and
Maximize : ε (5)

s.t.

U (a) − U (b) ≥ 0,

E AR

RANK.

}

EP(a, b)

Then, a �N b if EN(a, b) is infeasible or ε∗ = max ε, s.t. EN(a, b), is not >0. a �P b
if EP(a, b) is feasible and ε∗ = max ε, s.t. EP(a, b), is >0.

Extreme ranks Kadzinski et al. (2012) extend UTAGMS with the framework of
extreme ranking analysis (ERA) to consider all complete pre-orders compatible with
the preference information and to determine the best P∗(a) and the worst P∗(a)
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ranks taken by each alternative a ∈ A. Identification of these extreme ranks requires
consideration of the following mixed-integer linear programming (MILP) models:

Minimize : f rank
max =

∑

b∈A\{a}
vb (6)

s.t.

U (a) − U (b) + Mvb ≥ 0, for all b ∈ A \ {a},
E AR

RANK,

}

E AR

max(a),

and

Minimize : f rank
min =

∑

b∈A\{a}
vb (7)

s.t.

U (b) − U (a) + Mvb ≥ ε, for all b ∈ A \ {a},
E AR

RANK,

}

E AR

min(a),

where M and ε are auxiliary variables equal to, respectively, big and small positive
values, and vb is a binary variable (vb ∈ {0, 1}) associated with comparison of a to
alternative b ∈ A \ {a}. The best rank P∗(a) of alternative a is f rank

max +1 and the worst
rank P∗(a) is n − f rank

min .

Kadzinski and Tervonen (2013) prove that if we limit U AR

RANK to exclude value
functions for which two alternatives obtain an equal rank, there are no rank jumps in the
interval [P∗(ai ), P∗(ai )], i.e., if ∃U ′, U ′′ ∈ U AR

ROR : rank(U ′, ai ) = ρ, rank(U ′′, ai ) =
ρ + δρ with δρ ≥ 2 �⇒ ∀δ ∈ {0, . . . , δρ} ∃U∗ ∈ U AR

ROR : rank(U∗, ai ) = ρ + δ.
In any case, combining UTAGMS and ERA, multiple criteria ranking can be

approached with a robustness analysis concerning both the outcome of separate
n · (n − 1) pairwise comparisons as well as the result of collating each of the n
alternatives with all the remaining ones simultaneously.

Case study We reconsider the problem of evaluating democracy of different coun-
tries based on the following five criteria proposed by the Economist Intelligence Unit
(EIU 2010): electoral process and pluralism (g1), the functioning of government (g2),
political participation (g3), political culture (g4), and civil liberties (g5). We rank 24
countries from Australasia as well as Southeast, Central and East Asia. Their evalua-
tions are provided in Table 1.

We assume a DM to have provided preference information in the form of five
pairwise comparisons of reference alternatives (see Table 2). These are consistent
with respect to the considered additive model. Let us emphasize that all experimental
results presented in the paper follow the use of linear marginal value functions for all
criteria.
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Table 1 Performance matrix for the problem of evaluating countries on the type of democracy regime

Country g1 g2 g3 g4 g5

1 Australia (AU) 10.00 8.93 7.78 8.75 10.00

2 China (CN) 0.00 4.64 2.78 6.25 1.18

3 Fiji (FJ) 6.50 5.21 3.33 5.00 8.24

4 Indonesia (ID) 6.92 7.14 5.00 6.25 6.76

5 Japan (JP) 9.17 7.86 5.56 8.75 9.41

6 Kazkhstan (KZ) 2.67 2.14 3.33 4.38 5.59

7 Kyrgyzstan (KG) 5.75 1.86 2.78 5.00 5.00

8 Laos (LA) 0.00 3.21 1.11 5.00 1.18

9 Malayasia (MY) 6.08 5.71 4.44 7.50 6.18

10 Mongolia (MN) 9.17 6.08 3.89 5.63 8.24

11 Myanmar (MM) 0.00 1.79 0.56 5.63 0.88

12 New Zealand (NZ) 10.00 8.57 8.33 8.13 10.00

13 North Korea (KP) 0.83 2.50 0.56 1.25 0.00

14 Papua New G. (PG) 7.33 6.43 4.44 6.25 8.24

15 Philippines (PH) 9.17 5.36 5.00 3.75 9.12

16 Singapore (SG) 4.33 7.50 2.78 7.50 7.35

17 South Korea (KR) 9.58 7.14 7.22 7.50 7.94

18 Taiwan (TW) 9.58 7.50 6.67 5.63 9.71

19 Tajikistan (TJ) 1.83 0.79 2.22 6.28 1.18

20 Thailand (TH) 4.83 6.43 5.00 5.63 6.47

21 Timor Leste (TL) 7.00 5.57 5.00 6.25 8.24

22 Turkmenistan (TM) 0.00 0.79 2.78 5.00 0.59

23 Uzbekistan (UZ) 0.08 0.79 2.78 5.00 0.59

24 Vietnam (VN) 0.83 4.29 2.78 4.38 1.47

Table 2 Pairwise comparisons BR provided by the DM for the problem of ranking countries based on
their democracy evaluation

BR
1 = (JP � KR) BR

2 = (FJ � TH) BR
3 = (PH � MN)

BR
4 = (ID � MY) BR

5 = (KG � KZ)

The Hasse diagram of the necessary relation �N is presented in Fig. 1. This relation
is robust with respect to the given preference information meaning that a pair of alter-
natives is compared in the same way by all compatible value functions. Obviously,
the necessary relation reproduces all pairwise comparisons of reference alternatives.
Let us also remind that the necessary preference relation is transitive, and thus the
arrows that can be obtained by transitivity are not represented in the Hasse diagram.
Moreover, if there was no arrow representing the necessary relation between two
alternatives, then these alternatives are incomparable in terms of the necessary pref-
erence.
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South Korea

Indonesia

Phillipines

Singapore

Uzbekistan

Australia

Japan

New Zealand

Timor Leste

Malaysia

Taiwan

Papua NG

Thailand

Mongolia

Kazakhstan

Kyrgyzstan

TajikistanVietnam

Fiji

Laos

TurkmenistanMyanmar

North Korea

China

{3}, {4}
{1}

{3}, {4}
{3}

{5}
{5}

{2,3,5}

{3,5}
{3,5}

{1,3}, {2,3}

{2,3}, {1,3,5}
{2}

{4}

{5}

{2,3}

{2,3}

{1,3}, {2,3}
{3,4}, {3,5}

{1}

{4}, {3,5}

{2,3}, {1,3,4}

{1,2}, {1,5}
{2,5}

{3}

Fig. 1 Hasse diagram of the necessary relation. All preferential reducts (see Sect. 4.1.1) for the necessary
relations visible in the Hasse diagram (note that we refer to indices of pairwise comparisons provided by
the DM from Table 2). In case the preferential reduct is not listed, the necessary relation corresponds to the
dominance relation

Table 3 shows the best P∗(a) and the worst P∗(a) ranks of each alternative in
the context of all compatible value functions. New Zealand (NZ) and Australia (AU)
should be perceived as countries with the most developed democracy, whereas Myan-
mar (MM), Turkmenistan (TM), and North Korea (KP) need to be considered as
countries with the lowest democracy level being possibly ranked at the very bottom.
One can also observe what is concordant with intuition: the alternatives which are
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Table 3 Results of extreme ranking analysis for all compatible value functions (P∗(a) − P∗(a)) and in
case no preference information is available (P∗

D(a) − P D∗ (a))

