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Abstract 
In this work, we propose a definition of logical consequence based on the relation between 

the quantity of information present in a particular set of formulae and a particular formula. 

As a starting point, we use Shannon‟s quantitative notion of information, founded on the 

concepts of logarithmic function and probability value. We first consider some of the basic 

elements of an axiomatic probability theory, and then construct a probabilistic semantics for 

languages of classical propositional logic. We define the quantity of information for the 

formulae of these languages and introduce the concept of informational logical 

consequence, identifying some important results, among them: certain arguments that have 

traditionally been considered valid, such as modus ponens, are not valid from the 

informational perspective; the logic underlying informational logical consequence is not 

classical, and is at the least paraconsistent sensu lato; informational logical consequence is 

not a Tarskian logical consequence. 

 

Keywords: Logical consequence. Information. Probability. Semantics. Informational logical 

consequence. Non-classical logics. Paraconsistent logic 

 

 

1 Introduction 
Logical consequence can be considered in different ways. In intuitive terms, it is 

often understood as a relation established between a given set of statements of a language 

and a statement of the same language. In logic, it is common to define it in a way that is 

close to intuitive, for example, as a type of relation between elements of the power-set of a 

nonempty set, as done by Feitosa and D‟Ottaviano (2004), amongst others. In this sense, 

logical consequência is as a relation between a given set (which could be empty or even 

infinite) of formulae of a language (usually formal), and a formula of the same language. 

The statements or formulae belonging to the given set are termed premises, and the other 

statement or formula is termed the conclusion. The role of the premises is to found, sustain, 

and support the conclusion. 
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In the thirties, Tarski (1956a; 1956b; 1956c; 1956d) introduced and improved his 

definition of consequence operator, or logical consequence, and proved the fundamental 

properties of it (cf. ALVES, 2012b). In Tarskian terms, given the language L of the 

(classical) propositional calculus, a consequence operator on the set of formulae of L, 

Form(L), is a function C: (Form(L))  (Form(L)) such that, for all ,   Form(L), it 

satisfies the following properties: 

 

(T1)   C(); 

(T2) If   , then C()  C(); 

(T3) C(C())  C(). 

 

The first property above is named reflexivity; the second is named monotonicity; and 

the third property is named transitivity. A logical consequence operator that satisfies these 

properties is usually named a Tarskian logical consequence. 

When suitably combined in a sequence, the set of premises and the conclusion 

constitute an argument. We can say that a conclusion is logical consequence of a set of 

premises if, and only if, the argument constituted by the union is logically valid, or, simply, 

valid. 

In semantic terms, the relation of consequence is usually defined starting from the 

degree of truth of the premises and conclusion: a formula is a logical consequence of a 

given set of formulae if, and only if, it is true under all circumstances (for example, 

valuation, structure, interpretation, model), such that all the premises are true. 

In this work, we propose a definition of logical consequence based on the quantity of 

information present in the set of premises and in the conclusion. As a starting point, we use 

the usual languages of classical propositional logic (CPL), as constructed by Shoenfield 

(1967), for example. 

In our theoretical approach to logical consequence, we do not consider the qualitative 

semantic aspects of information, considered in works such as those of Dretske (1986) and 

Gonzalez (1996). In our case, the informational value of a message or a formula depends 

only on its probability of occurrence, established using probability space. In the next 

section, we consider some elements of a usual axiomatic theory of probabilities, indicating 

some of its definitions and basic results, which will be used later; these concepts include the 

notions of event and random experiment. 

In the third section, we construct a probabilistic semantics for CPL; we establish a 

relation between the formulae of the CPL language and the events of a random experiment, 

from which we define a probability value for each formula of a given language. At the end 

of the section, we introduce the definitions of probabilistically valid and probabilistically 

equivalent formulae, and of probabilistic logical consequence. 

In the fourth section, we discuss the notion of quantity of information present in a 

formula of a CPL language; we propose a quantitative-informational definition of logical 

consequence, which we call informational logical consequence, and we demonstrate some 

of the results and properties that follow from this definition. In particular, we show the 

existence of arguments which are considered valid according to the classical perspective, 

but which are invalid from the informational perspective. For example, modus ponens is 

informationally invalid, given the possibility that the conclusion of this argument could 

possess a greater quantity of information than its set of premises. Furthermore, we show 

that the logic underlying informational logical consequence is not classical, but is, at the 

least, paraconsistent sensu lato. In addition, we demonstrate that although it might satisfy 
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the property of transitivity, informational logical consequence is neither reflexive nor 

monotonic; in other words, it is not a Tarskian logical consequence. 

In the final considerations, we summarize and analyze the main properties and results 

of informational logical consequence. 

Our approach is based on the quantitative concept of information, developed in the 

Mathematical Theory of Communication. One of the pioneers in studies of the 

quantification, storage, and transmission of information was Hartley (1928). He describes 

the quantity of information present in a source in terms of its number of possible messages. 

Later, Shannon (1948) further developed this idea, including new factors such as the effect 

of noise in the channel, possible economy in the transmission of information, and the 

possibility that messages might possess distinct quantities of information. 

From the quantitative perspective, there can only be information where there is doubt; 

this, in turn, requires the existence of alternatives, which presupposes the presence of 

choice, selection, and discrimination. For Hartley (1928), the information in a message is 

measured by the freedom of choice that someone has in selecting it, based on a source. 

According to Shannon and Weaver (1949, p. 8-9), “... information in communications 

theory relates not so much to what you do say, as to what you could say. That is, 

information is a measure of one‟s freedom of choice when one selects a message.” 

In an unbiased toss of a coin, for example, there are two equally probable 

possibilities: heads or tails. In an unbiased throw of a dice, there are six possibilities. The 

degree of freedom of choice in the first case is less than in the second. In the case of the 

dice, we could say many more things than would be possible in the case of the coin. Hence, 

from the present perspective, the quantity of information present in the throw of the dice is 

greater than that present in the toss of the coin. 

