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Summary Statement 

Wnt signalling has been shown to be important in heart development. Here, we 

demonstrate that the wnt receptor Fzd7 is required in mediating these Wnt signals. 

 

Abstract 

Wnt signalling regulates cardiogenesis during specification of heart tissue and 

the morphogenetic movements necessary to form the linear heart. Wnt11 mediated 

non-canonical signalling promotes early cardiac development whilst Wnt11-R, which 

is expressed later, also signals through the non-canonical pathway to promote heart 

development. It is unclear which Frizzleds mediate these interactions. Frizzled-7 (fzd7) 

is expressed during gastrulation in the mesodermal cells fated to become heart and 

then in the primary heart field. This expression is complementary to the expression of 

wnt11 and wnt11-R. We further show co-localisation of fzd7 with other early and late 

heart-specific markers using double in situ hybridisation. We have used loss of function 

analysis to determine the role of fzd7 during heart development. Morpholino antisense 

oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, 

similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of 

dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida 

phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and 

activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We 

propose that Fzd7 has an important role during Xenopus heart development.  
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Introduction 

During embryogenesis, the heart is one of the first organs to form. Development of the 

heart includes specification of cardiac progenitors and formation of the linear heart 

tube by cell migration and morphogenetic movements (Mohun et al., 2000). In 

Xenopus, the heart begins to form during early gastrula stages when the cardiac 

progenitors arise in the dorsolateral mesoderm. Cell movements during gastrulation 

result in the dorso-anterior translocation of these regions and subsequent ventral 

migration during neurulation. The heart progenitors, which comprise cells fated to 

become primary or secondary heart field, form a linear heart tube at the ventral midline 

before looping and remodelling to form the beating heart (Kriegmair et al., 2013). 

Understanding the processes underlying heart development and morphogenesis are 

important for understanding congenital heart disease. 

Heart formation is controlled by many signalling pathways including wnt signalling. 

Wnt6, 11, and 11-R have all been implicated in Xenopus heart development (Garriock 

et al., 2005; Gessert et al., 2008; Lavery et al., 2008a; Pandur et al., 2002). Wnt 

antagonists such as Dickkopf-1, Crescent and Sfrp1 have also been reported to control 

early heart formation (David et al., 2008; Foley and Mercola, 2005; Gibb et al., 2013; 

Marvin et al., 2001; Schneider and Mercola, 2001).  Little is known however about 

which frizzleds mediate these signals. Frizzled-7 (Fzd7) has been well characterised 

in Xenopus laevis and other species. It has been shown to be involved in numerous 

developmental processes as well as being shown to be active in several forms of 

cancer (Huang and Klein, 2004; Liu et al., 2016; Schiffgens et al., 2016; Xu et al., 

2016). Fzd7 has been demonstrated to interact with several wnts including Wnt5a 

(animal cap elongation assays), Wnt6 (in somite development), Wnt8 (co-

immunoprecipitation assays, Xenopus axis duplication) and Wnt11 (gastrulation 

movements, neural crest development)(Hsieh et al., 1999; Linker et al., 2005; Medina 

et al., 2000; Medina and Steinbeisser, 2000; Umbhauer et al., 2000; Witzel et al., 

2006). It has also been shown to genetically interact with the co-receptors ror2 and ryk 

(Hikasa et al., 2002; Kim et al., 2008). Xenopus Fzd7 has been implicated in 

gastrulation movements, tissue separation, and neural crest induction (Abu-Elmagd et 

al., 2006; Djiane et al., 2000; Wheeler et al., 2000; Winklbauer et al., 2001). We have 

previously shown fzd7 to be expressed in the cardiac region throughout development 

(Wheeler and Hoppler, 1999). It has also been shown that specific depletion of fzd7 

function in Xenopus foregut lead to impaired cardiac morphogenesis but no effect on 

heart specification (Zhang et al., 2013). Here, we further characterise its expression 
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relative to known heart markers and then use whole-embryo experiments to show that 

fzd7 is required for heart formation during early embryonic development.  