Country P∗(a) − P∗(a) P∗
D(a) − P D∗ (a) RPRs RCORE

AU 1–2 1–2 – –

CN 17–20 10–21 {1, 2, 3} {1, 2, 3}
FJ 10–13 9–16 {2, 5} {2, 5}
ID 8–12 5–13 {2, 3, 4}, {2, 3, 5} {2, 3}
JP 3–4 3–6 {1} {1}
KZ 16–16 14–23 {2, 3, 5} {2, 3, 5}
KG 13–15 13–21 {2, 5} {2, 5}
LA 19–23 15–24 {1, 2}, {1, 3}, {2, 3}, {3, 5} –

MY 11–14 5–14 {2, 3, 4}, {2, 3, 5} {2, 3}
MN 6–9 4–14 {2, 3, 5} {2, 3, 5}
MM 20–24 15–24 {3}, {2, 4} –

NZ 1–2 1–2 – –

KP 19–24 18–24 {2}, {3} –

PG 6–9 6–13 {1, 2}, {1, 3} {1}
PH 5–8 5–23 {2, 3, 5+} {2, 3, 5}
SG 9–15 4–16 {1, 3, 5}, {2, 3, 5} {3, 5}
KR 4–7 3–10 {1, 5} {1, 5}
TW 3–5 3–12 {3} {3}
TJ 17–22 10–24 {2, 3}, {1, 3, 5} {3}
TH 12–15 7–15 {2} {2}
TL 6–11 4–13 {2, 3}, {3, 5} {3}
TM 21–24 18–24 {1, 4}, {2, 3}, {2, 4} –

UZ 20–23 18–23 {1, 3}, {1, 4} {1}
VN 17–19 15–23 {2, 3} {2, 3}
All rank preferential reducts (RPRs) for each alternative and the rank preferential core (RCORE) (see
Sect. 4.1.2; note that we refer to indices of pairwise comparisons provided by the DM from Table 2)

good on some criteria while being relatively bad on the others can be attributed a
wide range of possible ranks [see, e.g., Singapore (SG) and Timor-Leste (TL)]. On the
contrary, for the alternatives whose evaluation profiles are more typical (at least within
some significant subset of alternatives), the highest and the lowest possible ranks are
usually close to each other [see, e.g., Australia (AU), Kazakhstan (KZ), and Taiwan
(TW)].

3.2 Robust ordinal regression for multiple criteria sorting

When it comes to value-based methods designed for dealing with multiple criteria sort-
ing problems, ROR has been implemented for the first time in UTADISGMS (Greco
et al. 2010). Let us focus on a threshold-based sorting procedure, where the limits
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between consecutive classes Ch , h = 1, . . . , p, are defined by a vector of thresholds
t = {t1, . . . , tp−1} such that 0 < t1 < · · · < tp−1 < 1, and th−1 and th are, respec-
tively, the lower and upper threshold of class Ch, h = 2, . . . , p − 1. Note that t1
is an upper threshold of class C1 while the lower threshold is 0, and tp−1 is a lower
threshold of class CP while there is no upper threshold tp for CP (or, from another
perspective, it is >1, which means that comprehensive values of all alternatives are
<tp).

UTADISGMS represents the DM preferences with a pair (U, t), where U is an
additive value function and t is a vector of thresholds delimiting the classes. It
enables the DM to provide possibly imprecise assignment examples consisting of
a reference alternative a∗ ∈ AR and its desired assignment [LDM(a∗), RDM(a∗)],
with LDM(a∗) ≤ RDM(a∗). Let each assignment example be denoted by AR

k ,
k = 1, . . . , |AR|. These assignment examples are translated to the following con-
straints E AR

SORT:

U (a∗) ≥ tLDM(a∗)−1,

U (a∗) + ε ≤ tRDM(a∗),

}

AR
k , k = 1, . . . , |AR|

}

E AR

PI−SORT

t1 ≥ ε, tp−1 ≤ 1 − ε,

th − th−1 ≥ ε, h = 2, . . . , p − 1,

E AR

BASE.

⎫
⎬

⎭
E AR

BASE−SORT

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E AR

SORT

The set of pairs (U , t)AR

SORT compatible with the provided assignment examples is

non-empty, if ε∗ = max ε, s.t. E AR

SORT, is >0 and E AR

SORT is feasible.
Necessary and possible assignments Given set AR of assignment examples and a

corresponding set of compatible pairs (U , t)AR

SORT, for each alternative a ∈ A:

– The possible assignment CP(a) is defined as the set of indices of classes Ch for
which there exists at least one compatible pair (U, t) assigning a to Ch (denoted
by a →P Ch);

– The necessary assignment CN(a) is defined as the set of indices of classes Ch for
which all compatible pairs (U, t) assign a to Ch (denoted by a →N Ch).

The possible assignment of a ∈ A is composed of h ∈ H , such that E(a →P Ch)

given below is feasible and ε∗ = max ε, s.t. E(a →P Ch), is >0 (Greco et al. 2010).

U (a) ≥ th−1, if h ≥ 1,

U (a) + ε ≤ th, if h ≤ p − 1,

E AR

SORT.

⎫
⎬

⎭
E(a →P Ch)

Let us define L P (a) and RP (a) as indices of the worst and the best classes to which
alternative a is possibly assigned.

The necessary assignment of alternative a is composed of h ∈ H , such that E(a →N

Ch) given below is infeasible or ε∗ = max ε, s.t. E(a →N Ch), is not >0 (Kadzinski
and Tervonen 2013).
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Table 4 Assignment examples AR provided by the DM for the problem of assigning countries to different
types of democracy regimes

AR
1 = (JP → C4) AR

2 = (KR → C4) AR
3 = (TW → C3) AR

4 = (TH → C3)

AR
5 = (SG → C3) AR

6 = (KZ → C2) AR
7 = (KG → C2) AR

8 = (CN → C1)

U (a) + ε ≤ th−1 + M · v1, if h ≥ 1,

U (a) ≥ th − M · v2, if h ≤ p − 1,

v1 + v2 = 1, if 1 ≤ h ≤ p − 1,

v1, v2 ∈ {0, 1},
E AR

SORT,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E(a →N Ch)

where M is a big positive value (in fact, it is enough if M > 1).
As noted in Kadzinski and Tervonen (2013), when using a threshold-based sorting

procedure, CN(a) is either empty or precise.
Case study Let us consider the same data set as in Table 1 with the aim of assigning

24 countries to 4 types of regimes: full democracies (C4), flawed democracies (C3),
hybrid regimes (C2), and authoritarian regimes (C1). We assume a DM to have provided
preference information in the form of the eight exemplary assignments (see Table 4).

The possible and necessary assignments are presented in Table 5. Obviously, the
eight reference countries are necessarily assigned to the classes specified by the DM.
Another nine non-reference alternatives are precisely assigned to a single class by
all compatible value functions. For the remaining seven alternatives, the necessary
assignment is empty and the possible assignments are imprecise. There are six coun-
tries possibly assigned to two consecutive classes (i.e., C1 − C2 or C2 − C3) and one
country [Malayasia (MY)] with a possible assignment of three classes C2 − C4. The
average width of the range of possible classes is 1.33.

