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Abstract

Connectomics – the study of neural connectivity – is primarily concerned with the
mapping and characterisation of wired synaptic links; however, it is well established
that long-distance chemical signalling via extrasynaptic volume transmission is also
critical to brain function. As these interactions are not visible in the physical structure
of the nervous system, current approaches to connectomics are unable to capture them.

This work addresses the problem of missing extrasynaptic interactions by demon-
strating for the first time that whole-animal volume transmission networks can be
mapped from gene expression and ligand-receptor interaction data, and analysed as
part of the connectome. Complete networks are presented for the monoamine systems
of Caenorhabditis elegans, along with a representative sample of selected neuropeptide
systems.

A network analysis of the synaptic (wired) and extrasynaptic (wireless) connectomes
is presented which reveals complex topological properties, including extrasynaptic rich-
club organisation with interconnected hubs distinct from those in the synaptic and
gap junction networks, and highly significant multilink motifs pinpointing locations
in the network where aminergic and neuropeptide signalling is likely to modulate
synaptic activity. Thus, the neuronal connectome can be modelled as a multiplex
network with synaptic, gap junction, and neuromodulatory layers representing inter-
neuronal interactions with different dynamics and polarity. This represents a prototype
for understanding how extrasynaptic signalling can be integrated into connectomics
research, and provides a novel dataset for the development of multilayer network
algorithms.
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Chapter 1

Introduction

1.1 Connectomics

O ne of the most defining characteristics of the brain is its complex patterning of
cellular connectivity. This observation was first made towards the end of the 19th

century through the work of Cajal (1888), and lead directly to the formation of the
neuron doctrine that forms the foundation of modern neuroscience: the concept that the
brain is a collection of distinct cells that interact through synapses. Developments in
neuroscience and microscopy since Cajal’s initial observation have lead to the creation
of the modern field of connectomics, which aims to map the complete set of these
connections within a brain (Sporns, 2015; Sporns et al., 2005).

Fig. 1.1 Cajal’s drawing of cells in the visual cortex (Cajal, 1899).
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While synapses – and the neural projections that form them – are a prominent
structural and functional feature of the brain, it is well established that they are not
the only route of communication between neurons. As connectomics continues in its
venture to map synaptic connectivity, a growing body of research exists suggesting that
additional, non-synaptic, interactions will also need to be accounted for to understand
the operation of neural circuits; specifically, long-distance communication through the
release and diffusion of neuromodulatory molecules. The subject of this thesis is
an attempt to extend the definition of connectomics to include these non-synaptic
interactions, by demonstrating that neuromodulatory networks can be mapped at the
level of an entire nervous system, and analysed alongside synaptic networks using
existing connectomic tools, to yield biologically relevant insights.

The following sections lay the foundation for the presentation of this work in
Chapters 4 & 5, by providing an overview of the current state of connectomics,
and introducing the nematode worm Caenorhabditis elegans in which the work was
conducted.

1.1.1 The role of connections

All interactions in the nervous system are ultimately grounded in the context of the
wider environment. In an energetic and dynamic environment, such as the Earth, life
must constantly adapt. This applies not only on evolutionary timescales – where species
evolve to maximise their fitness in an environment – but also on a moment-by-moment
basis. Organisms must constantly respond to their changing environments to maintain
the internal configurations and processes necessary for the continuation of life. This is
epitomised by homeostasis (Ashby, 1952; Cannon, 1929).

For unicellular organisms, their immediate environment is the only environment
that must be considered. This is not the case, however, for multicellular organisms.
As a multicellular organism grows, the number of cells in the internal space begin to
outnumber those on the surface, and thus have no way of immediately sensing the larger
environment in which they are embedded. Large multicellular organisms therefore
require not only a dedicated interface to sense and communicate environmental states
to the whole organism, but also mechanisms to coordinate responses for the mutual
benefit of all its cells.
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In simple and complex animals alike, it is clear that the nervous system is one such
adaptive coordinating system: it enables and controls a host of essential processes, from
locomotion and feeding, to reproduction, growth, immune responses, and the detection
and avoidance of noxious entities. It does so in a way that is both highly robust to
failure, and extremely adaptable; capable of responding to novel circumstances, and
developing responses on a much faster timescale than the evolutionary process.

The web of cellular connectivity that sits between a nervous system’s sensory
cells and its effectors clearly play a role in structuring how stimuli are processed and
converted into behaviours suited to the environment. The question arises: can we
understand and reverse engineer these adaptive processes from the connectivity patterns
we observe between cells; and if so, can these patterns also explain the higher-level
behaviours and mental states that define our experience as rational, conscious agents?
While the second-part of the question is a long way from being answered – some have
argued it to be unanswerable (Chalmers, 1995; Schrödinger, 1958) – experiments in
simple systems demonstrated early on the power of studying neural connectivity.

Combining Cajal’s theories with previous observations that the brain has an electro-
chemical basis, starting with the work of Galvani a hundred years before (Galvani, 1791),
the neuron doctrine allowed early electrophysiologists to begin describing behaviours
in terms of interactions between individual cells, providing a gateway to tractable,
reductionist, explanations of the nervous system and the generation of behaviours,
with the earliest work resolving the nature of reflexes (e.g. Sherrington, 1906a; 1906b).
The power of this model of the nervous system has resulted not only in descriptions of
simple behaviours, but also general principles of information processing. Theories of
synaptic learning and cell assemblies, where connections are strengthened in response
to repeated activation to form functional circuits (Hebb, 1949), have proved capable
of describing a great deal of behaviour; while work by McCulloch and Pitts (1943)
demonstrated that synaptically connected neurons can perform complex logical opera-
tions. Together these theories have provided a foundation for non-symbolic approaches
to general computation, where objects and functions are not explicitly modelled, but
instead emerge from the dynamic interactions between nodes in a network (Rumelhart
and McClelland, 1986). This alternative computational paradigm, known as connec-
tionism, has provided insights into the nature of many natural emergent systems and
yielded engineering applications outside the realm of neuroscience (Hassabis et al.,
2017; Schmidhuber, 2015; Soman et al., 2016).
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Microscale 
10-4 m – 10-9 m 

 

Mesoscale 
10-2 m – 10-7 m 

Macroscale 
10-1 m – 10-3 m 

Fig. 1.2 Scales of connectomic maps. From left to right: DTI image of white matter
tracts in the human brain, from the NIH Human Connectome Project (Harvard/MGH-
UCLA, 2015); map of GFP labeled axon projections in the mouse brain, from The
Allen Brain Institute (Oh et al., 2014); EM reconstruction of neurons in the olfactory
bulb of a zebrafish larva (Friedrich et al., 2013). Scale ranges taken from Ohno et al.
(2015).

1.1.2 The state of connectomics

Developments in neuroscience in the intervening century since Cajal and Sherrington
have, in recent years, enabled the first serious attempts to describe the complete neural
connectivity of an organism, and link connections directly to behaviours. This is
only now possible due to the concrescence of several disparate technologies. On one
side, advances in microscopy, computer imaging, and molecular biology have provided
approaches to high-throughput structural and functional imaging of entire nervous
systems and their constituent molecules (e.g. MRI, electron / confocal / two-photon
microscopy, Ca2+ imaging, molecular labelling, etc.); on the other, an explosion of
activity in complex network research since the mid-1990’s has resulted in the theoretical
and computational tools necessary for analysing and interpreting the properties of large
networks. Together, these technologies provide an approach to overcoming research
limits imposed by the size of the brain, permitting the study of neural systems in all of
their richness and complexity.

Current work in connectomics can largely be divided into three categories, based
on the physical scale and the level of description they provide (Figure 1.2). At the
highest level, macroscale connectomics seeks to describe the large scale structure of
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the brain by mapping white matter tracts and functional interactions between brain
regions, using techniques such as MRI and diffusion tensor imaging (DTI). At the
smallest scale, microscale connectomics charts the morphologies and connections of
individual synapses using electron microscopy (EM). In between these two is mesoscale
connectomics which records the projections of neurons, but not their synaptic details.

Large scale projects exist in all of these areas, and across several species, including
mice (Oh et al., 2014), humans (Harvard/MGH-UCLA, 2015), Drosophila (Shih et al.,
2015), and zebrafish (Friedrich et al., 2013; Hildebrand et al., 2017); however, to
date the only organism for which a complete microscale synaptic connectome exists
is the nematode worm Caenorhabditis elegans; see Figure 1.3 (White et al., 1986).
This achievement was largely possible thanks to the worm’s small size, with only 302
neurons, and laid the foundation for understanding many organisational and functional
properties of its nervous system (Sengupta and Samuel, 2009; Stam and Reijneveld,
2007).

Despite the ongoing success of connectomics in revealing the structural basis of the
brain and behaviour, a number of reviews have recently been published highlighting
problems and limits with the current approach (Bargmann, 2012; Bargmann and Marder,
2013; Brezina, 2010; Kopell et al., 2014; Marder et al., 2014; Morgan and Lichtman, 2013;
Sporns, 2013a). Chief amongst these is the observation that extrasynaptic molecular
interactions can radically alter the properties of the synaptic network. Although

Fig. 1.3 3D model of the wired synaptic connectome of C. elegans. Generated using
neuroConstruct (Gleeson et al., 2007), with data from the VirtualWorm and OpenWorm
projects (Szigeti et al., 2014).
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synaptic connections are the most salient feature of the brain, they are far from the
only method of communication between cells (Agnati et al., 2010; Jefferys, 1995).

1.1.3 Non-synaptic interactions

Several methods of neuronal communication exist (Figure 1.4). Besides from chemical
synapses, that form the basis of the wired transmission (WT) system, there are also
a number of other known interactions in the nervous system. These interactions are
diverse, with spatiotemporal properties that span orders of magnitude.

An additional route of wired transmission, besides synapses, is through the coupling
of two or more neurons via gap junctions. Through connecting the cell membranes,
gap junctions allow for fast, bidirectional, ionic communication on the order of 100
microseconds, and have also been shown to simultaneously allow the transfer of second
messengers and metabolites between cells (Hernandez et al., 2007; Sohl et al., 2005).
This form of undirected coupling allows groups of cells to form single functional units
with unique computational properties not seen in single neurons (Rabinowitch et al.,
2013).

Alongside synapses and gap junctions there exist additional, non-wired, methods
of interaction. One of these is ephaptic coupling (Anastassiou et al., 2011), whereby
neurons can alter the electrical states of surrounding cells, either through field effects
to induce currents or by altering the ionic concentrations of the extracellular space.
This is thought to play a role in synchronisation behaviour between groups of neurons
(Anastassiou et al., 2011; Jefferys, 1995; Weiss, 2010).

Perhaps one of the most diverse and ancient methods of cellular communication,
predating the nervous system itself, is the mechanism of volume transmission (VT).
Neurons can release small-molecules, peptides, and gasses that diffuse through the
extracellular space to interact with cells over long distances (Agnati et al., 2010). While
VT has long been recognised as a function of neurons, it has traditionally been viewed
primarily in the context of the autonomic nervous system (ANS), and not as a general
principle of neural communication; however, molecular mapping studies of the central
nervous system (CNS) have revealed that the density of nerve terminals for particular
neurotransmitters often do not align with the location of matching receptors (Taber
and Hurley, 2014), providing evidence that some neurotransmitters in the CNS must
diffuse over long-distances to reach their targets. For example, this method of com-
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Synaptic transmission 
(wired, chemical) 

Gap junction transmission 
(wired, electrical) 

Ephaptic transmission 
(wireless, short-range, electrical) 

Volume transmission 
(wireless, long-range, chemical) 

Fig. 1.4 Modes of transmission between neurons.

munication can be seen in the dopamine system (Rice and Cragg, 2008; Rice et al., 2011).

With new molecules constantly being discovered with the ability to both act over
long distances and alter the function of neural circuits (e.g. Figure 1.5), it is clear the
synaptic network alone will not be sufficient to reverse engineer behaviours (Bargmann
and Marder, 2013). Indeed, the connectome of C. elegans was first published in 1986,
yet the function of many neurons and circuits remain unknown. This is not surprising
given the complexity of extrasynaptic signalling; for example, the C. elegans genome
has so far been identified to encode over 250 distinct neuropeptides from 122 precursor
genes, many of which have not been characterised or matched to a receptor (Hobert,
2013; Li and Kim, 2008). To add additional complexity, it is becoming clear that
volume transmission can also exist through the release of extracellular vesicles (EV)
that can carry a number of payloads over long distances (Agnati and Fuxe, 2014;
Budnik et al., 2016; Wang and Barr, 2016).

Although the task of mapping these systems is a difficult one, it is not impossible.
Expression profiling and molecular labelling can identify the locations of these molecules
in the nervous system, while deorphanization studies can link molecules to receptors
and reveal the interaction properties. As will be seen in later chapters, this information
can be used to generate maps of extrasynaptic volume transmission networks, and
analysed with the same approaches used for traditional wired connectomes.
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lator systems; data after 2000 is underrepresented. Figure adapted from Sandberg and
Bostrom (2008).
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1.2 Thesis overview

1.2.1 Project background

This chapter has introduced connectomics as the study of synaptic connectivity and
briefly discussed how neurons can interact not only through wired synapses, but also
through wireless methods, such as extrasynaptic volume transmission (VT), with
the ability to modulate neuronal signalling in multiple ways. As one of the goals of
neuroscience is to understand the operations of the nervous system from the patterns
of interactions between its constituent neurons, it will be necessary to obtain maps of
both synaptic and extrasynaptic interaction networks.

Although synaptic connectomics has developed to a state where the whole-brain
reconstruction of small nervous systems is now tractable, the problem of systematically
mapping chemical VT networks has not previously been addressed. With many VT
networks remaining either uncharacterised or unchartered, the details of how these
systems interact with, modulate, and contribute to information processing in the wired
synaptic networks are poorly understood, as is their involvement in neuropathologies.
This thesis attempts to make progress towards a solution by demonstrating that VT
networks can be mapped and analysed as part of the connectome.

C. elegans has many properties that make it a useful model organism for the study
of VT networks. As well as having a small mapped connectome (White et al., 1986)
with a stereotyped cell lineage (Sulston et al., 1983), C. elegans is highly amenable to
genetic manipulation (Dickinson and Goldstein, 2016; Fay, 2013; Praitis and Maduro,
2011), as well as in vivo imaging as a result of its transparent cuticle (Kerr, 2006;
Shaham, 2006). With the existence of tools that allow the determination of gene
expression patterns at single-cell resolution (Boulin et al., 2006), public repositories
of such expression patterns (Bhatla, 2014; Howe et al., 2016), and information on
many ligand-receptor interactions, and synthesis and processing pathways for the
two main classes of VT molecules – namely, monoamines (e.g. serotonin, dopamine,
etc.; Chase and Koelle, 2007) and neuropeptides (e.g. NPY, vasopressin-, oxytocin-,
and endorphin-like systems, etc.; Li and Kim, 2008) – it is possible to determine the
locations of ligands and receptors used in volume transmission in the nervous system
of C. elegans, and thus make predictions about which neurons are likely to interact
extrasynaptically via VT.
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1.2.2 Research objectives

This thesis addresses the problem of mapping aminergic and peptidergic VT networks
in C. elegans by demonstrating that gene expression and ligand-binding data can be
combined to chart putative extrasynaptic signalling between neurons; specifically, using
the expression patterns of biosynthetic enzymes, peptides, and transporters to identify
the broadcasting nodes of the networks; receptor expression patterns to identify the
receiving nodes; and ligand-binding data to predict interaction networks between the
broadcasting and receiving nodes.

The goals of this thesis are to provide:

1. a proof-of-concept that VT networks can be mapped from gene expression data,

2. a map of the extrasynaptic monoamine networks of C. elegans,

3. a partial map of the extrasynaptic neuropeptide networks of C. elegans1,

4. a graph theoretic analysis of the extrasynaptic monoamine and neuropeptide
networks to determine their structural properties and demonstrate that the
concept of connectomics can be extended to include VT networks.

1.3 Thesis structure & scientific contributions
This thesis is organised into four parts:

Part I, containing Chapters 1 & 2, provides an introduction to connectomics.
Chapter 2 first gives a broad conceptual overview of the tools from network theory
that are used in the analysis of brain networks (covered in § 2.1 – 2.2.5), followed by
an in-depth discussion of their usage and the presentation of their formal mathematical
definitions (§ 2.3 – 2.5.3). These tools are used throughout the thesis to analyse the
neural connectivity of C. elegans.

Part II (page 83) presents a comparative network analysis of two versions of the
synaptic connectome of C. elegans: (1) the canonical network derived from manual
neuron tracing, and (2) an updated network generated with the aid of computerised

1Due to the complexity of the neuropeptide networks, with over 250 neuropeptides versus the four
monoamines, insufficient data currently exist to map all of the neuropeptide systems in their entirety
(see Chapter 5).
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tools. As the properties of the extrasynaptic VT networks are compared against the
synaptic network, this chapter explores whether there are any differences between the
two versions of the synaptic connectome, and if previously published results in the
literature are still valid for the new network. The analysis identifies a large increase in
the number of synapses in the updated network, but only minor changes in the global
architecture and structural properties. Explanations are proposed for the observed
differences, and suggestions are made on ways in which the accuracy of connectomic
maps could be improved. Due to inconsistencies in the connectivity of the updated
connectome, the original is used as the main reference network in all subsequent
chapters.

Part III (page 109) covers the mapping and analysis of the extrasynaptic networks
of C. elegans. Chapter 4 focuses on the monoamine networks, while Chapter 5 analyses
the neuropeptide networks. These chapters demonstrate that gene expression data
can be used to reconstruct VT signalling networks, presenting the first whole-animal
map of neuronal monoamine signalling. The network analyses find that both VT
networks (i.e. monoamine & neuropeptide) predominantly exhibit star-like structures
that broadcast signals throughout the worm, while also containing complex features
indicative of internal information processing, such as central rich-clubs of intercon-
nected neurons that are likely to coordinate activity between the various VT systems,
and overrepresented connectivity motifs identifying locations where the synaptic and
extrasynaptic networks are likely to interact.

Part IV (page 171) contains a reflection on the main findings of this thesis, their
potential implications, and areas for future work.





Chapter 2

Complex network theory in
connectomics

2.1 Introduction

C omplex network theory seeks to describe and understand the properties of large
real-world networks through the use of mathematical models (Liu and Tse, 2015;

Newman, 2003b). The main construct in network theory is the graph: a collection of
nodes (also referred to as vertices) that are connected by edges (known as links or arcs)
(Figure 2.1). The mathematical foundations of network science therefore lie in the
classical discipline of graph theory, originating with the pioneering work of Euler (1736).

Graphs are a natural model for real-world networks due to the ease with which
various entities and their relationships can be mapped to nodes and edges. This
is especially true for the nervous system, which by its very structure is inherently
graph-like, with neurons (nodes) and synapses (edges). Later chapters will demonstrate
how extrasynaptic molecular interactions can also be included as edges.

Node

Edge

Fig. 2.1 A small graph composed of eight nodes and ten edges. Figure modified from
Newman (2003b).



16 Complex network theory in connectomics

2.1.1 Network theory and the brain

The power of applying graph theory to the study of brain networks can been seen
in two areas. Firstly, the ability to transform vast webs of interactions into clearly
delineated models provides a handle on otherwise overwhelming complexity, aiding
interpretation and allowing for comparisons with other networks. Secondly, modelling
the brain as a mathematical structure makes it amenable to numerical and logical
measurements and manipulations that are difficult or impossible to perform in vivo;
for example, examining the consequences of rewiring specific circuits.

The same methods can be applied equally well across various scales and data types.
On the topic of scale, defining nodes as anatomical regions allows network theory to be
applied to macroscale connectomes, to study the structural or functional relationships
between brain areas. The same methods can also be applied to microscale circuits,
describing single neurons and their synapses. On data types, network theory allows
the consideration (and consolidation) of measurements from various sources (Bassett
and Sporns, 2017). For example, edges can reflect physical anatomical connections
between neurons (as explored in Chapter 3), functional correlations (as from fMRI /
BOLD, MEG, EEG, etc.; see Bullmore and Sporns, 2009), effective causal interactions
through various routes (Friston, 1994) (as shown with extrasynaptic interactions in
Chapters 4 & 5), or other abstract relationships, such as morphological similarity
(Kong et al., 2015) or shared gene expression profiles (Lein et al., 2007).

Through the application of the graph formalism to both tangible and intangible
systems across numerous spatiotemporal domains – from molecular interactions (Ideker
and Sharan, 2008; Tieri et al., 2005) up to global communication networks (Albert
et al., 1999; Pastor-Satorras et al., 2001) – network science has revealed that real-world
networks of many types share common features (Strogatz, 2001); thus, networks appear
to be an essential property of nature, having their own characteristics distinct from
both those of their individual constituent elements, and the emergent behaviours of
the systems they create. Networks mediate the qualitative transformation between the
two scales, and provide insights into the nature of both. This makes network theory
especially relevant to the field of neuroscience, which seeks to understand how the
properties of relatively simple neurons and molecules can combine to generate complex
emergent behaviours (Brown, 2013).
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2.2 Network concepts

This section gives an overview of the main concepts and tools from network theory –
as applied to the nervous system – that are used in subsequent chapters to analyse the
synaptic and extrasynaptic connectomes of C. elegans. A more detailed introduction
including formal definitions is provided in § 2.3.

2.2.1 Connectivity

In both network theory and connectomic analysis, the first step is to obtain a graphical
model of the system of interest (i.e., a graph; as depicted in Figures 2.1 & 2.2c). In
the context of connectomics, this is the set of structural or functional relationships
that have been measured between neurons. Such measurements can be made using any
one of a number of possible methods, some of which were introduced in the previous
chapter and will be explored further later in this thesis.

Once an interaction graph has been constructed, we can use mathematical mea-
sures to interrogate the network model and extract pertinent information about the
interactions. More specifically, we are often looking to obtain information regarding:
(1) the patterns of connectivity that exist within the system of interest (the structure),
and (2) the properties associated with the particular arrangements of connections we

(a) Nervous system (b) Relationships (c) Graph (d) Adj. matrix 

Fig. 2.2 Illustration of the stages of connectomic mapping: (a) measurements are made
of a nervous system, and (b) the structural or functional relationships between defined
regions are recorded, such as synaptic connections. (c) These relationships can be
modelled as a graph, with regions mapping to nodes, and the corresponding measured
relationships mapping to edges. (d) The graph can be represented numerically in the
form of an adjacency matrix and used calculate the network’s topological properties.
Images adapted from: Hagmann et al. (2008); Heuvel and Sporns (2011); Wang et al.
(2016).
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Fig. 2.3 Degree of connectivity. Diagram depicting a high-degree node (left, degree
k = 8), and a low-degree node (right, degree k = 2).

observe (the function). The ability to capture and analyse these aspects of a network
confers both descriptive and predictive capabilities, and the potential to obtain a
deeper understanding of a network’s underlying governing principles. At the most
basic level, for both points 1 & 2, we are interested in aspects of connectivity; as
such, one of the most fundamental measures in network theory is a node’s degree,
which expresses the number of other nodes a given node is connected to (see Figure 2.3).

From an information-processing perspective, a neuron’s degree can be thought
of as a proxy for its importance in a network: high-degree neurons represent broad-
casting hubs that can influence many other neurons (if the connections are primarily
outbound), receive and integrate information from many sources (if the connections
are inbound), or some combination of the two such as might be required to integrate
multiple sensory signals and coordinate an appropriate response. Indeed, this is the
case for the high-degree nodes in C. elegans, which are almost exclusively premotor
interneurons (Morita et al., 2001; Towlson et al., 2013).

Although the degree only directly measures the connectivity of a single node,
the degree distribution of all the nodes in a network can provide insights into the
large-scale structural organisation of the network. The degree distribution can reveal,
amongst other things: the probability and randomness of connections, the quantity
of high-degree hubs, whether a network has spare or dense connectivity, and further
provide information on the robustness, growth, and dynamical properties of a network
(Newman, 2010; Wang et al., 2006).
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Fig. 2.4 Example degree distributions: (a) structure of a random network generated
using the ER model; (b) the degree distribution for a random ER network, following
a binomial distribution; (c) example structure of a scale-free network, characterised
by many low-degree nodes connected to a small number of high-degree hubs, shown
in white; and (d) power-law degree distribution for a scale-free network, following
P (k) ∝ k−α, where α is the power-law exponent (plotted on a log-log scale). Adapted
from Barabási and Oltvai (2004).
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An illustration of how the degree distribution and structure of a network are related
can be seen in Figure 2.4, where two commonly studied distributions are shown. The
first, in Figure 2.4a, is a random network where the edges connecting nodes are as-
signed at random from a uniform distribution, known as the Erdös-Rényi or ER model.
Although the placement of edges is entirely random, for sparse networks the process
results in a highly-stereotyped binomial degree distribution where the nodal degrees
are tightly distributed around the mean (Erdös and Rényi, 1959). The regularity that
emerges from this connectivity results in predictable large-scale properties.

The second network (in Figure 2.4b) is a scale-free network, so called because it
has no meaningful average degree, emerges from a power-law degree distribution of
the form P (k) ∝ k−α, where α is the power-law exponent typically in the interval
2 < α < 3 (Barabási and Albert, 1999; Clauset et al., 2009). Scale-free networks are
often observed in real-world systems, and are characterised by many low-degree nodes
connected by high-degree hubs. One inherent characteristic of scale-free networks
is their high resilience to physical insults, as the loss of nodes or edges at random
results in gradual, rather than catastrophic, degradation (Achard et al., 2006; Albert
et al., 2000). Although these are just two examples, they illustrate how the degree
distribution can reflect the global structural and functional characteristics of a network.

Along with the degree distribution, a second large-scale network property that can
be determined from the degree metric is the degree-degree correlation, also known as
the assortativity coefficient. The degree-degree correlation measures the correlation
between the degrees of nodes on either side of an edge and describes whether a network
has uniform (assortative or homophilic) or star-like (disassortative or heterophilic)
connectivity; that is to say, whether nodes preferentially attach to nodes with a similar
degree or not (Hao and Li, 2011; Newman, 2002, 2003a; Pastor-Satorras et al., 2001).
The effect of degree-degree correlation on the large-scale structure of a network can be
observed in Figure 2.5, which shows an example of a disassortative network where the
low-degree nodes connect only to high-degree nodes (Figure 2.5, left); and an assortative
network, with low-degree nodes connecting primarily to other low-degree nodes, and
high-degree nodes mutually interconnecting to form a central cluster (Figure 2.5, right).

As with the degree distribution, the degree-degree correlation can also affect the
functional characteristics of a network. For example, assortative networks have been
shown to be highly robust to failure from circuit degradation (Newman, 2002; Rubinov
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Fig. 2.5 Assortativity. Example networks showing the effects of assortativity on network
structure. Adapted from Hao and Li (2011).

and Sporns, 2010; Teller et al., 2014), while disassortativity facilitates communication
and coordination between nodes in a network (Perc et al., 2013; Sorrentino et al., 2006;
Wang et al., 2008).

So far, we have looked at ways in which the connectivity of individual nodes can
be measured (degree), how such connections are distributed throughout the nodes in a
network (the degree distribution), and how the connectivity of a node relates to the
connectivity of its immediate neighbours (the degree-degree correlation or assortativity
coefficient). All of these measures can provide insights into the functional properties of
the network. Refocusing on the application of network theory to connectomic analysis,
the following section will introduce additional measures that allow for the determination
of higher-order structures, in turn providing more fine-grained descriptions of network
organisation that can be used to study the nervous system.