 

Results 

 

1. fzd7 expression overlaps with early heart markers  

Expression pattern analysis shows Xenopus fzd7 is expressed in the heart forming 

regions throughout development (Wheeler and Hoppler, 1999). At stage 10.5 fzd7 is 

expressed in the dorsal mesoderm from which cardiac tissue originates (Wheeler and 

Hoppler, 1999) and Fig. 1A). As development progresses, fzd7 expression at stage 25 

is maintained in the presumptive cardiac mesoderm as it migrates dorso-laterally to 

the ventral midline (Fig. 1C-Cii). By stage 29, fzd7 is expressed throughout the cardiac 

crescent in the cardiac mesoderm (Fig. 1E, Ei). fzd7 expression correlates with that of 

wnt11 (Fig. 1B, stage 10.5) where expression of both genes seem to be 

complementary in the presumptive heart region in the dorsal side of the embryo. fzd7 

expression also correlates to that of wnt11-R (Fig. 1D-Dii, F, Fi, stages 25 and 29) 

where it is expressed in the anterior endoderm at stage 25 when fzd7 is expressed in 

the heart field. By stage 29 the expression of fzd7 and wnt11-R overlaps (Fig. 1E-Fi). 

As the heart continues to form, fzd7 is strongly expressed in the lateral plates of 

mesoderm, cardiac mesoderm, myocardium and over time, is restricted to the 

pericardium (Wheeler and Hoppler, 1999)), Fig. 2A-Aii, Bii, Cii and Dii). Using double 

in situ hybridisation, we analysed fzd7 expression in correlation to that of early heart 

markers including nkx2-5, troponin-ic (tnnic) and gata6, which are all known to be 

required for Xenopus cardiogenesis (Afouda and Hoppler, 2011; Afouda et al., 2008; 

Drysdale et al., 1994; Flaherty and Dawn, 2008; Fu et al., 1998; Garriock et al., 2005; 

Jiang and Evans, 1996; Martin et al., 2010). fzd7 expression overlaps with that of nkx-

2.5 (Fig. 2B-Bii), tnnic (Fig. 2C-Cii) and gata6 (Fig. 2D-Dii) in the forming heart. 

Interestingly, none of these markers are seen in the pericardium except for fzd7 (Fig. 

2Aii, Bii, Cii, Dii).   

 

2. fzd7 is required for heart induction or specification 

Microinjection into Xenopus embryo dorsal blastomeres at the 4 or 8 cell stage 

targets prospective mesoderm including cardiac tissue. In order to test the role of fzd7 

in heart development, we inhibited its function by injecting either fzd7 morpholino (fzd7 

MO) or its dominant negative form expressing only the extracellular domain (cysteine 
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rich domain, fzd7 CRD), which would disrupt Fzd7 mediated signalling (Abu-Elmagd 

et al., 2006).  

Microinjection of fzd7 MO into the dorsal blastomeres of 4 or 8 cell embryos 

leads to a reduction of both early cardiac marker nkx2-5 (Fig. 3B-Bii) and later cardiac 

marker tnnic expression (Fig. 3E-Eii). Adding increasing amounts of fzd7 MO leads to 

a progressively more severe phenotype with a greater number of embryos affected 

(Fig. 3C). In situ hybridisation for nkx2-5 and tnnic show embryos with mild convergent 

extension phenotypes (Fig. 3B, E) but a severe decrease in cardiac gene expression 

(Fig. 3Bi and Ei while control morpholino (CMO) show normal heart (Fig. 3A, Ai and D, 

Di). Some embryos also showed anterior defects (not shown). Sections through the 

cardiac region showed not only a decrease of nkx2-5 and tnnic expression, but an 

absence of recognisable heart structures (Fig. 3Bii and 3Eii) compared to CMO (Fig. 

3Aii and Dii).  The number of embryos injected with fzd7 MO which showed heart 

and/or convergent extension and anterior defects are shown in Table S1. 

Overexpression of fzd7 full length (fzd7 FL) results in severe convergent 

extension defects, but no cardiac phenotype (Fig. S1A and B). Knockdown with fzd7 

MO can also cause a mild convergent extension phenotype and anterior defects (Abu-

Elmagd et al., 2006). In order to test whether this cardiac effect is specific to fzd7, we 

rescued the fzd7 MO cardiac phenotype with fzd7 full-length that has been mutated to 

not bind the fzd7 MO (fzd7SDM as described in (Abu-Elmagd et al., 2006)). Titrating 

increasing amounts of fzd7SDM capped RNA from 250 pg to 1 ng results in a modest 

rescue of the cardiac phenotype (Fig. 3F, Fi and Table S2), thus showing that fzd7 is 

required for normal heart development. 