4 Explaining recommendation in terms of decision maker’s preference
information

Justifying a recommendation to the DM by means of convincing arguments is a cen-
tral concern for decision aiding tools (Labreuche et al. 2012). Generating a supportive
evidence that would validate a certain choice, rank, or assignment is particularly diffi-
cult in case of multiple criteria preference models. Understanding the explanation that
directly refers to the characteristics of these models may be simply too demanding
for the non-experienced users for whom it is difficult to comprehend, e.g., the notions
of criteria importance, compensation, or interactions between criteria. In particular,
when referring to a single value function, exploiting it directly to justify the recom-
mendation may not be meaningful to the DM (Labreuche 2011). In case of using a set
of infinitely many compatible value functions as in ROR, even such direct exploitation
of the preference model is not possible, because the DM can neither see a score of
each alternative nor (s)he can assess relative importance of the criteria understood as
a share of a given criterion in the comprehensive value.
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Table 5 Possible (CP
L − CP

R ) and necessary (CN) assignments, all assignment preferential reducts (APRs)
and the assignment preferential core (ACORE) for all countries (note that we refer to indices of assignment
examples provided by the DM from Table 4)

Country CP
L − CP

R CN APRs ACORE

AU C4 C4 {1}, {2} –
CN C1 C1 {8} {8}
FJ C2 − C3 – {3, 5, 7}, {3, 6, 7} {3, 7}
ID C3 C3 {3, 4, 5}, {3, 4, 6, 7, 8} {3, 4}
JP C4 C4 {1} {1}
KZ C2 C2 {6} {6}
KG C2 C2 {7} {7}
LA C1 C1 {8} {8}
MY C2 − C4 – {6}, {7} –
MN C2 − C3 – {3, 6}, {3, 7} {3}
MM C1 C1 {8} {8}
NZ C4 C4 {1}, {2} –
KP C1 C1 {1, 3, 4, 6, 8}, {1, 3, 5, 6, 8} {1, 3, 6, 8}
PG C2 − C3 – {3, 5, 6}, {3, 5, 7}, {3, 7, 8} {3}
PH C2 − C3 – {3, 7, 8} {3, 7, 8}
SG C3 C3 {5} {5}
KR C4 C4 {2} {2}
TW C3 C3 {3} {3}
TJ C1 − C2 – {6, 7, 8} {6, 7, 8}
TH C3 C3 {4} {4}
TL C3 C3 {3, 4, 5, 6, 8}, {3, 4, 6, 7, 8}, {3, 4, 5, 7, 8} {3, 4, 8}
TM C1 C1 {8} {8}
UZ C1 C1 {5, 6, 8} {5, 6, 8}
VN C1 − C2 – {6, 8}, {7, 8} {8}

Traditionally, explanations that have been constructed to accompany the use of a
value function in a decision aiding process referred to performances of some alter-
natives on different criteria and to importance of these criteria (see, e.g., Greco et al.
2013; Labreuche 2011; Labreuche et al. 2012). In this paper, we propose to emphasize
the relation between the original preference information and a resulting recommenda-
tion. Explanations in our context will thus have the form of implications associating
some pieces of DM’s preference information with the necessary, possible, and extreme
results. Precisely, we will refer to explanations of two kinds. On the one hand, the min-
imal set of preference information pieces, called preferential reduct, will be identified
to justify some result that is observable for the set of compatible value functions, e.g.,
the truth of the necessary relation for some pair of alternatives. On the other hand, the
maximal set of preference information pieces, called preferential construct, will be
discovered to reveal the conditions under which some result non-observable for the
set of compatible value functions, e.g., the falsity of the possible relation for some pair
of alternatives, is possible. Provided with such explanations, the DM can better under-
stand the impact of each piece of preference information on the result as well as can
gain arguments in favor of a recommendation given by ROR in terms of some holistic
judgments (s)he previously supplied. Such simple and intuitive explanations should
either increase the DM’s confidence in the result or stimulate her/his reactions in the
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subsequent iterations in case (s)he finds some generated explanation (i.e., implication
between the input and the output) unacceptable.

Let us remind that computation of the necessary, possible, and extreme results
relies on solving a series of special optimization problems. Precisely, the analysis of
infeasibility of these problems is of the utmost importance. For example, confirma-
tion of the necessary preference relation or class assignment is based on the proof
that constraints corresponding to the opposite preference relation or different assign-
ment, respectively, are in conflict with the constraints defining the set of compatible
value functions. Furthermore, when the latter constraints contradict the mathematical
conditions corresponding to some preference relation or class assignment, such rec-
ommendation is considered as not possible for the set of compatible value functions.
As a result, constructing an explanation of some recommendation provided by ROR
amounts at identifying the reasons of infeasibility.

Since infeasibility is often encountered during the process of initial model formula-
tion or reformulation, some algorithmic assistance is available to diagnose its cause. As
noted in Chinneck (2008), applications of infeasibility analysis can be found, e.g., in
backtracking in constraint logic programs, training neural networks, statistical analy-
sis, video broadcasting, protein folding, radiation therapy, and signal processing. In
these contexts, two major problems have been raised in the literature. The first one con-
cerns isolating the infeasibility to a subset of constraints, called irreducible infeasible
system (IIS) (see Carver 1921; Chinneck 1994; van Loon 1981).

Definition 1 Irreducible infeasible system is a subset of constraints defining the over-
all initial set of constraints (mathematical program) that itself is infeasible, but for
which any proper subset is feasible; the IIS is minimal in the sense that it contains all
constraints that contribute to the infeasibility.

Isolating an IIS from the larger model speeds the analysis, diagnosis and repair of
the model by focusing the analytic effort to a small portion of the entire model. To
emphasize the correspondence between IIS and explanations, we aim to construct, let
us note that, e.g., in case of ranking problems, a preferential reduct of the necessary
preference relation a �N b is a small set of pairwise comparisons from among the
many provided by the DM, so that in some way each of them contributes to the truth
of U (a) ≥ U (b) for all compatible value functions, i.e., they all have to be there for
infeasibility of U (b) > U (a).

When dealing with the infeasibility, another problem is to determine the minimal set
of constraints that have to be removed to restore the consistency in the initial system. It
is known as solving the minimum IIS set-covering problem, or finding the maximum
feasibility set (MFS) (see, e.g., Amaldi et al. 1999; Sankaran 1993).

Definition 2 Maximum feasibility set is a subset of constraints defining the overall
initial set of constraints (mathematical program) that itself is feasible, but for which
any proper superset is infeasible; the MFS is maximal in the sense that it contains all
constraints that do not contradict each other.

Let us note that, e.g., in case of ranking problems, a preferential construct of the
possible preference relation a �P b for a pair (a, b), such that not (a �P b), is a set of
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pairwise comparisons from among the many provided by the DM, so that all of them
make U (a) ≥ U (b) possible, i.e., no additional pairwise comparison can be added to
this set without contradicting U (a) ≥ U (b).

Algorithms for finding IISs and MFSs of constraints have been proposed, imple-
mented, and tested in the recent years (for a review, see Chinneck 2008). In this
section, we adapt these procedures to identify the preferential reducts and constructs.
We discuss in detail the approaches for generating explanations of the necessary and
possible preference relations. Analogously, we present the procedures for explaining
the outcomes of ERA as well as the necessary and possible assignments, however, not
discussing them in depth again. We also present preferential reducts and constructs
for the case study concerning evaluation of democracy in the 24 countries.

4.1 Explaining recommendation of robust multiple criteria ranking

4.1.1 Necessary and possible preference relation

Let us first consider the problem concerning identification of the minimal set of pair-
wise comparisons provided by the DM that induces a �N b in consequence of using
all compatible value functions.

Definition 3 Assuming the use of a particular preference model, a preferential reduct
for a pair (a, b) ∈ A × A, such that a �N b, is a minimal set of pairwise comparisons
provided by the DM inducing a �N b. Preferential reduct is minimal in a sense that
any of its proper subsets does not imply a �N b. Let us denote it by PR(a �N b).

Remark 1 Considering a pair (a, b) ∈ A × A, such that a �N b and a corresponding
infeasible constraint set EN(a, b) with ε > 0, the following holds:

– Since E AR

RANK is feasible, IIS in EN(a, b) needs to contain constraint U (b)−U (a) ≥
ε. Thus, IIS contains constraints on monotonicity and normalization of the prefer-
ence model and/or constraints corresponding to pairwise comparisons provided by
the DM that are in conflict with U (b) > U (a), i.e., induce U (a) ≥ U (b) for all
compatible value functions.