For Hershberger (1955), information can be defined as a measure of the reduction of 

uncertainty. It is related to the unpredictability in a message or a source, with the 

emergence of an element that was absent prior to its occurrence. In the toss of the coin, the 

reduction of uncertainty is less than in the throw of the dice. The occurrence of an event in 

a source such as the example of the toss of a coin only eliminates one alternative, while in 

the throw of a dice five equally probable alternatives are eliminated. Information is also 

associated with notions such as those of order (or organization, in the terms of Bresciani 

Filho and D‟Ottaviano (1990)) and entropy, as discussed by Alves (2012a). 

The central interest in quantitative studies of information generally lies in 

measurement of the quantity of information in a source, rather than in particular messages. 

In a broad sense, a source can be characterized as a process that generates information. Its 

constituent elements can be understood as a finite set of events, of messages, of symbols 

that have a certain probability of occurrence. Discrete ergodic sources are those in which 

every element produced, in addition to being discrete, has the same statistical properties as 

any other, and its properties remain unaltered with time. Once the probabilities of 

occurrence of the elements are discovered, it becomes possible to predict its probability of 

occurrence at any moment, as occurs in the toss of a coin or the throw of a dice. 

According to Shannon and Weaver (1949), the quantity of information of the i-th 

message of a source F, denoted by Ii(F), is the numerical value defined by: 

 

Ii(F) =df - log2 pi(F), 

 

where “pi(F)” denotes the probability of occurrence of the i-th message of F. 
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The quantity of information in a source F with n elements, denoted by HF, is defined 

by: 

 

HF =df 
n
i=1

 
pi(F) × Ii(F). 

 

If HC and HD denote the quantities of information in the throw of the coin and dice, 

respectively, then HC = 1 and HD ≈ 2.58. Since, in both cases, the events corresponding to 

the messages are equiprobable, it can be demonstrated that the quantity of information in 

each message in the source is equal to the quantity of information in the source itself. 

The greater the freedom of choice and reduction of uncertainty in a source, the more 

informative it is. Information reaches its maximum value in a source when all its messages 

have an equal chance of being selected. The informational value is zero when only one of 

them can occur. It is within this framework that in the next sections we propose our 

informational perspective of logical consequence. 

 

2 Elements of an axiomatic theory of probability 
We employ probability in cases where two or more different results can occur in a 

given circumstance. This means that the result is not predictable (or is indeterminate), in the 

sense that it is not possible to previously determine which result might occur at a given 

moment. 

Probability theory, henceforth denoted ℙ, studies random experiments. As a basis for 

ℙ, we shall use the Zermelo-Fraenkel set theory with the Choice Axiom (ZFC), with the 

usual elementary arithmetic theory (cf. ENDERTON, 1977). Hence, the language (alphabet 

and definitions) and theorems of ZFC will also be considered elements of ℙ. The only 

symbols belonging to the alphabet of ℙ are the symbols Ai, for 0  i  n and i  ℕ, where 

“A” represents the primitive concept of ℙ known as happening, result or occurrence, used 

for the definition of random experiment. 

 

Definition 2.1 (Random experiment) 

a: A random experiment or random phenomenon, denoted by “Σ”, is one that, repeated 

various times, presents different results or occurrences, called results of Σ or 

occurrences of Σ, denoted by “Ai(Σ)”. 

b: The sample space of a random experiment Σ, denoted by “U(Σ)”, is the set of all 

possible results of Σ. 

c: The number of elements of the sample space, denoted by “n(U(Σ))”, in which n(U(Σ)) 

 0 is finite, is the quantity of elements of “U(Σ)”. 

d: A sample space is equiprobable when all its elements have the same chance of 

occurring. 

 

The toss of a coin, the throw of a dice, and the removal of a card from a pack are 

examples of random experiments. Their results would be the fall of the coin with one or 

other face upwards, the fall of the dice with one of the numbers from one to six upwards, 

and the withdrawal of one of the cards of the pack, respectively. 

 

Definition 2.2 (Event of a random experiment) 

a: An event of a random experiment Σ, denoted by “E(Σ)”, is any subset of the sample 

space U(Σ), in other words, E(Σ)  U(Σ). 
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b: The number of elements of an event E(Σ), denoted by “n(E(Σ))”, is the quantity of 

elements of U(Σ) belonging to E(Σ). 

c: An elementary event E of Σ is that where n(E(Σ)) = 1. 

d: The correct event E of Σ is that where n(E(Σ)) = n(U(Σ)). 

e: The impossible event E of Σ, denoted by “”, is that where n(E(Σ)) = 0. 

f: A contingent event E of Σ is that where n() < n(E(Σ)) < n(U(Σ)). 

g: The event Ei of Σ, complementary to E(Σ), denoted by “Ē(Σ)”, is defined by:  

 

Ē(Σ) =df {A  U(Σ) | A  E(Σ)}. 

 

h: The event E of Σ, the union of Ei(Σ) and Ej(Σ), denoted by “(Ei(Σ)  Ej(Σ))”, is 

defined by: 

 

(Ei(Σ)  Ej(Σ)) =df {A  U(Σ) | A  Ei(Σ) ou A  Ej(Σ)}. 

 

i: The event E of Σ, the intersection of Ei(Σ) and Ej(Σ), denoted by “(Ei(Σ)  Ej(Σ))”, is 

defined by: 

 

(Ei(Σ)  Ej(Σ)) =df {A | A  Ei(Σ) e A  Ej(Σ)}. 

 

Henceforth, when there is no risk of ambiguity, we shall remove the references to Σ 

between parentheses of the notations. Hence, instead of A(Σ), U(Σ), or n(U(Σ)), we shall 

use only A, U, or n(U), respectively. 