 Interestingly, injecting fzd7 full length at 8-cell stage embryos shows detectable 

expression of tnnic and nkx2-5 despite some of these embryos showing severe 

convergent extension movements phenotype (head arrows in Fig. S1A and B).  This 

leads to the suggestion that heart phenotypes are not necessarily due to convergent 

extension secondary effects. 

 

3.  Fzd7 CRD mimics wnt11R morpholino cardia bifida phenotype and is 

required for non-canonical signalling 

 

To further look at the effect of inhibiting Fzd7 function we took a dominant 

negative approach using fzd7 CRD. Surprisingly this did not give a similar result to the 

MO knockdown. Instead, increasing amounts of fzd7 CRD results in a dose dependent 
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increase in frequency and severity of cardia bifida. This was very similar to the 

phenotype seen for wnt-11R knockdown (Garriock et al., 2005). Embryos with very 

mild convergent extension movement defects displayed a severe cardia bifida 

phenotype as shown by tnnic (Fig. 4B-Bii and C) and nkx2-5 (Fig. 4G, Gi) expression. 

Control embryos showed normal expression of tnnic (Fig. 4A-Aii) and nkx2-5 (Fig. 4F, 

Fi). These results suggest that the cardia bifida phenotype is not a secondary effect of 

the convergent extension defect. Overexpression of fzd7 FL gives a severe convergent 

extension phenotype but no cardiac phenotype (Fig. S1A and B). Embryos with cardia 

bifida were unable to recover and form a normal heart when incubated up to stage 41 

(n= 23, data not shown). Embryos injected with a dominant negative form of fzd3 (fzd3 

CRD) into the dorsal blastomeres at 4 cell stage did not show cardia bifida (n= 27, Fig. 

4E, Ei) indicating that the cardia bifida phenotype is specific to fzd7 CRD.  Furthermore, 

this phenotypic specificity to fzd7 CRD was confirmed by rescuing the cardia bifida 

with full length fzd7 capped RNA (Fig. 5A-D and F). 

It has been previously reported that a Jun N-terminal kinases (Jun) inhibitor 

phenocopies the wnt11-R cardiac phenotype of effects on cardiac morphogenesis and 

heart tube fusion, suggesting signalling through the non-canonical pathway (Garriock 

et al., 2005; Gessert et al., 2008). We therefore determined to rescue the fzd7 CRD 

phenotype with Dishevelled1-Delta-N (dvl1N) capped RNA. Dvl1N capped RNA can 

rescue fzd7 CRD (Fig. 5E, Ei and G, Gi and Table S3) suggesting that fzd7 is required 

for non-canonical wnt signalling during heart development.  

 

Discussion 

Wnt signalling through the canonical and non-canonical pathways has been 

implicated in many aspects of heart development (Gessert and Kuhl, 2010; Ruiz-

Villalba et al., 2016). How the wnt signals that arise from both non-cardiogenic and 

cardiogenic tissue are integrated into heart development is less well understood. 

Frizzled receptors are only a part of the increasingly complicated wnt-receptor complex 

found at the cell membrane which can also include Lrp5/6, Ror2, Ryk and Kremen 

(Bryja et al., 2009; Korol et al., 2008; Mazzotta et al., 2016; van Wijk et al., 2009); 

however, Frizzleds are critical components of the Wnt receptor complex and so 

understanding their role in heart development is necessary to fully understand the 

signalling involved. We have previously shown that fzd7 is expressed throughout heart 

development and in this study, we show that it is functionally required in both early and 

late heart development.  
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Morpholino knockdown of Fzd7 leads to effects on heart development including 

in some cases a complete loss of heart (Fig. 3). Overexpression of Fzd7 gives rise to 

convergent extension defects as previously reported (Abu-Elmagd et al., 2006; 

Sumanas and Ekker, 2001; Winklbauer et al., 2001) but does not affect heart 

development. We can rescue the fzd7 MO phenotype by co-injecting site directed 

mutagenized full length fzd7 (Fig. 3). These results suggest fzd7 is required for initial 

heart development though we cannot exclude the possibility that it may also be playing 

a more general role in dorsoventral mesoderm patterning. Fzd7 could be interacting 

with Wnt11 (Kim et al., 2008; Tao et al., 2005; Witzel et al., 2006) or another wnt ligand 

such as Wnt3a (Mazzotta et al., 2016), Wnt6 (Gibb et al., 2013; Lavery et al., 2008a; 

Lavery et al., 2008b) or Wnt8c (Ruiz-Villalba et al., 2016; Schneider and Mercola, 

2001) during these stages of development.  

