
1 

 

REVIEW PAPER 1 

The biomechanics of seed germination 2 

Tina Steinbrecher* and Gerhard Leubner-Metzger 3 

 
4 

School of Biological Sciences, Plant Molecular Science and Centre for Systems and 5 

Synthetic Biology, Royal Holloway University of London, Egham, Surrey, TW20 0EX, 6 

United Kingdom, Web: 'The Seed Biology Place', www.seedbiology.eu 7 

 8 

Running title: Seed germination biomechanics 9 

 10 

*To whom correspondence should be addressed. Email: 11 

tina.steinbrecher@rhul.ac.uk; Web: 'The Seed Biology Place', www.seedbiology.eu 12 

 13 

Journal of Experimental Botany (2016) - JEXBOT/2016/ 14 

 15 

Received: 29/07/2016 16 

Accepted:  17 

 18 

Key words: biological materials, seed biomechanics, germination, endosperm 19 

weakening, embryo growth potential, apoplastic reactive oxygen species, puncture 20 

force 21 

 22 

 23 

Word count: 6257 24 

Number of black and white figures: 2 25 

Number of color figures: 7 26 



2 

 

Number of tables: 1 27 

© The Author 2016. Published by Oxford University Press on behalf of the Society for 28 

Experimental Biology. 29 

This is an Open Access article distributed under the terms of the Creative Commons 30 

Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits 31 

unrestricted reuse, distribution, and reproduction in any medium, provided the original 32 

work is properly cited. 33 

  34 



3 

 

Abstract 35 

From a biomechanical perspective the completion of seed (and fruit) germination 36 

depends on the balance of two opposing forces: The growth potential of the 37 

embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed covering 38 

layers (endosperm, testa, pericarp). The diverse seed tissues are composite 39 

materials which differ in their dynamic properties based on their distinct cell-wall 40 

composition and water uptake capacities. The biomechanics of embryo cell growth 41 

during seed germination depends on irreversible cell-wall loosening followed by water 42 

uptake due to the decreasing turgor and this leads to embryo elongation and 43 

eventually radicle emergence. Endosperm weakening as a prerequisite for radicle 44 

emergence is a widespread phenomenon among angiosperms. Research into the 45 

biochemistry and biomechanics of endosperm weakening has demonstrated that the 46 

reduction in puncture force of a seed’s micropylar endosperm is environmentally and 47 

hormonally regulated and involves tissue-specific expression of cell-wall remodelling 48 

proteins such as expansins, diverse hydrolases, and the production of directly acting 49 

apoplastic reactive oxygen. The endosperm weakening biomechanics and its 50 

underlying cell-wall biochemistry differs between the micropylar (ME) and chalazal 51 

(CE) endosperm domains. In the ME it involves cell-wall loosening, cell separation 52 

and programmed cell death to provide decreased and localised ME tissue resistance, 53 

autolysis and finally the formation of an ME hole required for radicle emergence. 54 

Future work will further unravel the molecular mechanisms and environmental 55 

regulation of the diverse biomechanical cell-wall changes underpinning the control of 56 

germination by endosperm weakening. 57 

  58 
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Introduction 59 

All living organisms and processes are bound by the laws of physics and chemistry. 60 

Understanding these fundamental mechanisms is key to elucidating the roles of 61 

biological materials and structures in life. Plant biomechanics has risen to a topical, 62 

multidisciplinary and expanding field of science (Moulia, 2013; Niklas et al., 2006). 63 

The application of new techniques previously only used in material science are 64 

leading to new advances and insights in biological materials (Cranford and Buehler, 65 

2010; Ebenstein and Pruitt, 2006; Walters et al., 2010). The mechanical properties of 66 

plants are an interplay of cell wall, whole cell, tissue and organ properties and are 67 

highly dependent on water content (Fratzl and Weinkamer, 2007; Jeronimidis, 1980; 68 

Vogler et al., 2015). A plant’s life cycle depends on biomechanics at several stages. 69 

Starting with the fertilisation and the mechanics of pollen tube formation (Gossot and 70 

Geitmann, 2007; Zonia and Munnik, 2009) up to the seed or fruit propagation 71 

(Elbaum and Abraham, 2014; Hofhuis et al., 2016; Nathan et al., 2002; Witztum and 72 

Schulgasser, 1995). The vulnerable and complex process of seed germination also 73 

depends on decisive and specific changes in tissue and cell properties. Per 74 

definition, seed germination starts with the uptake of water by the quiescent, dry seed 75 

followed by the elongation of the embryonic axis (Bewley, 1997b). This usually 76 

culminates in the rupture of the covering layers and emergence of the radicle, 77 

generally considered as the completion of germination (Finch-Savage and Leubner-78 

Metzger, 2006). From a mechanical point of view, the germination process can be 79 

seen as an interplay between two opposing forces: the growth potential of the 80 

embryo and the restraining force of the seed covering layers. While the physiological, 81 

biochemical and molecular mechanisms of seed germination have been summarised 82 

in numerous reviews (see for example Bewley, 1997b; Finch-Savage and Leubner-83 

Metzger, 2006; Koornneef et al., 2002; Linkies and Leubner-Metzger, 2012), 84 

integrated works in which an interdisciplinary effort has been made to combine them 85 

with methods from biophysics, engineering and mathematical sciences are rare. In 86 

this review paper we are focusing on biological materials and seeds in particular from 87 

a mechanical perspective. 88 

 89 

Biological materials 90 
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Biological materials and structures are normally composites which are mainly made 91 

up from polymeric fibres embedded in a protein matrix (Vincent, 1990; Vincent and 92 

Currey, 1980; Wainwright et al., 1982). Considering these weak individual building 93 

blocks, it is striking that many biological systems exhibit mechanical properties 94 

beyond what can be achieved using the same synthetic materials (Chen et al., 2008; 95 

Srinivasan et al., 1991; Vincent, 1992). Plant cell walls consist of cellulose, 96 

hemicellulose, pectin, lignin, and protein. This rigid structure together with the 97 

osmotic characteristics of the protoplast, govern the mechanical properties of cells, 98 

tissues and organs (Brett and Waldron, 1996; Cosgrove, 2005). In contrast to this, 99 

animal tissue protoplasts are in most cases not surrounded by such a rigid 100 

compartment (Meyers et al., 2008; Vincent and Wegst, 2004). It is not so much the 101 

material properties of the individual components determining the mechanical 102 

behaviour but rather their specific arrangement within a structure. Also, based on the 103 

fibre orientations and the amount of the constituents, the mechanical properties of 104 

the various material systems or structures are different (Burgert, 2006; Wegst and 105 