 

Example 2.3 (Random experiments) 

 

Σi U(Σi) E(Σi) n(E(Σi)) 

Σ1 (Toss of coin) {H, T} E1(Σ1): {H} (Fall head) 

E2(Σ1): {T} (Fall tail) 

1 

1 

Σ2 (Toss of biased coin) {H1, H2, H3, T} E1(Σ2): {H1, H2, H3} (Fall head) 

E2(Σ2): {T} (Fall tail) 

3 

1 

Σ3 (Throw of dice) {1, 2, 3, 4, 5, 6} E1(Σ3): {2, 4, 6} (Fall even) 

E2(Σ3):  (Fall head) 

3 

0 

 

In the above example, a “model” is proposed for each random experiment, its sample 

space, and some of its events, associating them with entities of a “world”. In the third 

column, in parentheses, we give the common name for each event in order to express the 

results that comprise it. 

Although our theoretical approach does not consider qualitative elements of 

information, the examples suggested throughout this paper involve content, in order to aid 

understanding. Meanwhile, the same results could have been obtained using a purely formal 

mode of construction. 

The notion of random experiment can be compared with that of a discrete ergodic 

source of information, as indicated in the Introduction section of this work. In a way that is 

similar to this type of source, the elements belonging to a random experiment must be 

previously defined with precision. Furthermore, every sample space considered, in addition 

to being finite, must be equiprobable, and the probability values of the events must be given 
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and fixed. This will enable us to determine with precision the existence of the relation of 

logical consequence between formulae (as shown in Section 4). 

 

Definition 2.4 (Probability of an event) 

The probability of occurrence of an event E in the random experiment Σ with an 

equiprobable sample space U(Σ), denoted by “p(E(Σ))”, is the numerical value defined by: 

 

p(E(Σ)) = df 
 ))n(U(

))n(E(




. 

 

The probability function, p, provides events of a random experiment with values 

between 0 and 1; in other words, p: E(Σ)  [0,1]  ℚ. The probability value of an event 

E(Σ) is given by p(E(Σ)). 

 

Example 2.5 (Probability of the events of Example 2.3) 

 
E E1(Σ1) E2(Σ1) E1(Σ2) E2(Σ2) E1(Σ3) E2(Σ3) E1(Σ3)  E2(Σ3) E1(Σ2)  E2(Σ2) Ē1(Σ2) 

p(E) ½ ½ ¾ ¼ ½ 0 ½ 0 ¼ 

 

Having constituted the basic elements of the language of ℙ, we now describe its 

axioms and some of its elementary results. 

 

The axioms for ℙ are as follows: 

 

(Axℙ1): p(E)  0, for every E  U 

(Axℙ2): p(Ei  Ej) = p(Ei) + p(Ej) – p(Ei  Ej) 

(Axℙ3): p(E  Ē) = 1 

 

In the next theorem, some results concerning the probability of events are stated, 

being important to the continuation of this paper. For simplicity, we do not present the 

proof of this, and some other theorems. Their proofs can be found in Alves (2012b). 

 

Theorem 2.6 

a: p(E)  1, for every E  U. 

b: p(U) = 1. 

c: p() = 0. 

d: n(Ei  Ej) = 0 ⇒ p(Ei  Ej) = p(Ei) + p(Ej). 

e: p(E  Ē) = 0. 

f: p(Ē) = 1 – p(E). 

g: 
m

i=1 p(Ei) = 1, for Ei = {Ai}, for 1  i  m, with U = {A1, ..., Am}. ■ 

 

Based on ℙ, in what follows we develop a probabilistic semantics for classical 

propositional logic (CPL). 

 

3 A probabilistic semantics for languages of CPL 
We call this perspective the probabilistic semantics for CPL (henceforth, Sℙ). As 

shown by Alves (2012b), the behavior of Sℙ is not strictly equivalent to the behavior of the 
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usual classical veritative-functional semantics (henceforth, SV), as developed by Tarski 

(1956a), Mendelson (1964), Shoenfield (1967), and Mates (1972), amongst others. 

We associate the formulae of a CPL language, denoted by “L”, with the events of a 

random experiment, Σ. We define some of the notions that are fundamental to the 

objectives of this paper, and describe some results characteristic of Sℙ. 

The expression “Form(L)” denotes the set of formulae of a language L, the letters “”, 

“ψ”, and “γ” are metalinguistic variables that represent elements of Form(L); “P0”, “P1”, 

“P2” etc are the atomic formulae of L, and “” represents any finite subset of Form(L). We 

adopt negation and disjunction as primitive logical connectives of L. 

 

Definition 3.1 (Situation for a language L) 

A function f is a Σ-situation for L, or simply a situation, denoted by “f(Σ)”, if (Σ): Form(L) 

 (U(Σ)), such that: 

 

a: If  is atomic, then (Σ)() = E(Σ), defined by f itself; 

b: If  is of the form ψ, then (Σ)() = (Σ)(ψ); 

c: If  is of the form ψ  γ, then (Σ)() = (Σ)(ψ)  (Σ)(γ). 

 

A situation for L consists of an attribution of a single event of a given random 

experiment to each well-formed formula of L, according to a function f. The fact that a 

situation is defined using a function enables us to avoid ambiguities in the next definitions, 

especially in the case of informational logical consequence. 

To say that f is an Σ-situation for L is the same as saying that the random experiment 

Σ is an f-structure for L. 

Although each formula of L is associated with a single event in a given situation f(Σ), 

distinct formulae can be associated with the same event in f(Σ). This always occurs, given 

that the set of formulae of any L is infinite, in contrast to the number of events of a random 

experiment, which is always finite. 

 

Definition 3.2 (Probability of formulae according to a situation) 

The probability function of a formula  according to f(Σ), denoted by “P(f(Σ))”, is defined 

as follows, where “p” is the probability function concerning events as defined in ℙ: 

 

a: If  is atomic, P(f(Σ))() =df p((Σ)()); 

b: If  is of the form ψ, P(f(Σ))() =df p((Σ)(ψ)); 

c: If  is of the form ψ  γ, P(f(Σ))() =df p((Σ)(ψ)  (Σ)(γ)). 