As suggested, it is possible that the fzd7 morphant cardiac phenotype is a 

secondary effect of failures in mesoderm specification, patterning, gastrulation, axis 

formation and tissue separation. We have made efforts to inject embryos at the 4 and 

8 cell stages to give as small a convergent extension phenotype as possible to 

generate normal looking embryos but with clear heart phenotypes. The results suggest 

that the effect of Fzd7 during early heart development is not secondary to convergent 

extension defects or mesoderm development, however, this cannot be ruled out 

completely (Fig. 3).  

 An interesting feature of the loss of function analysis using fzd7 morpholino and 

a dominant negative fzd7 CRD, is that they give different cardiac phenotypes. fzd7 

morphants have anterior defects, convergent extension defects and reduction in nkx2-

5 expression, whereas fzd7 CRD capped RNA injections result in embryos with 

convergent extension defects and cardia bifida but no head defects or loss of cardiac 

markers. Interestingly it has been shown that the only way to replicate the anterior 

defect phenotype with a fzd7 CRD construct is to inject the capped RNA into oocytes 

(Medina et al., 2000). This could be because the relevant signalling event has been 

completed by time the product of mRNA injected at the 4 or 8 cell stage has been 

generated. It is possible that if we injected oocytes with fzd7 CRD then we might find 

embryos showing loss of the heart. Another possibility is that the Morpholino is able to 

disrupt all Wnt signalling through fzd7 by preventing translation of Fzd7 protein, but 

fzd7 CRD only disrupts non-canonical signalling in this context. The requirement for 

co-receptors in canonical signalling may allow the CRD to interact with endogenous 

Fzd7 and any Lrps present allowing the receptor complex aggregates to form. In 
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addition to this, it has been shown to be possible to activate canonical Wnt signalling 

using CRD constructs (Carron et al., 2003). Perhaps canonical Wnt signalling 

mediated by Fzd7 early on during development is allowed to proceed by the Fzd7 

CRD, but then when Fzd7 switches to mediate non-canonical signalling, the CRD 

starts to behave as a dominant negative. Other possibilities are that the Morpholino 

may have a broader specificity than thought or that the injected RNA of the fzd7 CRD 

construct may not be very stable and thus only provide a short term effect compared 

to the Morpholino. These options remain to be tested further. 

The fzd7 CRD phenotype is very similar to the wnt11-R Morpholino phenotype 

(Garriock et al., 2005). It has previously been shown that DM-GRASP/alcam 

expression lies downstream of wnt11-R signalling and that DM-GRASP/alcam can 

mediate non-canonical wnt signalling effects on morphogenetic movements involved 

in the developing heart. The DM-GRASP/alcam morpholino phenotype is also similar 

to the fzd7 CRD phenotype in that they both lead to a cardia bifida like phenotype and 

a thickening of the myocardium. This suggests Fzd7 could be mediating the Wnt11-R 

control of DM-GRASP/alcam expression. This needs to be investigated further.  

Ruiz-Villalba and colleagues (Ruiz-Villalba et al., 2016) suggest a model where 

periodic switching between proliferation and differentiation within the developing heart 

is mediated by the periodic and reciprocal activity of the canonical and non-canonical 

wnt pathways. fzd7 could be playing a crucial role in this process depending upon the 

Wnts and other receptors expressed at specific times. 

In conclusion, we have shown fzd7 to be involved in heart development. Further 

investigation is required to determine the specific wnt(s) it is interacting with at different 

stages of heart development. 

 

Materials and Methods 

1. Embryo manipulation 

All experiments were performed in compliance with the relevant laws and 

institutional guidelines at the University of East Anglia. The research was approved by 

the local ethical review committee according to UK Home Office regulations. Xenopus 

laevis embryos were obtained as previously described (Harrison et al., 2004). Staging 

of the embryos was carried out according to the normal time table of Nieuwkoop and 

Faber (Nieuwkoop and Faber, 1994). Embryos at the required stages were fixed in 

MEMFA, washed in PBS, dehydrated in ascending grades of Methanol/PBS, then 
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stored in 100% MeOH at -20˚C until processing for single or double in situ 

hybridisation. 