– A preferential reduct for a �N b is equivalent to a set of pairwise comparisons
whose corresponding constraints are included in an IIS in EN(a, b).

Let us now discuss a few algorithms for identification of a preferential reduct for
a �N b. They are based on the procedures for isolating IIS in the set of infeasible
constraints. Let us emphasize, however, that a preferential reduct for a �N b is not
equivalent to IIS in EN(a, b). In fact, we are only interested in the part of IIS that is
useful in explaining the necessary relation a �N b in terms of pairwise comparisons
the DM previously supplied. We intentionally neglect the part that is related to the
constraints on monotonicity and normalization. This implies the necessary adapta-
tion of the algorithms for discovering IIS. In particular, the suitably adapted deletion
filter (Chinneck and Dravnieks 1991) operates by testing the feasibility of the model
when constraints corresponding to the provided pairwise comparisons are dropped one
by one (see Algorithm 1). At the end of a single pass through all these constraints, the
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algorithm identifies a single preferential reduct. Precisely, it indicates a preferential
reduct whose first pairwise comparison makes the tested set of constraints feasible
once eliminated.

Algorithm 1 Deletion filter for identifying a single preferential reduct for a �N b

Require: EN(a, b), where ε is an arbitrarily small positive value; it is an infeasible set of constraints
Ensure: PR, preferential reduct for a �N b.
1: PR = ∅.
2: for k ∈ {1, . . . , |BR|} do
3: EN(a, b) = EN(a, b) \ BR

k .

4: Test the feasibility of EN(a, b).
5: if feasible then
6: EN(a, b) = EN(a, b) ∪ BR

k .

7: PR = PR ∪ BR
k .

8: end if
9: end for

Example 1 Let us compute a preferential reduct for (PG �N MY) using a deletion
filter, where BR is a set of pairwise comparisons provided by the DM and BR

k , k =
1, . . . , |BR|, are particular pairwise comparisons (see Table 2):

1. {BR
2 , BR

3 , BR
4 , BR

5 } is feasible; PR = {BR
1 } (BR

1 is added to PR).

2. {BR
1 , BR

3 , BR
4 , BR

5 } is infeasible; PR = {BR
1 } (BR

2 is not added to PR).

3. {BR
1 , BR

4 , BR
5 } is feasible; PR = {BR

1 , BR
3 } (BR

3 is added to PR).

4. {BR
1 , BR

3 , BR
5 } is infeasible; PR = {BR

1 , BR
3 } (BR

4 is not added to PR).

5. {BR
1 , BR

3 } is feasible; PR = {BR
1 , BR

3 , BR
5 } (BR

5 is added to PR).

Thus, a preferential reduct for (PG �N MY) is equal to: PR(PG �N MY) =
{BR

1 , BR
3 , BR

5 } = {JP � KR, PH � MN, KG � KZ}.
A single preferential reduct can be also identified with the suitably adapted additive

method (Tamiz et al. 1996). This procedure adds in the constraints corresponding to
the pairwise comparisons supplied by the DM, until infeasibility is achieved (see Algo-
rithm 2). In this way, it indicates a preferential reduct whose last pairwise comparison
makes the tested set of constraints infeasible once added.

Example 2 Let us compute a preferential reduct for (PG �N MY) using the additive
method.

1. {BR
1 } is feasible, {BR

1 , BR
2 } is feasible, {BR

1 , BR
2 , BR

3 } is infeasible; PR = {BR
3 };

{BR
3 } is feasible;

2. {BR
1 , BR

3 } is feasible, {BR
1 , BR

2 , BR
3 } is infeasible; PR = {BR

2 , BR
3 }; {BR

2 , BR
3 } is

infeasible.

Thus, a preferential reduct for (PG �N MY) is equal to: PR(PG �N MY) =
{BR

2 , BR
3 } = {FJ � TH, PH � MN}. Note that it is different from the one iden-

tified by the deletion filter.
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Algorithm 2 Additive method for identifying a single preferential reduct for a �N b

Require: E AR

TS = E AR

BASE ∪ {U (b) − U (a) ≥ ε}, where ε is an arbitrarily small positive value.

Require: E AR

PI−RANK, a set of constraints corresponding to the provided pairwise comparisons.
TS : the current test set of constraints.
Ensure: PR, preferential reduct for a �N b.
1: PR = ∅
2: Test the feasibility of E AR

TS .
3: if infeasible then
4: break
5: end if
6: TS = E AR

TS ∪ PR.

7: for k ∈ {1, . . . , |BR|} do
8: TS = TS ∪ BR

k .
9: Test the feasibility of TS.
10: if infeasible then
11: PR = PR ∪ BR

k .
12: Go to 15.
13: end if
14: end for
15: Test the feasibility of E AR

TS ∪ PR.
16: if feasible then
17: Go to 6.
18: end if

As noted by Chinneck (2008), a more efficient procedure consists in combining the
additive method with the deletion filter. Precisely, the additive method is applied until
first infeasible subset of constraints is found. Then, the deletion filter is used to identify
a preferential reduct in this subset. Another idea for speeding up the search consists
in grouping the constraints (see Chinneck 2008). Precisely, once deleting (adding)
a group of BR

k which causes feasibility (infeasibility), the deletion filter (the additive
method) should backtrack and delete (add) singly.

Both the deletion filter and the additive method identify a single preferential reduct.
However, there may exist several preferential reducts for relation a �N b. To enumer-
ate all of them, we can use Algorithm 3. It extends the additive method by progressively
adding all possible subsets of constraints corresponding to the provided pairwise com-
parisons, and eliminating from the test list the proper supersets of these constraint sets
that already implied the infeasibility.

Knowing all preferential reducts for a �N b, we can identify the preferential core
(see Definition 6).

Definition 4 Assuming the use of a particular preference model, the preferential core
for a pair (a, b) ∈ A × A, such that a �N b, is the intersection of all preferential
reducts for this relation. Let us denote it by PC O RE(a �N b).

Remark 2 If the preferential core for a pair (a, b) ∈ A × A, such that a �N b is
non-empty, elimination of any pairwise comparison contained in the core would result
in the denial of a �N b.

Example 3 Let us compute the preferential core (PC O RE) for (PG �N MY). Since
there are two preferential reducts for this pair of alternatives: PR1(PG �N MY) =
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Algorithm 3 Additive method for identifying all preferential reducts for a �N b

Require: E AR

TS = E AR

BASE ∪ {U (b) − U (a) ≥ ε}, where ε is an arbitrarily small positive value.

Require: E AR

PI−RANK, a set of constraints corresponding to the provided pairwise comparisons.
TS : the current test set of constraints.
Ensure: PRs, all preferential reducts for a �N b.
1: PRs = ∅
2: Test the feasibility of E AR

TS .
3: if infeasible then
4: break
5: end if
6: SS = all subsets of E AR

PI−RANK ordered with respect to the increasing cardinality.
7: for each SSk ∈ SS do

8: TS = E AR

TS ∪ SSk .
9: Test the feasibility of TS.
10: if infeasible then
11: PRs = PRs ∪ SSk .
12: Remove all supersets of SSk from SS.
13: end if
14: end for

{BR
2 , BR

3 } and PR2(PG �N MY) = {BR
1 , BR

3 , BR
5 }, the preferential core is equal to

PC O RE(PG �N MY) = {BR
3 } = {PH � MN}.

The preferential cores for other pairs of alternatives can be computed as the inter-
section of all preferential reducts for a given pair provided in Fig. 1.