 

It can be seen that P(f(Σ)): Form(L)  [0,1]  ℚ, such that p((Σ))()) is the image of 

 according to P(f(Σ)). The probability value of the formula  according to f(Σ) is given by 

P(f(Σ))(), a rational number between 0 and 1. It is the probability value of the event of Σ 

corresponding to , according to f(Σ). 

It can be shown that P(f(Σ)) satisfies the properties described in Theorem 2.6, 

interpreted in the light of Sℙ. 

Henceforth, when we say “for every ”, we mean “for every situation f(Σ), given Σ”. 

In addition, when there is no possibility of ambiguity or imprecision, we shall use “P()” as 

an abbreviation for “P((Σ))()”, “p()” as an abbreviation for “p((Σ)()”, “f()” as an 

abbreviation for “f(Σ)()”, and “” as an abbreviation for “(Σ)”. 
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In accordance with the usual definitions in L, we have: 

 

a: f(  ψ) = f((  ψ))  d: P(  ψ) = P((  ψ)) 

b: f(  ψ) = f(  ψ)   e: P(  ψ) = P(  ψ) 

c: f(  ψ) = f((  ψ)  (ψ  )) f: P(  ψ) = P((  ψ)  (ψ  )). 

 

Example 3.3: 

(Probability of formulae in Σ1 and Σ2, for U(Σ1) = {1,2,3,4,5,6} and U(Σ2) = {H, T}) 

 

 f(Σ1)() P(f(Σ1))() f(Σ2)() P(f(Σ2))() 

P1 {2,4,6} ½ {H} ½ 

P2 {1,3,5} ½ {T} ½ 

P3 {1,2,3,5} 2/3  0 

P4 {1} 1/6  0 

P5  0  0 

P1  P2  0  0 

P1  P3 {2} 1/6  0 

P2  P3 {1,3,5} ½  0 

P1  P3 {U} 1 {H} ½ 

(P1  P3)  0 {T} ½ 

P1  P2 {1,3,5} ½ {T} ½ 

 

Theorem 3.4: For every , we have: 

a: P() = 1 – P(). 

b: f(  ψ) = ()  (ψ). 

c: P(  ψ) = p(()  (ψ)). 

d: P(  ψ) = p(()  (ψ)). ■ 

 

Definition 3.5 (Inconsistency, validity, and contingency of formulae of L in Sℙ) 

a: A formula  is probabilistically inconsistent or probabilistically contradictory, which 

is denoted by “ℙ”, if, for every f(Σ), P(f(Σ))() = 0. 

b: A formula  is probabilistically valid or probabilistically tautological, which is 

denoted by “⊤ℙ”, if, for every f(Σ), P(f(Σ))() = 1. 

c: A formula  is probabilistically contingent if it is neither probabilistically 

contradictory nor probabilistically valid. 

 

Definition 3.6 (Probabilistically equivalent formulae) 

Two formulae,  and ψ, are probabilistically equivalent, which is denoted by “ ≡ ψ”, if, 

for every situation f(Σ), P(f(Σ))() = P(f(Σ))(ψ). 

 

Definition 3.7 (Probability value of a set of formulae) 

Let  = {1, ..., n}  Form(L). The probability value of  according to f(Σ), denoted by 

“P
*
(f(Σ))()”, is defined by: 

 

P
*
(f(Σ))() =df P(f(Σ))(1  ...  n). 
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If  = , then P
*
(f(Σ))() = 1. When  is infinite, P

*
(f(Σ))() is indefinite. 

 

It can be seen that P
*
(f(Σ)): (Form(L))  [0,1]  ℚ, such that P

*
((Σ))()) is the 

image of  according to P
*
(f(Σ)). The probability value of the set of formulae  according 

to f(Σ) is given by P
*
(f(Σ))(), a rational number between 0 and 1. When there is no risk of 

ambiguity or imprecision, we shall write P() instead of P
*
(f(Σ))(). 

According to Definition 3.7, the probability value of a given set of formulae of L in a 

situation f is, in the final analysis, defined from the probability value of the intersection of 

the events associated with the elements of . In other words, by Definition 3.7, and 

Theorem 3.4c, we have that P
*
(f(Σ))() = P(f(Σ))(1  ...  n) = p((Σ)(1)  ...  

(Σ)(n)). Given the definitions in question, we can say that f(Σ)() = f(Σ)(1  ...  n). 

Strictly speaking, it is not possible to define the probability value of an empty set of 

formulae. Definition 3.2, which forms the basis of Definition 3.7, only applies to the 

probability values of formulae of language L. But  is not a formula of L. Although a 

formula might be associated with the empty event, with its probability value being defined 

as zero, it makes no sense to say that an empty formula can have any probability value. 

In order not to leave the empty set without a definition of the probability value, it was 

decided to define it arbitrarily in the way described above. This decision can be justified as 

follows: in this case, to say that P() ≠ 1 would signify the existence of some i   such 

that P(i) ≠ 1. Since there are no formulae in  with this value, given the inexistence of 

formulae in , then P() = 1. 

 

Definition 3.8 (Probabilistic logical consequence) 

A formula  is probabilistic logical consequence of a set  of formulae, which is denoted 

by “ ⊨ℙ ”, if, for every situation f(Σ), P(f(Σ))() ≤ P(f(Σ))(). 

When  = , instead of  ⊨ℙ  we simply write ⊨ℙ . The expression “ ⊭ℙ ” 

denotes that  is not probabilistic logical consequence of . The formulae of  are called 

premises and  is termed conclusion. 

Despite possessing certain specific characteristics, Sℙ is a semantics for CPL. The 

formulae considered valid by Sℙ are exactly the same as those considered valid by SV. 