Ashby, 2004). The exceptional mechanical performance of biological materials 106 

resides in their hierarchical organisation at multiple levels, from the molecular to the 107 

macroscopic scale (Aizenberg et al., 2005; Currey, 2005; Gibson, 2012; Gordon et 108 

al., 1980; Jeronimidis and Atkins, 1995; Mann and Weiner, 1999; Rüggeberg et al., 109 

2009). Wood, for example, is one of the most widely distributed high-performance 110 

materials with a specific strength comparable to steel (Gordon et al., 1980). Its 111 

optimisation is achieved by the arrangement of components on at least five structural 112 

levels: integral (geometrical make-up of axes), macroscopic (tissue structure), 113 

microscopic (cell structure), ultra-structural (cell wall structure) and biochemical (cell 114 

wall components) (Jeronimidis, 1980). As shown by Ji and Gao (2004) and Gao et al. 115 

(2003) the smallest hierarchical level is on the nanoscale and intricately linked to 116 

higher levels. 117 

Materials respond to external stresses. Engineers describe the mechanical behaviour 118 

of materials by loading a sample and measuring the force and displacement of the 119 

material as it deforms. This results in force-displacement curves, which can be 120 

converted into typical stress-strain curves. These stress-strain curves have several 121 

regions of interest and reveal several of the properties of a material (Figs. 1, 2A). 122 

Stress (or pressure) is defined as the force per area and strain (or deformation) is 123 
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defined as the amount of elongation or contraction (increase or decrease in length) 124 

caused by the stress.  125 

Stress σ = �

�
 (where F is the force and A is the cross section) 126 

Strain ε = ∆ �

�
 (where ΔL is the change in length and L is the original length) 127 

Some characteristic responses that materials exhibit are shown in Figure 1 and are 128 

defined as follows: 129 

Elastic behaviour: recoverable deformation; Stress is proportional to strain. 130 

Deformation occurs instantly and the material returns to its original shape after load is 131 

removed. For an ideal elastic material, no energy is lost during the loading and 132 

unloading. 133 

Plastic behaviour: non-recoverable deformation; Plastic deformation occurs after a 134 

certain threshold (Yield stress) is reached. An increase in strain leads to a non-linear 135 

change in load.  136 

Viscoelastic behaviour: time-dependent deformation; The word viscoelasticity 137 

originates from viscosity and elasticity. The rate of deformation is a function of the 138 

stresses. That means the deformation depends on how quickly load is applied. 139 

Viscoelastic materials will return to their original shapes after a certain amount of time 140 

after load is removed. 141 

Biological materials are structurally complex and show a complex mechanical 142 

behaviour in response to external loading (Fratzl and Weinkamer, 2007; Speck and 143 

Burgert, 2011). Most biological materials (if not all) show a viscoelastic behaviour to a 144 

greater or lesser extent (Sasaki, 2012). They do have a viscous component and do 145 

show time-dependent behaviour. Therefore, the strain or loading rate (change in 146 

strain or stress with respect to time) needs to be taken into account. The higher the 147 

strain or loading rate, the larger a peak strain/stress will be. Another characteristic a 148 

viscoelastic material can possess is creep. Creep is a slow plastic (permanent) 149 

deformation that occurs when a constant load is applied over time. Most biological 150 

materials operate within the elastic region under normal loading conditions. 151 

Furthermore, biological materials are anisotropic. This means that the mechanical 152 

properties differ for different directions of loading. Wood for example does behave 153 
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differently if tested along or perpendicular to the grain (Burgert, 2006; Salmén, 2004). 154 

The same holds true for diverse seed or fruit coats. 155 

Figure 2 shows stress-strain diagrams, which enable us to derive several key 156 

parameters of the tested material. Typically, materials exhibit an initial linear stress-157 

strain response where the slope corresponds to the Elastic Modulus E (or stiffness) 158 

of the material. A flexible material is characterised by a low Elastic Modulus whereas 159 

a high Elastic Modulus correlates to a stiff material. If a test were stopped within the 160 

linear (elastic) region the material it would return to its initial shape. At higher forces, 161 

above a certain threshold, the elastic limit (Yield point) is reached and plastic 162 

deformation occurs. Another important variable obtained from the stress-strain curve 163 

is the maximum strength of the material under a load such as tension, compression, 164 

torsion or bending. The area underneath the curve corresponds to the energy 165 

absorbed by the material and equals the toughness. Stiffness and strength are often 166 

used by biologists in the wrong context as they describe very different characteristics 167 

of a material. A material can be stiff but weak (e.g. a cookie) or flexible but strong 168 

(e.g. leather) (Fig. 2B). An excellent overview about the mechanical properties of 169 

materials and their failure is given by Mattheck (2004). 170 

Combining a biologist’s and a material scientist’s point of view on structure and 171 

mechanics is a timely approach to advance our understanding of plants and provide 172 

new insights on biomaterials. Recently, engineering tools have been applied to 173 

describe seed deterioration and the in engineering well known material property 174 

charts have been extended to include seeds (Fig. 3) (Walters et al., 2010). The idea 175 

of material property charts was coined by Ashby and compares mechanical 176 

properties by plotting one property against another (Ashby, 1989; Ashby et al., 1995; 177 

Wegst and Ashby, 2004). They are a sophisticated graphical way of presenting and 178 

comparing material property data. Two properties are plotted; one on each axis of the 179 

graph, while common combinations are for example: Strength vs. Density, Modulus 180 

vs. Density, Modulus vs. Strength, Fracture Toughness vs. Modulus. Figure 3 181 

illustrates schematically a material property chart where the Elastic Modulus (E) is 182 

plotted against the density (ρ) (Ashby et al., 1995). The scales are logarithmic 183 

showing a wide range of materials on just one chart. For the comparison of different 184 

materials, the material indices E/ρ, E1/2/ρ, and E1/3/ρ are plotted onto the figure as 185 

guidelines for minimum mass design. Materials which lie on a line perform equally, 186 
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those above the line are better with respect to lightweight structures and those below 187 

are worse. It is observable that biological materials are relatively light materials with 188 

low density yet providing a relatively high elastic-modulus. According to Walters et al. 189 

(2010), the Elastic Modulus of seeds vary by one order of magnitude, and depends 190 

on the species and environmental factors. The material density is centred near 191 

1000 kg/m3. The Elastic Modulus within the seed material family lies within the range 192 

of polymers and foams and other natural materials wherever the density is similar to 193 

wood, polymers and elastomers (Fig. 3) (Walters et al., 2010). 194 

 195 

Biophysical aspects of seed germination 196 

Seeds, and in many cases also seed-harbouring fruits, evolved as the typical 197 

dispersal and propagation units of the angiosperms and gymnosperms (Linkies et al., 198 