2.2.2 Higher-order structural organisation

To generate useful behaviours, the nervous system must structure the flow of information
through its networks. Although basic nodal-connections provide the primary structure,
these connections must be arranged into higher-order patterns capable of processing
information. In the brain, this is achieved through the combination of two general
approaches: functional segregation & functional integration (Sporns, 2013b; Tononi
et al., 1994), visualised in Figure 2.6. As we will see, tools from network theory allow
us to study these properties in detail.
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2.2.2.1 Functional segregation

Functional segregation provides the brain with the ability to develop specialised pro-
cessing units (Rubinov and Sporns, 2010); this is characterised by the presence of
modules. Functional segregation is prominent across various scales in the brain, from
microstructural cortical columns, to the separation and specialisation of entire brain
regions. In C. elegans, this is most apparent in the pharyngeal nervous system, which
is almost entirely disconnected from the main somatic network with the exception of
a small number of gap junctions, and is dedicated to controlling feeding behaviour
(Albertson and Thomson, 1976).

Several measures of functional segregation exist. These include clustering (Watts
and Strogatz, 1998), which describes the cohesiveness of a group of nodes by measuring
the fraction of neighbours shared between nodes (forming triangles); and modularity
(Newman and Girvan, 2004), which describes the extent to which a network can be di-
vided into modules (defined as groups of nodes that have high within-group connectivity
and low between-group connectivity); see Figure 2.6. These two patterns of connectivity
are often related: as groups of nodes become selectively more interconnected to one
another (giving rise to modules), they also form more common neighbours, and hence

functional segregation functional integration 

modules 

hubs 

rich-club 

Fig. 2.6 Schematic diagram showing: functional segregation and the existence of network
modules composed from clustered nodes, forming triangles (left); and functional
integration from the connection of modules through hub nodes, forming a central
rich-club (right). Figure modified from Sporns (2013b).
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more clustered triangles. These properties allow a group of nodes to exert a greater
degree of local influence over one another, effectively reducing their coupling to the rest
of the network and allowing functional specialisation to emerge (Sporns and Betzel,
2016).

2.2.2.2 Functional integration

While functional segregation is clearly an important organisational feature, the purpose
of the nervous system is to coordinate behaviour. The nervous system, for the most
part, acts as a coherent entity, integrating various modalities to generate a single
behavioural trajectory. An important feature of the nervous system is therefore the
ability to perform functional integration. At the network level, measures of functional
integration estimate the global interconnectedness and the ease with which regions
can interact. At the most basic level, this is measured by the number of nodes that
are connected into a single connected component. If a group of nodes are completely
disconnected from the main network, there is no way for them to be integrated into the
larger behaviour of the system. Within a connected component, two useful measures
of integration are the characteristic path length and reciprocity.

The characteristic path length gives the average shortest distance between all of
the nodes in the network (Watts and Strogatz, 1998), and is related to integration
due to the fact that if nodes are highly integrated (i.e. highly connected), then the
average path length between those nodes will be low. This measure is also related to
a network’s global efficiency (Latora and Marchiori, 2001): As the distance between
nodes decreases, so too does the energetic cost of interacting.

Reciprocity measures the fraction of reciprocal connections between nodes. These
connections provide bidirectional couplings that can tightly integrate regions, while
also providing highly efficient routes for various control mechanisms; the classical
example being the feedback loop. In the nervous system, reciprocal connections play
an important role in integrating neural activity from different systems (Edelman and
Gally, 2013) and have been shown to have numerous biologically important func-
tions, from the regulation of sensory signals to the provision of associative memory
(Dayan and Abbott, 2005; Getting, 1989; Li et al., 2012; Sommer and Wennekers, 2003).

Other structural properties are also indicative of functional integration. These
include the presence of highly-connected hubs that facilitate communication between



24 Complex network theory in connectomics

Increasing randomness

Regular Small-world Random

Fig. 2.7 Small-world networks balance the opposing demands of integration & segre-
gation, and are characterised by having higher-than-random clustering and a shorter-
than-random characteristic path length. Figure adapted from Watts and Strogatz
(1998).

many nodes (Barabási and Albert, 1999), and the interconnection of such hubs into
central structures known as rich-clubs (Colizza et al., 2006; Zhou and Mondragon,
2004). Hubs and rich-clubs play an important role in linking the functionally segregated
modules of a network (see Figure 2.6) and have been observed to be a major topological
feature in various brain systems (Harriger et al., 2012; Heuvel and Sporns, 2011; Liang
et al., 2017; Reus and Heuvel, 2013; Shih et al., 2015), including the nervous system of
C. elegans (Morita et al., 2001; Towlson et al., 2013).

2.2.2.3 Balancing segregation and integration: small-world structure

As described above, functional segregation and functional integration are both important
features for information processing networks, yet they represent conflicting design
objectives. As a network becomes more integrated, by definition it also becomes less
segregated. The brain must therefore balance these two properties by simultaneously
forming segregated modules and integrating them into an efficiently organised global
network (Rubinov and Sporns, 2010; Sporns, 2013b; Tononi et al., 1994). A network that
exhibits the coexistence of these features is described as being small-world (Watts and
Strogatz, 1998); see Figure 2.7. Small-world networks feature locally-connected, close-
knit modules, with shortcuts between modules that allow for efficient communication
across the whole structure. In terms of network measures, this is seen in having higher-
than-random clustering and a shorter-than-random characteristic path length (Watts
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and Strogatz, 1998). The extent to which a network balances functional segregation and
integration can thus be objectively quantified (Humphries and Gurney, 2008; Muldoon
et al., 2016; Walsh, 1999; Watts and Strogatz, 1998).

2.2.2.4 Connection motifs

Although the balance of functional segregation and functional integration is important
in determining the general shape and characteristics of a network, these measures still
only provide coarse-grained descriptions. Identifying the presence of a module does
not, in itself, tell us much about its function. It is useful, therefore, to examine circuits
at a lower level. One approach that has proven effective in this endeavour is that of
motif analysis.

Within many complex real-world networks, it has been observed that the same
patterns of connectivity are often repeated (Milo, 2002). These patterns are termed
motifs (see Figures 2.8). A simple example of a motif has already been mentioned
above, namely the feedback loop, though many more patterns exist: e.g. Figure 2.9
shows the 13 possible motifs that can be constructed from three connected nodes with
directed edges. The properties of many of these motifs have been studied in isolation
and found to have well defined functions, giving rise to the hypothesis that motifs
form the functional building blocks from which information processing networks are
composed. It has therefore been suggested that examining the constituent motifs of
a network can provide insights into its functionality and mechanisms of operation
(Alon, 2007; Kashtan et al., 2004; Sporns and Kötter, 2004). For example, if a motif
has previously been observed to exhibit a well defined function, such as coincidence
detection, then the presence of the same motif in a second network would suggest
that the second network also performs coincidence detection, or utilises coincidence
detection as an elemental operation in a more complex process.

It is clear that this type of functional composition is prevalent across various scales
in biology, with repeated subsystems often forming the components of a larger system;
indeed, this is an essential feature of the nervous system. As well as providing a means
to simplify a system, the reuse of motifs in biological systems has been suggested as a
method to increase functional adaptability, as the same elements can be recombined to
produce multiple behaviours, and thus increase the responsiveness of an organism to
changing environmental demands (Kashtan and Alon, 2005).
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Fig. 2.8 Motif enumeration, showing: example network (left); the motif being searched
for (middle, same as motif 5 in Figure 2.9); and an instance of the motif in the target
network (right). Adapted from Schreiber and Schwöbbermeyer (2008).

1 2 3 4 5 6 7

8 9 10 11 12 13

Fig. 2.9 Network motifs. Diagram showing all 13 possible three-node motifs with
directed edges.
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That repeating patterns of connectivity exist in the brain has been known for some
time, many having previously been studied and characterised (Getting, 1989). The
existence of connectomic maps now allows us to quantify these patterns and their
distributions throughout an entire nervous system, to generate mechanistic theories to
explain behaviours associated with particular structures, or predict the function of a
structure from the presence and interconnection of motifs (Qian et al., 2011; Sporns and
Kötter, 2004). Furthermore, reducing a network to a collection of repeating stereotypical
subunits can reduce the complexity of the system and aid in the visualisation and
exploration of connectivity data (Dunne and Shneiderman, 2013).

2.2.3 Null model reference networks

Despite the power of motif analysis in describing network architectures, care must
be taken with interpretation. Motifs will emerge spontaneously in any network with
connections, regardless of whether or not there is any underlying function or organis-
ing principle. When analysing a large uncharacterised network it is often necessary,
therefore, to ask not just which motifs are present in the network, but also whether the
identified motifs are statistically over- or under- represented compared to random (Milo,
2002); the aim of this approach is to identify conserved units that are unlikely to exist
by chance alone, and exclude random patterns from the analysis. Such a comparison
can be performed by normalising the observed frequency of motifs in the network
against expected frequencies averaged from multiple comparable random networks.
These random networks are termed null model (or null hypothesis) networks, and a
collection of such networks is called a network ensemble.

The use of null models applies not only to motif analysis. Many network measures
can be influenced by random processes, or by underlying structural features, such as
the density of a network (Poisot and Gravel, 2014; Strang et al., 2017). For example,
two separate networks with qualitatively similar architectures might appear different
on some network measures due only to differences in the number of nodes and edges
they contain. As the number of edges increases, the average path length in the network
will decrease (as there will be more available paths). Similarly, a network embedded
in 3D space will have an increased clustering coefficient simply due to the fact that
some nodes will be closer to others. By generating comparable null model networks
with the same constraints (such as the number of edges or spacial embedding), we can
determine whether the constraints alone are sufficient to explain the properties we
observe in the real network. Specifically, we can compare the distribution of results
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obtained from a random statistical ensemble of null networks to those observed in a real-
world network, and establish whether they are likely to come from the same distribution.

An alternative use of null model networks is in the normalisation of measures to
allow for comparisons. We can use the ensemble averages as a baseline against which
to normalise the real-world measures, and control for any variability caused by those
features captured in the null model, such as the network size. This approach allows us
to then directly compare networks with different structures, by controlling for those
differences built into the null model.

There are various types of null models, each with different underlying assumptions
or constraints that can affect the results of a network analysis (Artzy-Randrup et al.,
2004; Betzel and Bassett, 2017; Hosseini and Kesler, 2013; Klimm et al., 2014; Medaglia
and Bassett, 2017). The simplest form of null model was mentioned earlier in this
chapter, namely the random network, or Erdös-Rényi (ER), model. ER networks are
synthetic networks with the same number of nodes as the real network, but with the
edges between the nodes assigned at random. Depending on the method of construction,
these networks can either be created with the same number of edges, or instead with a
specified nodal connection probability.

Although the ER model is conceptually simple, with properties that make it conve-
nient to interrogate analytically (Hofstad, 2017), we have already seen how the random
placement of edges leads to a binomial degree distribution that is not a good fit for
most real-world networks (see Figure 2.4). As the degree distribution can influence
many network properties, such as the number of hubs, it is often desirable to also
control for this.

There are many null models that can generate networks with a prescribed degree
distribution. Research into the optimal choice of null model is still an ongoing area of re-
search, however two of the most common methods that preserve the degree-distribution
of the original network are: (1) the configuration model (Molloy and Reed, 1995), and
(2) the edge-swap or rewiring model (Maslov and Sneppen, 2002; Milo et al., 2003).

The configuration model creates synthetic networks in a manner similar to the
ER method; however, it includes an additional constraint to ensure that the degree
of each node equals the degree of a corresponding node in the original network, thus
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resulting in random networks with the same degree distribution. The edge-swap model,
on the other hand, creates copies of the original network which are then randomised
by swapping the edges between nodes. This is performed by selecting a pair of edges
(A → B) (C → D) and swapping them to give (A → D) (C → B), resulting in
randomised networks with the same nodal degrees, and degree distributions, as the
original. By parameterising the number of swaps to perform, the edge-swap method
can also control the extent of randomisation that is performed.

For most of the analyses presented in later chapters the edge-swap method is used
as the primary null model. A comparison of the two degree-preserving methods can be
found in Appendix E (page 241), showing no significant difference between the null
models for the measures and networks investigated in this thesis.

2.2.4 Network robustness

The brain, as with many biological systems, is capable of exhibiting a high degree of
adaptability and fault tolerance, with behaviours and functions often degrading “grace-
fully” in response to insults, rather than catastrophically; in some cases completely
compensating for the lost functionality (Farah and McClelland, 1991; Li et al., 2016;
Rumelhart and McClelland, 1986). This is also true for the small nervous system of
C. elegans: for certain functions the death of neurons can be compensated for through
redundant pathways, resulting in minimal behavioural defects (Avery and Horvitz,
1989; Bargmann and Horvitz, 1991; Chung et al., 2013; McIntire et al., 1993; White
et al., 2007).

Network theory can provide insights into the resilience of a network by simulating
damage and studying how the system is affected. This approach allows estimates to be
made about the robustness of the connectivity, and also identify network features that
confer either fault tolerance or vulnerability.

The most common means of analysing the robustness of a network is to perform
an iterative series of modifications, or attacks, to the structure and observe how the
properties of the network change in response. The main measures of interest are usually
related to the network’s total cohesiveness and ability to process information, such as
its characteristic path length (i.e. the average shortest distance between nodes) (Albert
et al., 2000), connection efficiency (Crucitti et al., 2004; Latora and Marchiori, 2001),
or the size of the largest connected component (Schneider et al., 2011a,b). As damage
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occurs – breaking connections and fragmenting the network – the distance between
nodes increases, resulting in lower efficiency, with node isolation reducing the size of the
largest connected component. The degradation properties of the network can therefore
be quantified and compared to null model networks, providing information on whether
the extent and rate of failure in response to damage is higher or lower than expected
compared to random connectivity.

A number of attack strategies can be employed when performing robustness analysis,
depending on the features of the network under investigation. An analysis can be
limited to remove either nodes or edges, with the target selection being at random
or according to some metric, such as selectively attacking nodes by their degree in
descending order (Holme et al., 2002). This allows different aspects of the network to
be investigated. For example, a disassortative star-like network might be highly robust
to the removal of nodes or edges at random, but will fragment as the central high-
degree hubs are removed (Newman, 2002; Rubinov and Sporns, 2010; Teller et al., 2014).

This method of analysing the robustness of a network from its structure has
previously been applied to connectomes, finding that brain networks are frequently
more resilient than comparable networks (Achard et al., 2006; Joyce et al., 2013; Kaiser
et al., 2007; Vértes et al., 2011).

2.2.5 Multilayer networks

So far, we have implicitly only considered static networks (i.e. those with a time-
invariant structure) with a single connection type; however, many real-world networks
are not so simple. This is especially true for the nervous system. Neurons can commu-
nicate through various types of interactions, including chemical synapses, gap junctions,
and neuromodulatory volume transmission (see § 1.1.3). Each of these signalling classes
can be further subdivided, with the brain containing hundreds of molecular messengers,
receptors, and channels, all operating on different timescales, often with non-linear
interactions between them. While it is still not possible to measure much of this
complexity, it is desirable to be able to represent and analyse those aspects that we
are able to measure.

One way to describe these multifarious relationships using network theory is to
model the different interaction types as separate layers in a multilayer (or multiplex)
network (Battiston et al., 2014; Boccaletti et al., 2014; Kivelä et al., 2014; Vaiana
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Fig. 2.10 Diagram showing: (a) a two-layer multiplex network containing four nodes,
and (b) the corresponding multilinks between each pair of connected nodes. Solid
arrows represent edges in layer G[1] and dashed arrows are edges in layer G[2].

and Muldoon, 2017). Here, the real network is decomposed by its interaction types,
creating individual graph models for each. These can then be considered alongside one
another without the loss of information, and provide insights into how the different
interaction types relate to one another. As the structure of a network can change over
time – with new connections being established or removed – the multilayer approach
can also be used to represent different time points of a network’s development, with
each layer containing a snapshot of the structure at a given moment. Information on
the dynamics of a network’s connectivity can be obtained from analysing these layers
in order, and in relation to one another.

An example of a simple two-layer multiplex network is shown in Figure 2.10a,
containing four nodes {v1, ..., v4}. These nodes are the same in each of the two layers,
with only the connections varying. These layers could, for example, be used to represent
two different relationship or interaction types between the same nodes, or the same
network at two different points in time.

Various approaches and tools exist for analysing multilayer networks, including
extensions of the various methods already mentioned for monolayer networks. For
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example, the degree-degree correlation considered earlier can be applied to measure the
interlayer degree correlation (de Arruda et al., 2015), to ask whether a node that has a
high degree of connectivity in one layer is also highly connected in another. This can
reveal nodes that are important in linking the different interaction layers, facilitating
communication between them. The interlayer degree correlation can further identify
whether layers overlap (in which case they will be positively correlated), or are distinct
(having no correlation, or a negative correlation).

Looking at where connections fall relative to one another across the different layers
can reveal structures and patterns that are conserved and reused throughout the
network, similar to the concept of motifs introduced earlier. The pattern of edges
between two nodes in a multilayer network has been termed a multilink (Bianconi,
2013; Menichetti et al., 2014; Mondragon et al., 2017). The arrangement of multilink
motifs can provide important information on how the different layers are organised in
relation to each other. As before, the multilink motif counts can be compared to those
from null model networks to identify statistically overrepresented motifs that form
the functional building blocks of the network. Example multilink motifs are shown in
Figure 2.10b. As we will see in Chapters 4 & 5, multilink motif analysis can be used
to study how different signalling channels coordinate their actions in a nervous system.

Another powerful method for investigating the similarity of network layers is
multilayer reducibility analysis (De Domenico et al., 2014, 2015a, 2016; Wang and Liu,
2017). This method quantifies the similarity or uniqueness of layers by aggregating (or
collapsing) layers into a single layer, and determining whether any information is lost
in the process, usually by measuring the change in von Neumann entropy. Thus, two
network layers that perfectly overlap (i.e. have the same connections in both layers)
will have the same entropy once aggregated, and can be said to be redundant and
reducible. These concepts will be explored further in § 2.5.1.

2.3 Foundations & formal definitions

The previous section introduced some of the concepts from network theory that can
be applied to the analysis of neural connectomes. The following sections will expand
on these concepts, providing the formal definitions of the data structures and network
measures that were introduced. These are used in the subsequent chapters to analyse
the synaptic and extrasynaptic connectomes of C. elegans.
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2.3.1 Graphs

As mentioned previously, the network structure of the nervous system can be modelled
as a graph, denoted G. Formally, a graph is defined as a 2-tuple G = (V,E), where
V = {v1, . . . , vN} is the set of all vertices (nodes), and E = {e1, . . . eM} is a set of
ordered pairs of vertices (E ⊆ V × V ) representing the edges, or connections, between
those vertices. An edge between nodes vi and vj can be written as eij = (vi, vj).
Applying this to a microscale synaptic connectome, V would represent the complete set
of all neurons, and E the set of synaptic connections between them (see Figure 2.11).
This model, however, can equally be applied to macroscale connectomes or functional
maps such that V is some set of defined anatomical regions, and E is the structural or
functional associations between them.

In the context of C. elegans, and the topics covered in this thesis, we will only
consider the former microscale definition. As the adult hermaphrodite C. elegans has
a well defined and largely immutable nervous system consisting of 302 post-mitotic
neurons (Sulston and Horvitz, 1977; Sulston et al., 1983; White et al., 1986), the set
of vertices V remains constant; however, the interactions, or edges E, can include
chemical synapses, electrical gap junctions, or any one of a number of molecular volume
transmission interactions (see § 1.1.3). The definition of E, and the interactions being
analysed, will be specified in each case. Given this definition of a network, the number
of nodes (neurons) is given by N = |V |, and the number of edges (synapses or VT
interactions), M = |E|.

v1 dendrite

v2 axon v3 dendrite

(v2,v1)

(v2,v3)

v1

v3

v2

(v2,v1)

(v2,v3)

V = {v1, v2, v3}  
E = {(v2, v1), (v2, v3)}

v1 v2 v3

v1 0 0 0

v2 1 0 1

v3 0 0 0

A =!

(a) Neuron reconstruction (b) Graph representation (c) Adjacency matrix

Fig. 2.11 Representations of neural connectivity at different levels of abstraction.
Example neuron reconstruction (a) taken from Schneider-Mizell et al. (2016).
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2.3.2 Adjacency matrices

For computational and analytical purposes, a more convenient representation of a
graph can be provided by the adjacency matrix, denoted A.

Adjacency refers to two nodes that are connected by an edge; as such, the adjacency
matrix is an N ×N matrix encoding the connectivity of nodes, with the edges between
nodes represented as positive values in the respective matrix elements (see Figure 2.11c).
For a binary unweighted network (i.e. a network with single unweighted connections
between nodes) this takes the form:

Aij =

1 if (vi, vj) ∈ E
0 if (vi, vj) /∈ E

. (2.1)

Thus, given two nodes vi, vj ∈ V , the adjacency matrix element at Aij will be Aij = 1
if and only if there is a connection from node vi to node vj, or Aij = 0 otherwise.
Note that for a directed graph (or digraph) this representation is ordered to encode
the directionality of the relationship; e.g. if node vi sends a connection to node vj,
but node vj does not return a reciprocal connection to vi, the values in the adjacency
matrix will be: Aij = 1, Aji = 0.

For analyses where directionality is irrelevant, or for connections that lack direc-
tionality such as bidirectional gap junctions, an undirected graph can be used. In this
case the adjacency matrix is symmetric such that ∀Aij Aij = Aji. This also applies
to the graph notation: For undirected networks it is implicit that if an edge exists
between two nodes, e.g. (vi, vj) ∈ E, then the corresponding reciprocal connection
(vj, vi) ∈ E also exists, though the two are only ever counted as a single bidirectional
edge. In directed networks, these would be counted as two separate connections. The
convention adopted in this thesis is to explicitly identify directed graphs and measures
with a superscript arrow (e.g. G→). For all adjacency matrices, self-connections are
represented on the diagonal (Aij where i = j).

2.3.3 Weighted graphs

The same adjacency matrix structure can also be used to represent multiple connections
between nodes (for a multigraph), or edge weights representing an edge property (for a
weighted graph), such as the connection strength, delay, distance, or communication
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cost. A multigraph can be modelled as a special instance of a weighted graph, where
the weights represent the number of edges. In both cases, the graphs are encoded as
adjacency matrices by assigning connection weights to the respective matrix elements.
For a set of edge weights W , where wij ∈ W is the connection weight for the edge
(vi, vj) ∈ E, the adjacency matrix is thus given by:

Aij = wij. (2.2)

In connectomic modelling, these weights can be used to represent any measure of
interest, with the interpretation of the network changing accordingly. For example,
connection weights can be used to represent the number of synapses between neurons,
the distance between cells, neuron similarity, the strength or temporal properties of
functional associations, or any other desired numerical measure.

In the analyses presented in later chapters, connection weights are disregarded and
only binary networks are used. That is to say, we only consider whether a connection
exists, and not the number of synapses or receptors expressed. This decision was made
to avoid making assumptions about the strength, polarity, linearity, or state-dependent
nature of synapses – for which there is little available data – and confine the analyses
to the structural organisation of the networks, for which there is a high degree of
confidence.

2.3.4 Simple graphs & maximum edges

We have now seen that there are different types of graphs (i.e. directed / undirected,
binary / weighted). In all of these cases, it is important to note that the maximum
number of possible edges can change. The most typical form of graph is the simple
graph. This is the default form used in this thesis when not specified otherwise.

Simple graphs contain only undirected and unweighted connections between nodes,
and have no self-loops (i.e. a node connecting to itself). As such, the maximum number
of possible edges is given by the binomial expression:(

N

2

)
= N(N − 1)

2 . (2.3)

This can be seen when considering that every node is capable of connecting to every
other node apart from itself (N(N − 1)), excluding reciprocal connections (divide by 2).
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In the case of directed graphs, where reciprocal edges can exist, the maximum number
of edges is simply N(N − 1), or N2 if self-loops are also allowed.

2.3.5 Node neighbourhood

Having established the formal definitions for graphs and adjacency matrices, we can
begin to look at some of the network measures, tools, and relationships in network
theory. A simple relationship, important in many graph algorithms, is that of the node
(or subgraph) neighbourhood, Nh (illustrated in Figure 2.12b). For a given node – or
a given set of nodes in the case of a subgraph – the neighbourhood is simply the set
of adjacent nodes that it is connected to, while excluding itself. For a subgraph of
interest, the neighbourhood of the subgraph node set Vsub ⊂ V can be written:

Nh(Vsub) = {vj ∈ [V \ Vsub] | eij = (vi ∈ Vsub, vj ∈ [V \ Vsub]) ∈ E} . (2.4)

To elaborate, this returns those nodes vj that are not in the subgraph node set Vsub,
but which receive an edge from a node in Vsub and are thus in its neighbourhood.

2.4 Network measures

2.4.1 Degree

For a node to participate in a network, it must be able to interact with the other nodes
in that network through connections; therefore one of the most basic, and important,
measures in network theory is a node’s degree. The degree, denoted k, measures how
many other nodes in the network a specific node is connected to. The degree k of a
node vi is therefore:

ki = #{vj ∈ V | (vi, vj) ∈ E}. (2.5)

For an adjacency matrix, this can easily be obtained by summing the matrix elements:

ki =
N∑

j∈V

Aij. (2.6)

For a directed network, the degree can be further decomposed into a node’s in-
degree and out-degree, measuring the in-coming (receiving) connections and out-going
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(sending) connections, respectively:

kin
i =

N∑
j∈V

Aji and kout
i =

N∑
j∈V

Aij. (2.7)

The total degree of a node in a directed network can be found by summing the in-degree
and out-degree values:

k→
i = kin

i + kout
i . (2.8)

The degree provides a measure of connectivity for an individual node; though as we
saw earlier, the combined degree information of all the nodes in a network, in the form
of the degree distribution, can also provide information on the large-scale structure of a
network. The degree distribution is the statistical distribution of all the nodal degrees,
often expressed as a probability function of a node selected uniformly at random having
a given degree, P (k).

Two commonly studied degree distributions in network theory are (1) the binomial
degree distribution of random Erdös-Rényi (ER) networks, and (2) the power-law
distribution of scale-free networks (see Figure 2.4). These are covered in sections
§ 2.4.10.1 and § 2.4.12, respectively.

2.4.2 Network density

A second useful summary measure of a network’s global structure is its connection
density, D, sometimes also called the connectance. Network density is the ratio of
actual edges to the maximum possible number of edges. Density can affect many
properties of a network by shaping the degree distribution (Poisot and Gravel, 2014)
and influencing network measures such as the clustering coefficient and global efficiency
(Strang et al., 2017).

For undirected and directed networks the density measure is respectively given by:

D(G) = 2M
N(N − 1) and D→(G→) = M

N(N − 1) , (2.9)

with both variants falling in the interval 0 ≤ D ≤ 1, where D = 0 corresponds to a
network with no connections, and D = 1 corresponds to a fully connected network. A
network is considered sparse if the number of edges is much less than the maximum,
i.e. M ≪ 1

2N(N − 1), with D → 0 as N →∞; whereas a dense network is one where
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D approaches some constant as N →∞ (Newman, 2010).