In case all preferential reducts are identified, we can also indicate a reduct with the
fewest number of pairwise comparisons. Such a property is desirable for better under-
standing the reasons underlying the necessary relation and reducing the complexity
of the subsequent analysis. However, as noted by Chakravarti (1994), the number of
IISs in an infeasible linear programming (LP), and thus the number of preferential
reducts for a �N b, could be exponential in the worst case. This motived experiments
aiming at indicating some heuristic methods discovering single IIS having as few
constraints as possible. In this regard, Chinneck (1997) reports the elastic filter and
deletion/sensitivity filter to be the most effective heuristics on a set of test problems.

Case study For the case study, all preferential reducts for the necessary relations
visible in the Hasse diagram are provided in Fig. 1. Let us explicitly provide their
interpretation for a few pairs of alternatives:

– PR(MN �N SG) = {BR
3 , BR

5 } ⇒ “the necessary preference of MN over SG is
a consequence of the DM’s two pairwise comparisons: BR

3 = (PH � MN) and
BR

5 = (KG � KZ)”;
– PR1(TW �N TL) = {BR

3 } and PR2(TW �N TL) = {BR
4 } ⇒ “the necessary

preference of TW over TL is a consequence of the DM’s single pairwise comparison:
either BR

3 = (PH � MN) or BR
4 = (ID � MY)”.

In this way, the DM can precisely identify the reasons of the necessary relation’s
truth. Note that for some pairs of alternatives, there is only a single preferential reduct
[e.g., (KR �N TL) and (PG �N SG)], while for the others there are more of them
[e.g., (KZ �N TJ) and (VN �N UZ)]. In case the preferential core is non-empty [e.g.,
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PCORE(KR �N TL) = {BR
5 } or PCORE(TL �N MY) = {BR

3 }], removal of any
of its members from BR would result in the falsity of the corresponding necessary
relation.

The above-described algorithms may be easily adapted to explain the strict neces-
sary preference a �N

U b ⇔ ∀U ∈ U R, U (a) > U (b) [we introduce notation �N
U to

avoid confusion with the previous papers on ROR, which interpret �N as the asym-
metric part of �N, i.e., a �N b ⇔ a �N b and not (b �N a)]. Precisely, in the deletion
filter one should use EN(a, b) = E AR

RANK ∪ {U (b) − U (a) ≥ 0}, while in the additive

method E AR

TS = E AR

BASE ∪ {U (b) − U (a) ≥ 0}. Thus, constraint U (b) − U (a) ≥ ε is
replaced by U (b) − U (a) ≥ 0. Moreover, since the following relations hold:

a �N
U b ⇔ not(b �P a) ⇔ �U ∈ U R : U (b) ≥ U (a),

a �N b ⇔ not(b �P
U a) ⇔ �U ∈ U R : U (b) > U (a),

the algorithms for identifying the preferential reducts for the necessary relation may
also be used for indicating the minimal subset of pairwise comparisons implying that
some relation is not even possible.

Let us now consider the problem concerning identification of the maximal set of
pairwise comparisons provided by the DM that admits a �P b in consequence of
using at least one compatible value function, in case not (a �P b), i.e., the problem of
preferential constructs.

Definition 5 Assuming the use of a particular preference model, a preferential con-
struct for a pair (a, b) ∈ A × A, such that not (a �P b), is a maximal set of pairwise
comparisons provided by the DM admitting a �P b. Preferential construct is maximal
in a sense that any of its proper supersets does not allow a �P b. Let us denote it by
PC(not(a �P b)).

Remark 3 Considering a pair (a, b) ∈ A × A, such that not (a �P b) and a corre-
sponding infeasible constraint set EP(a, b) with ε > 0, the following holds:

– Since E AR

RANK is feasible, constraint U (a) − U (b) ≥ 0 is in conflict with some

constraints of E AR

RANK, thus making EP(a, b) infeasible.
– Preferential construct for not(a �P b) is equivalent to a set of pairwise comparisons

whose corresponding constraints are included in a MFS together with constraint
set E AR

BASE and constraint U (a) − U (b) ≥ 0.
– Identifying such a MFS is equivalent to finding a minimal set of pairwise compar-

isons whose corresponding constraints need to be removed from EP(a, b) so that
the remaining constraint set is feasible.

Identification of a preferential construct for not (a �P b) can be achieved by means
of MILP (see, e.g., Chinneck 2001; Mousseau et al. 2003). Using binary variables vk

associated with each pairwise comparison BR
k provided by the DM, one rewrites the set

of constraints EP(a, b) into EP
V (a, b) given below. If vk = 1, then the corresponding

constraint is always satisfied, which is equivalent to elimination of this constraint.
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Thus, to identify a minimal subset of pairwise comparisons that need to be removed
so that U (a) ≥ U (b) is possible, we solve the following problem:

Maximize :
|BR|∑

k=1

vk (8)

s.t.

U (a) − U (b) ≥ 0,

E AR

BASE,

vk ∈ {0, 1},
if a∗ �DM b∗

Mvk + U (a∗) ≥ U (b∗) + ε,

if a∗ ∼DM b∗
Mvk + U (a∗) ≥ U (b∗)
Mvk + U (b∗) ≥ U (a∗)

}

if a∗ �DM b∗
Mvk + U (a∗) ≥ U (b∗),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

BR
k , k = 1, . . . , |BR|

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E V,AR

PI−RANK

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EP
V (a, b)

where M and ε are arbitrarily large and small positive values, respectively. As a result,
the constraints corresponding to vk = 0 indicate pairwise comparisons included in a
preferential construct for not (a �P b).

Other preferential constructs can be identified by adding constraints that forbid
finding again the same solutions which have been already identified in the previously
conducted optimizations:

∑

k∈Si

vk ≤ f ∗
i − 1,

where f ∗
i is the optimal value of the objective function in the i th iteration, v∗

k are
values of the binary variables at the optimum found while identifying the i th minimal
subset standing behind incompatibility, and Si = {k ∈ {1, . . . , |BR|} : v∗

k = 1}.
Example 4 Let us compute all preferential constructs for a pair (SG, PH) ∈ A × A,
such that not(SG �P PH):

1. S1 = {BR
3 }, and thus PC1(not(SG �P PH)) = {BR

1 , BR
2 , BR

4 , BR
5 } (add v3 ≤ 0 to

the set of constraints);
2. S2 = {BR

5 }, and thus PC2(not(SG �P PH)) = {BR
1 , BR

2 , BR
3 , BR

4 } (add v5 ≤ 0 to
the set of constraints);

3. The set of constraints is infeasible, meaning that all preferential constructs have
been already identified.

These results should be interpreted in the following way: “two sets of the DM’s pairwise
comparisons: {BR

1 , BR
2 , BR

4 , BR
5 } and {BR

1 , BR
2 , BR

3 , BR
4 } make the preference of SG

over PH still possible”, or from another perspective: “if the DM eliminated from BR
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either BR
3 or BR

5 , SG would be ranked at least as good as PH for at least one compatible
vale function”.

Analogously as for the case of reducts, it is interesting to consider the intersection
of all preferential constructs.

Definition 6 Assuming the use of a particular preference model, the preferential core
of constructs for a pair (a, b) ∈ A× A, such that not (a �P b), is the intersection of all
preferential constructs for this relation. Let us denote it by PCCORE(not(a �P b)).

Remark 4 Elimination of all pairwise comparisons contained in the preferential core
PCCORE(not(a �P b)) would not change the falsity of a �P b. From another
perspective, these pairwise comparisons are not contained in any preferential reduct
for a relation b �N

U a.

Example 5 The preferential core of constructs for a pair (SG, PH) ∈ A × A, such
that not(SG �P PH) is PCCORE(not(SG �P PH)) = {BR

1 , BR
2 , BR

4 }. The sole
preferential reduct for a relation PH �N

U SG is {BR
3 , BR

5 }.