Furthermore,  ⊨ℙ  if, and only if,  ⊨V . The similarities and differences between Sℙ 

and SV are described by Alves (2012b). In the following discussion, we address the notion 

of informational logical consequence. 

 

4 Informational logical consequence 
In this section, we propose a quantitative-informational definition of logical 

consequence and present some of its properties. We first introduce notions such as the 

quantity of information present in a formula of L and in a set of formulae, based on the 

notion of quantity of information developed by Shannon and Weaver (1949). 

 

Definition 4.1 (Quantity of information of a formula according to a situation) 

The quantity of information or informational value of a formula  of L according to a 

situation f(Σ), denoted by “I(f(Σ))()”, is the numerical value defined by: 

 

I(f(Σ))() =df – log2 P(f(Σ))(). 
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When P(f(Σ))() = 0, we define that log2 0 = 0, in other words, I(f(Σ))() = 0. When 

there is no risk of ambiguity or imprecision, we shall use “I()” instead of “I(f(Σ))”. It can 

be shown that I(f(Σ)): Form(L)  ℚ+. 

 

Example 4.2 (Quantity of information in formulae based on the two situations of 

Example 3.3) 

 

 f(Σ1)() I(f(Σ1)) f(Σ2)() I(f(Σ2)) 

P1 {2,4,6} 1 {H} 1 

P2 {1,3,5} 1 {T} 1 

P3 {1,2,3,5} 0.58  0 

P4 {1} 2.58  0 

P1 {1,3,5} 1 {T} 1 

P1  P3 {2} 2.45  0 

P1  P3 U 0 {H} 1 

P1  P2 {1,3,5} 1 {T} 1 

P1  P3 {1,2,3,5} 0.58 {T} 1 

P2  P3 U 0 {H} 1 
 

 

Definition 4.3 (Quantity of information in a set of formulae) 

Let  = {1, ..., n}  Form(L). The informational value of  (quantity of information in 

), according to f(Σ), denoted by “I
*
(f(Σ))()”, is defined by: 

 

I
*
(f(Σ))() =df – log2 P

*
(f(Σ))(). 

 

When there is no risk of ambiguity or imprecision, we shall use I() instead of 

I
*
(f(Σ))(). Although the domain of this function may be different from that of the 

information function concerning formulae, its image set is the same; in other words, 

I
*
(f(Σ)): (Form(L))  ℚ+. 

 

Definition 4.4 (Informational logical consequence) 

A formula  is informational logical consequence of a set  of sentences, which is denoted 

by “ ⊫ ”, if, for every f(Σ), I(f(Σ))() ≥ I(f(Σ))(). 

 

When  = , instead of “ ⊫ ”, we simply write “⊫ ”; “⊯ ” denotes that  is 

not informational logical consequence of . The formulae of  are called premises and  is 

termed conclusion. 

According to the above definition, a formula is informational logical consequence of 

a given set of formulae if, and only if, the quantity of information present in the conclusion 

is never greater than the quantity of information in the premises. In probabilistic logical 

consequence, the relation is inverse. 

 

Theorem 4.5 

a:   ψ ⊫   ψ. 

b:   ψ ⊫ (  ψ). 

c:   ψ ⊫ (  ψ). 

d:   ψ ⊫ ψ  . 

e:   ψ ⊫ ψ  . 

f:  ⊫ . 
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g:    ⊫ . 

h:    ⊫ . 

i: ⊤ℙ   ⊫ . 

j: ⊤ℙ   ⊫ ⊤ℙ. 

k: ℙ   ⊫ ℙ. 

l: ℙ   ⊫ . 

m: ⊤ℙ ⊫ ℙ. 

n:  ⊫ . ■ 

 

Since the quantity of information in the premise and conclusion of each one of the 

items of the above theorem is the same for each given situation, the reciprocal of each one 

of the items is also valid, such that one formula is informational logical consequence of the 

other. 

The first three items of the above theorem show that the definitions of one connective, 

obtained from others, are maintained in informational logical consequence. The first item 

shows that the notion of implication presupposed here is that of material implication. The 

fourth and sixth items show, respectively, that the logic underlying informational logical 

consequence is neither temporal logic nor intuitionistic logic. 

 

Theorem 4.6 

a: ⊫  ⇔ I() = 0, for every f. 

b: ⊫ ⇔  ⊫ , for every . 

c: I() = 0, for every f, and  ⊫  ⇒ ⊫ . 

d: ⊨ℙ  ⇒ ⊫ . ■ 

 

Proposition 4.7 

a:   ψ ⊯ . 

b:   ψ,  ⊯ ψ. 

c:   ψ, ψ ⊯ . 

d:   ψ, ψ  γ ⊯   γ. 

e:  ⊯ ψ  . 

f:  ⊯   . 

g:   ,    ⊯   . ■ 

 

The above proposition shows that the rules of inference of a large part of formal 

logical systems are not valid in informational terms. The second item is the rule of modus 

ponens, adopted in systems such as that of Mendelson (1967); the last two items are the 

expansion rule and the cut rule, adopted by Shoenfield (1969). The same can be said when 

the above items are treated as arguments. Arguments that are traditionally considered valid 

can present more information in the conclusion than in the set of premises, which means 

that, according to the perspective in question, they act to amplify information. 

As shown by Alves (2012b), the invalidity of these rules of inference or arguments is 

generally due to the possibility of the set of premises being informationally empty in a 

given situation. In the case of the expansion rule, when, in a given situation Σ, P() = 0 and 

I() ≠ 0, then I() < I(  ). Hence,  ⊯   . While the premise is informationally 

empty, the conclusion produces novelty and reduces uncertainty. For example, in the game 

of dice, the sentence “it fell on number seven”, for which the probability of occurrence is 

zero, would not reduce the uncertainty about what occurred in the game. Meanwhile, the 

sentence “it fell on an even number or on number seven” possesses a quantity of 

information that is greater than zero, since it reduces uncertainty: the dice could have fallen 

on numbers two, four, or six, eliminating the possibility of having fallen on an odd number. 