2010). Structurally distinct seed and embryo types have been defined (Baskin and 199 

Baskin, 2014; Martin, 1946) and their distinct compartments and tissues serve 200 

important roles during germination and seedling establishment. In the mature seeds 201 

of most angiosperm species the diploid embryo is enclosed by one or more layers of 202 

seed “coats” or coverings. These “coats” typically consist of a more or less abundant 203 

living triploid endosperm and a diploid dead maternal testa (seed coat) which both 204 

play key roles in the control of germination (Finch-Savage and Leubner-Metzger, 205 

2006; Weitbrecht et al., 2011; Yan et al., 2014). In cases where dry fruits are 206 

dispersed, the seed is in addition encased by pericarp (fruit coat) layers (Hermann et 207 

al., 2007; Olsen, 2004; Psaras, 1984). 208 

Mechanical properties of whole seeds or parts of seeds have mainly been examined 209 

in food science, especially the fracture toughness, impact damage, tensile and 210 

compression strength. Measurements have mainly been carried out with seeds or 211 

fruits of beans (Altuntaş and Yıldız, 2007; Bartsch et al., 1986; Bay et al., 1996; 212 

Davies and Zibokere, 2011; Fahloul et al., 1996; Ogunjimi et al., 2002; Ozturk et al., 213 

2009; Shahbazi et al., 2011), olives (Georget et al., 2001; Kılıçkan and Güner, 2008), 214 

walnuts (Altuntas and Erkol, 2011; Altuntas and Özkan, 2008), sunflower (Gupta and 215 

Das, 2000), cumin (Saiedirad et al., 2008) and wheat (Mabille et al., 2001). In large 216 

parts, these measurements determined the influence of different moisture contents 217 

on the mechanical properties. In general, an increase in moisture content causes a 218 

decrease in fracture toughness. The major mechanical entities and associated 219 
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features which control seed germination are the properties of the seed/fruit coats, the 220 

endosperm weakening and the embryo growth potential.  221 

The outer seed coverings consist mostly of dead tissues (testa, pericarp) and 222 

represent the seed´s interface with the external environment. Their roles include 223 

protecting the embryo against adverse ambient conditions. In addition they serve a 224 

mechanical purpose in coat imposed seed dormancy to control germination timing 225 

(Bewley, 1997b; Debeaujon et al., 2000; Kelly et al., 1992; Werker, 1980). In many 226 

species a living layer of more or less abundant endosperm is interposed between 227 

these dead outer tissues and the embryo (Finch-Savage and Leubner-Metzger, 228 

2006; Yan et al., 2014). In addition to providing mechanical restraint, coat-associated 229 

mechanisms of the endosperm, testa and/or pericarp are to control or even prevent 230 

water uptake, to interfere with leaching of inhibitors of embryo elongation such as 231 

abscisic acid (ABA), or gaseous exchanges which may cause oxygen deficiency 232 

within the embryo (Bewley and Black, 1994). It has for example been shown for 233 

Lepidium sativum seeds prior to testa/endosperm rupture that the testa and 234 

endosperm interfere with oxygen uptake required for ethylene production (Linkies et 235 

al., 2009). The same is true for sugar beet fruits where the pericarp confers the major 236 

restraint (Hermann et al., 2007). 237 

 238 

Biomechanics of embryo growth during seed germination 239 

Plant cells possess a rigid cell-wall which together with the turgor pressure from 240 

water uptake into the vacuole provides stability to the plant. In order to grow, the 241 

plant cells need to expand in a controlled manner. A good overview on the process is 242 

given in a review by Cosgrove (2005). The primary cell-walls of plants are 243 

presumably a nonlinear viscoelastic material which can expand plastically (Niklas, 244 

1992; Schopfer, 2006). The irreversible cell expansion is produced by creating a 245 

driving force for water uptake by decreasing the turgor through stress relaxation in 246 

the cell-wall (Fry, 2004; Schopfer, 2006). Upon cell wall loosening the polymers in the 247 

cell-wall move apart from each other (creep) and allow expansion growth of the cell 248 

due to water influx into the vacuole. Candidates proposed to be involved in the cell-249 

wall loosening include expansins (Cosgrove, 2000a; Cosgrove, 2000b), xyloglucan 250 

endotransglycolases/hydrolases (Fry et al., 1992; Van Sandt et al., 2007), endo-(1,4)-251 

β-D-glucanases (Inukai et al., 2012; Nicol et al., 1998), as well as apoplastic reactive 252 
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oxygen species (aROS) (Müller et al., 2009; Schopfer, 2001; Schopfer et al., 2002). 253 

Upon imbibition of a quiescent seed the low water potential (“dry” state) causes rapid 254 

water uptake driven by the matrix potential (Schopfer, 2006; Weitbrecht et al., 2011). 255 

The osmotic water uptake eventually leads to a turgid state, to the activation of the 256 

metabolism and to cell expansion growth in the embryo axis. Specific embryo growth 257 

zones have been identified (Bassel et al., 2014; Sliwinska et al., 2009). While this cell 258 

expansion growth is associated with endoreduplication, only the cell growth but not 259 

cell division is required for the embryo to complete germination through radicle 260 

emergence (Oracz et al., 2012; Sliwinska et al., 2009; Weitbrecht et al., 2011). In 261 

order to complete germination the embryo growth potential must increase and 262 

exceed the restraint. The mechanism by which this occurs is through an increase in 263 

the embryo cell-wall extensibility which enables plastic rather than merely elastic wall 264 

extension, and by simultaneously decreasing the restraints of the embryo covering 265 

layers (Fig. 4). These changes are inhibited by ABA which thereby lowers the embryo 266 

growth potential and cell expansion growth (Da Silva et al., 2008; Schopfer and 267 

Plachy, 1985) and inhibits the restraint weakening of the endosperm (Linkies and 268 