2. Constructs 

fzd7 full-length (fzd7-FL) and dominant negative form fzd7-cysteine rich domain (fzd7-

CRD) were sub-cloned into pCS2+ at Cla1–Xho1 restriction sites as described in 

(Wheeler et al., 2000). Fzd7 MO titration by RNA in the rescue experiments was 

avoided by creating a site directed mutagenesis construct of the full coding sequence 

of fzd7 (fzd7 SDM) as described in (Abu-Elmagd et al., 2006). fzd3 full-length (fzd3 FL) 

and fzd3 CRD were kind gifts from Peter Klein. Dishevelled construct (Dvl1-Delta-N) 

was a gift from Roberto Mayor (De Calisto et al., 2005). 

 

3. In vitro capped mRNA synthesis and embryo microinjections 

All Capped mRNAs of all genes used for RNA injections were prepared according to 

the manufacturer’s instructions using the SP6 mMessage mMachine Ambion kit 

(Invitrogen™ AM1340). Anti-sense oligonucleotides, morpholinos (MOs), were 

obtained and designed by Gene Tools (www. gene-tools.com, Oregon, USA) using the 

reported sequence for the control morpholino (CMO) (5'-

CCTCTTACCTCAgTTACAATTTATA-3') and fzd7MO (5′-

GCGGAGTGAGCAGAAATCGGCTGA-3′)(Sumanas and Ekker, 2001). MOs were 

diluted, prepared before use according to the manufacturer’s instructions and tested 

using the in vitro translation assay (TNT coupled reticulocyte lysate system, Promega-

L4600). For targeting the heart, the dorsal blastomeres of the 4 and 8 cell stage 

embryos were injected as previously described (Lavery et al., 2008a). Capped mRNA 

and MOs were co-injected with lac-Z for lineage tracing. Each experiment was carried 

out as an internally controlled group. Each experiment was carried out 3 times and the 

numbers of embryos in each class were pooled. 

 

4. RNA probe synthesis and in situ hybridisation 

fzd7 in pBluescript was linearised with XbaI and transcribed by T7, nkx2-5 was 

linearised with BamH1 and transcribed with T7, troponin-lC (tnnic) was linearised with 

XhoI and transcribed with T3, gata6 was linearised with XbaI and transcribed with T7. 

Promega probe synthesis manufacturing instructions were followed with fzd7 probe 

labelled with Fluorescene-substituted nucleotide (Fl-UTP) and for other heart makers 

labelled with DIG-substituted nucleotide. Each RNA probe was added to 10ml 

hybridisation buffer and stored at -20˚C for in situ hybridisation. Single (Harland, 1991) 
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or double (Knecht et al., 1995) in situ hybridization was carried out as previously 

described (Abu-Elmagd et al., 2006). Anti-Fluorescein was detected using Fast Red 

tablets (Kelloff et al., 2006) while anti-Digoxigenin was detected with NBT/BCIP.  

Frozen sectioning and wax sectioning were carried out as described (Harrison et al., 

2004; Hatch et al., 2016). Images were taken using Leica microscope and Axiovision 

software.  
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Figure 1: 

Endogenous expression of fzd7 in Xenopus heart and relative to wnt11 and 

wnt11-R expression. (A, B): stage 10.5 (mid-gastrula) fzd7 and wnt11 expression 

detected at the dorsal side of the embryo and appear complementary in the 

presumptive heart region. (C-Cii and D-Di): fzd7 and wnt11-R expression at stage 25. 

fzd7 is seen in the heart field and wnt11-R in the anterior endoderm. fzd7 and wnt11-

R expression are complementary in the heart region (Cii, Dii). (E, Ei and F, Fi): stage 

29 embryos with fzd7 and wnt11-R expression in the heart field. hf: heart field, ae: 

anterior endoderm. Magnification 20x.     
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Figure 2: 

fzd7 expression coincides with expression of the early heart markers nkx2-5, 

tnnic and gata6.  Lateral view of Xenopus laevis embryos at stage 31 showing fzd7 

expression detected in red (A-Aii) and co-localised by double in situ hybridisation with 

other heart markers in dark blue including nkx2-5 (B-Bii), tnnic (C-Cii) and gata6 (D-