Empirical studies of real-world networks have found that many networks are sparsely
connected (Barabási and Pósfai, 2016). While in principle dense connectivity allows for
a greater degree of communication, the cost of building and maintaining connections
makes it impractical. Dense connectivity is also unnecessary in most cases, as high
communication efficiency can be achieved in sparse networks through high-degree hubs
that link many nodes, such as in scale-free and small-world networks (Crucitti et al.,
2003; Latora and Marchiori, 2001).

As well as being expensive, there is evidence that in some circumstances dense
connectivity might also be detrimental to dynamical processes on a networks, such as
those that occur in the brain. Results from analytical and computational studies have
suggested that densely connected networks have inherently unstable dynamics (Gardner
and Ashby, 1970; May, 1972). In the brain, this is supported by the observation that
epilepsy and seizures are often associated with hyperconnectivity, and possibly increased
neural coupling via gap junctions (Caeyenberghs et al., 2014; Jin and Zhong, 2011;
Volman et al., 2011).

2.4.3 Connected components

A connected component is a group of nodes that are interconnected by edges, such
that in an undirected network a path can be traced between any two nodes in the
component. If a node is unreachable from any one of the nodes in the component, then
it is not a part of the same component, and instead constitutes an element in a second
connected component.

Examining the connected components in a network is useful for identifying separate
functional subsystems. This can be seen from considering that if two groups of nodes
are completely unconnected, then it is not possible for them to interact to form a single
functional unit.

The connected components of a network can be enumerated using any graph
traversal algorithm, such as depth-first search (DFS) or breadth-first search (DFS)
(Levitin, 2012). By iteratively starting at different nodes in the network, following the
edges, and recording which nodes are reachable from which, the number of connected
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components and their constituent nodes can be determined (Hopcroft and Tarjan, 1973).

An example of separate connected components can be found in the synaptic
connectome of C. elegans, where the functionally specialised pharyngeal nervous system
has no synaptic connections with the main somatic network (Albertson and Thomson,
1976). Along with several other unconnected neurons, this results in a connectome
with multiple connected components (see Figure 3.4, page 90).

2.4.4 Path length & efficiency

An analysis of the connected components within a network can tell us which nodes have
the potential to interact and form functional units, but this information on its own
does not provide information on the degree of connectedness or extent of functional
integration within the connected components of the network. These properties can,
however, be estimated by the two related measures of characteristic path length and
global efficiency.

The path length describes the shortest distance between two nodes – measured as
the number of edges that must be traversed along the shortest path – while efficiency
measures the inverse distance. These relationships can be seen from considering that as
a network becomes more integrated, the path length between nodes decreases, resulting
in increased communication efficiency. These measures can be computed for individual
pairs of nodes, or averaged across all possible pairs to provide a description of the
large-scale structure of the entire network and an estimate of the network’s total
integration and wiring efficiency.

The average network measures are typically referred to as the characteristic path
length, which is the mean shortest path length between all pairs of nodes; and the
global efficiency, which is the mean of the inverse shortest path lengths.

To obtain the characteristic path length it is first necessary to compute the geodesic
path (i.e. shortest path) between each pair of nodes. There are numerous approaches
that can be used to compute the geodesic path (see Cormen et al., 2009; Gląbowski
et al., 2013 for a review). The classical approach is to perform a breadth-first search
(BFS) of the network to compose a tree of the shortest paths to each node. One efficient
version that can account for edge weights (where the weights encode a non-negative
distance measure) is Dijkstra’s shortest path algorithm (DSP) (Cormen et al., 2009;
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Dijkstra, 1959), given in Algorithm 1.

Having determined the geodesic path between a pair of nodes vi, vj, it is straight-
forward to calculate the distance between them. The geodesic distance can be found
by summing the adjacency matrix elements along the geodesic path g:

dij =
∑

(m,n)∈gij

Amn, (2.10)

where gij is an ordered set of edges forming the geodesic path between vi and vj, as
returned by DSP in Algorithm 1. If there is no connection between vi and vj then
dij = +∞; however it is common practice to exclude unconnected node pairs from the
analysis.

We can then find the characteristic path length of a network by taking the average
geodesic distance between each pair of nodes, given by:

L(G) = 1
N(N − 1)

∑
i∈V

∑
j ̸=i∈V

dij. (2.11)

As previously stated, the characteristic path length is related to the global efficiency
of a network, with the cost of communication being inversely proportional to the path
lengths (Latora and Marchiori, 2001). The efficiency of a link between vertices vi and
vj is defined as:

ϵij = 1
dij

, ∀vi, vj ∈ V. (2.12)

Unlike the geodesic distance, where unconnected nodes result in an infinite path length,
the efficiency provides a more meaningful measure, with unconnected nodes having an
efficiency of ϵ = 0. The global efficiency of a network is simply the average efficiency of
all possible links, given by the expression:

E(G) = 1
N(N − 1)

∑
i∈V

∑
i ̸=j∈V

ϵij, (2.13)

with values in the interval 0 ≤ E(G) ≤ 1, where E(G) = 0 corresponds to a completely
unconnected graph containing no edges, and E(G) = 1 corresponds to a fully connected
graph.
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Algorithm 1: DSP – Dijkstra’s shortest path. Gives the geodesic dis-
tances and paths from a given node to every other node (Dijkstra, 1959).

input : Graph G = (V,E); index η of source vertex vη ∈ V to measure all
distances from; and set of non-negative edge weights
W = {w1, . . . , wM}, where ∀w ∈ W,w ∈ {x ∈ R | x ≥ 0}. N.B: If
the graph is unweighted (W = ∅), or the weights represent some
measure other than distance, weights must be created or reset to 1
for each edge, such that ∀(vi, vj) ∈ E,wij ∈ W ← 1.

output : Distance d and geodesic path g from vη to every vertex in V .
[1] begin
[2] /* Set distance to source vertex to 0 */
[3] dη,η ← 0; wη,η ← 0;
[4] /* Initialise all distances d to the corresponding weights

in W. If a vertex vi is not adjacent to the source
vertex ((vη, vi) /∈ E), its initial distance is dηi =∞ */

[5] for ∀vi ∈ V where vi ̸= vη do
[6] if (vη, vi) ∈ E then dηi ← wηi;
[7] else dηi ←∞;
[8] S← ∅; /* Set of visited vertices; initially empty */
[9] Q← V ; /* Queue of vertices remaining to be visited */

[10] Π ← ∅; /* Predecessor: used to record shortest path */

[11] while Q ̸= ∅ do
[12] /* Select vertex in Q with lowest distance from vη */
[13] select vi ∈ Q where ∀vj ̸=i ∈ Q, dηi ≤ dηj;
[14] S← S ∪ {vi}; Q← Q \ {vi}; /* Updated visited vertices */
[15] /* For each vertex vj adjacent to vi check if the

distance from vη is improved by passing through vi */
[16] for ∀vj ∈ Nh({vi}) do Relax(j, i, w);
[17] for ∀vi ̸=η ∈ V do
[18] gηi ← BuildPath(i);/* Get edges for shortest path to vi */

[19] return d, g;
[20] function Relax(j, i, w)
[21] /* If the distance from vη to vj is reduced by passing

through vi, update record. */
[22] if dηj > dηi + wij then
[23] dηj ← dηi + wij;
[24] Πj ← i; /* Shortest path to vj was reached via vi */

[25] function BuildPath(i) /* Reconstruct shortest path */
[26] /* Recursively backtrack Πi to construct set of edges */
[27] if i ̸= η then
[28] gηi ← BuildPath(Πi);
[29] return gηi ← gηi ∪ {(Πi, vi)};



42 Complex network theory in connectomics

Finally, a useful summary measure of integration that can be obtained from the
path lengths is a network’s diameter ℓ, defined as the maximum shortest path in the
network – that is to say, the maximum distance that must be travelled to go from any
one node to another, while only considering the most efficient paths. This is written:

ℓ(G) = max
ij

(dij). (2.14)

It is important to note that some papers in the literature also use the term “diameter”
to refer to the characteristic path length.

2.4.5 Clustering

Recall that functional segregation is a term used to describe the local cohesiveness and
interdependence of a group of nodes with the potential to form specialised processing
units in the brain (Rubinov and Sporns, 2010).

A common network measure for identifying the presence of mutually interconnected
groups of nodes – indicative of functional segregation – is the clustering coefficient
(Watts and Strogatz, 1998). For a single node, the local clustering coefficient of that
node can be described in one of two equivalent ways:

1. as the fraction of triangles formed with its neighbours, as a result of recurrent
connections;

2. as the connection density of the node neighbourhood (see Figure 2.12).

This relationship is clear when considering that a neighbourhood with maximum density
(forming a clique) will also form the maximum number of possible triangles, with the
nodes correspondingly exhibiting a high degree of interdependence. Therefore, the
presence of triangles – or high neighbourhood density – suggests dependencies between
the nodes characteristic of functional segregation. As such, when calculated for all the
nodes in a network, the clustering coefficient provides a useful summary measure of
network organisation.

In an undirected network, the clustering coefficient C for a single node vi can be
computed either as the fraction of triangles ti around that node, or as the neighbourhood
density D (see Equations 2.4 & 2.9):

Ci = 2ti
ki(ki − 1) = D(Nh({vi})). (2.15)
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(a) Triangle vi, vj, vh (b) Neighbourhood of vi

Fig. 2.12 Measures used in the determination of the clustering coefficient: (a) an
instance of a triangle around node vi; and (b) the neighbourhood of vi, with maximum
density, D(Nh({vi})) = 1, and maximum clustering, Ci = 1.

Thus, the clustering coefficient has values in the interval 0 ≤ C ≤ 1, with C = 1
corresponding to maximum clustering.

The number of triangles around a node can easily be found from the adjacency
matrix:

ti = 1
2
∑
j∈V

∑
h̸=j∈V

AijAihAjh . (2.16)

If an edge is missing between any of the nodes vi, vj, vh, then the adjacency matrix
element for that edge will be zero, with the product of the elements also being zero.
Thus, only connected triangles are counted:

AijAihAjh =

1 if triangle i, j, h
0 if edge missing

. (2.17)

The 1
2 in Equation 2.16 accounts for the double counting of equivalent triangles. Using

(i ↔ j) to denote an undirected edge between vi, vj, it can be seen that the same
triangle can be traced via two separate paths from the same source node vi:

(i↔ j ↔ h↔ i) = (i↔ h↔ j ↔ i). (2.18)
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The global clustering properties of an entire network can be determined in one of
two ways. The first is to take the mean clustering coefficient (Cavg) of all the individual
nodes in a network (Watts and Strogatz, 1998):

Cavg(G) = 1
N

N∑
i∈V

Ci = 1
N

N∑
i∈V

2ti
ki(ki − 1) ; (2.19)

however, this approach can be disproportionately influenced by low-degree nodes
(Rubinov and Sporns, 2010). The alternative is to normalise the number of triangles
collectively over the whole network. This second approach is sometimes referred to as
transitivity (Newman, 2003b; Wasserman and Faust, 1994):

C(G) =
∑

i∈V 2ti∑
i∈V ki(ki − 1) . (2.20)

Due to the high number of low-degree neurons in the nervous system of C. elegans,
the transitivity method in Equation 2.20 is used to calculate the global clustering
coefficients presented in this thesis.

Slight modifications allow for the clustering coefficient to also be computed for
directed networks (Fagiolo, 2007; Rubinov and Sporns, 2010), by considering the in
and out connections separately and accounting for reciprocity. The directed version of
Equation 2.20 is given by:

C→(G→) =
∑

i∈V t
→
i∑

i∈V

[
(kout

i + kin
i )(kout

i + kin
i − 1)− 2∑j∈V AijAji

] ; (2.21)

and likewise for counting triangles in the directed network:

t→i = 1
2
∑
j∈V

∑
h̸=j∈V

(Aij + Aji)(Aih + Ahi)(Ajh + Ahj). (2.22)

2.4.6 Modularity

Modularity describes the extent to which a network can be divided into modules (or
communities): groups of nodes with more within-group connections than between-group
connections (see Figure 2.6). Modules can be thought of as distinct highly-clustered
structures that allow for specialisation and functional segregation to emerge in a
network. The examination of a network’s modular composition is therefore a useful
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approach to understanding the internal organisation of a network.

To compute the modularity measure Q for a network, it is first necessary to
subdivide the network into non-overlapping modules c that maximise within-module
connectivity and minimise between-module connectivity (see § 2.4.6.1 below). The
modularity is then given as the fraction of edges that connect nodes within the same
module (intramodular edges), subtracting the fraction expected if the network were
wired at random (Clauset et al., 2004; Newman, 2004, 2006; Newman and Girvan,
2004):

Q = (fraction of intramodular edges)− (expected fraction of such edges). (2.23)

The number of intramodular edges can be found using the formula (Newman, 2010):

1
2

N∑
i∈V

N∑
j∈V

Aij δ(ci, cj), (2.24)

where ci, cj are the modules respectively containing nodes vi, vj ; and δ is the Kronecker
delta function:

δ(i, j) =

1 if i = j

0 if i ̸= j
. (2.25)

As δ(ci, cj) = 1 ⇐⇒ ci = cj, multiplying by this ensures that we only count edges
between nodes that are in the same module, while the 1

2 in Equation 2.24 accounts for
double counting of edges.

As there areM edges in a network, with each edge having two ends (thus contributing
to the degree values of two separate nodes), the total number of “edge ends” in a
network is 2M . Of those ends, exactly ki of them belong to node vi, and kj of them
belong to node vj ; thus the expression kikj

2M
gives the expected probability of two nodes

mutually connecting at random. We can therefore find the expected number of edges
via:

1
2

N∑
i∈V

N∑
j∈V

kikj

2M δ(ci, cj). (2.26)

As before, the 1
2 accounts for double counting, and δ ensures we only count those edges

within the same module.
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Subtracting Equation 2.26 from Equation 2.24, and dividing by the total number
of edges M in the network, we can then compute the modularity score (Clauset et al.,
2004; Newman, 2004, 2006):

Q(G, c) = 1
2M

N∑
i∈V

N∑
j∈V

(
Aij −

kikj

2M

)
δ(ci, cj), (2.27)

with Q ∈ [−1, 1]. Positive values of Q indicate that the network is modular, with more
intramodular edges than expected, and negative values indicate that the network is
anti-modular, with nodes preferentially connecting to nodes in different modules. A
modularity value of Q ≳ 0.3 has been proposed as a good indicator of a network having
significant modular composition (Clauset et al., 2004).

To account for the directionality of the connections in a directed network, the
modularity measure can be modified to consider the out-degrees and in-degrees, with
the denominator also changing from 2M to M to allow for unidirectional edges (Leicht
and Newman, 2008):

Q→(G→, c) = 1
M

N∑
i∈V

N∑
j∈V

(
Aij −

kout
i kin

j

M

)
δ(ci, cj). (2.28)

2.4.6.1 Modular partitioning

As alluded to above, an important step in calculating the modularity is the division
of the network into non-overlapping modules c. The objective is to find a modular
partitioning that maximises intramodular connectivity and minimises intermodular
connectivity. The modularity score associated with this partitioning is referred to as
the maximised modularity (see Figure 2.13).

In practice, finding the optimal modular partitioning for a network is non-trivial,
and has been shown to be an NP-complete problem (Brandes et al., 2008; Fortunato,
2010); however, heuristic algorithms can be used to find acceptable solutions within a
computationally tractable runtime (often locally maximised on a subset of the search
space), though these are not guaranteed to find a globally optimal partitioning (Fortu-
nato, 2010).

A computationally efficient, and conceptually simple, method for partitioning a
network into modules is given by Newman (2004), listed in Algorithm 2 (MM). This
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Algorithm 2: MM – Maximised modularity. Greedy algorithm that
iteratively agglomerates nodes into modules to find a partitioning that
maximise the modularity score Q. First proposed by Newman (2004).

input : Graph G = (V,E), where V = {v1, . . . , vN} is the set of vertices,
and E = {e1, . . . , eM} is the set of connecting edges.

output : Maximised modularity score Qmax; and corresponding set of
communities (modules) cmax.

[1] begin
[2] /* Start with each vertex in its own community */
[3] c← partition of N singletons;
[4] /* Get the initial modularity score */
[5] Qtemp ← Q(G, c);
[6] /* Begin agglomerating communities and continue until all

vertices are merged into a single community */
[7] while |c| > 1 do
[8] /* Initialise temporary variable used to record ∆Q */
[9] dq ← ∅;

[10] /* Compute the change in modularity ∆Q from merging
each pair of communities ci, cj. For efficiency, do
not consider unconnected communities. */

[11] foreach connected pair ci, cj do
[12] /* Temporarily merge pair ci, cj and get the new

partitioning */
[13] c′ ← Merge(c, i, j);
[14] /* Compute change in modularity from merging ci, cj */
[15] dqij ← ∆Q(G, c′);
[16] /* Find the community pair that increased the modularity

score the most (or decreased it the least) when
merged, and permanently update the partitioning */

[17] select i, j where max
ij

(dqij);
[18] c← Merge(c, i, j);
[19] Qtemp ← Qtemp + dqij;
[20] /* Record result if the current partitioning is an

improvement */
[21] if Qtemp > Qmax then
[22] Qmax ← Qtemp;
[23] cmax ← c;

[24] return Qmax, cmax;
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Fig. 2.13 Illustration of network modularity (Q) showing: network partitioning giving
maximised modularity (left), and a sub-optimal partitioning (right). Figure adapted
from Clauset (2016a).

approach starts with each node in its own module, and at each step combines (merges)
the two modules that result in the greatest improvement in modularity from being
combined (max ∆Q), until a locally optimal partitioning is found (i.e. a set of mod-
ules with a maximised modularity value). Using this approach, reasonable modular
partitioning of a network can be achieved (Newman, 2004).

Research into the properties and performance characteristics of network partitioning
algorithms is still an ongoing area of research. For discussions and comparisons of
other network partitioning algorithms see Lancichinetti and Fortunato (2009); Orman
and Labatut (2009); Yang et al. (2016).

2.4.7 Reciprocity

As mentioned previously (§ 2.2.2.2) reciprocity measures the fraction of reciprocal
connections in a network, providing a useful summary measure of local communication
and feedback between nodes.

A reciprocal connection is a connection from a source node to a target node
(vi, vj) ∈ E that has a corresponding return connection from the target node (vj, vi) ∈ E.
Reciprocity r→ measures the fraction of these reciprocal connections relative to the
total number of connections (Newman, 2010). As all of the connections are reciprocal
in an undirected network, reciprocity is only meaningful for directed networks.

Where |E| = M is the total number of edges in a network, and |E↔| is the number
of reciprocal edges, the reciprocity can be written:
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r→(G→) = |E
↔|
|E|

. (2.29)

In a binary network the product AijAji = 1 if and only if there is a reciprocal
edge between vi, vj; as such, the number of reciprocal connections |E↔| can easily be
computed by summing AijAji over all pairs of adjacency matrix elements:

|E↔| =
N∑

i∈V

N∑
j∈V

AijAji, (2.30)

while the total number of connections is given by:

|E| =
N∑

i∈V

N∑
j∈V

Aij = M. (2.31)

2.4.8 Assortativity

The assortativity coefficient measures the extent to which the nodes in a network
preferentially attach to other nodes with similar degree values. This can provide
useful insights into the large-scale structural organisation of a network (see § 2.2.1
and Figure 2.5, page 21). The assortativity R can be obtained from the degree-degree
correlation, typically measured using the Pearson correlation coefficient (Newman, 2002,
2003a; Pastor-Satorras et al., 2001): In a network with an assortative (homophilic)
structure, the nodal degrees of a given node’s neighbourhood will be highly correlated
with its own degree, while in a network with a disassortative (heterophilic) structure,
they will be anti-correlated.

For an undirected network, the assortativity can be measured using the Pearson
correlation coefficient via:

R =

 M−1∑M
(i,j)∈E kikj −

[
M−1∑M

(i,j)∈E
1
2(ki + kj)

]2
M−1∑M

(i,j)∈E(k2
i + k2

j )−
[
M−1∑M

(i,j)∈E
1
2(ki + kj)

]2
 , (2.32)

with values in the range R ∈ [−1,+1]. To illustrate, a positive coefficient would
indicate that the high-degree nodes preferentially link to other high-degree nodes,
(and similarly low-degree to low-degree); while a negative coefficient would indicate a
disassortative structure, with low-degree nodes preferentially linking to high-degree
nodes and vice versa (as typified by a star network). A correlation coefficient of R ≈ 0
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indicates a non-assortative structure, with no preferential attachment in either direction.

To measure the correlation between the out-degrees and in-degrees of nodes in a
directed network, Equation 2.32 can be modified accordingly:

R→ =

 M−1∑M
(i,j)∈E k

out
i kin

j −
[
M−1∑M

(i,j)∈E
1
2(kout

i + kin
j )
]2

M−1∑M
(i,j)∈E

[
(kout

i )2 + (kin
j )2

]
−
[
M−1∑M

(i,j)∈E
1
2(kout

i + kin
j )
]2
 . (2.33)

2.4.9 Robustness

In § 2.2.4 (page 29) we discussed some of the main approaches used to estimate the
resilience of a network from its structure. The approach used to analyse the networks
in this thesis is to subject a network to progressive degradation by removing nodes at
random (i.e. random node attack), then measuring the effect of the attack by observing
the size of the largest connected component. The results of this can be captured and
summarised in a single value, known as the robustness ρ (Schneider et al., 2011a,b):

ρ(G) = 1
N

N∑
n=1

γ(n), (2.34)

where γ(n) returns the fraction of nodes in the largest connected component after
removing n nodes, relative to the original number of nodes N . This is illustrated in
Figure 2.14.

The normalisation by 1/N in Equation 2.34 allows for networks of different sizes
to be compared, with the range of possible values always being ρ ∈ [1/N, 0.5], 1/N
corresponding to a star network (with high vulnerability), and 0.5 to a fully connected
graph (with high resilience).

2.4.10 Null model networks

In the analysis of complex networks, it is common practice to use samples of random
graphs to provide a null model baseline against which to evaluate observations for a
network of interest (see § 2.2.3, page 27).

Many types of random network models exist (Betzel and Bassett, 2017; Hosseini
and Kesler, 2013; Klimm et al., 2014). The two main classes used in this thesis are
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γ = 1 γ = 0.3

(a) (b)

Fig. 2.14 Robustness. (a) A network with a single connected component of 10 nodes.
As all of the nodes are in the largest connected component, γ = 1. (b) After removing
the central hub, the network fragments and the size of the largest connected component
(indicated by the dashed circle) is reduced to 3 nodes, thus the fraction of connected
nodes is γ = 0.3.

(1) random Erdös-Rényi networks, and (2) degree-matched random networks. These
will be described in the following sections.

For both classes of random networks, the convention used in this thesis is to
represent a null model ensemble as a set of graphs:

Λ = {G1, . . . , G|Λ|}, (2.35)

where each Gi ∈ Λ is a unique random network, generated according to one of the
models described in the following sections. The exact model being used will be specified
in each case.

2.4.10.1 Erdös-Rényi random network model

The classical, and simplest, form of null model is the Erdös-Rényi (ER) model. ER
networks are created with a fixed number of nodes N , with the edges connecting the
nodes placed at random while accounting for the desired construction (e.g. directed or
undirected edges).
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Two variants of the ER model exist. The first, introduced by Solomonoff and
Rapoport (1951), assigns edges according to a specified inter-node connection proba-
bility, where each pair of nodes has an independent probability p of being connected,
with the corresponding probability of them being unconnected being 1− p (Gilbert,
1959; Solomonoff, 1952; Solomonoff and Rapoport, 1951). This model is referred to
as the GER(N, p) model. The second ER model, studied by Erdös and Rényi (1959,
1960, 1961), instead generates random graphs with a given number of edges M , from a
uniform distribution. This is referred to as the GER(N,M) model. It is this GER(N,M)
model that is used in later chapters to normalise the small-world index (see § 2.4.11
below).

To generate random graphs, the GER(N, p) model can be implemented as a series
of Bernoulli trials for each of the 1

2N(N − 1) unique node pairs. An edge is created
between a pair of nodes if the connection probability p is greater than or equal to a
randomly generated number ϖ ∈ (0, 1], as shown in Algorithm 3, ER-Np (page 3). The
GER(N,M) model can instead be implemented by iteratively placing edges between
pairs of randomly selected nodes until the desired number of edges M is reached;
Algorithm 4, ER-NM (page 4). Although the two variants of the ER model are distinct,
they both generate randomly-connected graphs with the same general topological
properties.

Using the GER(N, p) model, the probability that a graph with M edges is created –
comparable to a graph created via GER(N,M) – is given by the binomial distribution
(Barabási and Pósfai, 2016; Newman, 2010):

P (M) =
(1

2N(N − 1)
M

)
pM(1− p) 1

2 N(N−1)−M . (2.36)

Decomposing this,
( 1

2 N(N−1)
M

)
is the number of unique ways M edges can be placed

between the 1
2N(N − 1) node pairs; pM is the probability of M edges existing in the

network; and (1− p) 1
2 N(N−1)−M is the probability of the remaining 1

2N(N − 1)−M
potential edges not existing.

The average number of edges in networks generated using this model is:

⟨M⟩ = p
N(N − 1)

2 . (2.37)
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Using Equation 2.37, the average nodal degree of GER(N, p) networks is straightfor-
ward to compute. As each edge contributes to the degree value of two separate nodes,
this is given by:

⟨k⟩ = 2⟨M⟩
N

= p(N − 1). (2.38)

We can similarly obtain the degree distribution for GER(N, p) networks. The probability
of a single node connecting to k nodes, and not to the other N − 1 − k nodes, is
pk(1− p)n−1−k; and the number of ways k edges can be placed amongst N − 1 nodes
(i.e. all nodes excluding itself) is

(
N−1

k

)
. Thus, the degree distribution is given by the

binomial distribution:

P (k) =
(
N − 1
k

)
pk(1− p)N−1−k, (2.39)

which can be closely approximated by a Poisson distribution when N ≫ ⟨k⟩ (Barabási
and Pósfai, 2016; Newman, 2010):

P (k) = e−⟨k⟩ ⟨k⟩k

k! . (2.40)

For this reason, ER networks are also sometimes referred to in the literature as Poisson
random graphs.

As M = p N(N−1)
2 when N → ∞, both the GER(N, p) and GER(N,M) models

become statistically equivalent for large values of N (Barrat et al., 2013; de Silva and
Stumpf, 2005). Both variants of the ER model thus generate random networks with
binomial degree distributions.

As previously mentioned, ER networks are a commonly used null model as they are
easy to implement and have properties that can be interrogated analytically (Hofstad,
2017); however, as both variants of the ER model generate networks with binomial
degree distributions, they cannot recapitulate all of the properties observed in complex
real-world networks, which often exhibit power-law degree distributions (see Figure 2.4,
page 19). In instances where it is necessary to account for such properties, other null
models can be used that generate random networks to a prescribed degree distribution.
Two such models are described in the following section.
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Algorithm 3: ER-Np – Erdös-Rényi G(N, p) model. Generates random
networks with N vertices and intervertex connection probability p. Based on
the model of random networks first introduced by Solomonoff and Rapoport
(1951), and independently developed by Gilbert (1959).

input : Number of nodes N , and connection probability
p ∈ {x ∈ R | 0 ≤ x ≤ 1}.

output : Random Erdös-Rényi network GER = (V,E) where |V | = N .
[1] begin
[2] /* INITIALISATION */
[3] /* Initialise node set V with N elements */
[4] V ← {v1, . . . , vN};
[5] /* MAIN PROCEDURE */
[6] /* Iterate over set of nodes */
[7] for ∀vi ∈ V do
[8] /* Unique edges are ensured by preventing node vi from

connecting to a node with a lower index (j > i). This
constraint can be removed for directed networks */

[9] for ∀vj ∈ V where j > i do
[10] /* Draw a random number ϖ ∈ (0, 1], and add a

connection between the current nodes vi, vj if the
random number is greater than or equal to the
connection probability p */

[11] select ϖ uniformly at random from {x ∈ R | 0 < x ≤ 1};
[12] if p ≥ ϖ then
[13] E ← E ∪ {(vi, vj)};

[14] return GER = (V,E);
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Algorithm 4: ER-NM – Erdös-Rényi G(N,M) model. Generates random
networks with N vertices and M edges. Based on the model of random
networks introduced by Erdös and Rényi (1959).

input : Number of nodes N ; and number of edges M to include, where
M ≤ 1

2N(N − 1) for undirected networks, or M ≤ N(N − 1) for
directed networks.

output : Random Erdös-Rényi network GER = (V,E), where |V | = N and
|E| = M .