Thus, in the conclusion, there is something that did not exist in the premise. There was an 

informational gain, given that the quantity of information in the premise was null.  
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In the case of modus ponens, the situation f(Σ1) of Example 4.2 above provides an 

example in which the informational value of the premises, interpreted as “if it falls on 

evens, then it falls on odds” and “it falls on evens”, is less than the informational value of 

the conclusion, interpreted as “it falls on odds”. Here, the informational value of the 

premises is null. Since the events “fall on odds” and “fall on evens” are mutually exclusive, 

the sentence “if it falls on evens, then it falls on odds” is equivalent to “it falls on odds or it 

falls on odds”, which is equivalent to “it falls on odds”. The probability of the set of 

premises is therefore defined from the union of “it falls on odds” and “it falls on evens”, 

equivalent to “it falls on odds and does not fall on odds”, for which the probability is zero. 

Meanwhile, the conclusion possesses a quantity of information that is greater than zero, 

since it possesses an informational value that is greater than the value of the set of 

premises. 

The example discussed in the preceding paragraph, which is an individual case of 

Theorem 4.8b, outlined below, seems to fit an intuitive notion of informational logical 

consequence. Intuitively, “fall on odd and not fall on odd” provides no information 

concerning a circumstance. Hence, any probabilistically contingent conclusion can contain 

more information than is contained by the premises. 

Several steps of the demonstrations of the following theorems have been omitted. 

These steps, indicated by “TPP”, refer to theorems previously proved in Alves (2012b). 

 

Theorem 4.8: Let  = {1, ..., n}. Then: 

a:  ⊫  if and only if I() = 0, for every f, or (1  ...  n) ≡ ; 

b: If I()  0, for a given f, then ℙ ⊯ ; 

c:  ⊫⊤ℙ; 

d:  ⊫ℙ; 

e: If I()  0, for a given f, then ⊤ℙ ⊯ . 

 

Proof 

a: (⇒): Let  ⊫ . Suppose that I()  0, for a given f, and (1  ...  n) ≢ . It is then 

possible to show the existence of f‟ such that I(f‟)()  I(f‟)(), contradicting the initial 

hypothesis: I(f‟)() = 0 and I(f‟)() = I(f)(). Hence, when  ⊫  we have that if I() 

 0, for a given f, then (1  ...  n) ≡ , in other words, I() = 0, for every f, or (1  

...  n) ≡ . 

(⇐): Case 1: Let I() = 0, for every f. Then, by TPP, I()  I(), for every f and every 

. So, by Definition 4.4,  ⊫ . 

Case 2: By Definition 3.6, (1  ...  n) ≡  if and only if P(1  ...  n) = P(), for 

every f. By Definition 3.7, P(1  ...  n) = P(), for every f if and only if P() = 

P(), for every f. Then, by TPP, I() = I(), for every f. So, by Definition 4.4,  ⊫ . 

b: Let P() = ½. Then I(ℙ) = 0  I() = 1. 

c: Since I(⊤ℙ) = 0, then I() ≥ I(⊤ℙ). 

d: Since I(ℙ) = 0, then I() ≥ I(ℙ). 

e: Let P() = ½. Then I(⊤ℙ) = 0  I() = 1. ■ 

 

The first item above describes the arguments that are valid according to the 

informational perspective of logical consequence. 

The second item explains that a probabilistically contradictory formula cannot lead 

informationally to any informative formula. In fact, only formulae that are probabilistically 
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valid or invalid, in other words not informative, are informational logical consequence of 

contradictory formulae. 

Presupposing the distinction between classical and non-classical systems, as 

suggested by Da Costa (1993; 1997), or by Haack (1978), we can conclude from the second 

item of the above theorem that classical logic is not the logic underlying informational 

logical consequence. This is because, in classical formal logical systems, a contradiction 

generates any formula. Considering that complementary logics, such as modal logic, retains 

the same principles of classical logic, we can also conclude that no complementary logic 

underlies informational logical consequence. The remaining candidates are heterodox 

logics, such as intuitionistic and paraconsistent systems, as described by D‟Ottaviano 

(1992). 

In intuitionistic logics, negation possesses certain particular characteristics. Such 

characteristics do not permit, for example, recourse to proofs employing reduction to the 

absurd, given that formulae such as    are not valid in these systems. Meanwhile, it 

can be shown that  ⊫  and  ⊫  and, from Theorem 4.9b below, we have ⊫  

 . Therefore, intuitionistic logic cannot provide a basis for informational logical 

consequence. 

Theorem 4.8, especially the second item, indicates that the logic underlying 

informational logical consequence is, at least, paraconsistent sensu lato. This is because 

this notion of consequence does not permit, for example, the Ex Falso Quodlibet, also 

known as the Explosion Principle, such that from a contradiction does not follow any 

formula. 

The third item of the above theorem is shared by both probabilistic and veritative-

functional logical consequence, but for different reasons. Informationally, a 

probabilistically valid formula is logical consequence of any formula, because its value is 

minimal; hence, it cannot provide more information than any other formula. In probabilistic 

and veritative-functional terms, it is logical consequence of any formula because its value is 

maximal; in other words, it possesses the probabilistic value „1‟ or the true value „V‟. 

The fourth item, like the second, is not valid in the other two notions of logical 

consequence considered here. In these notions, an inconsistent formula is logical 

consequence solely of a contradictory set of formulae. In the informational version, it is 

logical consequence of any set of formulae. In informational terms, there is no distinction 

between valid and inconsistent formulae. 

The fifth result expresses a similarity between informational logical consequence and 

the other notions of consequence: contingent formulae are not logical consequence of valid 

formulae. 