Leubner-Metzger, 2012; Müller et al., 2006). Similar biochemical mechanisms in the 269 

cell-walls of micropylar endosperms are also underpinning endosperm weakening 270 

required for endosperm rupture during germination. However, cell separation 271 

(disrupting cell adhesion) and localised programmed cell death (PCD) are additional 272 

features of endosperm weakening (Bethke et al., 2007; Morris et al., 2011). 273 

 274 

Endosperm weakening in Asterid clade seeds and fruits 275 

In the case of endosperm-limited germination, the endosperm acts, at least in part, as 276 

a mechanical barrier for radicle protrusion (Linkies and Leubner-Metzger, 2012). It 277 

has been reported for many species that a decline in the mechanical resistance of 278 

the micropylar endosperm (the endosperm covering the radicle tip) appears to be a 279 

prerequisite for radicle protrusion (Table 1 and associated references). From a 280 

mechanistic point of view, seed germination is determined by the interaction of two 281 

antagonistic forces: the increase of the embryo growth potential and the decrease in 282 

the resistance of the covering layers (Fig. 4). The direct evidence for the endosperm 283 

weakening (PF↓ in Table 1) has been obtained by puncture force measurements, i.e. 284 

the direct quantification of the force needed for puncturing the micropylar endosperm 285 
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by a metal probe (Fig. 5). This was first achieved with larger seeds from the Asterid 286 

clade (Table 1), and was only recently accomplished with tiny (< 1 mm length) 287 

tobacco (Nicotiana tabacum, Solanaceae) seeds (Lee et al., 2012). Mature tobacco 288 

seeds exhibit 3-5 layers of rather thick-walled living endosperm cells (Fig. 4B). The 289 

endosperm is enclosed by a thin testa, which consists of an outer layer of dead cells 290 

and a living inner parenchyma layer (Avery, 1933; Leubner-Metzger, 2003). Rupture 291 

of the testa (TR) and the endosperm (ER) are temporally well separated successive 292 

events during the germination of tobacco seeds (Arcila and Mohapatra, 1983; 293 

Leubner-Metzger et al., 1995). The testa rupture starts near the funiculus and 294 

progresses along the ridges of the testa, leaving a dome-shaped endosperm 295 

structure covering the radicle. Tobacco is not only the smallest seed for which 296 

endosperm weakening was directly quantified by the puncture force method (Lee et 297 

al., 2012), but also the smallest seed for which the spatiotemporal patterns of water 298 

uptake were investigated by 1H-nuclear magnetic resonance (NMR) microimaging 299 

(Manz et al., 2005). This non-destructive method revealed a non-uniform water 300 

uptake and distribution as the micropylar end of the seed is the major entry point of 301 

water. Micropylar endosperm and the radicle show the highest water content in the 302 

TR stage prior to ER (Fig. 4A). The spatial analysis even revealed that already prior 303 

to TR these compartments have a significantly higher water content compared to the 304 

non-micropylar endosperm and the cotyledons. It is therefore obvious to assume that 305 

the processes associated with the tobacco seed’s late TR stage also include 306 

biomechanical and biochemical cell-wall alterations. 307 

To investigate the underpinning biomechanical mechanisms of tobacco endosperm 308 

weakening, comparative puncture force analysis of the micropylar endosperm (ME) 309 

and the chalazal endosperm (CE) were conducted (Lee et al., 2012). To achieve this 310 

with such a tiny seed as tobacco a thin needle and a special sample holder filled with 311 

water is required (Fig. 5B). Figure 6 shows that TR is associated with a significant 312 

decrease in ME resistance which coincides with TR. A further decrease in ME 313 

resistance was just prior to ER. Most strikingly, this TR-associated endosperm 314 

weakening was only evident in the ME. In contrast to the ME, there was no significant 315 

endosperm weakening in the CE associated with TR, and the slight decrease in CE 316 

resistance just prior to ER was considerably smaller compared to the ME (Fig. 6). 317 

The major conclusion from this is that the mature tobacco seed exhibits an 318 

endosperm polarity in which the ME and CE have distinct roles: The CE does not 319 
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weaken to serve as “anchor” or “holding structure” for the embryo to support that the 320 

elongation growth due to the increasing embryo growth potential is directed towards 321 

the micropylar seed end. The ME weakens, at least partially, by biochemical cell-wall 322 

changes allowing enhanced water uptake into the embryonic axis growth zone cells. 323 

Also allowing ER and radicle protrusion at a defined location, namely at the 324 

weakened ME (Fig. 6). The ME weakening is therefore a key biomechanical and 325 

biochemical process which controls tobacco germination timing. 326 

In agreement with this conclusion, microscopic studies showed that storage reserves 327 

are degraded in the ME cells prior to ER and to radicle protrusion (Arcila and 328 

Mohapatra, 1983; Leubner-Metzger et al., 1995). The microscopy also shows that the 329 

endospermic hole which is always formed at the micropylar end of the germinating 330 

tobacco seed, has a smooth outline and therefore seems to results from biochemical 331 

tissue dissolution rather than from the pushing action of the protruding radicle. These 332 

processes leading to ER and radicle emergence require transcription and translation 333 

(Arcila and Mohapatra, 1992). The endosperm cell-walls of solanaceous seeds are 334 

known to be rich in mannan (β-1,4-linked D-mannose) and heteromannans (gluco- 335 

and galactomannans, glucose or galactose α-1,6-linked to the main mannan chain) 336 

(Bewley, 1997a; Buckeridge, 2010; Lee et al., 2012; Morris et al., 2011; Rodríguez-337 

Gacio et al., 2012). These cell-wall mannans are rigidity- and mechanical strength-338 

conferring cross-linking hemicellulosic matrix polysaccharides. In some species they 339 

serve as endosperm storage reserves, and due to their viscosity and solubility in 340 

water may also have roles during seed imbibition. In Solanum spp. seeds (Table 1) 341 

the second step of the biphasic ME weakening is controlled by ABA and is 342 

associated with endo-β-1,4-manannase accumulation in the ME (Gong and Derek 343 

Bewley, 2007; Nonogaki et al., 2000; Pinto et al., 2007; Toorop et al., 2000). The 344 

hypothesis that hydrolytic enzyme accumulation in the ME is required for endosperm 345 

weakening and radicle protrusion was first proposed by Ikuma and Thimann (1963). 346 

Tobacco endosperm monosaccharide linkage analysis of neutral sugars shows that 347 

ca. 65% are heteromannans (>90% of these constitute β-1-4-mannan linkages) (Lee 348 

et al., 2012). In situ localisation of heteromannan cell-wall epitopes by 349 

immunofluorescence microscopy using a specific antibody demonstrated that 350 

heteromannan was specifically degraded in the ME at TR, but not at earlier time 351 

points and not in the CE (Fig. 6). This spatiotemporal heteromannan-degradation 352 

pattern in the ME cell-walls suggests that endo-β-1,4-manannase accumulation in the 353 
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ME contributes to the ME weakening during tobacco seed germination (Fig. 6). Other 354 

cell-wall hydrolases, including endo-β-1,3-glucanase, were also proposed to 355 

contribute to ME weakening (Leubner-Metzger et al., 1995; Leubner-Metzger and 356 

Meins, 2000; Manz et al., 2005). To further study endosperm weakening tobacco is 357 

an ideal Asterid system due to the separate TR and ER, and because it has 358 

abundant endosperm and a straight embryo, which make it structurally a typical and 359 

simple system with a clearly expressed endosperm polarity. 360 

In lettuce (Lactuca sativa, Asteraceae) fruits the embryo is completely enclosed by a 361 

living endosperm composed of 2-3 cell layers which is a mechanical constraint to 362 

embryo growth and the completion of germination (Bewley, 1997a; Halmer et al., 363 