[1] begin
[2] /* INITIALISATION */
[3] /* Initialise vertex set V with N elements */
[4] V ← {v1, . . . , vN};
[5] /* Initialise empty edge set E to populate with edges */
[6] E ← ∅;
[7] /* MAIN PROCEDURE */
[8] /* Add edges to the graph until the specific number M has

been reached */
[9] while |E| < M do

[10] /* Draw two unconnected unique nodes at random */
[11] select vi, vj ∈ V uniformly at random
[12] where ((vi, vj) /∈ E) ∧ (vi ̸= vj);
[13] /* Create an edge to connect the selected nodes */
[14] E ← E ∪ {(vi, vj)};
[15] return GER = (V,E);
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2.4.10.2 Degree-matched null models

The degree distribution plays an important role in determining the large-scale structure
of a network, and can consequently influence many topological measures. It is therefore
often desirable to control for this by creating null model networks with the same degree
distributions as the network being studied (see § 2.2.3).

The two most common methods for creating null model networks that preserve the
degree distribution, number of nodes, and number of edges – and thus also the original
network’s size and density – are:

1. the edge-swap rewiring model (Algorithm 5, ES); and

2. the configuration model (Algorithm 6, CM).

The edge-swap model generates random networks by creating duplicate versions
of the original network, which are then rewired via an iterative Markov chain Monte
Carlo (MCMC) process that swaps the source or destination nodes between randomly
selected pairs of edges, preserving the original nodal degrees (Maslov and Sneppen,
2002; Milo et al., 2003). For example, a pair of edges {(u, v), (x, y)} can be rewired to
give {(u, x), (v, y)}. This rewiring process is illustrated in Figure 2.15.

As sufficient edge randomisation will destroy any functionally-relevant structures
present in the original network – while preserving the degree distribution, size, and
density – the edge-swap method provides a good choice of null model in most cases.
Analyses in later chapters use edge-swapped networks that have been randomised with
a total 10×M edge-swaps, which has previously been shown to be sufficient for full
network randomisation (Milo et al., 2003; Ray et al., 2012).

The configuration model (Molloy and Reed, 1995) instead constructs synthetic
random networks by first creating N nodes, each with ki stubs, corresponding to the
degree of node vi in the original network (Figure 2.16a). These unconnected stubs are
then linked at random to create a new network with the same degree sequence as the
original (Figure 2.16b).

In practice, both of the degree-matched null models mentioned above produce similar
random networks. A comparison of the two methods can be found in Appendix E
(page 241), showing no significant difference between the null models for the measures
and networks investigated in this thesis.
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Fig. 2.15 Edge-swap randomisation. The structure of a graph is altered by randomly
rewiring connections, preserving the degree distribution. The example shows the two
possible outcomes for an undirected graph. Adapted from Fosdick et al. (2016).
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Algorithm 5: ES – Edge-swap. Degree-preserving Markov chain Monte
Carlo (MCMC) edge-swap rewiring / randomisation algorithm; used for
generating null model networks. Based on the procedure described by
Maslov and Sneppen (2002); Milo et al. (2003).

input : Graph G = (V,E), where V = {v1, . . . , vN} is the set of vertices,
and E = {e1, . . . , eM} is the set of connecting edges; and ξ, the
randomisation factor (multiplied by the number of edges to give
the total number of edge-swaps), where ξ ∈ {x ∈ N | 1 ≤ x <∞}.

output : Graph with randomised edges G′ = (V,E ′).
[1] begin
[2] /* INITIALISATION */
[3] /* Create new edge set E ′ to rewire */
[4] E ′ ← E;
[5] /* Perform ξ edge-swaps × the number of edges M */
[6] swaps← ξ ×M ;
[7] /* MAIN PROCEDURE */
[8] while swaps ̸= 0 do
[9] /* Choose two edges at random e1, e2 ∈ E ′ ensuring the

edges: are unique, do not share source or
destination vertices, and will not result in
self-loops if swapped */

[10] select e1 = (vA, vB), e2 = (vC , vD) ∈ E ′ at random
[11] where (e1 ̸= e2) ∧ (vA ̸= vC) ∧ (vA ̸= vD) ∧ (vB ̸= vC) ∧ (vB ̸= vD);
[12] /* Note: if these constraints are not met, some

variants of the algorithm count it as a swap trial
and decrement the swaps counter accordingly; see
Miklós and Podani (2004); Milo et al. (2003) */

[13] /* Create new edges, swapping destination nodes */
[14] e′

1 ← (vA, vD); e′
2 ← (vC , vB);

[15] /* Remove original edges and replace with the newly
rewired ones */

[16] E ′ ← E ′ \ {e1, e2};
[17] E ′ ← E ′ ∪ {e′

1, e
′
2};

[18] /* Decrement loop counter */
[19] swaps← (swaps− 1);

[20] /* Return a graph with the new set of rewired edges E ′ */
[21] return G′ = (V,E ′);
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Algorithm 6: CM – Configuration model. Stub matching algorithm to
generate undirected random graphs with a given degree sequence k⃗; used for
generating null model networks. The algorithm can easily be modified to
generate directed graphs by connecting out-degree stubs to in-degree stubs.
First proposed by Molloy and Reed (1995).

input : Number of nodes, N ; degree sequence, k⃗ = (k1, . . . , kN).
output : Random graph Grand = (Vrand, Erand) with the degree sequence k⃗,

where |Vrand| = N .
[1] begin
[2] /* INITIALISATION */
[3] Vrand ← {v1, . . . , vN};
[4] Erand ← ∅;
[5] /* Get the number of stubs for each vertex from the degree

sequence k⃗; each entry ki corresponding to a vertex
vi ∈ V */

[6] stubs← k⃗;
[7] /* MAIN PROCEDURE */
[8] /* Continue adding edges while stubs remain */
[9] while ∑N

i=1 stubsi > 0 do
[10] /* Select two random nodes (vi, vj) with stubs remaining

that are not already connected by an edge */
[11] select vi, vj ∈ Vrand at random where

(i ̸= j) ∧ (stubsi > 0) ∧ (stubsj > 0) ∧ [(vi, vj) /∈ Erand];
[12] /* Create edge between the randomly selected vertices,

and update the stub counts accordingly */
[13] Erand ← Erand ∪ {(vi, vj)};
[14] stubsi ← (stubsi − 1);
[15] stubsj ← (stubsj − 1);
[16] return Grand = (Vrand, Erand);
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a

b

Fig. 2.16 Configuration model random network generation. Showing (a) unconnected
stubs assigned to each node, determined from the desired degree sequence; and (b) null
model graph generated by randomly connecting stubs to one another. Adapted from
Clauset (2016b).

2.4.11 Small-world property

The networks of the nervous system must balance the conflicting requirements of
functional segregation and functional integration. Networks that exhibit such a balance
are described as being small-world, and are formally defined as networks that have a
higher-than-random clustering coefficient C (indicative of functional segregation) and
a lower-than-random characteristic path length L (indicative of functional integration
and high wiring efficiency) (Rubinov and Sporns, 2010; Watts and Strogatz, 1998), see
§ 2.2.2.3 (page 24).

One concise way to measure the “small-worldness” of a network is through the
normalised small-world index, first proposed by Walsh (1999) and independently devel-
oped and expanded by Humphries and Gurney (2008).

To determine whether a given network has a higher-than-random clustering coeffi-
cient and lower-than-random characteristic path length, the small-world index S uses a
statistical ensemble of null model networks to normalise the measures. This ensemble
of random networks Λ is usually generated using the ER method given in Algorithm 4
(Λ = {G1, . . . , G|Λ|}; ∀Gi ∈ Λ, Gi ← GER(N,M)). The properties of these random net-
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works can then be analysed and averaged to give representative values for normalisation.

Applying Equation 2.11 to the random networks in Λ can provide us with the mean
characteristic path length of the ensemble:

⟨Lrand⟩ = 1
|Λ|

|Λ|∑
i=1

L(Gi). (2.41)

Similarly, via Equation 2.20 the mean clustering coefficient of the ensemble can
also be determined:

⟨Crand⟩ = 1
|Λ|

|Λ|∑
i=1

C(Gi). (2.42)

Where C and L are the respective clustering coefficient and characteristic path
length for the real network of interest, and ⟨Crand⟩ and ⟨Lrand⟩ are the mean random
values computed from the null model networks in Λ, the normalised small-world index
can be computed via:

S(G) = C/⟨Crand⟩
L/⟨Lrand⟩

. (2.43)

As a greater-than-random clustering coefficient results in a numerator > 1, and
a short-than-random characteristic path length results in a denominator < 1, the
small-world index provides a balanced measure that accounts for both properties, and
captures the degree of small-worldness in a single value. Using this measure, a network
is defined as small-world if S > 1.

2.4.11.1 Note on null model usage

Although the small-world index was originally defined to use the GER(N,M) null
model (Algorithm 4, page 55), some applications in the literature have instead used
edge-swapped networks (Harriger et al., 2012). It should be noted that the choice
of null model can change the interpretation of the metric: In the case of ER, the
small-world index considers whether a given network is small-world relative to networks
with completely random connectivity, while for edge-swapped networks (and those
generated by the configuration model), it considers whether a network is small-world
relative to other networks with the same degree distribution.

As the degree distribution determines whether a network can contain high-degree
nodes, the choice of null model can influence the extent to which the comparison
networks contain hubs. This is important as hubs act to connect many nodes and
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can greatly reduce the characteristic path length. The selection of null model, and
resultant change in metric interpretation, also affects every other network measure that
uses a random ensemble for normalisation or comparison.

Using the standard definition of the small-world index given by Humphries and
Gurney (2008), the analyses presented in this thesis are normalised using ER networks.
The reason for this is to determine whether the networks of interest have a small-
world structure at all, and not whether they are more or less small-world than similar
networks with the same degree distribution (as would be the case if edge-swapped
networks were used). All other measures considered here, however, are compared
to edge-swapped networks, as the other analyses attempt to address the question of
whether the networks have structural features independent of the degree distribution.
That is to say, the difference in null model selection is to address two different questions:
(1) in the case of the small-world index, is the network small-world compared to random;
and (2) what are the characteristics of the network that are not properties of the degree
distribution?

2.4.12 Scale-free property

In § 2.2.1 and Figure 2.4 we briefly introduced the concept of scale-free networks.
These are networks with scale-invariant degree distributions, typically characterised by
the presence of many low-degree nodes connected to a small number of high-degree
hubs. Scale-free networks have attracted much attention due to their interesting
characteristics and abundance in nature, including in the brain.

Formally, a network is defined as being scale-free if its degree distribution P (k)
follows the power-law:

P (k) ∝ k−α, (2.44)

where α is the power-law exponent. Thus, by fitting this formula to an empirical degree
distribution, via a method such as least-squares regression (Clauset et al., 2009), we
can determine whether a network is scale-free. Often, a threshold is introduced such
that P (k) is only considered above some minimum value kmin where the power-law
holds. This is used to (1) enable a good fit to empirically-derived discrete data, where
low values of k can deviate from the distribution; and (2) allow for the analysis of
continuous data, since k−α →∞ as k → 0 for α > 0.
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An interesting property of scale-free networks is that their structures are, to a
large extent, determined by the power-law exponents α of their distributions. Most
real-world instances of scale-free networks have a power-law exponent in the range
2 < α < 3 (Albert and Barabási, 2002; Barabási and Albert, 1999; Clauset et al., 2009),
typically resulting in a small-world structure with a higher-than-random clustering
coefficient (Albert and Barabási, 2002; Zhou, 2002), and an ultra-small characteristic
path length that scales double-logarithmically with the number of nodes (Chung and
Lu, 2002; Del Genio et al., 2011):

L ∝ log logN. (2.45)

This makes scale-free networks of this type highly efficient, providing a good balance
between functional integration and functional segregation. Despite the efficient ultra-
small nature of networks in the range 2 < α < 3, it is important to note that not all
scale-free networks are small-world (Zhang et al., 2007).

As well as being highly efficient, scale-free networks have also been demonstrated
to be highly resilient to random connection loss, although not to targeted attacks. In
the case of random attacks, the efficient connectivity results in slow, gradual, network
degradation, superior to randomly connected networks (Achard et al., 2006; Albert
et al., 2000).

2.4.12.1 Power-laws & statistics

As power-law distributions frequently span over orders of magnitude, the nodes in a
scale-free network often have large differences in their nodal degrees. Furthermore,
under certain circumstances common summary statistics are not informative. An
example of this is when α ≤ 2, the mean degree ⟨k⟩ diverges to infinity as N → ∞
(Newman, 2005). Although a finite scale-free network will not have an infinite number
of nodes to allow this, the result shows that it is not a well-defined measure, and
is unrepresentative of the actual distribution. The same applies to all subsequent
moments, with ⟨k2⟩ diverging for α ≤ 3, thus having no definite variance or standard
deviation; and ⟨k3⟩ for α ≤ 4, etc. Generally, where M is the moment, ⟨kM⟩ is only
finite and well defined when M < α− 1. Where this is satisfied, the Mth moment for
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an ideal power-law distribution is given by (Newman, 2005):

⟨kM⟩ ∝
(

α− 1
α− 1−M

)
kM

min, (2.46)

where kmin is the previously-mentioned lower threshold.

2.4.12.2 Scale-free networks in the brain

Power-law degree distributions are found in various types of networks. Examples
include metabolic networks (Jeong et al., 2000; Wagner and Fell, 2001), protein-protein
interaction networks (Yook et al., 2004), information networks (Albert et al., 1999;
Faloutsos et al., 1999), and social networks (Aparicio et al., 2015). Functional brain
networks have also been found to exhibit power-law or truncated power-law distribu-
tions (Fornito et al., 2010; Hayasaka and Laurienti, 2010; Heuvel et al., 2008), as have
connectomes derived from diffusion MRI methods (Gong et al., 2009; Iturria-Medina
et al., 2008).

Although the power-law provides a good fit for some connectomic data, it is not the
case for all brain regions (Humphries et al., 2006), and alternative distributions have
been proposed that might provide a better fit to neural degree distributions (Gastner
and Ódor, 2016). Similarly, although the synaptic connectome of C. elegans appears
to exhibit a degree distribution tail that partially matches a power-law (Figure 3.9,
page 98), other distributions have also been proposed (Amaral et al., 2000). Determin-
ing and interpreting the degree distributions of connectomes is still an open area of
research (Bullmore and Sporns, 2009; Gastner and Ódor, 2016).

One theory for why scale-free networks are so common in nature relates to network
growth characteristics. Imposing a simple growth rule, where new nodes have a higher
probability of connecting to existing high-degree nodes, than to younger nodes, is
sufficient to create a scale-free network with a power-law degree distribution (Barabási
and Albert, 1999).

2.4.13 Rich-club organisation

Rich-clubs are subnetworks composed exclusively of high-degree nodes, that serve as the
main backbones in a network, linking modules and facilitating functional integration
(Figure 2.6 on page 22 for an illustration) (Colizza et al., 2006; Zhou and Mondragon,
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Fig. 2.17 Rich-club core. Rich-clubs can be identified by iteratively removing the lowest
degree nodes, and comparing the density of the remaining core to the expected density.
The figure on the right reveals a rich-club core after removing nodes k ≤ 2 (i.e. K = 2).

2004). The name stems from the rich-club phenomenon observed in many natural
systems, where connection-rich hubs are frequently more interconnected than would be
expected by chance (Colizza et al., 2006).

The presence of rich-clubs can be identified by iteratively removing low-degree
nodes for a given degree threshold K, such that nodes with k ≤ K are removed, and
comparing the density of the remaining high-degree subnetwork to the expected density
from a random ensemble. The subnetwork density for a threshold is referred to as
the rich-club coefficient Φ(K), and is the ratio of remaining connections M>K to the
maximum possible number of connections.

If a rich-club exists in a network, then for a certain degree range the hubs will appear
more interconnected than expected, and thus have a higher relative density (i.e. nor-
malised rich-club coefficient). Searching for rich-clubs is performed in a stepwise fashion,
with the degree threshold K incrementing with each iteration (k ≤ 1, . . . , N − 1). An
example of a subnetwork for K = 2 is shown in Figure 2.17.

LetK be the degree threshold, and ki the degree of node vi ∈ V , then the subnetwork
for a given threshold is:

G>K = (V>K , E>K), (2.47)

where the set of nodes V>K and edges E>K for the subnetwork are:

V>K = {vi ∈ V | ki > K}, (2.48)
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E>K = {(vi, vj) ∈ E | (vi ∈ V>K) ∧ (vj ∈ V>K)}. (2.49)

The number of nodes N>K and edges E>K remaining in the network after excluding
nodes with a degree k ≤ K, are respectively given by:

N>K = |V>K |, (2.50)

M>K = |E>K |. (2.51)

For an undirected network with no self-connections, the rich-club coefficient (i.e.
subnetwork density) for a threshold K can then be calculated:

Φ(K) = D(G>K) = 2M>K

N>K(N>K − 1) . (2.52)

Similarly, for a directed network:

Φ→(K) = D→(G→
>K) = M>K

N>K(N>K − 1) . (2.53)

Thus, a fully-connected subnetwork at a given degree threshold K has a rich-club
coefficient Φ(K) = 1. To normalise the rich-club coefficient, it can be compared to the
mean value from an ensemble of random networks ⟨Φrand(K)⟩:

⟨Φrand(K)⟩ = 1
|Λ|

|Λ|∑
i=1

Φrandi
(K), (2.54)

Here |Λ| is the number of random networks in the ensemble, and Φrandi
(K) is the

rich-club coefficient for a random network Gi ∈ Λ. The normalised rich-club coefficient
is then expressed as:

Φnorm(K) = Φ(K)
⟨Φrand(K)⟩ . (2.55)

By convention, a significant rich-club is said to exist where the normalised rich-club
coefficient is (Harriger et al., 2012; Reus and Heuvel, 2013; Towlson et al., 2013):

Φnorm(K) ≥ 1 + 1σ, (2.56)

with σ being the Standard Deviation of Φrand(K):

σ =

√√√√√ 1
|Λ| − 1

|Λ|∑
i=1

[
Φrandi

(K)−
〈
Φrand(K)

〉]2
. (2.57)
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2.4.14 Network motifs

In §2.2.2.4 we discussed how networks often contain repeating stereotypical connectivity
patterns – termed motifs – that can form the functional building blocks of a network.
Analysing the motifs from which a network is composed can provide deep insights into
its structural architecture and computational properties (Alon, 2007; Kashtan et al.,
2004; Milo, 2002; Sporns and Kötter, 2004).

Fundamentally, a motif is a small graph G′ = (V ′, E ′). To find the instances of a
motif in a network of interest G, we can search for subgraphs Gsub within the network
G that are isomorphs of a template motif G′; in other words, we search for parts of
the network that have an identical structure to the motif. Formally, a subgraph is a
graph Gsub = (Vsub, Esub) contained within the original graph G = (V,E), such that
Vsub ⊆ V and Esub ⊆ E ∩ (Vsub × Vsub).

Two graphs G′ and Gsub are said to be isomorphic if and only if each node in G′

has a one-to-one correspondence to a node in Gsub, such that each pair of nodes has
exactly the same number of edges between them in both G′ and Gsub (Gibbons, 1985;
Schreiber and Schwöbbermeyer, 2008). See Figure 2.8 (page 26) for an illustration of
motif matching.

The set of possible unique motifs of a given size s (where s is the number of vertices
s = |V ′|) can be written:

Ωs = {G′
1, . . . , G

′
|Ω|}. (2.58)

Using the principle of graph isomorphism introduced above, we can search for
instances of each motif type G′

h ∈ Ωs in a network and record the frequency of each
(denoted Jh) to provide information on a network’s composition (see Figure 2.8).

Although the problem of counting the motif frequency Jh can be stated simply,
in practice it is computationally challenging. Recent progress has been made in the
area of determining graph isomorphism – giving this task a sub-exponential ideal
running time (Babai, 2015) – yet the process of exhaustively enumerating motifs
still grows exponentially, both with the size of the target graph G and the size of
the motif s. To illustrate: for directed motifs where all of the nodes are connected
to at least one other node in the motif, there are only two possible motifs of size
s = 2, as two nodes can only either be connected with a single edge or a recipro-
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cal edge (|Ω2| = 2). For s = 3 this grows to |Ω3| = 13 (displayed in Figure 2.9,
page 26), while |Ω4| = 199, |Ω5| = 9, 364, |Ω6| = 1, 530, 843, and |Ω7| = 880, 471, 142
(Harary and Palmer, 1973; Sloane, 2017). As the search time also grows with the
size of the target network being searched, most motif searchers are constrained to s ≤ 4.

Several practical algorithms exist for applying the above concepts to real networks
(Wong et al., 2012). The most common approach is to first divide the target graph G

into all of the possible subgraphs Gsub ⊆ G of a given size s (called the subgraph census).
A search can then be performed within the subgraph space for motif isomorphs (Wong
et al., 2012). One computationally efficient, and widely used, method for this is the
ESU algorithm (Wernicke, 2005) given in Algorithm 7 (page 69). This approach works
by iterating through the nodes in the network and examining which subgraphs can be
grown from each root node, stopping when the path length for each growth attempt
reaches s. These are then collated and categorised by motif isomorphism to compute
motif frequencies. The same process is then performed on null model networks for the
purposes of normalisation and statistical analysis. For large networks and motif sizes,
random sampling of the network can also be applied to estimate motif frequencies
(Wong et al., 2012).

The degree to which a motif is over- or under- represented in a network can be
determined by comparing the motif frequency observed in the network of interest, to
the mean frequency observed in the null model samples, via the motif z-score (Milo,
2002). For a motif G′

h, the motif z-score is given by:

zh = Jh − ⟨Jrandh
⟩

σJrandh

, (2.59)

where ⟨Jrandh
⟩ is the mean occurrence of motif G′

h across the random networks, and
σJrandh

is the corresponding Standard Deviation.
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Algorithm 7: ESU – Enumerate subgraphs. Subgraph enumeration
algorithm from Wernicke (2005); used for motif detection in FANMOD
(Wernicke and Rasche, 2006).

input : Graph G = (V,E); and s, the size of the subgraphs to enumerate
containing exactly s vertices, where s ∈ {x ∈ N | 2 ≤ x < N}.

output : All size-s subgraphs in G.
[1] begin
[2] /* Enumerate subgraphs around each vertex vi ∈ V */
[3] for ∀vi ∈ V do
[4] /* Get the neighbourhood Nh of vi (adjacent vertices),

ensuring the indices j are greater than the current
root vertex index i (to prevent double counting) */

[5] Vextension ← {vj ∈ Nh({vi}) | j > i};
[6] /* Enumerate the subgraphs around the current root vi

using the set of neighbouring vertices in Vextension */
[7] call ExtendSubgraph({vi}, Vextension, vi);

[8] function ExtendSubgraph(Vsub, Vextension, vi)
[9] /* Stop extending the subgraph if it has reached the target

subgraph size s */
[10] if |Vsub| = s then
[11] /* Create subgraph edge set, and return result */
[12] Esub ← {(vi, vj) ∈ E | vi, vj ∈ Vsub};
[13] return Gsub = (Vsub, Esub);
[14] /* Continue enumerating subgraphs while there are still

vertices available in the neighbourhood Vextension */
[15] while Vextension ̸= ∅ do
[16] /* Get arbitrary vertex vω to add to the subgraph */
[17] select {vω} ⊆ Vextension;
[18] V ′

sub ← Vsub ∪ {vω};
[19] /* Remove vω from the pool of searchable vertices */
[20] Vextension ← Vextension \ {vω};
[21] /* Get the neighbourhood of the subgraph containing the

new vertex, V ′
sub (i.e. all nodes adjacent to the

subgraph that are not in the subgraph) and enumerate
all possible subgraphs that can be grown from it by
recursively calling ExtendSubgraph() */

[22] V ′
extension ← {vj ∈ Nh(V ′

sub) | j > i};
[23] call ExtendSubgraph(V ′

sub, V
′

extension, vi);
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2.5 Multilayer networks

As we introduced in § 2.2.5, various interaction types between nodes can be represented
as separate layers in a multiplex network. Multiplex networks consist of multiple layers
containing the same nodes, but with different arrangements of edges in each layer,
corresponding to instances of the interaction type associated with that layer. Such
a multiplex network A with X layers can conveniently be represented as a set of X
separate N ×N adjacency matrices:

A =
{
A[1], A[2], ..., A[X]

}
. (2.60)

It is therefore possible to analyse the properties of each layer using the same network
measures previously described, or via variants of the measures that consider all of the
layers collectively (Battiston et al., 2014; Boccaletti et al., 2014; Kivelä et al., 2014).

2.5.1 Multilayer reducibility

When working with multiplex networks, it is useful to know the extent to which layers
differ from one another, and whether each layer is truly a unique representation rather
than a redundant (duplicate) description of another layer. One way to address these
questions is to measure the information content of the layers and ask whether any
information is lost when aggregating, or collapsing, layers; for example, to determine
whether a two layer representation contains any more information than a single layer
(monoplex) representation of the same network. If no information is lost in reducing the
network to a single layer, we can say that the multilayer structure adds no information
and that the network can be simplified by aggregating the two layers into a single layer
(De Domenico et al., 2014, 2015a, 2016; Wang and Liu, 2017).

The approach described above is known as multilayer reducibility, and is closely
related to edge overlap. Considering two multiplex layers with the same edges in
each layer, the overlap between them is 100 %, and indeed no information would
be lost aggregating the layers into a single layer with the same edges. The ability
to measure the information content of a network therefore allows us to quantify the
similarity, overlap, and redundancy of layers, while furthermore enabling us to find the
most economical representation of a multilayer network by identifying and aggregating
redundant layers.



2.5 Multilayer networks 71

2.5.1.1 Layer aggregation

The first step is to formalise the notion of layer aggregation. As all of the layers in a
multiplex network contain the same nodes, the process of layer aggregation is simply
performed by taking the edges from two or more layers, and merging them into a single
layer (see Figure 2.18). If we are working with a multigraph (which allows for multiple
edges between nodes), then the adjacency matrix for the aggregate network can be
obtained by summing the adjacency matrices of the various layers (De Domenico et al.,
2015a):

Aag =
X∑

β=1
A[β]. (2.61)

If a multigraph is not desired – such as the networks analysed in later chapters – then
the layer aggregation is performed by assigning exactly one edge between nodes if they
are connected by an edge in any of the network layers, else leaving them unconnected
(Battiston et al., 2014):

Aagij
=

1 if ∃β : A[β]
ij

0 otherwise
. (2.62)

2.5.1.2 Graph entropy

The next requirement for determining multilayer reducibility is to quantify the infor-
mation content, or complexity, of a layer. This is performed by measuring the entropy
of the structure, using a variant of the information entropy measure first introduced
by Shannon (1948). This can be viewed as a generalisation of the classical notion of
thermodynamic entropy (Bais and Farmer, 2007; Shannon, 1948).