 

Theorem 4.9 

a: If  ⊫ ψ, and ψ ⊫ γ, then  ⊫ γ. 

b: If  ≡ ψ, then ⊫   ψ. 

c: Is not the case that: ,  ⊫ ψ if and only if  ⊫   ψ. 

d: Is not the case that:⊫  e ⊫ ψ if and only if  ≡ ψ. 

e: Is not the case that: ⊫  if and only if f()  f(), for every f. 

f: Is not the case that: ⊫  if and only if  ⊨V . 

 

Proof 
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a: Let  ⊫ ψ, and ψ ⊫ γ. By Definition 4.4, I() ≥ I(ψ) ≥ I(γ), for every f. Then, by 

TPP, I() ≥ I(γ), for every f. So, by Definition 4.4,  ⊫ γ. 

b: By TPP, if  ≡ ψ, then   ψ is ⊤ℙ. And, by TPP, if   ψ is ⊤ℙ, then ⊨ℙ   ψ. 

So, by Theorem 4.6d, ⊫   ψ. 

c: (⇏): Let  = . ℙ ⊯ ψ, but ⊫ℙ  ψ. 

(⇍): ⊯ ψ  ℙ, but ψ ⊫ℙ. 

d: (⇏): ⊫ℙ e ⊫⊤ℙ, but ℙ ≢ ⊤ℙ. 

(⇍):   ψ ≡   ψ, but ⊨ℙ   ψ and ⊨ℙ   ψ do not occur. 

e: (⇏): ⊤ℙ ⊫ℙ, but f(⊤ℙ) = U ⊈ f(ℙ) = . 

(⇍): Let f() ≠ . Then f(ℙ)  f(), but ℙ ⊯ . 

f: (⇏):    ⊫   , but    ⊭V   . 

(⇍): ψ ⊨V   ψ, but ψ ⊯   ψ. ■ 

 

The above theorem expresses some of the characteristic properties of informational 

logical consequence, when compared to the probabilistic and veritative-functional versions. 

In contrast to the latter two versions, the reciprocal of Theorem 4.9b, especially, cannot be 

shown for the informational version; in other words, is not the case that if ⊫   ψ, then  

≡ ψ, given that, for example, ⊫ℙ  ⊤ℙ, but ℙ ≢⊤ℙ. 

Theorem 4.9c shows the invalidity of the corresponding semantics of the Deduction 

Theorem. The fourth and fifth items illustrate some of the innate characteristics of 

informational logical consequence, as discussed in the final considerations (below). 

Theorem 4.9f expresses a distinction between the relations of informational and veritative-

functional logical consequence. 

We show below that informational logical consequence is not a Tarskian logical 

consequence, according to the definition set out in the introduction of this paper. 

 

Theorem 4.10 

a: Is not the case that: if   , then  ⊫ . 

b: Is not the case that: if    and  ⊫ , then  ⊫ . 

c: If  ⊫ ψ, for each ψ  , and  ⊫ , then  ⊫ . 

 

Proof: Let f be any situation. 

a: Let P() = 0 and P() = ½. Then, by TPP, I()  I(). 

b: Let  = {},  = {, } and I()  0. Then, by TPP,  ⊫  and  ⊯ . 

c: Case 1: Let I() = 0. Then, by Hypothesis, I(ψ) = 0, for each ψ  . By TPP, I() = 

0. Thus, by Hypothesis, I() = 0. So, I() = I(). 

Case 2: Let I()  0. By TPP, and by Hypothesis, P()  P(ψ), for each ψ  . In this 

case, it can be shown that f‟()  f‟()  f‟(), for every f‟. Then, by TPP and 

Definition 3.8, P()  P()  P(). So, by TPP, I()  I(). ■ 

 

Thus, informational logical consequence is neither reflexive nor monotonic, although 

it may satisfy the condition of transitivity. 

According to our objectives in this paper, we finish our presentation of informational 

logical consequence. Others results and properties can be found in Alves (2012b). 

 

Final considerations 



 

15 

 

 

The shift of perspective in the analysis of the notion of logical consequence, from the 

true value to the quantity of information of formulae, enables characteristics to emerge that 

are uniquely attributable to this approach. Alves (2012b) presents some of the main 

similarities and differences between this concept and the usual perspective whereby logical 

consequence is defined in terms of maintenance of the truth of the premises for the 

conclusion of an argument. In what follows, we highlight the main results obtained from 

the elements presented in this paper.  

(FC1) Informationally empty formulae are informational logical consequence of the 

empty set (Theorem 4.6a). This means that probabilistically valid and contradictory 

formulae are self-sustained, which illustrates a first difference between, on one hand, the 

veritative-functional and probabilistic versions and, on the other hand, the informational 

version of logical consequence. In these two versions, a contradiction is generally not a 

logical consequence of a given set of premises. 

(FC2) The formulae that are informational logical consequence of a given set of 

formulae whose quantity of information is always null are informational logical 

consequence of the empty set (Theorem 4.6c). This result also illustrates an inherent 

characteristic of the informational perspective of logical consequence. From this, it follows 

that if a formula is logical consequence of a contradictory set of formulae, it is 

informational logical consequence of the empty set. This does not generally hold in the case 

of the veritative-functional and probabilistic perspectives of logical consequence. 

(FC3) Some of the rules of inference of classical formal logical systems, and some of 

the arguments traditionally considered valid, do not possess general validity in the 

informational perspective of logical consequence (Proposition 4.7). The cases in which the 

set of premises possesses null information provide examples showing that the conclusion 

can be more informative than the set of premises in these rules or arguments. Meanwhile, it 

can be shown that when the quantity of information in the set of premises is greater than 

zero, the quantity of information in the conclusion is always smaller than the quantity of 

information in the set of premises. 