4.1.2 Extreme ranking analysis

Definition 7 Assuming the use of a particular preference model, a rank preferential
reduct for an alternative a ∈ A, whose best and worst possible ranks are P∗(a)

and P∗(a), respectively, is a minimal set of pairwise comparisons provided by the DM
inducing a is neither ranked better than P∗(a) nor worse than P∗(a) by any compatible
preference model instance. Let us denote it by RPR(a).

A rank preferential reduct for a ∈ A, which guarantees a is ranked between P∗(a)

and P∗(a) by all compatible value functions, can be identified using Algorithm 2,
where E AR

TS provided as the input is equal to EP(a → [P∗(a), P∗(a)]) given below.

if P∗(a) > 1
U (a) + Mv>

b ≥ U (b) + ε,

for b ∈ A \ {a}∑
b∈A\{a} v>

b
≤ P∗(a) − 2 + |A| · v1,

v>
b ∈ {0, 1}, for b ∈ A \ {a},

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

EP(a → < P∗(a))

if P∗(a) < |A|
U (b) + Mv<

b ≥ U (a) + ε,

for b ∈ A \ {a}∑
b∈A\{a} v<

b
≤ |A| − P∗(a) − 1 + |A| · v2,

v<
b ∈ {0, 1}, for b ∈ A \ {a},

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

EP(a → > P∗(a))

v1 + v2 = 1,

v1, v2 ∈ {0, 1},
E AR

RANK.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EP (
a → [

P∗(a), P∗(a)
])
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Constraint set EP(a → < P∗(a)) guarantees a is ranked (P∗(a) − 1) in the worst
case. Constraint set EP(a → > P∗(a)) ensures a is ranked (P∗(a)−1) in the best case.
Constraint (v1 + v2 = 1) guarantees that either EP(a → < P∗(a)) or EP(a → >

P∗(a)) is instantiated with v1 = 0 or v2 = 0, respectively, while the other constraint
set is relaxed with v1 = 1 or v2 = 1, being always satisfied. Thus, finding a rank
preferential reduct amounts at identifying a minimal set of pairwise comparisons which
contradict both EP(a → < P∗(a)) and EP(a → > P∗(a)). Chinneck (2008) suggests
that in case of MILP, one should rather use the additive/deletion filter. This allows
removing by the deletion filter some potentially dubious constraints from the initial
solution suggested by the additive method. The rank preferential core (RC O RE) is
defined analogously to PC O RE (see Definition 6).

Case study For the case study, all rank preferential reducts are provided in Table 3.
Their discussion should be enhanced by the analysis of the ERA in case there is no
preference information (see P∗

D(a) − P D∗ (a) in Table 3). Let us explicitly provide
interpretation of these results for a few alternatives:

– RPR(TW) = {BR
3 }, P∗(TW) = P∗

D(TW) = 3 and P∗(TW) = 5 < P D∗ (TW) =
12 ⇒ “TW is not ranked at a position worse than 5 (i.e., between 6 and 12) by
any compatible value function, because the DM provided a pairwise comparison
BR

3 = (PH � MN)”;
– RPR(MN) = {BR

2 , BR
3 , BR

5 }, P∗(MN) = 6 > P∗
D(MN) = 4 and P∗(MN) = 9 <

P D∗ (MN) = 14 ⇒ “MN is not ranked at a position better than 6 (i.e., between
4 and 5) nor worse than 9 (i.e., between 10 and 14) by any compatible value
function, because the DM provided pairwise comparisons BR

2 = (FJ � TH),
BR

3 = (PH � MN), and BR
5 = (KG � KZ)”.

This allows identification of the precise implications between the provided pairwise
comparisons and the obtained ranking intervals. For the two countries (AU and NZ),
there is not any rank preferential construct, which means that positions of these alter-
natives stem only from their evaluations and the assumed preference model (while
the preference information does not influence the attained ranks). For the other 11
countries, R P R is unique, whereas for the remaining ones there are at least two
R P Rs. Again, in case RC O RE is non-empty (e.g., RCORE(FJ) = {BR

2 , BR
5 } or

RCORE(PG) = {BR
1 }), elimination of any of its members from BR would result in

widening the ranking interval of the corresponding alternative.

Definition 8 Assuming the use of a particular preference model, an upper (lower)
rank preferential construct for an alternative a ∈ A, whose best (worst) possible rank
is P∗(a) (P∗(a)), is a maximal set of pairwise comparisons provided by the DM
admitting a is possibly ranked better than P∗(a) (worse than P∗(a)). Let us denote it
by U R PC(a) (L R PC(a)).

An upper rank preferential construct for a ∈ A, admitting a is possibly ranked
better than P∗(a), is identified by solving (8), where the constraint set EP

V (a, b) is
replaced by EP(a → < P∗(a)) given below.
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(C1) U (a) + Mvb ≥ U (b) + ε,

(C2)
∑

b∈A\{a} vb ≤ P∗(a) − 2,

(C3) vb ∈ {0, 1}, for b ∈ A \ {a},
E AR

BASE,

E V,AR

PI−RANK.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

EP(a → < P∗(a))

Constraints (C1), (C2), and (C3) ensure that a is ranked not worse than P∗(a) − 1.
A lower rank preferential construct for a ∈ A, admitting a is possibly ranked worse

than P∗(a), is identified analogously with constraints (C1) and (C2) being replaced
by (C4) and (C5) given below:

(C4) U (b) + Mvb ≥ U (a) + ε,

(C5)
∑

b∈A\{a} vb ≤ |A| − P∗(a) − 1.

}

Example 6 For an alternative TJ, whose extreme ranks are 17 and 22:

– There is a single upper rank preferential construct URPC(TJ) = {BR
1 , BR

2 , BR
4 , BR

5 },
which means that “BR

3 is the only pairwise comparison in BR preventing T J from
being ranked better than 17th”;

– There are two lower rank preferential constructs LRPC1(TJ) = {BR
1 , BR

3 , BR
4 } and

LRPC2(TJ) = {BR
3 , BR

4 , BR
5 }, which means that “either (BR

2 and BR
5 ) or (BR

1 and
BR

2 ) need to be removed from the set of provided pairwise comparisons BR to allow
TJ being ranked worse than 22nd”.

4.2 Explaining recommendation of robust multiple criteria sorting

Definition 9 Assuming the use of a particular preference model, an assignment pref-
erential reduct for an alternative a ∈ A, whose worst and best possible classes are
CL P (a) and CRP (a), respectively, is a minimal set of assignment examples provided
by the DM inducing a is never assigned to a class better than CRP (a) and worse than
CL P (a). Let us denote it by APR(a).

Remark 5 If L = R, a is necessarily assigned to class CL=R(a). Then, an assignment
preferential reduct induces a →N CL=R(a).

An assignment preferential reduct for a ∈ A, which guarantees a is assigned to a
class between CL P (a) and CRP (a) by all compatible value functions, can be iden-

tified using Algorithm 2, where E AR

TS provided as the input is equal to E(a →P

[CL P (a), CRP (a)]) given below.

if L P > 1 :
(C6) U (a) + ε ≤ tL P−1 + Mv1,

if RP < p :
(C7) U (a) ≥ tRP − Mv2,

v1 + v2 = 1,

v1, v2 ∈ {0, 1},
E AR

SORT.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

E
(

a →P [CL P (a), CRP (a)]
)
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Constraint (C6) guarantees that a is assigned to a class CL P (a)−1 or worse. Con-
straint (C7) ensures a is assigned to a class CRP (a)+1 or better. Constraint (v1+v2 = 1)

guarantees that either (C6) or (C7) is instantiated with v1 = 0 or v2 = 0, respectively,
ensuring either U (a) < tL P−1 or U (a) ≥ tRP is satisfied. Thus, finding an assignment
preferential reduct is equivalent to identifying a minimal set of assignment examples
which contradict both U (a) < tL P−1 and U (a) ≥ tRP . The assignment preferential
core (AC O RE) is defined analogously to PC O RE (see Definition 6).