Dii). (Ai, Bi, Ci, Di). Magnified lateral view of the same embryos in (A, B, C and D) 

respectively. (Aii, Bii, Cii, Dii). Cross section through the heart region of the embryos 

in (A, B, C, D) respectively. fzd7 is expressed in the myocardium and pericardium (Aii) 

and in other structures including neural crest, eye, pronephric duct and tail bud. fzd7 

expression shows a high degree of overlapping with the heart markers in the 

myocardium but not in the pericardium (Bii, Cii, Dii). h: heart, c: cement gland, e: eye, 

nc: neural crest, pnd: pronephric duct, tb: tail bud, mc: myodcardium, lpm: lateral plate 
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of mesoderm. Magnification: 20x in (A, B, C, D), 30x in (Ai, Bi, Ci, Di), 200x in (Aii, Bii, 

Cii, Dii).  
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Figure 3:  

Fzd7 is required for Xenopus heart development 

(A, Ai and D, Di) Lateral and ventral views of embryos injected in the dorsal 

blastomeres (DB) at 4 cell stage with control morpholino (CMO) showing normal nkx2-

5 (A-Ai) and tnnic (D, Di) expression. (Aii, Dii). Cross sections in the heart region of the 

embryos in (A) and (D) respectively showing normal nkx2-5 and tnnic expression in 

the myocardium. (B, Bi and E, Ei). Lateral and ventral views of embryos injected in the 

DB at 4 cell stage with fzd7 MO showing loss of nkx2-5 (B-Bi) and tnnic (E , Ei) 

expression. (Bii, Eii). Cross sections in the heart region of the embryos in (B) and (E) 

respectively showing loss of the heart. (C) Graph showing that fzd7 MO phenotype 

leads to reduction/loss of nkx2-5 expression in a dose-dependent manner. (F, Fi). Fzd7 

MO phenotype can be rescued by fzd7 SDM full length, (Fi) is the key for the phenotype 

scoring. Red staining in B, Bi and Bii is due to lac-Z lineage tracing using Red-Gal. 
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Figure 4:  

A dominant negative Fzd7 induces cardia bifida phenotype. 

(A-Ai and F, Fi) Lateral and ventral views of wild type embryos at stage 29 showing 

normal tnnic (A, Ai) and nkx2-5 (F-Fi) expression in the heart. (B, Bi and G, Gi) Lateral 

and ventral views of embryos injected in the dorsal blastomeres at 4 cell stage with 

dominant negative fzd7 (fzd7 CRD). The cardia bifida phenotype is shown by tnnic (B, 

Bi) and nkx2-5 (G-Gi) expression. These embryos were fixed at the same stage as the 

control embryos in (A and F). (C) Graph showing fzd7 CRD cardia bifida phenotype 

percentages indicated by tnnic expression. (D, Di). Lateral and ventral views of 

embryos injected in the dorsal blastomeres (DB) at 4 cell stage with full length of fzd7 

showing normal heart tube. Note that embryos in (D) and (G) are showing severe 

convergent extension defects but cardia bifida phenotype is only induced by fzd7 CRD. 

(E, Ei). Lateral and ventral views of injected embryo in the DB at 4 cell stage with fzd3 

dominant negative form (fzd3 CRD) showing normal heart looping (at stage 38) 

indicating that fzd7 CRD cardia bifida phenotype is specific to Fzd7. Magnification 20x. 
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(H and I). Lateral (H) and ventral (I) views of embryos injected in the DB at 4 cell stage 

with full length of fzd7 showing normal heart tube indicated by nkx2-5 expression.    
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Figure 5: 

Activation of non-canonical wnt signalling rescues fzd7 CRD induced cardia 

bifida.  

(A, Ai) Wild type control embryos showing normal tnnic expression in the heart. (B, Bi) 

fzd7 full length overexpression (500pg) injected into the dorsal blastomeres (DB) at the 

4 cell stage show normal heart expression of tnnic despite suffering a severe extension 

movement defect. (C). Embryos injected with 500pg fzd7 CRD show cardia bifida 

phenotype, note that embryos have normal to mild convergent extension defects. (D). 