Information entropy essentially describes the predictability of states in the system,
and thus the system’s information content; this relationship can be seen from considering
that simple systems are more predictable than complex ones, and thus encode less
information. For a random variable Y with associated states {y1, . . . yn}, the Shannon
entropy can be computed from the probabilities of observing those states P (Shannon,
1948):

H
shannon

(Y ) = −
n∑

i=1
P (yi) log2 P (yi), (2.63)

where by convention 0 log2 0 ≡ 0.
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Fig. 2.18 Diagram showing: (a) a two-layer multiplex network containing four nodes,
and (b) a one-layer, monoplex, network formed from aggregating the layers of the
above multiplex network. Note that the edges from both layers are preserved in the
aggregation.
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Numerous methods exist for measuring the entropy of a graph structure (reviewed
in Dehmer and Mowshowitz, 2011; Anand and Bianconi, 2009) with the most common
being the von Neumann entropy, originally formulated in the context of quantum
mechanics (QM) (Von Neumann, 1955).

In quantum mechanics, a system can either be in a pure state, describable by
a single state vector, written |ψ⟩; or a mixed state, a statistical ensemble of pure
states corresponding to a set of state vectors, each with an associated probability of
the system being in that state p ∈ [0, 1], satisfying the constraint ∑i pi = 1. This
information is usually encoded in a density matrix, ϱ. Where ⟨ψi| is the Hermitian
transpose (conjugate transpose) of the state vector |ψi⟩, the density matrix of a system
can be expressed as (Han, 2012):

ϱ =
∑

i

pi|ψi⟩⟨ψi|. (2.64)

Taking the density matrix ϱ, the von Neumann entropy of a quantum system
can be defined either in terms of its eigenvalues λ or the trace of the density matrix
(Von Neumann, 1955):

H(ϱ) = −
∑

i

λi log2 λi

= −Tr(ϱ log2 ϱ).
(2.65)

The utility of this measure lies in its ability to express the “mixedness” of a quantum
system: H = 0 if and only if the system is in a pure state, else when H > 0 the system
is in a mixed state. For a classical (non-quantum) system, this is directly analogous to
the Shannon entropy in Equation 2.63.

The applicability of the von Neumann entropy to the structural complexity of
graphs has been the topic of several works (Anand et al., 2011; Braunstein et al., 2006;
de Beaudrap et al., 2016; Han et al., 2011; Passerini and Severini, 2011). These have
shown that the normalised Laplacian matrix of a graph (defined below) corresponds
to the density matrix of a quantum system, such that a graph can be described in
quantum mechanical terms as being in a pure state if and only if it contains exactly
one edge (H = 0 ⇐⇒ M = 1), or as an ensemble of pure states if and only if it has
multiple edges (i.e. a mixed state, H > 0 ⇐⇒ M > 1). The von Neumann entropy
can thus be used to reliably measure the complexity and information content of a
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graph’s topological structure.

As stated, to compute the von Neumann entropy of a graph we must first define
the normalised graph Laplacian matrix L̂. The Laplacian matrix is analogous to a
discrete form of the Laplace operator (L = −∇2), and can be used to study diffusion or
random walk processes on a graph (Barrat et al., 2013; Newman, 2010). The properties
of the Laplacian matrix – such as its relation to the QM density matrix – also make it
useful for studying many topological network features not directly related to diffusion
(Chung, 1997).

Starting with the concept of diffusion, consider an amount of some diffusible
substance at node vi of a graph, written ϕi, with the diffusion constant I. The rate
of change of ϕi diffusing to or from neighbouring nodes in the network can then be
written as:

dϕi

dt
= I

∑
j

Aij(ϕj − ϕi). (2.66)

In matrix form, this is equivalent to (Newman, 2010):

dϕ

dt
= I(A−D)ϕ, (2.67)

where D is a diagonal matrix containing the respective nodal degrees:

D =


k1 0 . . . 0
0 k2 . . . 0
... ... . . . ...
0 0 . . . kN

 . (2.68)

The graph Laplacian matrix is then defined as (Chung, 1997; Newman, 2010):

L = D − A, (2.69)

and is constructed with the following elements:

Lij =


ki if i = j

−1 if (vi, vj) ∈ E
0 otherwise

, (2.70)
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allowing us to rewrite Equation 2.67 using the Laplacian matrix in the form:

dϕ

dt
+ ILϕ = 0. (2.71)

To obtain the normalised Laplacian, denoted L̂, corresponding to the density matrix
ϱ required for the von Neumann entropy, we divide the Laplacian matrix by the sum
of the nodal degrees (Braunstein et al., 2006):

L̂ = L/
N∑

i∈V

ki = L/Tr(D). (2.72)

This normalised, rescaled, Laplacian has a number of interesting properties, including
eigenvalues that satisfy the following:

λi ∈ [0, 1] for λ1, . . . , λN , (2.73)

N∑
i∈V

λi = 1. (2.74)

Finally, with the normalised graph Laplacian L̂, and its eigenvalues λ, we can extend
the definition of the von Neumann entropy (from Equation 2.65) to a single layer A[β]

of a multiplex graph A (or more generally, to any monoplex adjacency matrix A):

H(A[β]) = −
N∑
i

λ
[β]
i log2 λ

[β]
i

= −Tr
(
L̂[β] log2 L̂[β]

)
.

(2.75)

To measure the total von Neumann entropy of a multiplex network, we can simply
sum the entropy of the individual constituent layers, thus measuring the information
content of the network:

H(A) =
X∑

β=1
H(A[β]). (2.76)

2.5.1.3 Layer reducibility

We have so far established how to aggregate layers in a multiplex network (§ 2.5.1.1),
and how to measure the information content of those layers (§ 2.5.1.2). We can now
examine methods to find the most economical network representation that maintains
the maximum information content, while minimising the number of layers.
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As stated in Equations 2.61 & 2.62, it is possible to combine layers in a multiplex
network, by either collapsing all of the layers to form an aggregate monoplex network,
or a subset of the layers to create a reduced multiplex representation (i.e. a partially
aggregated multiplex network). If the original multiplex network A has X layers, we
can represent such a reduced multiplex network, with X ′ ≤ X layers, as:

B =
{
B[1], B[2], . . . , B[X′]

}
, (2.77)

where B[β] is either identical to a layer from the original multiplex A[β] ∈ A, or the
aggregation of two or more such layers from A. We can then determine the average
entropy of the reduced representation via:

H̄(B) = H(B)
X ′ =

∑X′

β H(B[β])
X ′ . (2.78)

Using the average entropy of a multiplex network representation, given by H̄(B), it
is possible to measure how distinguishable this representation is from the aggregated
monoplex version, derived by collapsing all of the layers in the corresponding original
network, denoted Aag. The distinguishability of the reduced representation with respect
to the aggregate network is defined as:

q(B) = 1− H̄(B)
H(Aag)

. (2.79)

The larger the value of q(B), the more distinguishable the multilayer representation
is from the single layer aggregate representation. If all of the layers in B are identical,
then the distinguishability is zero (q(B) = 0); while larger values of q indicate that the
multilayer representation is more informative than the reduced one. As such, we can
then search for a multiplex representation that maximises the distinguishability, and
thus find an optimal reduced network:

Bopt = argmax
B

(q(B)). (2.80)

In practice, enumerating all possible combinations to deterministically find the
optimal network representation is often impractical, falling into the class of NP-hard
problems (De Domenico et al., 2014, 2015a), where the search time grows at least
exponentially with the number of layers. To address this, greedy agglomeration algo-
rithms can be used to search for solutions in a heuristic manner (conceptually identical
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to the maximisation method in Algorithm 2, MM) (De Domenico et al., 2014, 2015a).
The improvement of layer-reduction algorithms is an active, ongoing, area of research
(Wang and Liu, 2017).

After determining an optimal multilayer representation Bopt with the highest dis-
tinguishability, we can quantify the degree of reducibility of the original multilayer
network, written χ(A), by taking the ratio of the number of layer reductions (X−X ′

opt)
to the maximum possible number of layer reductions. This quantity is termed the
reducibility, and is fully expressed as:

χ(A) =
X −X ′

opt

X − 1 . (2.81)

As such, χ(A) = 0 if there are no redundant layers that can be reduced, and χ(A) = 1
if the network is fully reducible, such that it can be aggregated into a single monoplex
layer without the loss of information.

2.5.1.4 Layer distance

We have now examined how to find an optimal (non-redundant) representation of a
multilayer network, and how to measure its distinguishability from its fully aggregated
counterpart, using von Neumann entropy. It is also desirable, however, to be able
to measure the distance (or dissimilarity) between arbitrary individual layers in a
multiplex network. As we will see, the ability to quantify these distances can be used
to better understand the relationship between layers, and furthermore aid heuristic
optimisation approaches to reducibility (as applied to Equation 2.80), mentioned in
the preceding section.

In quantum mechanics, the dissimilarity between mixed quantum states can be
reliably measured using the Jensen-Shannon divergence (JSD) (Briët and Harremoës,
2009; Majtey et al., 2005). We can therefore use the mapping of graphs to quantum
systems – via the normalised graph Laplacian corresponding to a QM density matrix
(Equation 2.72) – to apply this approach directly to measuring the dissimilarity between
individual network layers (De Domenico et al., 2014, 2015a).

To calculate the Jensen-Shannon divergence between two layers, we must first obtain
the relative entropy of one layer with respect to the other, termed the Kullback-Leibler
divergence (KLD) (De Domenico et al., 2014, 2015a; Kullback and Leibler, 1951). For
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two multiplex layers (A[α], A[β] ∈ A) and their corresponding normalised Laplacian
matrices (L̂[α], L̂[β]), the Kullback-Leibler divergence is defined as:

DKL(L̂[α] ∥ L̂[β]) = Tr
(
L̂[α][log2 L̂[α] − log2 L̂[β]]

)
. (2.82)

Although the Kullback-Leibler divergence provides us with the layers’ relative
entropy, it does not formally qualify as a distance measure. For an arbitrary set X, a
function

d : X× X→ R (2.83)

is a distance measure over the set X, only if the following conditions are satisfied
∀x, y ∈ X (Lamberti et al., 2008):

Positiveness: d(x, y) > 0 for x ̸= y; and d(x, x) = 0. (2.84)

Symmetry: d(x, y) = d(y, x). (2.85)

To qualify as a metric distance, the function must additionally satisfy the triangle
inequality (Burago et al., 2001). ∀x, y, z ∈ X:

Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z). (2.86)

On the above criteria, the Kullback-Leibler divergence fails both the triangular
inequality and symmetry conditions (DKL(L̂[α] ∥ L̂[β]) ̸= DKL(L̂[β] ∥ L̂[α])) (Lamberti
et al., 2008); it can however be used to construct the aforementioned Jensen-Shannon
divergence, which is symmetric, thus meeting all of the conditions of a distance (Lin,
1991). The Jensen-Shannon divergence is defined as:

DJS(L̂[α] ∥ L̂[β]) = 1
2DKL

(
L̂[α] ∥ L̂

[α] + L̂[β]

2

)
+ 1

2DKL

(
L̂[β] ∥ L̂

[α] + L̂[β]

2

)
. (2.87)

This distance measure can also be expressed in terms of von Neumann entropy, where it
is clear that it measures the difference between the entropy of the combined normalised
Laplacians, and the combined entropies of the individual normalised Laplacians:

DJS(L̂[α] ∥ L̂[β]) = H

(
L̂[α] + L̂[β]

2

)
− 1

2
[
H(L̂[α]) +H(L̂[β])

]
. (2.88)
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In order to obtain a metric distance, we can take the square root of the Jensen-
Shannon divergence, termed the Jensen-Shannon distance, dJS :

dJS(L̂[α], L̂[β]) ≡
√

DJS(L̂[α] ∥ L̂[β]), (2.89)

which returns values in the interval dJS ∈ [0, 1] and has been shown to satisfy the
triangle inequality (Endres and Schindelin, 2003; Lamberti et al., 2008; Osterreicher
and Vajda, 2003).

2.5.1.5 Hierarchical clustering

Both the Jensen-Shannon divergence (DJS) and distance (dJS) are suitable for measur-
ing the information-theoretic distance between any arbitrary network layers. Besides
from the direct advantage of being able to quantify the similarity between layers,
these measures can also be used to compute the pairwise distances for the purpose of
hierarchical clustering (De Domenico et al., 2014, 2015a, 2016).

The hierarchical clustering of layers in a multiplex network is typically performed
by iteratively aggregating pairs of layers with the least separation distance at each step
(measured either as DJS or dJS), and proceeding until all of the layers are aggregated,
resulting in Aag. By measuring the distinguishability, q, at each step we can then
identify a partitioning (combination of layer aggregations) that maximises q, and thus
find an economical reduced network representation, Bopt. Although this approach
is not guaranteed to find the global optimum, it does instantiate the optimisation
from Equation 2.80 in a computationally efficient manner, avoiding the requirement to
evaluate all possible combinations. This approach has the additional benefit of being
visualisable as a dendrogram, providing an intuitive way to represent and inspect the
aggregation process, layer distances, and optimal multiplex partitioning.

2.5.2 Multilink motifs

To interrogate the internal structural properties of a multiplex network, modified
versions of the techniques previously introduced for monoplex networks can be applied
(Battiston et al., 2014; Boccaletti et al., 2014; Kivelä et al., 2014). An example used
extensively in later chapters of this thesis is that of multilink motif analysis, where the
concept of motifs is extended to consider multiple layers. Just as a motif is a pattern
of edges within a network layer, a multilink motif is a pattern of edges across multiple
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layers. The analysis of multilink motifs can provide insights into the distribution,
interrelation, and overlap of connections in different layers, and insights into a network’s
functional composition.

A multilink describes the arrangement of edges between two nodes in a multiplex
network (Bianconi, 2013; Boccaletti et al., 2014; Menichetti et al., 2014; Mondragon
et al., 2017). For two nodes vi, vj in an X-layer network, the multilink is typically
expressed as a vector:

m⃗ij = (m[1]
ij ,m

[2]
ij , . . . ,m

[X]
ij ). (2.90)

where m[β]
ij = A

[β]
ij . Therefore, m[β]

ij = 1 if and only if there is a connection between
(vi, vj) in layer β. As such, a multilink m⃗ describes the complete set of edges between
two nodes in a multiplex network. The different combinations of such edges form the
set of possible multilink motifs. An illustration of multilink motifs in an example
two-layer network is shown in Figure 2.10b (page 31).

As with motifs in monoplex networks, the multilink motif frequency Jh can be
found by taking a subgraph census and searching for motif isomorphs. The degree
to which a multilink motif is under- or over- represented in a network can then be
determined by comparing the multilink motif frequency to null model samples and
taking the motif z-score (see § 2.4.14, page 67).

2.5.3 Layer interaction

In a multiplex network it is desirable to know which nodes are active in more than one
layer, to identify those that are capable of facilitating inter-layer communication. To
this end, methods have been developed which quantify the multilayer participation
of nodes by measuring the distribution and heterogeneity of their connections across
multiple layers (Battiston et al., 2014, 2016).

In later chapters one problem we will attempt to address is to identify those nodes
that are the most important in the most layers. A simple and direct approach proposed
here is the normalised degree-rank product. For a single layer, the degree tells us
the importance of a node within that layer. In the absence of data on the relative
weighting and linearity of interactions – either within or between layers – ranking the
nodes by degree provides a linear ordering of connectivity that can be compared across
layers with different interactions types. Although the processes of ranking removes
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information, it also prevents high-degree nodes from disproportionately dominating
the analysis when layers are compared. The product of this linear rank then measures
the importance of nodes, both within layers and between layers, and identifies those
with the most potential to act as cross-layer hubs. The full method is as follows: nodes
are first dense ranked in ascending order

κi = rank(ki) (2.91)

such that the lowest degree node has rank κ = 1, and the highest degree has rank
κ ≤ N . Due to the use of dense ranking, if two nodes exist with the same degree, then
they are also assigned the same rank (κi = κj ⇐⇒ ki = kj), with the rank of the
node with the next highest degree incrementing by 1. Thus, max(κ) = N if and only
if each node’s degree is unique within that layer:

max(κ[β]) = N ⇐⇒
(
k

[β]
i ̸= k

[β]
j ∀v

[β]
i , v

[β]
j ∈ V [β] where i ̸= j

)
. (2.92)

As a consequence, max(κ) can vary between layers, depending on the number of nodes
within a layer that share the same degree. To address this, we first rescale the rank to
the interval [0, 1] before taking the product. The normalised degree-rank product can
thus be written as:

knormi
=

X∏
β=1

 κ
[β]
i −min(κ[β])

max(κ[β])−min(κ[β])

 , (2.93)

where knormi
∈ [0, 1]. Computing this for all nodes, we can then find the node with the

highest participation across all of the layers:

argmax
i

(knormi
). (2.94)

To illustrate, if a node has the highest degree in all of the network layers, thus
participating the most across all of the network layers, it would have knorm = 1.

2.6 Software tools

Many of the network measures and algorithms described above have published soft-
ware implementations available, often in one or more network analysis applications,
toolboxes, or software libraries. Many of these are open source. A listing of some of



82 Complex network theory in connectomics

the most popular software tools for network analysis is included in Appendix H.

The network analyses presented in the following chapters were performed primarily
in MATLAB (v8.5, The MathWorks Inc., Natick, MA) using the Brain Connectiv-
ity Toolbox (Rubinov and Sporns, 2010) and MATLAB/Octave Networks Toolbox
(Bounova, 2014; Bounova and de Weck, 2012). Combined, these two toolboxes imple-
ment the majority of network measures described above. Additional custom-written
MATLAB functions were used for data handling, network transformations, visualisa-
tions / plots, and custom measures.

General network diagrams were created using Cytoscape (Shannon et al., 2003)
and Dia1. Hive plots (see Krzywinski et al., 2011) were generated using the Python
hiveplotter function (v3.5, Python Software Foundation), written and provided courtesy
of Barnes (2016), using functionality from the NetworkX package (Hagberg et al.,
2008). 3D visualisations of the C. elegans connectome were created in neuroConstruct
(Gleeson et al., 2007) from model data provided by the OpenWorm (Szigeti et al.,
2014) and VirtualWorm projects2. Power-law distributions were computed using the
maximum-likelihood method from Virkar and Clauset (2014), and Clauset et al. (2009)3.

Reducibility analysis, hierarchical layer clustering, and multilayer plots were per-
formed in MuxViz (De Domenico et al., 2015b), using the algorithm described in
De Domenico et al. (2015a), and the Ward hierarchical clustering method to visualise
layer similarity (Ward, 1963). Finally, network motifs were computed using the ESU
algorithm implemented in FANMOD (Wernicke, 2005; Wernicke and Rasche, 2006).
URLs are provided in Appendix H, page 263.

1https://wiki.gnome.org/Apps/Dia/
2http://caltech.wormbase.org/virtualworm/
3http://tuvalu.santafe.edu/~aaronc/powerlaws/

https://wiki.gnome.org/Apps/Dia/
http://caltech.wormbase.org/virtualworm/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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The wired connectome





Chapter 3

Comparing the wired connectomes
of C. elegans

3.1 Introduction

T he wired connectome of C. elegans has become the canonical dataset in the study
of brain networks, as well as the study of complex networks in general. This is

due in part to its completeness. Indeed, thirty years after its publication, C. elegans
remains the only organism to have had its complete connectome mapped at cellular
resolution. The C. elegans network has been instrumental in launching the field of
connectomics, and insights developed from it have contributed to the understanding of
several biological and network properties (Nicosia et al., 2013; Sengupta and Samuel,
2009; Stam and Reijneveld, 2007), as well as providing a test-bed to attempt whole-
brain emulation at the neural level (Blau et al., 2014; Kitano et al., 1998; Petrushin
et al., 2015, 2016; Szigeti et al., 2014).

While much remains to be learnt about neural processing in the worm, it is de-
sirable to obtain connectomes for other species. The ability to perform comparative
connectomics would facilitate the investigation of general, evolutionarily-conserved
principles of brain organisation common across species (Fiore et al., 2015; Goulas et al.,
2014; Heuvel et al., 2016; Meinertzhagen, 2017), and further provide the ability to
study more complex behaviours and structures, including topological abnormalities
associated with pathologies. With such clinical and scientific objectives in mind, the
grand challenge of connectomics is to map the human connectome at the cellular level;
however, the size and complexity of the human brain make this extremely challenging.
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Fig. 3.1 Illustration of the manual tracing process used to constructed the original
White et al. (1986) connectome. Figures modified from (Emmons, 2015; White et al.,
1983, 1986).

Fig. 3.2 Elegance tracing software used to create the updated WormWiring connectome.
Figures modified from Xu et al. (2013).

To illustrate the difficulty of the undertaking, consider it took approximately twenty
years to image and manually reconstruct the connectivity of 302 neurons in C. elegans
by tracing electron micrograph (EM) sections (Emmons, 2015); see Figure 3.1. If the
same approach was used for the human brain, with its estimated 100 billion neurons
(Williams and Herrup, 1988), and assuming that the time taken scales linearly with
the number of cells, it would take ∼7 billion years to map the whole human brain, or
half the current age of the universe.

Clearly the approach used to map the worm cannot be applied to larger brains. A
critical task for meso- & micro- scale connectomics then, is to develop a fast accurate
method to automatically trace neurons through micrographic sections and identify
synaptic contacts. Advances in microscopy and computer vision have begun to make
this possible in recent years, and several large-scale projects are now attempting to map
the connectomes of both flies and mice (Chklovskii et al., 2010; Osten and Margrie,
2013).
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One computer-assisted method, Elegance, has recently been used to reconstruct
the previously unmapped tail circuits of a C. elegans adult male (Jarrell et al., 2012),
enabling the reverse engineering of networks that control worm mating behaviour
(LeBoeuf et al., 2014). The same reconstruction software (Xu et al., 2013)1 has also
been applied to the original White et al. (1986) TEM images (Figure 3.2), to produce
an updated hermaphrodite connectome using automated methods (Emmons et al.,
2015)2. This provides a unique opportunity to compare manual and computer-assisted
neuron tracing techniques across an entire nervous system – something which is not
currently possible in any other organism.

3.1.1 Chapter overview

This chapter analyses the first release of the new C. elegans connectome, generated using
computer-assisted methods, and compares it to the standard worm connectome derived
from manual tracing. Topological changes between the two networks are identified, to
characterise the differences between manual and automated reconstruction methods,
and to assess whether findings in the worm connectome literature are still valid for the
new network.

3.2 Materials & Methods

3.2.1 Connectivity data

Analyses were performed on both the original and updated hermaphrodite C. elegans
networks, using data taken from three sources. These networks, referred to herein by
their two-letter abbreviations, are:

• Albertson-Chklovskii connectome (AC) — the canonical hermaphrodite connec-
tome, composed from the somatic network of White et al. (1986), updated and
released by the Chklovskii lab (Chen, 2007; Chen et al., 2006; Varshney et al.,
2011); and the pharyngeal network of Albertson and Thomson (1976), made
available by the Cybernetic Caenorhabditis elegans Program (CCeP)3

(Oshio et al., 2003).

• WormWiring connectome (WW) — the first release of the new hermaphrodite
connectome, generated using the computer-assisted method described by Xu et al.

1https://github.com/emmonslab/
2http://www.wormwiring.org/
3http://ims.dse.ibaraki.ac.jp/ccep/

https://github.com/emmonslab/
http://www.wormwiring.org/
http://ims.dse.ibaraki.ac.jp/ccep/
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(2013). This network is the version provided as of May 2015, courtesy of Scott W.
Emmons. The most recent version is available for download from the internet4.

The functional classifications referred to in this chapter (i.e. sensory neuron, interneu-
ron, motor neuron) are based on the classification schema used by WormAtlas (Altun
et al., 2002) and WormWeb. Full details are given in Appendix F, page 251.

3.2.2 Topological network measures

All network measures are the same as those described in Chapter 2. The connected
components, edge counts, and adjacency matrices used to identify differential connec-
tivity were generated using binary directed versions of the full datasets. The same
networks, excluding self-connections (Aij = 0 if i = j), were used to compute the
network density and reciprocity measures. All other analyses used binary undirected
versions of the networks with self-connections removed, except where specified otherwise.

Network measures are compared to 100 null model networks (shown in the boxplots)
generated using the degree-preserving edge-swap randomisation procedure described in
Chapter 2 (Algorithm 5), where networks were randomised with 10×M edge-swaps.
As per the definition given in Humphries and Gurney (2008), the small-world index
was normalised against 100 Erdös-Rényi (ER) reference networks containing the same
number of nodes and edges as the actual networks.

3.2.3 Software

Analyses and data handling were performed using the methods described in § 2.6. URL
links to the software tools are provided in Appendix H, page 263.

3.2.4 Literature search

To determine if any known function exists for synapses missing from the WW network,
a search was performed for each pair of neuron class IDs against the available literature
using the Google Scholar search engine5. Search results were reviewed manually to
assess their relevance.

4See footnote 2
5http://scholar.google.com/

http://scholar.google.com/
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3.3 Results
Profiling the gross structure of the AC and WW networks reveals a large disparity
between the number of links. The new WW connectome increases the total number
of synaptic edges by 56 % over the original network, with an even greater increase of
96 % for gap junctions, giving a corresponding rise in total network density of 57 %
(Table 3.1). Inspecting the distribution of the degree change between the aggregate
networks shows that the degree increase approximately follows a Gaussian distribution,
with a mean change of +6.83 per node (Figure 3.3).

Measure AC WW ∆
№ synaptic edges M→

syn 2284 3572 1288
№ gap junction edges Mgj 568 1111 543
№ aggregate network edges M→

ag 3162 5028 1866
Aggregate network density D→

ag 0.035 0.055 0.02

Table 3.1 Edge count & network density.
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Fig. 3.3 Histogram of degree differences between the aggregate AC & WW networks.
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(a)  Albertson-Chklovskii (AC) (b)  WormWiring (WW) 

Fig. 3.4 Network wiring diagrams of the synaptic connected components in the AC &
WW connectomes. Isolated neurons are identified by name.

Counterintuitively, an examination of the connected components of both synaptic
networks reveals that the overall increase in connectivity seen in WW does not corre-
spond with a reduction in network fragmentation (Figure 3.4). Instead, the opposite is
observed. Comparing the wiring diagrams of the two networks reveals that while the
previously unconnected VC06 motor neuron merges with the main component in WW
(Figure 3.4b), three previously connected cells become separated (M5, PLML/R).