Case study For the case study, all assignments preferential reducts and the assign-
ment preferential cores are provided in Table 5. Let us explicitly provide interpretation
of these results for a few alternatives:

– APR1(AU) = {AR
1 } and APR2(AU) = {AR

2 } ⇒ “the necessary assignment of
AU to C4 is a consequence of the DM’s single assignment example, either AR

1 =
(JP → C4) or AR

2 = (KR → C4)”;
– APR(SG) = {AR

3 , AR
7 , AR

8 } ⇒ “SG is neither assigned to a class better than C3 nor
to a class worse than C2 by any compatible value function, because the DM provided
the following assignment examples: AR

3 = (TW → C3), AR
5 = (SG → C3), and

AR
8 = (CN → C1)”.

This allows identification of the precise implications between the provided assignment
examples and the obtained possible and necessary assignments. Note that if the range
of possible assignments is a proper subset of the set of all classes (as it is the case for
countries in the study), then AP R is non-empty. The assignment examples contained
in AC O RE [e.g., ACORE(FJ) = {AR

3 , AR
7 } or ACORE(MN) = {AR

3 }] need to be
held in AR to guarantee the possible assignment for an alternative is not less precise.

Definition 10 Assuming the use of a particular preference model, an upper (lower)
assignment preferential construct for an alternative a ∈ A, whose best (worst) possible
class is CRP (a) (CL P (a)), is a maximal set of assignment examples provided by the
DM admitting a is possibly assigned to a class better than CRP (a) (worse than CL P (a)).
Let us denote it by U APC(a) (L APC(a)).

An upper assignment preferential construct for a ∈ A, which admits a is possibly
assigned to a class better than CRP (a), is identified by solving (8), where the constraint
set EP

V (a, b) is replaced by E(a →P≥ CRP (a)+1) given below. Constraint U (a) ≥ tR

ensures that a is assigned to a class CRP (a)+1 or better.

U (a) ≥ tRP ,

E AR

BASE−SORT,

Mvk + U (a∗) ≥ tLDM(a∗)−1,

−Mvk + U (a∗) + ε ≤ tRDM(a∗),
vk ∈ {0, 1}.

⎫
⎬

⎭
AR

k , k = 1, . . . , |AR|

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E(a →P≥ CRP (a)+1)

Example 7 There is a single upper assignment preferential construct for an alternative
M N , whose best possible class is C3: UAPC(MN) = {AR

1 , AR
2 , AR

4 , AR
5 , AR

6 , AR
7 , AR

8 },
which means that “an exemplary assignment AR

3 is the only one in AR that prevents
M N from being possibly assigned to C4”.
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A lower assignment preferential construct for a ∈ A, which admits a is possibly
assigned to a class worse than CL P (a), is identified analogously with constraint U (a) ≥
tRP being replaced by U (a) + ε ≤ tL P−1.

Example 8 There are two lower assignment preferential constructs for an alternative
PH, whose worst possible class is C2: LAPC1(PH) = {AR

1 , AR
2 , AR

3 , AR
4 , AR

5 , AR
6 , AR

7 }
and LAPC2(PH) = {AR

1 , AR
2 , AR

3 , AR
4 , AR

5 , AR
6 , AR

8 }, which means that “either AR
8 or

AR
7 need to be removed from the set of assignment examples AR to allow PH being

possibly assigned to C1”.

Note that the notion of an upper (lower) assignment preferential construct is closely
related to the previous work in the context of robust multiple criteria sorting with
ELECTRE methods. In Dias and Mousseau (2003) and Mousseau et al. (2003), infea-
sibility analysis is applied to indicate assignment examples (or, in general, sets of
constraints) which should be removed so as to assign an alternative to a better or
worse class than, respectively, its best or worst possible class.

5 Computational cost

Let us denote the number of the provided preference information pieces by PI. For
ranking problems, it is equal to the number of pairwise comparisons of reference
alternatives |BR|, while for sorting problems it is equal to the number of assignment
examples |AR|. To identify a single preferential reduct with a deletion filter or the
additive method, in the worst case we need to solve, respectively, PI or PI · (PI − 1)/2
problems. To discover all preferential reducts with an additive method, up to 2PI

problems need to be solved.
However, each of these problems is relatively small—the range of dimensions in

case of using general monotonic marginal value functions is n ·m+|BR| constraints for
preferential reducts, n · (m +2)+|BR| for rank preferential reducts, and n ·m +2|AR|
for assignment preferential reducts. The number of variables is equal to n · m. In case
of identifying rank preferential reducts, additional 2n binary variables are involved
in problem formulation. Let us note that when using linear marginal functions the
numbers of constraints and variables are significantly less. In particular, we use m
variables instead of n · m ones.

Solving all these problems is not a burden for contemporary solvers. It is feasible in
reasonably short time, even if all preferential reducts need to be discovered, because
sets of reference alternatives in MCDA usually consist of modestly sized collections
of choices. In fact, multiple criteria problems considered in operations research and
management science (OR/MS) usually involve several dozens of alternatives (Walle-
nius et al. 2008). Thus, it is not realistic to assume that the DM would be willing to
provide tens of preference statements when dealing with such a set of alternatives.

Obviously, in case of ranking problems, the number of pairwise comparisons may
be great if the DM provides a complete pre-order for the set of reference alterna-
tives, as in the original UTA method (Jacquet-Lagreze and Siskos 1982). Precisely,
a ranking of |AR| alternatives can be decomposed to |BR| = |AR| · (|AR| − 1)/2
pairwise comparisons. For large sets AR, indication of preferential reducts composed
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of individual pairwise comparisons would be rather demanding in terms of required
computation time. To reduce the computational complexity, we may treat all pair-
wise comparisons referring to a single reference alternative as a logical whole. Then,
within the deletion filter, the corresponding constraints would be deleted in block, thus
removing a single alternative from the reference ranking. Consequently, the solution
indicated by a deletion filter would be a minimal complete pre-order of a subset of
reference alternatives derived from the reference ranking provided by the DM. This
complete pre-order may, however, contain some redundant elementary pairwise com-
parisons.

Let us note, however, that ROR was designed to deal with problems typically con-
sidered within MCDA, i.e., with problems concerning up to few hundred alternatives,
and rather not thousands. For larger sets of alternatives, there would be too many opti-
mization problems to compute, even for getting the basic outcomes of ROR, such as
the necessary preference relation, extreme ranks, or possible assignment. Thus, ROR
cannot be used to solve problems in information retrieval, natural language process-
ing, or bio-informatics. Moreover, when the set of alternatives is very large, ROR is
losing its advantage, because one can neither present to the DM all results (e.g., the
ranking) and explanations for the alternatives, nor involve her/him in the interactive
construction of preference information.

6 Using explanations in the interactive construction of preferences

Preferential reducts and constructs can be interpreted as transparent and easily under-
standable arguments that can be used to justify and explain the decision. They enable
DM’s understanding of the conditions for the necessary, possible, and extreme results
by providing useful information on the role of particular preference information pieces
in terms of consequences they imply. In the learning perspective of a constructive
approach to decision aiding, these explanations can be a starting point for an inter-
active analysis and construction of DMs preferences. They may serve as a tool for
looking more thoroughly into the subject, by reasoning, interpreting, and arguing. We
permit the DM to confront her/his value system not only with results of applying the
inferred model on the set of alternatives, but also with explanations that make her/his
logic and assumptions explicit. This confrontation gives insight into her/his prefer-
ences, providing reactions in the subsequent iteration, as well as a better understanding
of the employed method.