Rescue of the fzd7 CRD (250pg) cardia bifida phenotype with 250pg full length fzd7, 

embryos show normal morphology as well as tnnic expression. (F). Graph of fzd7 CRD 

cardia bifida phenotype rescue with fzd7 Full length. (E, Ei). Rescue of fzd7 CRD 

(500pg) cardia bifida phenotype with 1.25ng dishevelled1-Delta-N (Dvl1N) indicating 

that fzd7 is required for the non-canonical signalling in the heart. (G). Graph of fzd7 

CRD cardia bifida phenotype rescue with dvl1N, (Gi) is the key for the cardia bifida 

phenotype scoring in (G). Magnification 20x. 
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Supplemental Tables and Figures 

Table S1: 

fzd7 MO 
Injections 

Dose 
(ng) 

Total 
No. of  

Embryos 

Anterior 
Defects 

Reduced 
Heart  

Anterior 
Defects 

and 
reduced 

Heart  

Normal 
Morphology 

and 
reduced 

Heart  

% 
Anterior 
Defects 

% 
Reduced 

Heart 

% 
Anterior 
Defects 

and 
reduced 

Heart 

% 
Normal 

Morphology 
and 

reduced 
Heart 

DB 20 40 8 1 1 0 20 3 3 0 
VB 20 26 2 0 0 0 8 0 0 0 

DB 40 43 15 19 15 4 35 44 35 9 

VB 40 47 3 0 0 0 6 0 0 0 

DB 60 51 49 36 34 2 96 71 67 4 

VB 60 66 0 0 0 0 0 0 0 0 

DB 70 23 23 23 23 0 100 100 100 0 

VB 70 30 5 0 0 0 17 0 0 0 

fzd7 Morpholino dose response. Increasing amounts of fzd7 MO were injected at 

the 4 cell stage into both blastomeres of the dorsal side (DB) of the embryo and ventral 

side (VB) as a control. Observed phenotypes included a range of convergent 

extension phenotypes from severe to mild, varying degrees of anterior defects and a 

reduction of nkx2-5 or tnnic expression. 
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Table S2: 
 
 

 
Embryo injections 

 
Total No. 

of 
Embryos 

 
No 

Heart 

 
Reduced 

Heart 

 
Normal 
Heart 

%  
No 

Heart 

% 
Reduced 

Heart 

%  
Normal 
Heart 

Non-injected control 76 0 0 76 0 0 100 
1ng fzd7 SDM 2x DB 80 0 0 80 0 0 100 
1ng fzd7 SDM 2x VB 79 0 0 79 0 0 100 
60ng fzd7 MO 2x DB 52 26 15 11 50 29 21 
60ng fzd7 MO 2x VB 50 1 3 46 2 6 92 
60ng fzd7 MO +  
250pg lacZ 2x DB 

93 31 41 21 33 44 23 

60ng fzd7 MO +  
250pg lacZ 2x VB 

79 0 0 79 0 0 100 

60ng fzd7 MO +  
500pg lacZ 2x DB 

101 40 33 28 40 32 28 

60ng fzd7 MO +  
500pg lacZ 2x VB 

89 3 0 86 3 0 97 

60ng fzd7 MO +  
750pg lacZ 2x DB 

101 27 53 21 27 52 21 

60ng fzd7 MO +  
750pg lacZ 2x VB 

74 0 0 74 0 0 100 

60ng fzd7 MO +  
1ng lacZ 2x DB 

115 34 49 32 29 43 28 

60ng fzd7 MO + 
1ng lacZ 2x VB 

75 0 1 74 0 1 99 

60ng fzd7 MO +  
250pg fzd7 SDM 2x DB 

52 17 26 9 33 50 17 

60ng fzd7 MO +  
250pg fzd7 SDM 2x VB 

53 0 0 53 0 0 100 

60ng fzd7 MO +  
500pg fzd7 SDM 2x DB 

107 16 42 49 15 39 46 

60ng fzd7 MO +  
500pg fzd7 SDM 2x VB 

59 0 1 58 0 2 98 

60ng fzd7 MO +  
750pg fzd7 SDM 2x DB 

100 14 40 46 14 40 46 

60ng fzd7 MO +  
750pg fzd7 SDM 2x VB 

75 0 1 74 0 1 99 

60ng fzd7 MO +  
1ng fzd7 SDM 2x DB 

133 20 56 57 15 42 43 

60ng fzd7 MO +  
1ng fzd7 SDM 2x VB 

107 0 1 106 0 1 99 

 
fzd7 MO phenotype is rescued by fzd7 SDM. Injecting 1ng of fzd7SDM capped RNA 

does not give a cardiac phenotype. Coinjecting 60 ng fzd7 MO with from 250pg –1ng 

of lacZ capped RNA gives between 51% and 30% embryos with no heart and between 

22% and 29% embryos with normal hearts. Coinjecting with fzd7 SDM capped RNA 

from 250pg- 1ng gives a dose responsive decrease of embryos with no heart 33% at 

250pg to 15% at 1 ng and an increase in embryos with a normal heart from 18% at 

250pg to 43% at 1ng. DB: dorsal blastomeres, VB: ventral blastomeres. 
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Table S3: 
 