This result indicates that according to the veritative-functional perspective, the 

conclusion of a valid argument can possess more information than its set of premises. This 

seems to support the conception that in a valid argument, the information in the conclusion 

is already implicitly or explicitly given in the premises. We leave it open for future work to 

investigate the nature of the information underlying the veritative-functional perspective, as 

well as the association between the true and probability values and the sentences involved 

in a logical consequence relation. We believe that this analysis should resolve, at least 

partially, the strangeness indicated in this paragraph. 

In the informational and veritative-functional perspectives, amplifying inductive 

arguments, where the conclusion is more informative than the set of premises, are invalid. 

Meanwhile, such arguments may be considered interesting in some areas of knowledge, 

given that they amplify information. 

The theorem in question also shows that the informational perspective of logical 

consequence is not equivalent to the veritative-functional and probabilistic perspectives. 

There are formulae that are the veritative-functional and probabilistic logical consequence 

of a given set of formulae, but are not informational logical consequence of it. On the other 

hand, as already shown from Theorems 4.6d or 4.8d, some formulae can be informational 

logical consequence of a given set of formulae, but cannot be logical consequence from the 

probabilistic or veritative-functional points of view. 
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(FC4) A formula is only informational logical consequence of a given set of formulae 

if that set of premises is probabilistically equivalent to the conclusion, or if the conclusion 

is informationally null (Theorem 4.8). This result shows that a probabilistically 

contradictory formula can be informational consequence of a given set of informative 

formulae. As an example:  ⊫   . 

If, on one hand, informational logical consequence is distinct from traditional 

classical deductive logical consequence, on the other hand, it should not be considered to be 

an inductive inference. This is because a characteristic of induction is that it permits the 

conclusion to possess more information than its set of premises. 

(FC5) The logic underlying informational logical consequence is, at the least, 

paraconsistent sensu lato (Theorem 4.8b). One of the motives for arriving at this conclusion 

is that in paraconsistent logics, the principle of explosion is not valid: from a contradiction 

does not follow any formula. A proposal for future work is to analyze the elementary 

characteristics of a paraconsistent system, and show that they are satisfied by informational 

logical consequence. 

The logic underlying informational logical consequence is not classical logic, since in 

classical formal logical systems a contradiction generates any formula. Consequently, the 

complementary logics are also unable to provide a basis for informational logical 

consequence, given that they satisfy the principles of classical logic. Heterodox logics, such 

as the intuitionistic and temporal systems, are also unable to fulfill this role, as shown in the 

commentaries on Theorems 4.8b and 4.5d. 

From Theorem 4.8b, we find that, in contrast to the veritative-functional and 

probabilistic perspectives, in formal logical systems that adopt informational logical 

consequence, the inconsistency of a given theory does not imply its triviality, as shown by 

Alves (2012b). From the point of view of formal logical systems such as the classical ones, 

this signifies that any formula would be considered a theorem of the given theory. 

Consequently, from the theorem of completeness, for these systems we have ⊧V ψ and ⊧ℙ ψ, 

for any ψ. Meanwhile, since in informational logical consequence, in general, ℙ ⊯ ψ, it is 

not possible to conclude that the inconsistency of a theory implies its triviality. 

(FC6) The corresponding semantics of the Theorem of Deduction is not valid in the 

informational perspective of logical consequence (Theorem 4.9c). The last three items of 

Theorem 4.9 illustrate other significant results specific to the informational perspective. In 

the veritative-functional and probabilistic perspectives, if two formulae are logical 

consequence of an empty set of inferences, then they are equivalent, as they are both valid. 

In the informational version, as expressed in Theorem 4.9d, this does not possess general 

validity. A probabilistically valid formula and another that is probabilistically inconsistent 

provide an example to demonstrate the invalidity of this result. 

Theorem 4.9d illustrates another specificity of informational logical consequence. 

This result can be easily shown for the probabilistic version, as reported by Alves (2012b). 

In the case of the veritative-functional version, it is necessary to adapt the right hand side of 

the result: the true value of the set of premises is smaller than the true value of the 

conclusion, in all evaluations. This signifies that it is never possible that all the premises 

can be true while the conclusion is false in the same single evaluation. Finally, the last item 

of the theorem states that informational and veritative-functional logical consequence 

cannot be satisfied by the same sets of sentences. 

(FC7) Informational logical consequence is not a Tarskian logical consequence 

(Theorem 4.10). A large part of the characteristics specific to the informational perspective 

of logical consequence, such as that which refers to non-monotonicity, derives from cases 
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in which the quantity of information is null. The specific difference of this perspective is 

found in cases that concern extreme probability values, whether in individual situations or 

in all situations. 

While this may be the basic difference, it should not be considered a small difference. 

It produces results that might be considered discrepant, when compared to the traditional 

perspectives of logical consequence. Amongst these, we recall that some rules of inference 

do not constitute valid arguments, and that not every formula is informational logical 

consequence of a contradictory set of formulae. Furthermore, it shows that logical 

consequence, when analyzed from the informational viewpoint in question, ceases to be 

Tarskian, and that the logic underlying this perspective is not classical, but at the very least 

paraconsistent. 

(FC8) The set of premises of an informational inference is always finite, and the 

sample space is constituted of a finite set of events. These two characteristics represent 

serious restrictions in our proposal. The first restriction indicates the impossibility of 

dealing with arguments using a potentially infinite set of premises, such as the -

arguments, described by Tarski (1956b). This author claims to have constructed a theory in 

which sentences of the type “n possesses the property P”, for natural n, are theorems of the 

theory, and the sentence “every natural number possesses the property P” cannot be proved 

in the theory. Hence, this sentence is not their logical consequence, which in this case 

seems absurd. 

The second restriction limits the possible models for a language of a formal system. 

A proposal for future work would be to consider informational logical consequence based 

on a definition that involves an infinite probability space. It would then become viable to 

analyze informational logical consequence for languages of first-order theories, which has 

not been addressed in the present work.   
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