Preferential reducts and constructs are presented so as to invite the DM to an
interaction. On the one hand, (s)he could not accept some explanation in case (s)he
does not agree with the arguments it suggests. Let us suppose that the DM disagrees
with a preferential reduct revealing the implication between a pair-wise comparison
a �DM b and the necessary preference relation c �N d, for a, b, c, d ∈ A. Then, (s)he
can remove or invert a preference relation for a pair (a, b). In the same spirit, in case
the DM does not agree with the falsity of the possible preference relation not(e �P

f ), e, f ∈ A, (s)he may wish to keep preference information pieces contained in
its preferential construct only, and remove the remaining ones. On the other hand,
the analysis of the provided explanations may also increase the DM’s confidence in
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some pieces of preference information. In case the DM agrees with the necessary or
non-possible consequences, (s)he may confirm preference information contained in
the corresponding preferential reduct or not contained in the preferential construct,
respectively.

Analyzing the obtained results along with the explanations, the DM can judge if
the suggested recommendation is logical and valid, and whether (s)he is satisfied with
the correspondence between the preferences (s)he has at the moment and the recom-
mendation based on the preference model. In this way, the process of preference con-
struction is either continued (with strengthened preference information) or restarted
(with revised preference information). The procedure ends when the DM finds accept-
able the possible, necessary and extreme results, as well as the explanations given by
preferential reducts and constructs.

7 Extensions

In this section, we discuss a few extensions of the basic procedures for computation
of preferential reducts and constructs. For brevity, we focus on the necessary and
possible preference relations, while an adaptation to ERA and multiple criteria sorting
is omitted for being obvious.

Accounting for credibility of preference information ROR methods are designed to
be used interactively with an incremental specification of preference information. Let
BR

1 ⊆ BR
2 ⊆ · · · ⊆ BR

s be nested sets of DM’s pairwise comparisons of reference
alternatives associated with decreasing confidence levels. Each of those sets BR

t , t =
1, . . . , s, is modeled with a set of constraints E AR

RANK,t generating the set of compatible

value functions U AR

t . Each time we pass from BR
t−1 to BR

t , t = 2, . . . , s, we add

to E AR

RANK,t−1 new constraints concerning pairs (a, b) ∈ BR
t \ BR

t−1. Thus, the sets
of compatible value functions are nested in the inverse order of the related set of
pairwise comparisons BR

t , t = 1, . . . , s, i.e., U AR

1 ⊇ U AR

2 ⊇ · · · ⊇ U AR

s . We suppose

that U AR

s �= ∅. On the basis of nested sets of pairwise comparisons BR
1 ⊆ BR

2 ⊆
· · · ⊆ BR

s , we can build nested necessary �N
1 ⊆ �N

2 ⊆ · · · ⊆ �N
s and possible

�P
1 ⊇ �P

2 ⊇ · · · ⊇ �P
s preference relations.

The DM may require that the constructed preferential reducts and constructs con-
tain the most credible preference information which is provided in the initial phases
of the interactive process. Computation of such a preferential reduct for a �N b
requires identification of the first nested necessary relation �N

t , t = 1, . . . , s, contain-
ing a �N b. Then, to indicate the preferential reduct consisting of the most credible
preference information, the adequate procedures should exploit a set of pairwise com-
parisons BR

t rather than BR
s . Analogously, computation of the most credible preferen-

tial construct for a �P b requires identification of the last nested possible relation �P
t ,

t = s, . . . , 1, containing a �P b. Then, the adequate algorithm should exploit the set
of pairwise comparisons BR

s \ BR
t to eliminate the least credible statements making

a �P b impossible. Note that analogous idea has been explored before in case of deal-
ing with inconsistency of preference information. Mousseau et al. (2006) introduce
algorithms for providing solutions with the least confident judgments or constraints
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to be relaxed/deleted with a higher priority than solutions recommending relaxation
of high-confidence statements.

Joint reducts and constructs for multiple preference relations Apart from analyzing
preferential reducts and constructs for a single preference relation, we can also consider
analogous explanations in terms of a set of multiple relations, i.e., NEC = {a1 �N

b1, a2 �N b2, . . .} and POS = {a1 �P b1, a2 �P b2, . . .}, respectively. To identify
a joint preferential reduct for N EC , within a deletion filter we should consider the
following set of constraints:

M(1 − vai ,bi ) + U (bi ) − U (ai ) ≥ ε, for each
(
ai �N bi

) ∈ NEC
∑|NEC|

i=1 vai ,bi = 1,

vai ,bi ∈ {0, 1}, for each
(
ai �N bi

) ∈ NEC,

E AR

RANK,

⎫
⎪⎪⎬

⎪⎪⎭

EN(NEC)

instead of considering the set of constraints EN(a, b). Analogously, to compute a
joint preferential construct for POS, within the set of constraints EP

V (a, b), we should
replace a constraint U (a) − U (b) ≥ 0 with a constraint set U (ai ) − U (bi ) ≥ 0, for
each (ai �P bi ) ∈ POS.

Forcing explanations to contain some pairwise comparisons The DM may wish to
obtain explanations referring to some background preference information, i.e., to get
a reduct which contains some specific pairwise comparisons. This can be achieved
by the rearrangement of the list of pairwise comparisons to be dropped one by one
in the deletion filter, so that the constraints that should be potentially included in the
reduct are tested first. Obviously, it may turn out that the indicated pieces of preference
information are redundant with respect to explaining the investigated result, and thus
they are not included in the preferential reduct. In this case, the DM should be informed
that it is impossible to formulate a minimal explanation using the indicated arguments.

Necessary projection of a set of pairwise comparisons of reference alternatives Let
us call the set of necessary preference relations induced by some subset of pairwise
comparisons its necessary projection on the set of pairs of alternatives. Analyzing
such a projection may be useful for the DM interested in the necessary relations, (s)he
needs to accept as a consequence of some specific subset of pairwise comparisons of
reference alternatives. In particular, when considering the projection of the preferential
reduct for a �N b, the DM is provided with all other necessary relations induced by
the same subset of preference information pieces and (s)he may judge whether their
joint induction is concordant with her/his value system.

8 Conclusions

In this paper, we presented a new approach to generating explanations of the recom-
mendations offered by multiple criteria ranking or sorting methods based on robust
ordinal regression. We have suitably adapted algorithms for identification of irre-
ducible infeasible systems and maximum feasibility sets to indicate preferential reducts
and constructs, respectively. The previous associates some result that is valid within
the set of compatible value functions with the minimal set of preference information
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pieces by which it is supported. The latter indicates the maximal set of the holistic
judgments which make some currently non-observable result possible for at least one
compatible value function. Knowing the exact relations between the provided pref-
erence information and the final recommendation, the DM can better understand the
impact of each piece of preference information or their subsets on the result, and
gain a better insight into her/his preferences. This enhances the interpretability of the
outcomes and increases the DM’s acceptance of the suggested recommendation.

The presented approach remains valid for different types of holistic preference
information. In particular, in case of ranking problems, apart from pairwise compar-
isons we may use the intensity of preference (e.g., a is preferred to b at least as much
as c is preferred to d) (Figueira et al. 2009) or rank-related requirements (e.g., a should
be ranked in top 3, b should be among the 10 worst alternatives, or c should be placed
in second five) (Kadzinski et al. 2013). Moreover, suitably adapted, the proposed algo-
rithms can be used in the context of other preference models, e.g., outranking-based
ranking methods (Greco et al. 2011; Kadzinski et al. 2012) or fuzzy integrals (Angilella
et al. 2010), as well as in the case of group decision (Greco et al. 2012; Kadzinski et
al. 2013).
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