1975; Ikuma and Thimann, 1963). In the intact lettuce fruit (achene) the embryo and 364 

endosperm are enclosed by a testa (seed coat) and pericarp (fruit coat) covering 365 

(Fig. 7). Lettuce micropylar (ME) and chalazal (CE) endosperm cell-walls differ 366 

considerably in their composition. Indirect biomechanical measurements showed that 367 

lettuce endosperm weakening precedes endosperm rupture in the light, but not in 368 

darkness (photoinhibition) and gibberellin (GA) treatment can replace the light to 369 

induce endosperm weakening (Tao and Khan, 1979). To conduct the biomechanical 370 

work on lettuce these authors used an indirect measurement method of the forces, 371 

i.e. by calculating them as the difference between puncturing embryo plus 372 

endosperm and embryo alone, perpendicular to the seed axis of radicle elongation. 373 

As a technical advance, Zhang et al. (2014) provided a new method to measure 374 

solely the endosperm using adhesive tape to hold the soft and delicate endosperm 375 

tissue in place (Fig. 7B, C). A decrease in the ME puncture force was evident in 376 

association with endosperm rupture while the CE did not weaken (Zhang et al., 377 

2014). Further to this, ABA inhibits and ethylene promotes the lettuce endosperm 378 

weakening and ER (Fig. 7C) (Chen et al., 2016; Zhang et al., 2014).  379 

A crucial role of hormonal regulation of endosperm weakening and cell-wall 380 

remodelling during lettuce germination in light and temperature responses was 381 

established (Bewley, 1997a; Chen et al., 2016; Huo et al., 2013). The endosperm 382 

weakening precedes the completion of lettuce germination by typical ER and radicle 383 

emergence (Fig. 7A). If the endosperm weakening is inhibited by treatment of lettuce 384 

seeds with sodium dichloroisocyanurate (SDIC) the embryo expands but cannot 385 

protrude through the endosperm (Pavlišta and Haber, 1970). Thus the embryo starts 386 
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to buckle within its hull and may eventually germinate despite an atypical ER (Fig. 387 

7A). Lettuce endosperm cell-walls contain L-arabinofuranose and evidence was 388 

provided to propose that α-L-arabinofuranosidase accumulates and causes the 389 

endosperm weakening during lettuce germination (Liu et al., 2015; Zhang et al., 390 

2014). SDIC treatment inhibited the enzyme accumulation in association with 391 

inhibited endosperm weakening. SDIC was also instructive to establish a role for 392 

apoplastic reactive oxygen species (aROS) in lettuce endosperm weakening as well 393 

as in lettuce embryo expansion growth (Zhang et al., 2014). Further to this, the 394 

accumulation of cellulase activity in the lettuce ME and its regulation by ABA and 395 

ethylene was proposed to play a role in both processes (Chen et al., 2016; Zhang et 396 

al., 2014). The current findings from various endospermic species from the Asterid 397 

clade (Table 1) therefore support the view that endosperm weakening resulting in a 398 

decreased ME resistance as quantified by puncture force analysis is mediated 399 

through the combined or successive action of several cell-wall-modifying hydrolases, 400 

transgycolases, expansins and directly acting aROS. While biochemical mechanisms 401 

mediating cell-wall loosening such as aROS seem to be shared between embryo 402 

expansion growth and endosperm weakening, the differences in cell-wall composition 403 

and the spatiotemporal accumulation patterns of specific cell-wall modifying proteins 404 

or aROS may provide in addition cell separation as a hallmarks of the endosperm 405 

weakening process (Bethke et al., 2007; Lee et al., 2012; Morris et al., 2011). 406 

 407 

Endosperm weakening and embryo growth in Rosid clade seeds 408 

While there are, besides tobacco, tomato and lettuce several other species from the 409 

Asterid clade for which endosperm weakening has been directly demonstrated by the 410 

puncture force method (Table 1), garden cress (Lepidium sativum, Brassicaceae) has 411 

emerged as an established model system for endosperm weakening in the Rosid 412 

clade (Linkies and Leubner-Metzger, 2012). There is in addition plenty of indirect 413 

evidence in strong support for the view that endosperm weakening is a widespread 414 

phenomenon in the Rosid clade and also, for example, controls Arabidopsis thaliana 415 

seed germination (Bethke et al., 2007; Denay et al., 2014; Linkies et al., 2009; Müller 416 

et al., 2006; Penfield et al., 2006; Scheler et al., 2015; Yang et al., 2008). This 417 

includes microscopically visible early reserve breakdown in the ME including 418 

vacuolation of protein storage vacuoles which is promoted by GA and inhibited by 419 
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ABA (Bethke et al., 2007), altered seed germination and dormancy responses of 420 

mutants and transgenic lines (Bentsink and Koornneef, 2008; Debeaujon et al., 2000; 421 

Denay et al., 2014), as well as local cell separation at the site radicle protrusion in the 422 

A. thaliana ME (Bethke et al., 2007). Scarification (“embryo rescue”) by removing the 423 

testa and endosperm, results in embryo growth from dormant A. thaliana seeds 424 

(Graeber et al., 2014). Figure 8 shows that the endosperm is sufficient to prevent 425 

germination when the testa is removed from dormant A. thaliana seeds (Bethke et al., 426 

2007). Treatment with dormancy releasing compounds induces endosperm rupture 427 

and radicle emergence (Fig. 8D). This demonstrates that the physiological dormancy 428 

(PD) of A. thaliana seeds is coat dormancy imposed by the endosperm (Bethke et al., 429 

2007) and the testa (Debeaujon et al., 2000). Both species, A. thaliana and L. 430 

sativum, have, as lettuce, a thin living endosperm encasing the embryo, its 1 and 2-3 431 

cell layers respectively (Bethke et al., 2007; Müller et al., 2006). Besides seed size, a 432 

major difference between the two species is that while A. thaliana seeds have PD, L. 433 

sativum are non-dormant (ND), they belong to the ND class of seed dormancy (Willis 434 

et al., 2014). Overexpression of the A. thaliana dormancy gene DOG1 resulted in 435 

establishing PD in transgenic L. sativum seeds (DOG1-OE in Fig. 8). This PD of 436 