Analysing the changes in link types individually, the degree-degree correlations show
that the increases seen in WW are uniformly distributed across the synaptic network,
yet the changes in gap junction degree are much more diverse (Figure 3.5). Plotting
the networks in an adjacency matrix highlights that the variations in gap junction
connectivity form two anatomically distinct clusters in the worm (Figure 3.6b): a large
increase in connectivity between interneurons in the somatic network (Figure 3.6b,
magenta), and a decrease in gap junctions within the pharynx (Figure 3.6b, green).
The adjacency matrices further reveal a widely distributed pattern of synapses and gap
junctions in AC that are no longer present in WW (Figure 3.6 a & b, green), explaining
the observed fragmentation. These total 154 gap junctions, and 295 synapses (listed in
Table 3.2).
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(a) Synaptic degree correlation (b) Gap junction degree correlation 

Fig. 3.5 Degree-degree correlation between individual nodes in the AC & WW networks.
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Fig. 3.6 Adjacency matrices showing the differences between the AC and WW synaptic
and gap junction networks. New connections in WW that do not exist in AC are shown
in magenta, those in AC but not WW are in green, and the overlap between the two
networks is shown in blue. Nodes are classified as pharyngeal (Phx), sensory, motor,
or interneurons.
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3.3.1 Connections omitted in WW

To estimate the accuracy of the Elegance method used to generate the new WW
connectome, Xu et al. (2013) preformed three reconstructions of a single neuron in the
male connectome, and evaluated differences in the scoring of chemical synapses. These
replications revealed that cells were consistently paired 66 % of the time, suggesting
that the majority of connections in the WW connectome derived from this method are
likely accurate. Athough it is not possible to determine which of the new connections
in the WW connectome are real, it is possible to identify omissions that represent
likely errors. Of the synapses that are no longer in WW, but which exist in the original
network (Table 3.2), the literature suggests that at least some of these omissions are
incorrect. For example, considering the egg-laying circuit, it has been shown that
reciprocal connections between HSN and VC04/05 play a role in regulating egg-laying
behaviour (Zhang et al., 2010), while ALM and PLM are both known to inhibit egg-
release through synapses onto HSN (Sawin, 1996; Schafer, 2005; Zhang et al., 2008).
Missing connections between I2 and I6 have been independently verified to exist in
the pharynx (Bhatla et al., 2015), and multiple connections dropped from WW are
within the well characterised locomotory systems: these include connections required to
coordinate contralateral muscles groups ({DA,DB}→VD & {VA,VB}→DD) (McIntire
et al., 1993; Zhen and Samuel, 2015), control forward and backward locomotion (e.g.
PVC→{DB, VB}; {AVD, AVE}→DA; AVA→AVB), and inhibit forward movement in
response to posterior body touch (PLM→{AVA, AVD}) (Chalfie et al., 1985; Driscoll
and Kaplan, 1997). One missing connection is also thought to be involved in inhibiting
movement during sleep-like lethargus (ALA→AVA) (Fry et al., 2014).

3.3.2 Asymmetric gap junctions

Inspecting the weighted directed version of the WW gap junction data reveals that
eighteen of the edges are asymmetric (Aij ̸= Aji), lacking one or more matching
reciprocal connections (Table 3.3). Given the inherently bidirectional nature of gap
junctions, it seems likely that the observed asymmetries stem from neuron tracing
errors. These asymmetries span the length of the worm, but are all localised within the
ventral nerve cord. The majority of these connections are to ventral cord motor neurons,
with the other neurons being either sensory or interneurons with processes that extend
into and along the length of the ventral cord. These neurons are visualised in Figure 3.7.
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Fig. 3.7 Sensory and interneurons with asymmetric gap junctions, all with processes in
the ventral nerve cord. Visualised using data from OpenWorm (Szigeti et al., 2014).
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I1L→M1 PLMR→AVAR AVFL→PVQR PVCL→DA06 RMFL→RMGR
I1L→M2R PLMR→AVDL AVFR→ASJL PVCL→DB05 RIVR→RMEV
I1L→NSMR PLMR→AVDR AVFR→ASKL PVCL→DB06 SMBDL→AVAR
I2L→I6 PLMR→AS06 AVFR→AVJR PVCL→VB03 SMBVL→PLNL
I2L→MCL PLMR→HSNR AVFR→VD11 PVCL→VB05 URADR→RMDVR
I2R→I6 ALNR→RMHR AVG→AVL PVCL→VB08 URADR→RMED
I3→I1R PLNL→SAADL AVG→PVPR PVCL→VB10 DA01→VD01
I3→M2R PLNL→SMBVL AVG→AVEL PVCR→PDEL DA02→VD01
I3→NSML PLNR→SAADR AVHL→PVQL PVCR→DA09 DA04→DA03
I4→M1 PLNR→SMBVR AVHR→ADLL PVCR→DB05 DA04→DB03
I5→M5 FLPR→AIBR AVHR→PVNL PVCR→DB06 PDA→AS11
I6→M3R BAGL→RIBL AVJL→PLMR PVCR→DB07 DB01→AS03
M1→M3L URYVR→SIBDR AVJL→AVFR PVCR→AS02 DB01→VD01
M1→M3R ADEL→SIBDR AVJL→HSNR PVCR→VB07 DB02→VD05
M1→M5 ADER→ALA AVJR→PVQR PVCR→VB08 AS03→DD01
M1→MCL ADER→RIH AVKL→PVM PVCR→VB10 AS03→VD02
M1→MCR ADER→AVKL AVKL→PDEL AVAL→AVHL AS04→AS05
M4→M1 ADER→AVKR AVKL→PDER AVAL→AVBR AS05→DD02
M5→I5 ADER→PVR AVKL→RMFR AVAL→DA06 AS09→AVAR
M5→M1 ADER→SAAVR AVKL→SMDDR AVAL→DB05 AS11→PDA
MI→I5 PDEL→PVM AVKR→SMDDL AVAL→DB06 AS11→PDB
MI→M3R PDEL→PDER AVL→AVFR AVAL→AS03 DD05→VB08
NSML→I6 PDEL→AVKL AVL→DA02 AVAR→ADER DD05→VD09
NSMR→M3L PDEL→PVR DVA→PDEL AVAR→PDEL VA08→VA09
NSMR→M4 PDEL→VA09 DVA→DB05 AVAR→PDER VA08→VB08
ADFL→OLQVL PDEL→VD11 DVA→DB06 AVAR→AVEL VA09→PVT
ADLL→AIBR PDER→AVKL DVC→AVKR AVAR→SABD VB01→DVA
AWAR→ASEL PDER→PVCL PVNL→RIFL AVAR→SABVL VB01→SAADR
AWBR→SMBVR PDER→PVCR PVNL→AVFR AVAR→DB05 VB01→SABD
AWCL→ASEL PHBR→AVFL PVNL→AVEL AVAR→DB06 VB06→VB07
IL1DL→URYDL PHBR→DA08 PVNR→BDUR AVAR→AS03 VB07→DD04
IL1DL→RIH AIAL→HSNL PVNR→PVNL AVAR→AS10 VB08→VA09
IL1DL→PVR AIBL→ASER PVNR→PVCL AVAR→VD13 VB08→VB09
IL1L→IL1DL AIBL→AIYL PVNR→AVBL AVBL→AVDL VB09→VB08
IL1R→IL1DR AIYR→HSNL PVNR→DD03 AVBL→AVEL VD08→DD04
IL1VR→RMER ADAL→FLPR PVNR→VD12 AVBL→AS03 VD10→DD05
OLQDL→SIBVL ADAR→RICL PVNR→VC03 AVBL→AS06 VD12→VB10
OLQDR→SIBVR ADAR→AVAL PVPL→AVER AVBL→AS09 VD13→PVCL
OLQVL→IL1VL AIML→AVBR PVPR→RMGR AVBL→VA07 HSNL→AVDR
OLQVL→IL2VL AIML→AVDR PVPR→RIMR AVBR→DA05 HSNL→SABVL
OLQVL→RIPL AIML→AVER PVQR→DVC AVBR→AS05 HSNL→VC05
OLQVL→RIH ALA→ADEL PVQR→PVT AVBR→AS06 HSNR→AIBR
OLQVL→SIBDL ALA→AVAL PVQR→AVBL AVBR→AS07 HSNR→AVL
OLQVR→SIBDR RIPL→OLQDL PVQR→HSNR AVBR→VA09 HSNR→VD04
CEPDR→RIBR RIPR→OLQDL PVR→IL1DL AVDL→AS01 HSNR→VC03
CEPDR→RIS RIAL→CEPVL PVR→PDEL AVDL→AS05 VC01→DD03
CEPDR→SIADL RIAR→SIADL PVR→PDER AVDR→DA09 VC02→PVCR
CEPDR→RMDDL RICL→AVKR PVR→ADAL AVDR→AS05 VC02→DD03
CEPDR→SMBDR RIFR→AVHL PVR→PVCR AVDR→VA06 VC03→DVC
CEPVL→ADLL RIGL→DVC PVR→AS06 AVEL→DA04 VC03→DD03
AVM→VA01 RIGL→RMFL PVT→SMBDR AVER→VA05 VC03→DD04
PVM→PDEL RIH→CEPDR PVWL→AVJL SAADL→RMGR VC04→AVBL
PVM→PDER RIS→CEPDR PVWL→VA12 SAAVL→ALNL VC04→VC01
PLML→HSNL RMGL→ALML PVWR→PVT SABD→VA02 VC04→VC05
PLMR→PDEL RMGL→ALNL PVWR→PVCR RMDDR→URYDL VC05→OLLR
PLMR→PDER RMGL→SIBVL RID→AS02 RMDL→RMFL VC05→URBL
PLMR→DVA RMGR→AVAR RID→DD03 RMDR→AVKL VC05→HSNL
PLMR→PVCL AVFL→PDER RID→VD13 RMDVR→SIBVR VC05→VC03
PLMR→AVAL AVFL→AVJR PVCL→DA02 RMFL→RIGR VC05→VC04

Table 3.2 Cell-cell synaptic connections in AC that no longer exist in WW.
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Cell A Cell B Sent Received
PVM DB03 2 0
PVM VD09 1 0
PVDR PVCR 2 0
PDEL VD06 2 0
PDER AVKL 0 1
DVA VB04 0 1
AVAL VA05 4 5
AVAL VA09 5 4
AVAR VA05 5 4
AVAR VA09 4 5
AVBL DB06 4 3
AVBL VB08 4 3
AVBL VB09 3 4
AVBL VB10 4 3
AVBR DB06 3 4
AVBR VB08 3 4
AVBR VB09 4 3
AVBR VB10 3 4

Table 3.3 Asymmetric gap junctions in the WW connectome.

3.3.3 Network measures

Comparing the global properties of the two networks reveals that, despite the large
changes at the level of individual edges, many of the statistical features remain es-
sentially unmodified, including the clustering coefficient, maximised modularity, and
characteristic path length (Figure 3.8a-c), all of which correspond with previously
reported values (Humphries and Gurney, 2008; Reese et al., 2012; Watts and Strogatz,
1998). All of these measures are also much higher than expected compared to random
networks with the same degree distributions. This suggests that at least some parts
of the neural network of C. elegans are functionally segregated (i.e. highly clustered
modules).

The largest change displayed between the two networks is in assortativity. As
previously reported, the AC connectome is weakly disassortative (Newman, 2002;
Rudolph-Lilith and Muller, 2014), though it was found here to be no more so than
random (Figure 3.8d). This is no longer the case in the WW connectome.
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(a) Clustering coefficient
CAC = 0.22 (zAC = 9.66)

CW W = 0.27 (zW W = 9.81)

(b) Modularity
QAC = 0.41 (zAC = 9.71)

QW W = 0.42 (zW W = 9.8)

(c) Characteristic path length
LAC = 2.68 (zAC = 9.85)

LW W = 2.47 (zW W = 9.88)

(d) Assortativity coefficient
RAC = −0.07 (zAC = 1.04)
RW W = 0.01 (zW W = 5.17)

Fig. 3.8 Comparison of network metrics for the AC & WW aggregate networks,
showing observed values (filled squares) and expected values from 100 randomised

networks (boxplots).
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While there is virtually no assortative mixing in WW (RW W = 0.01), there is a
significant increase in assortativity relative to both the AC network and the null model
control (zW W = 5.17 compared to random networks with the same degree distributions).
This change can be partially explained by the presence of new connections between
interneurons, mentioned previously (Figure 3.6). Consider that disassortativity de-
scribes the dominant presence of hub-and-spoke like architectures (central high-degree
nodes connected to a low-degree periphery). In the worm, this motif is prominent in
connecting sensory neurons to interneurons (e.g. Macosko et al., 2009), and between
interneurons and motor neurons (Chalfie et al., 1985). The majority of high-degree
to high-degree connectivity is between interneurons, especially those in the nerve ring
– as reflected by the rich-club (RC) members (Towlson et al., 2013); therefore, the
preferential increase in interneuron connectivity seen in WW is the most likely cause
for the change in assortative mixing, which is further reflected in the expansion of the
rich-club (§ 3.3.7).

3.3.4 Scale-free & small-world properties

Concerning topological arrangement, the AC and WW networks both exhibit heavy-
tailed degree distributions in line with previous reports (Rudolph-Lilith and Muller,
2014) (Figure 3.9), and the WW network retains small-world characteristics, though
slightly reduced compared to AC (Figure 3.10b).

3.3.5 Robustness

Robustness measures the stability of a network to structural damage. As the maximum
robustness value is defined as ρ = 0.5 (Schneider et al., 2011a,b), it can be seen that
the architectures of both the AC and WW connectomes have a high fault-tolerance
(Figure 3.10a), though considerably less so than their randomised counterparts. The
high resilience is explained by the reported finding that networks with power-law degree
distributions undergo gradual, rather than catastrophic, deterioration in response to
lesions (Albert et al., 2000); however, the extent to which this is true is also partially
affected by assortativity – components in a highly connected, assortative, network
are much harder to destroy than those in a hub-and-spoke, disassortative, network
where the removal of the central hub results in complete dissociation of the network
(Newman, 2002; Rubinov and Sporns, 2010; Teller et al., 2014).
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(a) AC (α = 3.57) (b) WW (α = 4.37)

Fig. 3.9 Scale-free properties of the AC & WW aggregate networks (showing best fit
for the power-law distribution P (k) = k−α).

(a) Robustness
ρAC = 0.466 (zAC = −3.63)

ρW W = 0.475 (zW W = −3.84)

(b) Small-worldness
SAC = 3.69
SW W = 3.00

Fig. 3.10 Robustness and small-worldness of the AC & WW aggregate networks.
Robustness plot shows observed values (filled squares) and expected values from 100

randomised networks (boxplots).
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As mentioned previously (and detailed in § 3.3.7) both of the wired C. elegans
connectomes exhibit a core-periphery structure with an intrinsic mix of assortative
and disassortative circuits. This combination of predominant robustness with localised
vulnerability is evidenced by experimental observations. For example, 85 % of the
neurons in the worm’s pharynx can be ablated without affecting viability – most of
which are interneurons – while the remaining 15 % are essential for normal feeding
behaviour (Avery and Horvitz, 1989). Similarly, large portions of the gap junction
network can be genetically ablated (Kawano et al., 2011; Simonsen et al., 2014) and
whole neurotransmitter systems disrupted without causing lethality (e.g. Jin et al.,
1999). This level of robustness also extends to the extrasynaptic networks, where all
2036 monoamine edges can be knocked out without major consequences (Duerr et al.,
1999); yet, certain behaviours show comparatively high vulnerability and are known
to be dependent on a few peripheral neurons. For example, ablating two classes of
sensory cells is sufficient to abolish almost all responses to nose-touch (Kaplan and
Horvitz, 1993).

Even though both the AC and WW networks have high robustness, it is surprising
that the worm connectomes should be less robust than randomly rewired versions.
The fact that random networks are more robust than the evolutionarily-designed one
suggests the presence of a conflicting design objective, and a trade-off against a more
desirable network property. The random counterparts, having the same number of
nodes and edges, demonstrate it is unlikely to be the result of an energetic constraint
with respect to the structure.

Other biological networks have previously been found to have lower robustness than
expected, including the protein-protein interaction (PPI) networks of several organisms.
Discussing PPI networks, Schneider et al. (2011a) suggest that reduced resilience might
be a consequence of modular structure. Modularity, by definition, reduces global
interconnectedness in favour of local connections; this in turn increases a network’s
fragility, as modules are vulnerable to becoming disconnected. The robustness metric
thus suggests that the C. elegans nervous system is preferentially selecting functional
segregation at the expense of structural fault-tolerance.
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3.3.6 Reciprocity

Reciprocity is an important feature in brain networks. Depending on the sign and
strengths of the synapses, reciprocal connections can perform several biologically impor-
tant computations. These include signal integration, associative memory, amplification,
gain control, as well as the generation of synchronised, oscillating, or tonic signals
(Dayan and Abbott, 2005; Getting, 1989; Sommer and Wennekers, 2003). Reciprocal
connections also provide a simple method of circuit switching (e.g. Li et al., 2012),
and have been found to be overrepresented in the nervous systems of both worms and
mammals (Reigl et al., 2004; Song et al., 2005). In C. elegans reciprocal connections
are known to be involved in coordinating locomotion (Roberts et al., 2016; White et al.,
1986) and regulating male mating behaviours (Correa et al., 2012).

During the original mapping of the worm connectome, White et al. reported the
presence of a bias against reciprocal connections in C. elegans (White et al., 1983).
This was later shown to be false by Reigl et al. (2004).

Analysing the reciprocity of the AC connectome confirms that there are more
reciprocal connections than random – with a bias for, rather than against, reciprocity
(Figure 3.11) – however, these only account for 13 % of the total network, which likely
lead to the original statement by White et al. (1983).

Fig. 3.11 Reciprocity for the directed AC & WW synaptic networks, showing observed
values (filled squares) and expected values from 100 randomised networks (boxplots).
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In the WW network, the number of reciprocal connections increases to approximately
27 % of all synapses; much higher than in the randomly rewired networks with the
same degree distributions (zW W = 9.63). This increase in reciprocity over the original
AC network is also reflected in the synaptic adjacency matrix, where the WW con-
nections are seen to be more symmetrically distributed along the diagonal (Figure 3.6a).

3.3.7 Rich-club organisation

Many neural systems have previously been reported to contain a core rich-club (RC) of
densely connected neurons (Harriger et al., 2012; Heuvel and Sporns, 2011; Liang et al.,
2017; Reus and Heuvel, 2013; Shih et al., 2015), including in the wired connectome of
C. elegans (Towlson et al., 2013). Comparing the rich-club coefficients of the AC and
WW connectomes reveals that both networks retain this feature, with a high-degree
core that is more densely interconnected than random (Figure 3.12).

Examining the neurons within the RCs reveals a large overlap between the two
cores (Table 3.4). The AC rich-club is composed entirely of interneurons, most of
which are in the head. Three new members are identified here that were not found
by Towlson et al. (2013) (at k = 34). Two of these neurons are in the same class as
existing RC members (AIB, RIB), with the remaining neuron following the established
pattern of being a head interneuron (AVKL).

The RC core is found to be expanded in the WW network, including all but three
of the RC members from AC, along with an additional seven neurons. Of the new
RC neurons, one is the contralateral partner to an existing member (RIAL), three are
tail interneurons with processes in the nerve ring (PVT, PVR, PVNR), two are head
interneurons (AVHR, RMGL), and the remaining cell is an egg-laying control neuron
that is also a member of the monoamine rich-club (HSN; see Chapter 4), suggesting a
central role in linking the extrasynaptic and wired transmission networks.
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(a) AC network (rich-club at k ≥ 34)

(b) WW network (rich-club at k ≥ 45)

Fig. 3.12 Rich-club curves for the undirected AC & WW aggregate networks. Dashed
line indicates the rich-club coefficient for the C. elegans network and the solid curve
represents the average rich-club coefficient of 100 randomised networks (preserving
degree distribution) at each value k.
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AC WW
rich-club kagAC rich-club kagW W

AVAR 93 AVAL 99
AVAL 92 AVAR 98
AVBL 75 AVBR 83
AVBR 74 AVBL 76
AVER 56 DVA 71
AVDR 55 AVER 65
AVEL 55 AVDR 64
PVCL 54 PVCR 63
PVCR 53 AVEL 63
DVA 50 PVCL 60
AVDL 44 AVDL 57
AIBR 39 AIBR 49
RIBL† 38 PVNR⋆ 47
RIAR 36 AIBL 46
— RIAL⋆ 46
AIBL 34 RIAR 46
RIBR† 34 AVHR⋆ 46
AVKL† 34 PVR⋆ 46

RMGL⋆ 45
PVT⋆ 45
HSNR⋆ 45

Table 3.4 Rich-clubs of the AC and WW aggregate networks at the Φnorm(k) ≥ 1 + 3σ
level, including newly identified AC rich-club members (k = 34) not described by
Towlson et al. (2013). Neurons in the AC rich-club which are no longer classified as
such in WW are identified with †. Newly identified rich-club members in WW are
marked ⋆.
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3.4 Discussion

3.4.1 Synaptic networks

On the somatic connectivity of the AC network, Varshney et al. (2011) estimate that
their connectome is about 90 % complete, and conclude from synaptic antibody staining
that only ∼5 % of the chemical synapses are missing.

The 56 % increase in chemical synapses observed in the WW network suggests one
of two possibilities: either the number of synapses in the C. elegans nervous system
has been vastly underestimated in the past, or the WW network (and the Elegance
reconstruction method) has a high false-positive rate.

If the former is true, this might have consequences for existing interpretations of
experimental data. Consider, for example, processes described to be cell-autonomous:
if experiments have been conducted and interpreted under an incorrect assumption
that there are no upstream or parallel synapses that have not been controlled for, these
interpretations could be invalid, in turn affecting any larger theories based on them.
If, instead, the latter is true and there is a high number of false-positives, this raises
concerns about using WW to interpret findings, and has further implications for the
accuracy of the male connectome generated using the same method.

In either case, it is worth considering the possibility that the anomalous addition (or
omission) of individual connections could lead to erroneous interpretations of biological
data, and the generation of false theories. It should therefore be emphasised that no
single connectome can be considered authoritative at this stage, and any descriptions
of local circuit features should be treated with caution, regardless of the connectivity
data used.

While the literature suggests the presence of at least some false-negative mapping
errors in WW (i.e. missed connections), it is impossible to quantify the full accuracy
of either the AC or WW network from the available data. The highest confidence
for a false-negative exists for the missing connections between I2 and I6, due to the
additional pharyngeal reconstruction performed by Bhatla et al. (2015).
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3.4.2 Gap junction networks

The largest increase in connectivity seen in the WW reconstruction is in the gap
junction network. Discussing this increase with the authors, Emmons et al. confirm
that they score gap junctions more liberally than in the original work by White et al.
(Scott W. Emmons, Personal Communication, June 2015).

If the new gap junction mapping is correct, it identifies a cluster of connectivity
between the worm’s interneurons that has not previously been described. As gap
junctions physically couple the internal cytoplasms and electrical potentials of cells,
this points to these interneurons as possibly forming a single functional control unit.

The asymmetric connections in the WW gap junction network are strongly indica-
tive of mapping errors, however these form only a small fraction of the total gap junction
network. The fact that they are localised to the ventral nerve cord suggests these errors
are artefacts specific to this structure, either from poor EM data or difficult-to-score
connectivity patterns, rather than a general flaw in the Elegance method.

The localised decrease in gap junctions seen in the pharynx might also be an error
specific to the structure or source data. It is known that gap junctions play a role in
regulating pharyngeal pumping, and that mutants with gap junction defects have acute
feeding phenotypes; however, such phenotypes are likely due to their role in muscles,
rather than neurons (Altun et al., 2009; Chalfie et al., 1985; Li et al., 2003; Simonsen
et al., 2014; Starich et al., 1996). Further work will need to be conducted to assess the
accuracy of the gap junction omissions in WW.

3.4.3 Validation & future work

In the absence of additional data, statements can only be made about the relative
differences between the AC and WW networks; no statement can be made about the
absolute accuracy of either network. This is an issue for any mapping method, manual
or automated; however, there are approaches that can be used to improve mapping
confidence.

With the development of different reconstruction methods (including non-image-
based approaches, such as the RNA barcoding of neurons e.g. Zador et al., 2012;
Kebschull et al., 2016), it is foreseeable that a more accurate network could be gener-



106 Comparing the wired connectomes of C. elegans

ated by combining different systems to build a consensus network; for example, using
particle filtering or ensemble averaging techniques to minimise errors. This would not
completely exclude systematic biases that might exist in the underlying data acquisition
or tissue preparation, but it would provide a viable technological approach to increase
connectome accuracy without the need for manual validation. Averaged composite
networks are already used in the analysis of macroscopic MRI-derived connectomes
(Van Essen et al., 2013).

The ultimate validation of any worm connectome will likely only come through
the functional testing of synapses. Technologies to non-invasively image and stimulate
neurons in freely behaving animals (Leifer et al., 2011; Nguyen et al., 2016; Prevedel
et al., 2014; Shipley et al., 2014), coupled with automated worm handling and high-
throughput phenotyping (Geng et al., 2003; Husson, 2012; San-Miguel and Lu, 2013;
Schwarz et al., 2015; Swierczek et al., 2011; Yemini et al., 2013), provide a feasible
route to conduct the systematic characterisation of each individual neuron and synapse
in the worm, as well as their links to behaviour. Such an approach, applied to the
whole nervous system, will likely only be possible in C. elegans due to both its small
size, and transparent cuticle that allows for non-invasive imaging and neural stimulation.

Systematic functional validation would not only identify which synapses are true
within the connectome, it would also point to missing connections and novel extrasynap-
tic interactions. Any neural interactions above a certain threshold would be observable
either through correlated changes in neural activity, or alterations in behaviour that
cannot be explained from existing connections. In support of this statement, pharyngeal
pumping experiments have previously identified missing synapses within the worm
connectome (Bhatla et al., 2015). This approach would also have the benefit of revealing
the inhibitory or excitatory nature of synapses from the sign of the correlations, a
property which cannot be determined from the structure of the connectome alone.
Molecular approaches have been proposed for inferring the functional properties of
neurons, including cell-specific sequencing and in situ labelling (Ekstrand et al., 2014;
Hawrylycz et al., 2012; Lindner, 2014); however, such profiles are not sufficient to
determine the true functional characteristics. For example, certain channels can be
both inhibitory and excitatory, in a context dependent manner (Farrant and Kaila,
2007; Melzer et al., 2005); with the same also being true for gap junctions (Pereda
et al., 2013; Rabinowitch et al., 2013; Volman et al., 2011).
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If systematic functional validation were to be performed on the worm connectome,
it could provide a dataset against which to assess the accuracy of automated neural
reconstruction methods in other species, provided the effects of different neuron
morphologies are sufficiently accounted for.

3.4.4 Conclusions

This chapter has shown that the AC and WW networks, respectively derived from
manual and computer-assisted tracing methods, have largely comparable statistical
properties. Taken together, both maps provide strong evidence that the true C. el-
egans connectome is a small-world network with a heavy-tailed degree distribution,
containing a core rich-club of controlling interneurons, and having a structure that
supports functional segregation through the presence of clustered modules.

Regardless of whether the new and omitted connections in the WW network are
accurate, the observation that the majority of topological features do not change
suggests that the Elegance reconstruction method accurately captures the large-scale
network structure. Of the differences observed between the AC and WW networks,
the WW connectome shows a greater assortativity coefficient than previously reported;
however, both networks are still largely non-assortative. The increase in reciprocity
seen in the WW network also supports the existence of a bias for reciprocal connectivity,
and highlights the importance of local feedback in neural systems.

Generally, both the AC and WW networks share the same core of central neurons (as
described by the rich-club). The new additions in WW suggest a more important role
for tail interneurons in the connectome, and point to HSN as a central hub connecting
the synaptic and aminergic signalling systems. This work has also demonstrated that
both the AC and WW connectomes are highly robust to structural failure, though less
than expected. This increased fragility to circuit-degradation is likely the result of a
trade-off in favour of modular organisation.