 
Embryo injections 

 
Total  
No. of 

Embryos 

 
Severe 
Cardia 
Bifida 

 
Mid. 

Cardia 
Bifida 

 
Partial 
Cardia 
Bifida 

 
Normal 
Heart 

% 
Severe 
Cardia 
Bifida 

%  
Mid. 

Cardia 
Bifida 

% 
Partial 
Cardia 
Bifida 

% 
Normal 
Heart 

Non-injected control 90 0 0 0 90 0 0 0 100 
1.5ng dvl1N 2x DB 84 0 0 0 84 0 0 0 100 
1.5ng dvl1 N 2x VB 88 0 0 0 88 0 0 0 100 
500pg fzd7 CRD +  
750pg lacZ 2x DB 

92 29 25 23 15 32 27 25 16 

500pg fzd7 CRD +  
750pg lacZ 2x VB 

75 0 0 0 75 0 0 0 100 

500pg fzd7 CRD +  
1ng lacZ 2x DB 

67 25 10 22 10 37 15 33 15 

500pg fzd7 CRD +  
1ng lacZ 2x VB 

62 0 0 0 62 0 0 0 100 

500pg fzd7 CRD +  
1.25ng lacZ 2x DB 

81 37 18 17 9 46 22 21 11 

500pg fzd7 CRD +  
1.25ng lacZ 2x VB 

84 0 0 0 84 0 0 0 100 

500pg fzd7 CRD +  
1.5ng lacZ 2x DB 

37 10 16 8 3 27 43 22 8 

500pg fzd7 CRD +  
1.5ng lacZ 2x VB 

28 0 0 0 28 0 0 0 100 

500pg fzd7 CRD +  
750pg dvl1N 2x DB 

89 21 23 30 15 24 26 33 17 

500pg fzd7 CRD +  
750pg dvl1 N 2x VB 

76 0 0 0 76 0 0 0 100 

500pg fzd7 CRD +  
1ng dvl1N 2x DB 

91 6 24 34 27 7 26 37 30 

500pg fzd7 CRD +  
1ng dvl1N 2x VB 

93 0 0 0 93 0 0 0 100 

500pg fzd7 CRD +  
1.25ng dvl1N 2x DB 

67 8 11 13 35 12 16 19 52 

500pg fzd7 CRD +  
1.25ng dvl1N 2x VB 

67 0 0 0 67 0 0 0 100 

500pg fzd7 CRD +  
1.5 ng dvl1N 2x DB 

20 2 4 10 4 10 20 50 20 

500pg fzd7 CRD +  
1.5ng dvl1N 2x VB 

30 0 0 0 30 0 0 0 100 
 

 

fzd7 CRD is rescued by dvl1  N. Injecting 1.5 ng of dvl1N capped RNA does not 

give a cardiac phenotype. Coinjecting 160 ng fzd7 CRD with from 750pg –1.5ng of 

lacZ capped RNA gives between 33% and 46% embryos with severe cardia bifida and 

between 17% and 10% embryos with normal hearts. Coinjecting with dvl1N capped 

RNA from 750pg- 1.5ng gives a dose responsive decrease of embryos with severe 

cardia bifida 25% at 750pg to 7% at 1.25ng and an increase in embryos with a normal 

heart from 18% at 750pg to 44% at 1.25ng. DB: dorsal blastomeres, VB: ventral 

blastomeres. 
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Figure S1:  

 

Cardiac development is independent on the convergent extension movement 

defects caused by overexpression of fzd7. (A, B). fzd7 full length (250pg) injected 

into the dorsal blastomeres at 8 cell stage and incubated till stage-32 showing 

detectable tnnic (A) and nkx2-5 (B) expression in both normal embryos and those with 

convergent extension movement defects (arrow heads in A and B). 
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