DOG1-OE L. sativum seeds is coat dormancy imposed by the altered endosperm, 437 

the excised embryos grow and exhibit no difference in their embryo growth potential 438 

when compared to the wild type (Graeber et al., 2014). The physiological coat 439 

dormancy therefore means that it prevents the progression of endosperm weakening 440 

in the DOG1-OE L. sativum seeds (Fig. 8C). The endosperm weakening in ND L. 441 

sativum wild-type seeds has roles in regulating the speed, uniformity, and response 442 

of seed germination towards environmental cues. 443 

For Lepidium sativum (Morris et al., 2011) and Lactuca sativa (Dutta et al., 1994) 444 

incubation of weakening-induced isolated endosperms undergo hormonally regulated 445 

cell-wall autolysis and eventually may form a hole in the ME. The possible relation of 446 

the cell-wall autolysis to endosperm weakening is supported by its hormonal 447 

regulation, and for the cell-wall autolysis it is clear that transcription and translation 448 

are both required (Morris et al., 2011). Due to its large seed size, direct 449 

measurements of different seed compartments by the puncture force method are 450 

possible, while direct puncture force measurements of the closely related tiny 451 

Arabidopsis seed have not yet been achieved. Direct biomechanical measurement of 452 

L. sativum endosperm weakening by the puncture force method demonstrated that 453 
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an early signal from the embryo is required to induce it (Müller et al., 2006). When 454 

MEs were isolated very early during imbibition, i.e. prior to their induction (for L. 455 

sativum before 5h), they did not weaken. When however, 8h-isolated MEs were 456 

incubated further, the weakening, hole formation and autolysis proceeded in an 457 

organ-autonomous process (Linkies et al., 2009; Morris et al., 2011; Müller et al., 458 

2006). Further experimentation has shown that in isolated L. sativum MEs, GA can 459 

replace the embryo signal, that de novo GA biosynthesis occurs in the endosperm, 460 

and that the weakening is regulated, at least in part, by the GA-ABA ratio. Treatment 461 

of seeds with ABA caused a delayed onset and slower rate of ME weakening. The 462 

ER of seeds without and with ABA treatment exhibited a very similar relationship to 463 

the decreasing ME puncture force (Linkies et al., 2009). While the absolute puncture 464 

force values differed by a factor two between the ME resistances of two L. sativum 465 

cultivars at 8h, a similar ca. two-fold relative reduction in the resistance was evident 466 

at 18h, and this ME weakening was in both cases inhibited by ABA (Graeber et al., 467 

2010). As GA, also ethylene promotes L. sativum ME weakening and counteracts the 468 

ABA inhibition. Ethylene signalling is required and during the late phase of 469 

germination the oxygen-requiring production of ethylene from its precursor 1-470 

aminocyclopropane-1-carboxylic acid (ACC) by ACC oxidase (ACO) activity 471 

accumulation enhances the progression of ER (Linkies et al., 2009) These findings 472 

for the hormonal regulation of L. sativum ME weakening are summarised in Figure 473 

8E and in a review by Linkies and Leubner-Metzger (2012).  474 

The endosperm cell-wall composition of the Brassicaceae L. sativum and A. thaliana 475 

indicated conserved architectures with cellulose, unesterified homogalacturonan and 476 

arabinan being major components (Lee at al., 2012). In contrast to the endosperm of 477 

Solanaceae seeds which are rich in heteromannans (ca. 65% in tobacco), the 478 

endosperm of L. sativum contains only 3.5% heteromannans (Lee at al., 2012). 479 

Despite the low heteromannan content regulated endo-β-1,4-mannanase gene 480 

ortholog expression was evident in the endosperm of L. sativum and A. thaliana and 481 

together with the knockout-mutants are in agreement with roles during germination 482 

(Iglesias-Fernández et al., 2011; Morris et al., 2011). The spatiotemporal regulation 483 

of their gene expression and possible roles in L. sativum and A. thaliana endosperm 484 

weakening of cell-wall remodelling proteins targeting the cellulose microfibrils or the 485 

matrix polysaccharides in which they are embedded, namely hemicelluloses and 486 

pectins, is described in detail in Morris et al. (2011) and Scheler et al. (2015). Recent 487 
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work by Graeber et al. (2014) shows that GA metabolism itself and the expression of 488 

GA-regulated cell-wall remodelling genes including expansins and xyloglucan 489 

endotransglycolases/hydrolases are severely altered in DOG1-OE L. sativum seeds 490 

(Fig. 8). The DOG1-overexpression did not result in an altered embryo growth 491 

potential, but blocked ME weakening in a temperature-dependent manner.  492 

That the endosperm is a mediator of communication between the embryo and its 493 

environment has been summarised by Yan et al. (2014). In L. sativum DOG1 exerts 494 

its temperature-dependent control of germination timing exclusively via the control of 495 

ME weakening: In DOG1-OE L. sativum the weakening occurs at 18ºC, but is 496 

inhibited at 24ºC (Graeber et al., 2014). Interestingly, thermoinhibition of wild-type L. 497 

sativum seeds is also mediated by inhibiting ME weakening (Fig. 8E). In addition to 498 

temperature as an abiotic environmental cue, biotic environmental cues such as the 499 

allelochemical myrigalone A (MyA) also exerts germination-inhibiting effects, at least 500 

in part, by inhibiting ME weakening (Fig. 8E). As for DOG1-overexpression, MyA has 501 

the seed’s GA metabolism as a target (Oracz et al., 2012; Voegele et al., 2012). In 502 

addition to this MyA also interferes with the production of aROS required to mediate 503 

embryo expansion growth and ME weakening. Figure 9 shows that aROS is 504 

produced in the growth zone (hypocotyl/radicle) of the L. sativum embryo and this 505 

production is inhibited by ABA and promoted by GA and ethylene (Linkies et al., 506 

2009; Müller et al., 2009). While ABA inhibits the ME weakening, the artificial 507 

production of aROS in the presence of ABA caused endosperm weakening (Figs. 8E, 508 

9). Müller et al (2009) showed that aROS-mediated germination is caused by direct 509 

scissoring of cell-wall polysaccharides. Distinct and tissue-specific target 510 

polysaccharides were evident, and the hormonally regulated aROS production serves 511 

important roles in embryo expansion growth and in ME weakening. 512 

 513 

Biomechanics of cereal grain endosperm weakening and germination 514 

A mature cereal grain is a single-seeded fruit (caryopsis) with several major 515 

compartments and bran tissues (Burton and Fincher, 2014; Domínguez and Cejudo, 516 