The extent to which the existing worm network literature applies to the new network
depends on the specific circuits and the level of description. It is to be expected that
any global network findings should still hold, as the main structural trends remain
unchanged; however, individual synapses and subnetworks would have to be considered
on an individual basis due to the large number of small-scale discrepancies that exist.
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Xu et al. (2013) estimate that the Elegance method has increased neuron tracing
speed by at least an order of magnitude compared to previous methods. This study
has shown that it can also reproduce the same global properties found in the manually
traced connectome. Although computer-assisted tracing methods are not yet fast
enough to map the human brain, the Elegance system has facilitated the mapping of
the C. elegans male connectome for the first time, and provided a second reference
connectome for the hermaphrodite. While differences in the connectomes suggest a
need for caution in interpreting their small-scale connectivity, ongoing work to improve
EM imaging and neural reconstruction (e.g. Scheffer et al., 2013; Nunez-Iglesias
et al., 2014; Mikula and Denk, 2015; Kasthuri et al., 2015) will foreseeably provide
more accurate connectomic mapping methods in the future, and eventually lead to
technologies capable of reconstructing the microscale connectome of the human brain.



Part III

The extrasynaptic connectome





Chapter 4

The monoamine networks of
C. elegans

4.1 Introduction

A s outlined in the previous chapters, connectomics has primarily focused on
mapping the physical, synaptic, links between neurons. It is, however, well es-

tablished that chemical synapses are only one of several modes of interaction between
neurons. For example, gap junctions, which mediate fast, potentially bidirectional
electrical coupling between cells, are widespread in all nervous systems. Likewise,
volume transmission and neurohumoral signalling provide means for local or long-range
communication between neurons unconnected by synapses. As neuromodulators re-
leased through these routes can have profound effects on neural activity and behaviour
(Bargmann, 2012; Brezina, 2010; Marder, 2012), a full understanding of neural connec-
tivity requires a detailed mapping of these extrasynaptic pathways.

In C. elegans, as in many animals, one important route of neuromodulation is
through monoamine signalling. Monoamines are widespread throughout phyla, with
evidence that they are one of the oldest signalling systems, evolving at least 1 billion
years ago (Roshchina, 2010; Walker et al., 1996). In both humans and C. elegans, many
neurons expressing aminergic receptors are not post-synaptic to releasing neurons,
indicating that monoamine signalling occurs primarily outside the wired connectome
(Chase and Koelle, 2007). Monoamines are known to be essential for normal brain
function, with abnormal signalling being implicated in numerous neurological and
psychiatric conditions including depression, schizophrenia, addiction, Obsessive Com-
pulsive Disorder (OCD), Attention Deficit Hyperactivity Disorder (ADHD), chronic
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pain, and Parkinson’s Disease (PD) (see Lin et al., 2011). In C. elegans, these systems
play similarly diverse roles in regulating locomotion, reproduction, feeding states,
sensory adaptation, and learning (Chase and Koelle, 2007). Clearly, if the goal of con-
nectomics is to understand communication within the brain, extrasynaptic monoamine
interactions must also be mapped, not just the network of wired chemical synapses
and gap junctions.

4.1.1 Chapter overview

This chapter describes the process used to generate a map of extrasynaptic monoamine
signalling in C. elegans, based on new and published gene expression data, and finds
that the resulting extrasynaptic network exhibits distinct topological properties, in-
cluding rich-club organisation with interconnected hubs different from those of the
synaptic and gap junction networks. Despite the low degree of overlap between the
monoaminergic and synaptic networks, highly significant multilink motifs of interaction
are identified, pinpointing locations in the network where aminergic signalling is likely
to modulate synaptic activity.

This chapter shows that the neuronal connectome can be modelled as a multiplex
network with synaptic, gap junction, and neuromodulatory layers representing inter-
neuronal interactions with different dynamics and polarity, and provides a prototype
for understanding how extrasynaptic signalling can be integrated into a functional
connectome, as well as providing a novel dataset for the development of multilayer
network algorithms.

4.2 Materials & Methods

4.2.1 Synaptic & gap junction networks

The physical synaptic and gap junction networks analysed in this chapter are from the
Albertson-Chklovskii (AC) hermaphrodite connectome described in Chapter 3. The
decision to use the AC network over WormWiring (WW) was based on the identification
of missing links in WW, reported in the previous chapter.

As before, the physical network was composed from the somatic connectome of
White et al. (1986), updated and released by the Chklovskii lab (Chen, 2007; Chen
et al., 2006; Varshney et al., 2011); and the pharyngeal network of Albertson and
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Thomson (1976), made available by the Cybernetic Caenorhabditis elegans Program
(CCeP)1 (Oshio et al., 2003).

4.2.2 Monoamine network construction

To map the aminergic signalling networks of C. elegans, a literature search was first
performed to identify genes known to be receptors, transporters or synthetic enzymes
of monoamines. These were divided into classes based on the primary reported ligand,
providing a list of genes which could be used to identify neurons involved in the
serotonin (5-HT; Table 4.1), dopamine (DA; Table 4.2), tyramine (TA; Table 4.4), and
octopamine (OA; Table 4.3) signalling systems. Genes which could not be definitively
assigned to a single pathway were excluded (e.g. cat-1, bas-1, etc.). The synthesis
pathways of these molecules are shown in Figure 4.1.

A further search was performed to collect cell-level expression data for the monoamine
associated genes identified in the previous step. Expression patterns were collected
primarily from promoter::GFP reporter lines for the appropriate biosynthetic enzymes
and vesicular transporters, and verified against immunostaining and formaldehyde-
induced fluorescence (FIF) data (Horvitz et al., 1982; Lints and Emmons, 1999; Rivard
et al., 2010; Sulston et al., 1975) identifying monoamine-containing neurons, where
available (expression patterns and primary sources are listed in Appendix A, page 223).
This search was assisted with the curated expression databases of WormBase (Version:
WS248)2 (Howe et al., 2016) and WormWeb (Version date: 2014-11-16)3 (Bhatla,
2014). The expression patterns for each of five serotonin receptors (ser-1, ser-4, ser-5,
ser-7 and mod-1 ), three octopamine receptors (octr-1, ser-3 and ser-6 ), four tyra-
mine receptors (ser-2, tyra-2, tyra-3 and lgc-55 ), and four dopamine receptors (dop-1,
dop-2, dop-3 and dop-4 ) were compiled from published data (Appendix A). Since
these receptors are either ion channels or serpentine receptors predicted to couple
to pan-neuronal G-proteins, it was assumed that all neurons expressing monoamine
receptors are potential monoamine-responding cells.

Three additional genes encode known or candidate monoamine receptors, but have
missing or incomplete expression data (dop-5, dop-6, and lgc-53 ). Specifically, a
ligand-gated chloride channel, lgc-53, has been shown to be activated by dopamine

1http://ims.dse.ibaraki.ac.jp/ccep/
2http://www.wormbase.org/
3http://wormweb.org/neuralnet/

http://ims.dse.ibaraki.ac.jp/ccep/
http://www.wormbase.org/
http://wormweb.org/neuralnet/
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Fig. 4.1 Monoamine synthesis pathways in C. elegans. Known signalling molecules are
indicated by dashed boxes. Based on Chase and Koelle (2007), Loer (2010) & Hobert
(2013).
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(Ringstad et al., 2009), but its expression pattern and biological function have not been
characterised. Additional expression profiling using a transgenic lgc-53 reporter line
crossed to a series of known reference strains was performed by colleagues (detailed
in Appendix C, page 233), which indicated that lgc-53 is expressed in a small subset
of neurons in the head, body, and tail. Together with the published dop-1, dop-2,
dop-3 and dop-4 -expressing cells, these were inferred to make up the main domain of
dopamine-responding neurons (analysed in this chapter).

In addition, two G-protein coupled receptors, dop-5 and dop-6, have been hypothe-
sised based on sequence homology to dop-2 and dop-3 to be dopamine receptors. Using
the same approach used for lgc-53, expression patterns were collected by colleagues
identifying most of the cells with expression of dop-5 and dop-6 reporters (Appendix
Figure C.1, page 236). As dop-5 and dop-6 have not yet been definitively established
as functional dopamine receptors, these cells were included in a secondary provisional
dopamine network, the analysis of which is presented in Appendix G (page 257).

Using the cell identities derived from gene expression data, a directed graph was con-
structed with edges linking putative monoamine releasing cells (expressing monoamines,
biosynthetic enzymes, or transporters) to those cells expressing a paired receptor. Since
biologically-relevant long-distance signalling (e.g. from releasing cells in the head to
tail motor neurons) has been experimentally demonstrated in C. elegans for both
dopamine and serotonin (Chase and Koelle, 2007; Gürel et al., 2012) – while tyramine
and octopamine are each released from a single neuronal class (Chase and Koelle, 2007)
– edges were not restricted based on the physical distance between nodes. For the
serotonin network, only those neurons with strong, consistent expression of serotonin
markers such as tryptophan hydroxylase were included (NSM, HSN and ADF, Ta-
ble A.1). Additional neurons (AIM, RIH, VC4/5) that appear to take up serotonin but
not synthesise it (Duerr et al., 1999; Jafari et al., 2011) were not included in the network,
since they may function primarily in the homeostatic clearing of serotonin. The ASG
neurons were also excluded, which produce serotonin only under hypoxic conditions
(Pocock and Hobert, 2010), though they are likely to participate conditionally in the
serotonin signalling networks. As tyramine β-hydroxylase (tbh-1 ) converts tyramine
to octopamine, neurons expressing both tyrosine decarboxylase (tdc-1 ) and tyramine
β-hydroxylase (tbh-1 ) were limited to the octopamine network (RIC, see Table A.3).
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For caveats on the use of GFP reporter lines to infer gene expression, as well as a
discussion of potential measurement and integration issues, see Appendix D (page 237).

4.2.2.1 Data model

A data model showing the relations and constraints used to construct the network is
shown in Figure 4.2.
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Fig. 4.2 Monoamine data model. UML class diagram (ISO, 2012a,b) of the conceptual
data model used to construct the extrasynaptic monoamine network. Each box
represents a class of data, with lines depicting their associations. The numbers represent
the multiplicity of the constraints assumed in the modelling (e.g. a Transporter
transports exactly 1 Monoamine; while a Monoamine can be transported by 0 or
1 Transporters). Data which did not match these constraints were excluded (e.g.
the cat-1 Transporter transports >1 Monoamine, and was therefore not included).
Triangles denote the directionality of the relationships, and * represents an unbounded
(i.e. ∞) multiplicity.
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4.2.3 Network data

Edge lists for individual network layers are provided in the supporting information (S1
dataset) of Bentley et al. (2016), and can be accessed online from PLOS4 or PubMed
Central5.

4.2.4 Topological network measures

All network measures are the same as those described in Chapter 2. Edge counts,
adjacency matrices, and reducibility clusters were all computed using binary directed ver-
sions of the networks. The same networks, excluding self-connections (Aij = 0 if i = j),
were used to compute the multilink motifs and reciprocity.

Network measures are compared to 100 null model networks (shown in the box-
plots) generated using the degree-preserving randomisation procedure described in
Chapter 2 (Algorithm 5), where the networks were randomised by performing 10×M
edge-swaps. The same null model networks were also used to compute the multilink
motif z-scores, with each layer being randomised independently. As per the definition
given in Humphries and Gurney (2008), the small-world index was normalised against
100 Erdös-Rényi (ER) reference networks containing the same number of nodes and
edges as the actual networks.

To identify neurons with high-participation in all of the network layers, the nor-
malised degree-rank product was used. This is computed by ranking neurons in each
network layer by their degree in descending order (such that the highest degree neuron
has a rank of 302), and rescaling to the interval [0, 1]. The product is then taken of
the ranked degrees in each layer. Thus, a neuron that is the highest degree node in all
of the network layers has a degree product of 1.

4.2.5 Software

Analyses and data handling were performed using the methods described in § 2.6. URL
links to the software tools are provided in Appendix H.

4http://dx.doi.org/10.1371/journal.pcbi.1005283.s004
5https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215746/bin/pcbi.1005283.s004.zip

http://dx.doi.org/10.1371/journal.pcbi.1005283.s004
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215746/bin/pcbi.1005283.s004.zip
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Type Gene Sequence Note Reference
Enzyme tph-1 ZK1290.2 Tryptophan hydroxylase Sze et al. (2000)

(TPH2) Catalyses the first step
in serotonin biosynthesis

Transporter mod-5 Y54E10BR.7 Na+/Cl− dependent Ranganathan et al. (2001)
(SLC6A4) 5-HT transporter

Required for 5-HT uptake

Receptor ser-1 F59C12.2 7TM GPCR (Gαq) Hamdan et al. (1999)
(5-HT2A) Coupled to Ca2+ signalling

Receptor ser-4 Y22D7AR.13 7TM GPCR (Gαi/o) Olde and McCombie (1997)
(5-HT1B) Attenuates adenylyl

cyclase activity

Receptor ser-5 F16D3.7 7TM GPCR (stimulatory) Hapiak et al. (2009)
(5-HT6) Independent of adenylyl

cyclase activity

Receptor ser-7 C09B7.1 7TM GPCR (Gαs) Hobson et al. (2006)
(5-HT7) Increases adenylyl

cyclase activity

Receptor mod-1 K06C4.6 5-HT-gated ion channel Ranganathan et al. (2000)
(GABAA) Cl− selective

Table 4.1 Serotonin (5-HT) biosynthetic enzyme, transporter & receptor genes used
to construct the extrasynaptic 5-HT network. Human orthologues are shown in
parentheses below the gene names.
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Type Gene Sequence Note Reference
Enzyme cat-2 B0432.5 Tyrosine hydroxylase Lints and Emmons (1999)

(TH) Rate limiting enzyme
in DA biosynthesis

Transporter dat-1 T23G5.5 Na+/Cl− dependent Jayanthi et al. (1998)
(SLC6A2) DA transporter

High DA affinity

Receptor dop-1 F15A8.5 7TM GPCR (Gαq) Suo et al. (2002)
(DRD1) DA receptor

Receptor dop-2 K09G1.4 7TM GPCR (Gαi/o) Tsalik et al. (2003)
(DRD2) DA receptor

Receptor dop-3 T14E8.3 7TM GPCR (Gαi/o) Chase et al. (2004)
(DRD2) Attenuates cAMP

formation in
response to DA

Receptor dop-4 C52B11.3 7TM GPCR (Gαs) Sugiura et al. (2005)
(DRD1) Stimulates cAMP

accumulation in
response to DA

Receptor dop-5 ⋆ T02E9.3 7TM GPCR Carre-Pierrat et al. (2006)
(DRD1) Required for normal

pharyngeal pumping

Receptor dop-6 ⋆ C24A8.1 7TM GPCR (Gαi/o?) Keating et al. (2003)
(D2/D3) Predicted from paralogy

with dop-2 & dop-3

Receptor lgc-53 T21F2.1 DA-gated ion channel Ringstad et al. (2009)
(GABAA) Cl− selective

Table 4.2 Dopamine (DA) biosynthetic enzyme, transporter & receptor genes used to
construct the extrasynaptic DA network. Human orthologues are shown in parentheses
below the gene names. ⋆ dop-5 and dop-6 have not been definitively established as
dopamine receptors, and are analysed separately as part of a broader dopamine network
in Appendix G (page 257).
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Type Gene Sequence Note Reference
Enzyme tbh-1 H13N06.6 Tyramine β-hydroxylase Alkema et al. (2005)

(DBH) Required for biosyn-
thesis of OA from TA

Receptor octr-1 F14D12.6 7TM GPCR (Gαi/o) Harris et al. (2010)
(ADRA2A) Acts in ASH to

inhibit 5-HT stimulation

Receptor ser-3 K02F2.6 7TM GPCR (Gαq) Mills et al. (2012)
(ADRA1A) In oocytes SER-3 + OA

elicits inward current via
Ca2+-gated Cl− channels

Receptor ser-6 Y54G2A.35 7TM GPCR (Gαs) Mills et al. (2012)
(DRD2) Stimulates the release of

multiple peptides

Table 4.3 Octopamine (OA) biosynthetic enzyme & receptor genes used to construct
the extrasynaptic OA network. Human orthologues are shown in parentheses below
the gene names.
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Type Gene Sequence Note Reference
Enzyme tdc-1 K01C8.3 Tyrosine decarboxylase Alkema et al. (2005)

(DDC) Required for biosyn-
thesis of tyramine

Receptor ser-2 C02D4.2 7TM GPCR (Gαi/o) Rex et al. (2004)
(5-HT1A) Inhibits forskolin-

stimulated cAMP levels

Receptor tyra-2 F01E11.5 7TM GPCR (Gαi/o) Rex et al. (2005)
(5-HT5A) TA receptor

Receptor tyra-3 M03F4.3 7TM GPCR (Gαq) Hapiak et al. (2013)
(ADRB1) Inhibits 5-HT responses. Ind-

ependent of adenylyl cyclase

Receptor lgc-55 Y113G7A.5 TA-gated ion channel Pirri et al. (2009)
(GABAA) Cl− selective

Table 4.4 Tyramine (TA) biosynthetic enzyme & receptor genes used to construct the
extrasynaptic TA network. Human orthologues are shown in parentheses below the
gene names.
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4.3 Results

4.3.1 Network structure

Examining the expression patterns for each of the nineteen monoamine receptors
(Tables 4.1–4.4) reveals that the monoamine networks consist of only a few central
neurons that broadcast signals to a large number of peripheral neurons. In total, 18
of the 302 neurons in the adult hermaphrodite were found to release monoamines,
while 251 neurons (83 %) were found to express one or more monoamine receptors
(Table 4.5). This gives the network a star-like topology, which can be directly observed
in all of the separate monoamine layers (Figure 4.3). The adjacency matrix further
reveals that these monoamine-releasing cells are mostly sensory and motor neurons,
with the downstream receptors being distributed throughout the worm (Figure 4.4).
As a consequence, the monoamine network exhibits a heavy-tailed degree distribution
containing a small number of high-degree hubs (Figure 4.12).

Syn 
Gap 

DA 

5-HT 

TA 

OA 
Fig. 4.3 Multilayer projection of the synaptic, gap junction, and monoamine signalling
networks (DA, 5-HT, TA & OA), each represented as a separate layer. Node positions
are the same in all layers.
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Syn 
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Key: 

Fig. 4.4 Adjacency matrix showing the wired synaptic (magenta), gap junction (blue),
and extrasynaptic monoamine networks (green). Nodes are classified as pharyngeal
(Phx), sensory, motor, or interneurons.

Network Nodes
N

№ ligand
expressing

№ receptor
expressing Edges M→

Serotonin 86 6 82 490
Dopamine 147 (187) 8 147 (187) 1168 (1488)
Octopamine 28 2 28 54
Tyramine 116 2 114 228
Aggregate 237 (251) 18 235 (251) 1940 (2260)

Table 4.5 Monoamine networks. Table showing the number of nodes and edges in
the individual and aggregate monoamine networks. Values for an expanded network
including putative dop-5 and dop-6 connections are in parentheses.
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MA 
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Key: 

Fig. 4.5 Hive plot showing the wired synaptic (magenta), gap junction (blue), and
extrasynaptic monoamine connections (green). Nodes are classified as sensory, motor,
or interneurons and are arranged along the three axes according to their degree. Hubs
are located further out along the axes. Plot generated using hiveplotter, courtesy of
Barnes (2016).
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4.3.2 Extrasynaptic signalling

To investigate the extent of extrasynaptic signalling in the C. elegans monoamine
systems, the expression patterns of monoamine receptors were systematically compared
with the postsynaptic targets of aminergic neurons. Analysis of these expression
patterns suggests that a remarkably high fraction of monoamine signalling must be
extrasynaptic. For example, the two tyraminergic neurons, RIML and RIMR, are presy-
naptic to a total of 20 neurons. Yet of the 114 neurons that express reporters for one
or more of the four tyramine (TA) receptors, only 7 are postsynaptic to a tyraminergic
neuron (Figure 4.6). Thus, approximately 95 % of tyramine-responsive neurons must
respond only to extrasynaptic TA. Similar analyses of the other monoamine systems
yield comparable results: 100 % of neurons expressing octopamine receptors receive no
synaptic input from octopamine-releasing neurons (Figure 4.7), while 82 % of neurons
expressing dopamine receptors, and 76 % of neurons expressing serotonin receptors
receive no synaptic input from neurons expressing the cognate monoamine ligand (see
Table 4.6 for numbers including releasing cells). Thus, most neuronal monoamine
signalling in C. elegans appears to occur extrasynaptically, outside the wired physical
connectome. The prevalence of extrasynaptic monoamine signalling between neurons
unconnected by synapses or gap junctions implies the existence of a large wireless
component to the functional C. elegans connectome, the properties of which have not
previously been studied.

Network Cells with no synaptic input Non-synaptic edges
№ % № %

Serotonin 62 75.6 457 93.3
Dopamine 121 (138) 82.3 (73.8) 1133 (1422) 97 (95.6)
Octopamine 28 100 54 100
Tyramine 107 93.9 216 94.7
Aggregate 183 (178) 77.9 (70.9) 1860 (2149) 95.9 (95.1)

Table 4.6 The number of monoamine receptor-expressing cells that do not receive
synapses from releasing cells, and the number of connections in each layer that are
non-synaptic, including connections between neurons within the same class. Due to a
many-to-many relationship between senders and receivers, the fraction of non-synaptic
edges can exceed the fraction of non-synaptic cells. Values for the expanded network
including putative dop-5 and dop-6 connections are in parentheses.
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Fig. 4.6 RIM tyramine releasing neurons, showing outgoing synaptic edges (arrows),
and neurons expressing one or more of the four tyramine receptors (grey).
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and neurons expressing one or more of the three octopamine receptors (grey).
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4.3.3 The multilayer connectome

With the inclusion of the separate monoamine systems, the full C. elegans connectome
can be considered as a multiplex or multilayer network (Nicosia and Latora, 2015),
with each node representing a neuron and each layer of connections – synaptic, gap
junction, and monoamine – characterised by distinct edge properties (Figure 4.3). For
example, chemical synapses represent unidirectional wired connections that signal on a
fast (ms) time scale, while gap junctions generate reciprocal electrical connections that
function on an even faster time scale. In contrast, monoamine connections are wireless
(with a single sending cell broadcasting to multiple receivers), slow (acting on a time
scale of seconds or longer) and unidirectional (Ezcurra et al., 2011; Gürel et al., 2012).

Prior studies of multiplex networks in non-biological systems – such as commu-
nication networks – have tended to find a large degree of overlap between the links
observed in distinct layers (De Domenico et al., 2015a). Similarly, the high-degree
hubs in each layer are often co-located, unequivocally highlighting certain nodes as
key controllers of information flow in the system (Nicosia and Latora, 2015). While
the synaptic and gap junction layers are observed to follow this trend, with the same
high-degree neurons in both systems (Figure 4.8), the extrasynaptic network exhibits
a vastly different structure. Out of 1940 monoamine connections only 80 overlap with
physical synapses, meaning 96 % of the monoamine connections are unique to the
monoamine layer (Table 4.6). Furthermore, no significant degree-degree correlation is
observed between the physical and extrasynaptic layers, indicating that the hubs of the
monoamine system are distinct (Figure 4.8), additionally highlighted by the existence
of separate rich-clubs (see § 4.3.5 below).

Reducibility analysis (De Domenico et al., 2015a), which clusters the different
network layers based on their similarity, provides further support that the monoamine
networks have a unique structure, with the monoamines forming a distinct cluster sep-
arate from the physical networks (Figure 4.9). This shows that all of the monoamines
overlap less with the synaptic and gap junction networks than the synaptic and gap
junction networks do with each other.

The analyses above suggest two distinct interpretations for the dissimilarity to the
physical network layers. Firstly, monoamines may be functioning as an independent
network, with little relation to the faster physical network. Secondly, the dissimilarity
between layers might indicate that monoamines have a complementary function that is
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Fig. 4.8 Degree-degree correlation matrix. Off-diagonal panels show the degree-degree
correlation between a pair of network layers. Panels on the diagonal show the degree
distribution of the individual layers.
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Fig. 4.9 Multilayer reducibility dendrogram. Layers close on the dendrogram have more
overlapping edges and are more reducible. Branching height gives the Jensen-Shannon
distance between the layers.
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nevertheless coupled to that of the physical connections. To address this, the following
sections investigate whether the isolated C. elegans monoamine network displays the
structural organisation required for information processing.

4.3.4 Network measures

As already mentioned, the monoamine network has a star-like architecture that is
qualitatively different to the other network layers. This structure is reflected in the
topological network measures, with the MA network exhibiting high disassortativity
characteristic of star networks (Figure 4.10d), a low number of reciprocal monoamine
connections (Figure 4.11), and a heavy-tailed degree distribution (Figure 4.12). The
star-like structure of the monoamine layer was also confirmed by three-neuron motif
analysis, which revealed the enrichment of a motif consisting of a hub node signalling
to two spokes (Figure 4.14).

Disassortativity is known to be relevant in the organisation of collective network
dynamics, such as synchronisation (Sorrentino et al., 2006) and cooperation behaviour
(Perc et al., 2013; Wang et al., 2008), and is widely observed in other biological and
technological networks (Newman, 2003b). The inclusion of these connections into
the aggregate connectome has the effect of greatly reducing the overall path length
of the network (Figure 4.10c), increasing the efficiency of integrative information
processing by providing shortcuts between more segregated subgraphs of the physical
wired network (Sporns, 2013b). The adjacency matrix and hiveplot shows that the
monoamines provide a direct route of communication between sensory neurons and
motor neurons, bypassing the premotor interneurons that play a prominent role in
the synaptic and gap junction systems (Towlson et al., 2013) (Figures 4.4 & 4.5).
Together, these observations suggest that the monoamines provide a highly efficient
shortcut for coordinating behaviour throughout the entire organism. This is an ex-
pected consequence of the presence of highly connected hubs directly linking many
disparate parts of the network, and is a useful feature given the role of monoamines
in signalling physiologically important states relevant to the entire organism, such as
food availability (e.g. Ezcurra et al., 2011).

The increased connectivity provided by the monoamines results in a reduction in
the aggregate network’s modular structure, a consequence of increasing the number
of connections between functionally segregated units (Figure 4.10b). The network is,
however, still more modular than random, with the monoamine layer also exhibiting
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(a) Clustering coefficient
Cphys = 0.16 (zphys = 9.77)
Cma = 0.14 (zma = 6.34)
Cag = 0.17 (zag = 8.95)

(b) Modularity
Qphys = 0.46 (zphys = 9.86)
Qma = 0.32 (zma = 9.39)
Qag = 0.31 (zag = 9.56)

(c) Characteristic path length
Lphys = 3.22 (zphys = 9.89)
Lma = 1.68 (zma = 5.84)
Lag = 2.71 (zag = 9.33)

(d) Assortativity coefficient
Rphys = −0.07 (zphys = 1.27)
Rma = −0.80 (zma = −1.06)
Rag = −0.29 (zag = −6.97)

Fig. 4.10 Comparison of network metrics for the physical synaptic & gap junction
network (Phys), full monoamine network (MA), and the aggregate physical &

monoamine network (Phys + MA). Plots show the observed values (filled squares) and
expected values from 100 randomised networks (boxplots). Network measure for

individual monoamine networks are presented in Appendix G (page 257).
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Fig. 4.11 Reciprocity for the directed synaptic, monoamine, and aggregate synap-
tic+monoamine networks. Plot shows the observed values (filled squares) and expected
values from 100 randomised networks (boxplots).

greater-than-random modularity compared to null models that rewire the network
edges while preserving degree distribution. This is expected given the monoamine
layer’s composition from separate signalling systems; indeed the individual monoamine
networks considered on their own show very low modularity (Appendix Figure G.4,
page 262).