2014; Fath et al., 2000). The highly differentiated embryo is, with its scutellum, in 517 

direct proximity of the large starchy endosperm storage compartment (dead tissue) 518 

which is encased by the aleurone layer (living endosperm tissue) and the dead bran 519 

layers (testa and pericarp tissues). In vivo 1H-NMR microimaging during cereal grain 520 
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imbibition suggests several preferred pathways for water uptake which include the 521 

micropyle as an opening, the embryo and scutellum as water-distribution organs, and 522 

parts of the bran layers which allow fast water uptake during the very early phases of 523 

wheat imbibition (Rathjen et al., 2009). The ratio between the hormones ABA 524 

(inhibiting) and GA (promoting) control germination and post-germination reserve 525 

mobilisation of cereal grains in which GA serves as a signal produced by the embryo 526 

to induce the aleurone layer to express and/or secrete hydrolytic enzymes into the 527 

starchy endosperm (Burton and Fincher, 2014; Domínguez and Cejudo, 2014; Fath 528 

et al., 2000). In agreement with this role the cereal aleurone is a living tissue layer of 529 

the wheat grain, but undergoes PCD during germination and seedling establishment. 530 

Tensile tests have been carried out to determine the mechanical properties of the 531 

various wheat grain bran layers (Antoine et al., 2003). In agreement with these 532 

observations and the PCD of the aleurone layer during germination and starch 533 

mobilisation, we recently showed by puncture force measurements that GA treatment 534 

of isolated aleurone layers promotes the weakening of this living endosperm tissue, 535 

while GA does not affect the dead intermediate (testa and inner pericarp) layers of 536 

wheat grains (Hourston et al., unpublished). Novel tools are required to further 537 

investigate the biomechanical changes of cereal grain tissues including the 538 

coleorhiza covering the radicle for which a similar ABA-regulated role for dormancy 539 

and germination timing as for the eudicot seed ME (Millar et al., 2006). 540 

  541 
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Mechanosensing in seeds 542 

Sensing mechanical forces to control gene expression, tissue growth and fate is an 543 

essential part of plant life (Monshausen and Haswell, 2013). We propose that seeds 544 

constitute and excellent system for studying mechanosensing due to the striking 545 

interactions between seed covering layers and the distinct fates either leading to 546 

growth (embryo) or to death (ME) of tissues. Mechanical signalling involved in seed 547 

coat expansion has been postulated by Creff et al. (2015). Their study with A. 548 

thaliana seeds showed that mechanical stress exerted by the embryo and 549 

endosperm is perceived in a mechanosensitive layer in the seed coat. Recently 550 

nano-indentation has been used to measure the stiffness of the endosperm of 551 

developing A. thaliana seeds (Fourquin et al., 2016). A stiffer endosperm was found 552 

in zou mutants compared to wild-type seeds and embryo growth was inhibited as the 553 

stiff covering layer presumably prevents its expansion (Fourquin et al., 2016; Yang et 554 

al., 2008). In agreement with the postulation of these mechanosensitive tissues is the 555 

“touch”-gene hypothesis (Monshausen and Gilroy, 2009; Nonogaki, 2013) stating that 556 

the induction of ME gene expression is caused by the pushing force of the elongating 557 

radicle. This could be in an interplay with their hormonal regulation. Among the 558 

“touch”-genes are those encoding cell wall remodelling proteins such as expansins. 559 

Direct evidence for the ME mechanosensing and signalling of this gene induction in 560 

seeds is however still lacking. Furthermore, seed osmosensing and signalling and its 561 

interplay with plant hormones might play a key role during germination, as the water 562 

uptake and the water content plays major roles in seed germination for the 563 

mechanical properties of cell walls. The combination of molecular and biomechanical 564 

work is promising to unravel the underpinning mechanisms of the germination 565 

process and the endosperm weakening. Unravelling the complex regulation of seed 566 

germination and its molecular basis to understand the cell-wall related changes in 567 

tissue mechanics in a manifold of species and with integrative approaches is needed 568 

to gain a comprehensive view on the germination process. Despite a strong 569 

enthusiasm to understand the vital process of seed germination there are still open 570 

questions (Nonogaki et al., 2010). The acquired evidence reveals that endosperm 571 

weakening involves evolutionary conserved as well as species-specific molecular, 572 

biochemical and biomechanical mechanisms. These mechanisms have the 573 

endosperm cell-wall properties as target and strongly suggest that further integrative 574 

and interdisciplinary studies with several seeds from distinct phylogenetic clades are 575 
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required. The consideration of crop seeds in these future studies is of utmost 576 

relevance to seed industry. It also extends the investigations of the biomechanical 577 

seed properties of the natural seed “coats” to artificial seed “coats” and the 578 

mechanical properties of pellet materials. 579 

  580 
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Table 1: Endosperm weakening in the Angiosperm clades. Puncture force 

measurements: PF  = Endosperm weakening (EW); GA  = EW promoted by GA; 

Ethylene  = EW promoted by ethylene; ACC  or ethephon  = EW promoted by ACC or 

ethephon (via conversion to ethylene); ABA  = EW inhibited by ABA; *OH  EW 

promoted by apoplastic reactive oxygen species (aROS);  

Rosid 

clade: 

Cucurbitacea

e 

Cucumis PF  

(perisperm) 

Welbaum, 1999; 

Welbaum et al., 1995;  

Yim and Bradford, 1998 

 Brassicaceae Lepidium PF  GA  

Ethylene   

ACC  ABA  

*OH  

Graeber et al., 2010; 2014; 

Linkies et al., 2009;  

Morris et al., 2011;  

Müller et al., 2006; 2009; 

Oracz et al., 2012;  

Voegele et al., 2012 

  Arabidopsis  Bethke et al., 2007;  

Creff et al., 2015; 

Fourquin et al., 2016 

Asterid 

clade: 

Oleaceae Syringa PF  Junttila, 1973 

 Fraxinus PF  GA  Finch-Savage and Clay, 1997 

 Solanaceae Solanum PF  GA  

ABA  

Priming  

Anese et al., 2011; 

Chen and Bradford, 2000; 

Groot and Karssen, 1987, 

1992;  

Pinto et al., 2007;  

Toorop et al., 2000;  

Wu et al., 2000 

  Capsicum PF  GA  Petruzzelli et al., 2003;  

Watkins and Cantliffe, 1983 

  Datura  Arana et al., 2005; 2007 
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  Nicotiana PF  Lee et al., 2012; 

Leubner-Metzger, 2003 

  Petunia  Petruzzelli et al., 2003 

 Rubiaceae Coffea PF  GA  

ABA  

da Silva et al., 2004; 2005 

  Genipa PF  ABA  Queiroz et al., 2012 

 Asteraceae Lactuca PF  GA  

*OH  

Etephon  

Chen et al., 2016;  

Tao and Khan, 1979;  

Zhang et al., 2014 

Monocots: Iridaceae Iris PF  Blumenthal et al., 1986 

 Poaceae Triticum PF  GA  

ABA  

Benech-Arnold, 2004; 

Hourston et al., unpublished 
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Figure legends: 

Fig. 1. Stress strain curves illustrating different types of material behaviour. For an elastic behaviour, 

loading and unloading paths coincide (no energy lost). Elastic-plastic materials undergo a non-

reversible plastic deformation after a threshold is reached, while the unloading includes elastic 

elements. Plastic materials undergo a non-reversible deformation. Energy is lost during the 

deformation and correspond to the area underneath the curve. Viscoelastic materials show a time-

dependent behaviour and dissipate energy during loading/unloading. The amount of energy 

absorbed by the material is equal to the area between the loading and unloading curve (hysteresis). 

Fig. 2. Schematic diagram showing typical stress–strain curves. (A) The material exhibits an elastic 

and plastic region. Several key parameters can be derived from the diagram: Elastic Modulus E, Yield 

strength (point of elastic limit) and the maximum strength of the material. (B) Typical curves for stiff, 

strong, weak or flexible materials. 

Fig. 3. Material property chart plotting Young’s modulus E against density ρ. The heavy envelopes 

enclose data for a given class of material. The guidelines of constant E/ρ, E1/2/ρ and E1/3/ρ allow to 

identify structurally efficient materials which are light and stiff (after Ashby (2007); Ashby et al. 

(2013). Properties for seeds inserted as determined by Walters et al. (2010). 

Fig. 4. (A) Noninvasive in vivo 
1
H-nuclear magnetic resonance (NMR) microimaging analysis of water 

uptake and distribution during tobacco seed germination. The spatial distribution of proton mobility 

within the seed tissues is visualised by false colours (relative scales from zero [0, black] to maximum 

signal strength [max, white]). Microimages of the testa rupture stage are shown with a resolution of 

approx. 30 µm (after Manz et al. (2005)). (B) Seed structure of tobacco (Nicotiana tabacum). (C) 

Schematic of the micropylar endosperm (ME) and the radicle tip of a tobacco seed. Gibberellins (GA) 

promote the induction of cell wall hydrolases, expansins and apoplastic reactive oxygen species 

(aROS), thereby promoting endosperm weakening and endosperm rupture. Abscisic acid (ABA) 

inhibits the induction of cell wall hydrolases and aROS, thereby inhibiting endosperm weakening and 

endosperm rupture. GA promotes and ABA inhibits the embryo growth potential. 

Fig. 5. Puncture force device to measure endosperm weakening. (A) Example of a custom-made 

puncture force machine consisting of a force and displacement (metering axis) sensor, a camera, LED 

lights and a xy positioning stage. A measuring tip (needle) with chosen tip diameters / geometry is 

driven into the sample while force and displacement were recorded. (B) Example of a sample holder 

for tobacco seeds (schematic and photograph). Tobacco seeds were cut in half and the embryo and 

testa removed, which left the empty but intact endosperm into which the metal probe could be 

lowered. Delicate material is kept hydrated by adding water to the sample holder. 
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Fig. 6. Time course analyses of endosperm weakening and germination kinetics of Nicotiana 

tabacum. The micropylar (ME) and chalazal (CE) endosperm weakening and rupture of seeds are 

shown over time. The weakening was determined by measuring the tissue resistance via puncture 

force measurements at the times indicated. Testa rupture (TR) begins at 28 h, and endosperm 

rupture (ER) at 60 h, respectively. In situ localization of cell wall epitopes in longitudinal sections of 

tobacco seeds. LM21 HM binds to abundant heteromannans in the endosperm. The immunolabeling 

of germinating tobacco seeds with LM21 HM revealed a specific degradation of heteromannan (HM) 

at the micropylar endosperm (ME) after testa rupture. Calcofluor White is a non-specific fluorochrom 

that binds to cellulose in cell walls and was used as control. R, radicle; C, cotyledons; T, testa; PE 

peripheral endosperm; Bars = 50 mm. Modified from Lee et al. (2012). 

Fig. 7. Lettuce (Lactuca sativa) endosperm weakening and germination. (A) Lettuce fruit/seed 

morphology, endosperm rupture, and seedling growth. Typical and atypical endosperm rupture 

(buckling) is shown. Typically the endosperm is ruptured at the micropylar end of the endosperm. 

Rarely or if endosperm weakening is prevented lettuce shows atypical endosperm rupture. (B) 

Puncture force method for lettuce. The lettuce endosperm is placed on top of a thin steel needle and 

is lowered (punctured) through adhesive tape. (C) The endosperm weakening of the micropylar and 

the chalazal endosperm is shown versus time. The micropylar endosperm (ME) shows a weakening 

during germination. The force to rupture the ME is lowered by the addition of ethephon, an 

ethylene-releasing compound, and the weakening is inhibited by ABA. The chalazal endosperm (CE) 

shows a higher resistance compared to the ME and does not appreciably weaken (water). Treatment 

with sodium dichloroisocyanurate (SDIC) causes and initial CE stiffening which is weakened during 

imbibition. Note thast SDIC treatment is associated the inhibition of ME weakening and with embryo 

buckling. B and C modified from Zhang et al. (2014) and Chen et al. (2016). 

Fig. 8. Coat-imposed dormancy and control of Brassicaceae germination timing by the endosperm. 

(A) Image analysis of Lepidium sativum embryo growth (after Voegele et al., 2012). (B) Embryo 

growth potential and (C) micropylar endosperm weakening of L. sativum wild type and a transgenic 

line overexpressing the DOG1 dormancy gene (DOG1-OE, after Graeber et al., 2014). (D) Endosperm-

mediated coat dormancy of Arabidopsis thaliana seeds revealed by testa removal (after Bethke et al., 

2007). (E) Summary of control of L. sativum germination timing by micropylar endosperm weakening. 

Note that L. sativum wild type seeds are non-dormant, but that DOG1-OE establishes physiological 

dormancy mediated by the inhibition of endosperm weakening. The regulation of L. sativum wild 

type seed endosperm weakening by abiotic (temperature) and biotic (allelochemical) factors as well 

as by hormones and apoplastic reactive oxygen species is presented. 
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Fig. 9. Accumulation of apoplastic reactive oxygen species (aROS) during Lepidium sativum 

germination (adapted from Müller et al. 2009). (A) Apoplastic superoxide (O2˙
-) in the embryos and 

the micropylar endosperm of seeds imbibed in continuous white light. NBT (nitroblue tetrazolium) 

histostaining shows production of apoplastic O2˙
-
. (B) In vivo detection of apoplastic ˙OH production 

in the micropylar endosperm (ME) and the radicle of L. sativum during seed germination without and 

with ABA added. Note the different scales of the y axes for the ME and the radicle. 
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