Despite the hub-and-spoke structure of the extrasynaptic network, the monoamine
layer exhibits a significant level of global clustering (Figure 4.10a). This observation is
explained by two factors. Firstly, the expression of monoamine receptors by releasing
neurons creates a central cluster of hub neurons in the network (see Figure 4.16);
secondly, as the same monoamines are released by more than one neuron, and many
neurons also express more than one monoamine receptor, triangles are formed in the net-
work with a receiving neuron at one vertex, and two transmitting neurons as the others.
Indeed, three-neuron motif analysis confirmed that this configuration is overrepresented
in all the monoamine networks save tyramine (Figure 4.14). This structure provides a
method of dual lateral inhibition, where a releasing neuron can inhibit antagonistic
signals from another hub neuron, while simultaneously negating the downstream effects
of those signals – this pattern has previously been observed in the OA/TA and 5-HT
systems between RIC/RIM & NSM in the aminergic control of feeding behaviours (Li
et al., 2012), with similar patterns also existing in individual monoamine layers. For
example, the ventral cord motor neurons express both excitatory (dop-1 ) and inhibitory
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(a) MA (α = 2.38) (b) Phys+MA (α = 2.72)

Fig. 4.12 Scale-free properties of the (a) monoamine network, and (b) aggregate
synaptic, gap junction and monoamine network (showing best fit for the power-law

distribution P (k) = k−α).

(a) Robustness
ρphys = 0.466 (zphys = −6.52)
ρma = 0.358 (zma = −9.17)

ρag = 0.499 (zag = 0.41)

(b) Small-worldness
Sphys = 10.40
Sma = 37.34
Sag = 6.53

Fig. 4.13 Robustness and small-worldness of the physical, monoamine & aggregate
physical+monoamine networks. Robustness plot shows observed values (filled squares)

and expected values from 100 randomised networks (boxplots).

(dop-3 ) dopamine receptors, which work antagonistically to regulate locomotion (Chase
et al., 2004), while the expression of the inhibitory dop-2 in dopamine-releasing neu-
rons suggests that the hubs mutually suppress one another to regulate dopamine release.
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Fig. 4.14 Three-neuron motif analysis. Directed 3-node motif profiles for the aminergic
networks, showing all 13 possible combinations with no unconnected nodes. Z-scores
show the level of over- or under- representation for each motif, and were computed
relative to a sample of a 100 randomised networks generated using the degree-persevering
edge-swap procedure with 10 swaps per edge. Motif enumeration was performed using
the ESU algorithm (see Algorithm 7, page 69).



134 The monoamine networks of C. elegans

Both the monoamine network, and the aggregate network including monoamines
and physical connections, display a heavy-tail degree distribution (Figure 4.12) and
small-world properties (Figure 4.13b) common in neural systems (Bullmore and Sporns,
2009). As expected, the disassortative star topology of the MA network results in
a much lower level of robustness to circuit degradation than the physical network
(Figure 4.13a). In contrast, although the aggregate (Phys+MA) network also has
reduced assortativity, the addition of the extra connections from the MA network result
in a structure that is almost maximally robust. Although the MA network can easily be
impaired by destroying the central transmitting neurons, the combination of physical
and monoamine signalling is much more structurally resilient to insult than either
network individually. This is a result of the non-overlapping connections combining to
create a network with fewer gaps and higher overall connectivity. It is important to
note, however, that while the aggregate network shows high topological robustness,
the different timescales and functional properties of the connection types mean that
it is unlikely the networks are any more robust in combination. The existence of an
alternative signalling pathway in the network does not mean it can substitute the
function of the original.

4.3.5 Rich-club organisation

Many neural and brain networks have been shown to exhibit rich-club organisation
(Harriger et al., 2012; Heuvel and Sporns, 2011; Liang et al., 2017; Reus and Heuvel,
2013; Shih et al., 2015) in which the most highly-connected nodes are more connected
to one another than expected by chance (Colizza et al., 2006). It was previously shown
that the C. elegans physical connectome includes a rich-club consisting primarily of a
small number of premotor interneurons, controlling forward and backward locomotion
(see Chapter 3 & Towlson et al., 2013). Subjecting the monoamine connectome to simi-
lar analysis, it was found that this network also contains a distinct rich-club (Figure 4.15
& Table 4.8), consisting of dopamine, serotonin, and tyramine-releasing neurons. The
rich-club property stems from the fact that most serotonergic neurons contain receptors
for both tyramine and dopamine, while dopaminergic and tyraminergic neurons likewise
express receptors for the other two aminergic transmitters (Figure 4.16), suggesting
that different monoamines coordinate their actions. This rich-club structure is also
reflected in the three-neuron motif analysis, in which the fully-connected motif was
overrepresented in the aggregate monoamine layer (Figure 4.14). Interestingly, in
contrast to the physical wired rich-club, all of whose members are interneurons, the
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monoamine rich-club consists of sensory neurons and motor neurons (Table 4.8).

Despite the distinct structures and topologies of the different neuronal connectome
layers, they are likely to interact in functionally significant ways. For example, although
the physical and monoamine rich-clubs do not overlap, there are significant links between
them (Figure 4.17). To systematically identify neurons that have a role in linking all of
the layers, neurons were ordered according to the product of their degree-rank across
the synaptic, gap junction and monoamine layers (Table 5.5). The ten highest ranking
neurons include three from the monoamine rich-club (RIML, RIMR, and ADEL) and
three from the physical rich club (RIBL, RIBR, and DVA). Indeed, the premotor
interneuron DVA is a receiver for serotonin, dopamine and tyramine signalling, while
the tyraminergic RIMs are highly connected to the premotor interneurons of the wired
rich-club. As one might expect from their topological role in linking the monoamine
and physical network layers, the RIMs have been shown in a number of studies to play
a central role in the modulation of sensory pathways in response to feeding states as
well as the control of downstream locomotion motor programs (Donnelly et al., 2013;
Piggott et al., 2011; Wragg et al., 2007). Similarly RIB, which expresses receptors
for serotonin and dopamine, is thought to integrate numerous sensory signals (Mori
and Ohshima, 1995; Tsalik and Hobert, 2003) and has been demonstrated to influence
reorientation in foraging behaviour (Gray et al., 2005).

Fig. 4.15 Rich-club curve for the directed monoamine network. Dashed line indicates the
rich-club coefficient for the C. elegans network and the solid curve represents the average
rich-club coefficient of 100 randomised networks (preserving degree distribution).
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Tyramine (TA)

HSN
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Serotonin (5-HT)

CEP PDE

ADE

Dopamine (DA)

Fig. 4.16 Monoamine rich-club schematic, showing the separate aminergic systems and
the volume transmission signalling between them based on receptor expression. Arrows
between boxes denote connections between all of the contained neurons.
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Fig. 4.17 Connections between the physical & monoamine rich-clubs. Aminergic rich-
club neurons are represented as grey octagons. Members of the physical rich-club are
shown as circles. Dashed red lines are extrasynaptic links. Solid black lines are physical
synapses.

Neuron knorm ksyn kgap kma

RIMR⋆ 0.236 34 14 128
RIBL⋆ 0.207 29 30 14
RIBR⋆ 0.178 25 30 14
RIML⋆ 0.171 28 12 128
RIS 0.119 27 16 14
ADEL⋆ 0.073 31 4 157
VD01 0.070 14 16 16
DVA⋆ 0.069 54 10 8
PVQR 0.069 22 10 16
AIBR 0.066 36 16 6

Table 4.7 The normalised degree-rank product (knorm) showing the neurons that have
the highest interaction across the synaptic, gap junction, and monoamine network
layers. Rich-club neurons are indicated with ⋆.
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Neuron ID Degree
kma

Rich-club
Φnorm

MA Receptors Type

CEPDL 157 3σ DA dop-2, octr-1, tyra-3 Sensory
CEPDR 157 3σ DA dop-2, octr-1, tyra-3 Sensory
CEPVL 157 3σ DA dop-2, octr-1, tyra-3 Sensory
CEPVR 157 3σ DA dop-2, octr-1, tyra-3 Sensory
ADEL 157 3σ DA dop-2, octr-1, tyra-3 Sensory
ADER 157 3σ DA dop-2, octr-1, tyra-3 Sensory
PDEL 153 3σ DA dop-2 Sensory
PDER 153 3σ DA dop-2 Sensory
RIML 128 3σ TA ser-4, mod-1, dop-1 Motor
RIMR 128 3σ TA ser-4, mod-1, dop-1 Motor
NSML 96 3σ 5-HT ser-4, dop-3, ser-2, tyra-2 Pharynx
NSMR 96 3σ 5-HT ser-4, dop-3, ser-2, tyra-2 Pharynx
HSNL 92 1σ 5-HT lgc-53, lgc-55 Motor
HSNR 92 1σ 5-HT lgc-53, lgc-55 Motor

Table 4.8 Rich-club neurons of the aggregate monoamine network. The rich-club
column shows the threshold regime to which each neuron belongs, thus 3σ indicates
Φnorm(K) > 1 + 3σ, where σ is the standard deviation of the null model samples.
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4.3.6 Multilink motifs

Multilink motif analysis provides another approach for investigating the interactions
between the synaptic, gap junction and monoamine layers (Menichetti et al., 2014).
Since each layer contains the same set of nodes but a different pattern of edges, the
frequencies with which different combinations of links co-occur between pairs of nodes
throughout the multiplex network can be determined. Of the 20 possible multilink
motifs (Figure 4.19), six were found to be overrepresented and three underrepresented
compared to random networks with similar degree distributions to the real connectome
(Figure 4.18 & Table 5.7). The most overrepresented motif is motif 1, containing
no connections. This indicates that specific link combinations are more likely to
co-occur than expected by chance, therefore also increasing the number of ‘empty’
pairs compared to a random distribution of all edges. Three of the overrepresented
motifs – reciprocal chemical synapses (motif 3 ) and the co-occurrence of a gap junction
with a single or reciprocal chemical synapse (motifs 5 & 6 ) – have been reported in
an earlier analysis of the physical network (Varshney et al., 2011). These also align
with results from the degree-degree correlation and reducibility (Figures 4.8 & 4.9)
indicating that synapses and gap junctions frequently overlap. This is mirrored in the
underrepresentation of motifs 2 & 4 corresponding to synapses or gap junctions alone.

Although the overlap between monoamine and physical connectivity is low (Fig-
ure 4.9), multilink motif analysis reveals a few overrepresented motifs involving
monoamines. The most interesting of these corresponds to a unidirectional monoamine
link coincident with reciprocal synaptic connections (motif 10 ; see Table 4.9). The
structure of this motif is well-suited to provide positive or negative feedback in re-
sponse to experience, suggesting that this may be a functionally important aspect
of monoamine activity within the wider network. Indeed, connections of this type
have been implicated in a number of C. elegans behaviours; for example, motif 10
connections between ADF and AIY have been shown to be important for the learning
of pathogen avoidance (Zhang et al., 2005) and connections between RIM and RMD
are important for the suppression of head movements during escape behaviour (Pirri
et al., 2009). Putative Motif 10 connections between PDE and DVA are also thought
to play a role in controlling neuropeptide release (Bhattacharya and Francis, 2015).

Intriguingly, most examples of motif 10 (all except RIMR-RMDR) involve either
serotonin or dopamine as the monoamine transmitter. Indeed, when we consider the
monoamine networks separately (e.g. Syn-Gap-DA or Syn-Gap-TA multilinks), motif
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Fig. 4.18 Multilink motifs. Overrepresented motifs are represented by red upward-
pointing triangles. Underrepresented motifs are represented by blue downward-pointing
triangles. Non-significant motifs are shown by black squares. Values for 100 null model
networks are shown as grey crosses. Asterisks report the significance level using the
z-test, with Bonferroni-adjusted p-values: **** indicates p ≤ 0.0001. Multilink motifs
for individual monoamine networks are presented in Appendix G (page 257).

Fig. 4.19 Multilink motif IDs corresponding to all possible configurations of links
between two neurons allowing for: no connection (dotted line), extrasynaptic links
(Ext, represented as arrows on the top), bidirectional gap junctions (represented as
bars in the middle) and synapses (represented as inverted arrows on the bottom line).
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10 is overrepresented for multilinks containing either serotonin or dopamine (Appendix
Figure G.2, page 259), but not for tyramine or octopamine (Appendix Figures G.2
& G.3). Two different motifs were found to be overrepresented in the three-layer
octopamine network: motif 9 (a unidirectional synaptic connection coincident with
an octopamine connection in the opposite direction) and motif 11 (a unidirectional
octopamine link coincident with a gap junction). Presumably these were not overrepre-
sented in the aggregate network because the octopamine network is much smaller than
the networks for the other monoamines. These motifs might serve similar functions
to motif 10 for dopamine and serotonin in providing feedback to modulate wired
connections.

The only other overrepresented motif containing a monoamine is motif 19, for
which there is only a single instance between two neurons of the same class (PDEL &
PDER); while the underrepresentation of motif 8, consisting of a coincident synapse
and monoamine connection, provides further support for the role of monoamines in
extrasynaptic signalling, rather than as synaptic transmitters.

4.4 Discussion

4.4.1 The monoamine systems

This chapter has analysed the properties of an expanded C. elegans neuronal con-
nectome, which incorporates a newly-compiled network of extrasynaptic monoamine
signalling. Analyses reveal that this extrasynaptic network has a structure distinct
from the synaptic network, containing its own rich-club of hub transmitting neurons.
Although this system is separate and non-overlapping with the synaptic network, the
hubs of both the physical and monoamine networks are highly connected to one another,
with multilink motifs showing interaction between the systems at specific points in
the network. This suggests that the monoamine system functions both independently
– coordinating through its own rich-club – and in unison with the synaptic network
through multilayer hubs such as RIM and through the overrepresented multilink motifs
identified.

The low degree of overlap between the monoamine and synaptic networks occurs
not only because many neurons expressing monoamine receptors are not postsynaptic
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Cell A Cell B

NSM (L/R) → I6
ADFR → ASHR
ADFR → AWBR
ADEL → IL2L

ADE (L/R) → FLPL
ADER → FLPR
ADFR → AIYR

CEPDR → RIS
RIMR → RMDR
HSNL → AIAL
HSNR → AVJL
HSNR → PVQR

CEP (DL/VL)* → OLLL*
CEP (DR/VR)* → OLLR*

CEPDL → RMGL*
ADEL* → BDUL*
PDEL* → DVA*

Table 4.9 Motif 10. List of neurons connected by motif 10 (i.e. unidirectional MA
link, no gap junctions, and reciprocal synapses). Examples involving unconfirmed (i.e.
dop-5 or dop-6 -mediated) dopamine receptors are listed in the lower section (marked
with asterisks *).
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Motif ID Frequency Expected Z-score
1 41298 40974 26.43
2 1543 1991 -29.46
3 178 52 18.61
4 351 491 -18.95
5 154 54 15.39
6 49 4 22.68
7 1703 1698 0.48
8 52 78 -4.56
9 39 35 0.77
10 14 2 8.05
11 8 12 -1.29
12 0 1 -0.85
13 0 0 -0.63
14 0 0 -0.14
15 49 50 -0.25
16 11 6 2.04
17 1 0 1.83
18 0 0 -0.48
19 1 0 5.66
20 0 0 n/a

Table 4.10 Multilink motif frequencies for the monoamine, synaptic and gap junction
layers. Motif IDs correspond to the numbers shown in Figure 4.19.
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to aminergic neurons, but also because many postsynaptic targets of aminergic neurons
do not appear to express monoamine receptors. Some of these synapses could be
explained by cotransmission; in particular, tyraminergic and serotonergic neurons also
express either cholinergic or glutaminergic markers, and thus classical transmitters
could be used in these wired synapses. However, the dopaminergic and octapaminergic
neurons of C. elegans are not known to coexpress any classical neurotransmitter. A
second possibility is that these synapses could utilise synaptically-released peptides
as neurotransmitters. A third possibility is that the postsynaptic cells might express
either an unknown monoamine receptor, or a known one at levels too low to be detected
using existing reporters. Finally, it is possible that these putative synapses, which have
been identified on the basis of electron micrographs, are not really functional synapses.
Further work will be necessary to resolve this question.

The importance of extrasynaptic neuromodulation to the function of neural circuits
is clearly established, for example from work on crustacean stomatogastric circuits
(Marder, 2012). However, systematic attempts to map whole-organism connectomes
have focused primarily on chemical synapses, with even gap junctions being difficult to
identify using high-throughput electron microscopy approaches (Chklovskii et al., 2010).
The incorporation of extrasynaptic neuromodulatory interactions, inferred here from
gene expression data, adds a large number of new links largely non-overlapping with
those of the physical connectome. Although the valence and strength of these inferred
neuromodulatory links are largely unknown (information also lacking for much of the
physical connectome), the monoamine networks described here nonetheless provide a
more complete picture of potential pathways of communication between different parts
of the C. elegans nervous system.

How complete is the monoamine network presented here? Since most cell identifica-
tion in published work has been based on reporter co-expression with well-characterised
markers, the rate of false positives (i.e. neurons falsely identified as monoamine recep-
tor expressing) is probably very low. In contrast, the false-negative rate (monoamine
receptor-expressing cells not included in the network) is almost certainly somewhat
higher.

In some cases reporter transgenes appear to underreport full functional expression
domains – e.g. dop-3 & dop-4 in ASH (Ezak and Ferkey, 2010; Ezcurra et al., 2011)
– while in others (e.g. ser-5 ) it is clear that reporter transgenes are expressed in
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unidentified neurons additional to those identified in relevant publications (Harris
et al., 2009). With recently developed marker strains (Pereira et al., 2015; Serrano-Saiz
et al., 2013), it should be possible to revisit cell identification for these reporters
and fill in these missing gaps. In addition, other monoamines such as melatonin
(Tanaka et al., 2007) might function as neuromodulators in C. elegans. While the
monoamine-activated GPCRs in the worm genome have most likely all been identified,
it is possible that additional ionotropic monoamine receptors might exist in the worm
genome (Hobert, 2013), whose expression is presently uncharacterised. Potentially,
some of these receptors might be expressed in postsynaptic targets of aminergic neu-
rons (in particular, those of dopaminergic and octopaminergic neurons, which are not
known to express classical neurotransmitters). However, the existence of additional
monoamine receptor-expressing cells also means that non-synaptic edges are almost
certainly undercounted in the network. Thus, the degree of monoamine releasing hubs
– and their importance for neuronal signalling outside the wired connectome – is, if
anything, understated by the current findings.

Given the importance of monoamine signalling across different species, it is interest-
ing to note that abolishing monoamine vesicle loading through cat-1 does not result in
serious behavioural impairment in C. elegans, whereas synapses and gap junctions are
required for normal function (Duerr et al., 1999; Kawano et al., 2011; Richmond, 2007).
Duerr et al. (1999) suggest that this might be due to one of several reasons, such as
the abundance of food in laboratory conditions reducing the importance of aminergic
food responses and foraging; or the existence of parallel pathways, such as alternative
vesicle loading mechanisms, or redundant routes of neuronal signalling. Robustness
analysis of the combined physical and extrasynaptic networks reveals that the structure
of the connectome is almost maximally robust to circuit degradation, supporting the
observation that removing monoamine signalling does not result in catastrophic failure.
It is worth noting that the high level of robustness seen in C. elegans is not unique to
its neural network. Indeed, RNAi screens have demonstrated that 85 % of the genes in
C. elegans can be knocked-down without causing significant changes in phenotypes,
suggesting a high level of redundancy across all systems; however, such experiments do
result in reduced fitness (Ramani et al., 2012).

Despite enormous differences in scale, the monoamine systems of C. elegans and
mammals share a number of common properties. As in C. elegans, mammalian brains
contain a relatively small number of monoamine-releasing neurons that project widely
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to diverse brain regions; for example, in humans serotonin is produced by less than
100,000 cells in the raphe nuclei, or one millionth of all brain neurons (Trueta and De-
Miguel, 2012). Moreover, extrasynaptic volume transmission is thought to account for
much, if not most, monoamine signalling throughout the mammalian brain (De-Miguel
and Fuxe, 2012; Fuxe et al., 2012). Parallels between monoamine systems in C. elegans
and larger nervous systems are not exact; for example, in C. elegans, most if not all
aminergic neurons appear capable of long-distance signalling, whereas monoamines in
larger nervous systems can be restricted by glial diffusion barriers (Owald and Waddell,
2015). Nonetheless, mammalian monoamine-releasing neurons, like their C. elegans
counterparts, appear to function as high-degree broadcasting hubs with functionally
and spatially diverse targets (Trueta and De-Miguel, 2012). Thus, understanding
how such hubs act within the context of the completely mapped physical circuitry
of C. elegans, may provide useful insights into the currently unknown structures of
multilayer neuronal networks in larger animals.

4.4.2 Multiplex networks

While network theory has occasionally provided novel insights in C. elegans biology,
more often the C. elegans physical connectome has provided a useful test-bed for
validating new network theoretical concepts or their application to larger mammalian
brains (Vértes and Bullmore, 2015). In recent years, multilayer complex systems
have become an area of intense focus within network science, with a large number of
papers dedicated to extending classical network metrics to the multilayer case and
to developing new frameworks to understand the dynamical properties of multilayer
systems (Kivelä et al., 2014).

By definition, multilayer networks contain much more information than simple
monoplex networks, leading to significant data-collection challenges. In social networks,
for example, large monoplex datasets have been collected describing various types
of interactions between people, but these are typically disparate datasets based on
different populations. Multiplex datasets combining various edge types into a number
of layers are often restricted in size (set of nodes for which data are collected) or in
the choice of edges it is possible to consider (interaction types constrained by data
availability) (Kivelä et al., 2014).
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The multiplex connectome of C. elegans has the potential to emerge as a gold
standard in the study of multilayer networks, much like it has for the study of simple
monoplex networks over the last 15 years. The synaptic, gap junction, and monoamine
layers already represent a relatively reliable mapping of three distinct connection types.
The lack of degree-degree correlation between some of these layers also suggests that
they are not just different facets of one true underlying network (such that each edge is
essentially duplicated across all layers). Rather, it suggests that the wired and wireless
layers provide distinct channels of communication with differing functional roles, which
are likely to be coupled in higher-order structures. For example, monoamine-based
feedback loops or monoamine-regulated wired interactions. The different time-scales
on which each of the layers operate is also likely to allow the emergence of interesting
dynamical phenomena. Finally, the large number of distinct extrasynaptic interactions
offers the scope for a more refined dataset, each aligned to the same complete set of
302 nodes.

4.4.3 Future work

In the future, it should be possible to expand the scope of the multilayer connectome
to gain a more complete picture of neuronal functional connectivity. As a first step,
reanalysis of reporters for monoamine receptors using recently developed reference
strains (Pereira et al., 2015; Serrano-Saiz et al., 2013) could provide a largely complete
monoamine signalling network. Additional work, profiling the pharmacodynamics,
electrophysiology, and functional properties of each system will provide insights into
how the monoamine systems work and modulate the activity of the synaptic network.
Obtaining this information, while difficult, is uniquely feasible in C. elegans given
the small size and precise cellular characterisation of its nervous system. Such a
comprehensive multilayer connectome could serve as a prototype for understanding
how different modes of signalling interact in the context of neuronal circuitry.

Obtaining extrasynaptic connectomes for larger brains, especially those of mammals,
will likely be vastly more complicated than for C. elegans, due not only to the increase
in size, but also the existence of additional structural and dynamical properties, such
as glial barriers, cellular swelling, and arterial pulsations, all of which dynamically
alter extracellular diffusion (Syková and Nicholson, 2008; Taber and Hurley, 2014).
To address the difference in size, several techniques exist which could allow for such
a map to be developed. For example, immunogold labelling was recently used to
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simultaneously map synaptic links and neuropeptide locations in EM sections (Shahidi
et al., 2015), providing a route to automatically capture elements of both the wired
and wireless connectomes. Combined imaging and in situ sequencing has also been
proposed as a method to concurrently localise synapses and neuromodulatory systems
(Marblestone et al., 2014), while existing coarse-grained maps of brain transcriptomes,
such as those in the Allen Brain Atlas (Hawrylycz et al., 2012; Lein et al., 2007),
provide a useful first approximation for the distribution of molecules involved in volume
transmission.



Chapter 5

Neuropeptide networks of
C. elegans

5.1 Introduction

I n the context of the monoamine systems of C. elegans, the previous chapter intro-
duced how volume transmission networks can be mapped across an entire nervous

system; however, monoamines represent just one class of volume transmission. As men-
tioned in the introduction, the nervous system of C. elegans also expresses 250 distinct
neuropeptides from 122 precursor genes, and over 100 putative peptide receptors that
form additional volume transmission networks (Hobert, 2013; Li and Kim, 2008). These
include homologues of several well-known vertebrate neuropeptide receptors, including
those for oxytocin/vasopressin (NTR-1), neuropeptide Y (NPR-1), and cholecystokinin
(CKR-2).

Like monoamines, many C. elegans neuropeptides are known to function extrasynap-
tically, often acting at a distance. The high number of neuropeptides is not surprising
given the ease with which new peptides can be coded for and synthesised using existing
transcription, translation, and splicing mechanisms, adding greatly to the signalling
richness of the nervous system. However, this high number of peptides provides a
challenge in creating a complete network of their interactions. The receptors for many
neuropeptides, and the ligands for many neuropeptide receptors, remain unknown;
moreover, the distance over which signalling can occur is uncharacterised for most
neuropeptide systems.
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Although many neuropeptides have not been characterised (or even classified into
families), good data exists for several of the systems. Neuropeptides in C. elegans have
been associated with feeding behaviours (e.g. Cheong et al., 2015), metabolism (Cohen
et al., 2009), mating behaviours (Barrios et al., 2012), as well as learning and memory
(McDiarmid et al., 2015). As in other animals, neuropeptide signalling is critical for
nervous system function, and frequently involves hormonal or other extrasynaptic
mechanisms.

In an approach similar to that used for the monoamines, this chapter uses data
from those neuropeptide systems that have been characterised to create a partial
and provisional neuropeptide connectome, with the aim of providing insight into
the differences between peptide signalling networks, and synaptic, gap junction, and
monoamine networks. The analysis focuses of 12 neuropeptide systems with well-
established ligands (with biologically-plausible EC50 values in in vitro assays) and
precisely-characterised expression patterns for both receptor and peptide precursor
genes. The results from this partial neuropeptide network show it to be a distinct
signalling network, separate from both the physical and monoamine systems; however,
multilayer hubs and motifs are identified which suggest that these distinct network
layers are coupled, and interact, at several points in the network.

5.2 Materials & Methods

As in the previous chapter, the AC connectome was used in all analyses comparing
the synaptic and extrasynaptic networks (see Chapter 3). All network methods are
the same as those used in the analysis of the monoamine network (see Chapter 2 & 4).
Edge counts, adjacency matrices, and reducibility clusters were all computed using
binary directed versions of the networks. The same networks, excluding self-connections
(Aij = 0 if i = j), were used to compute the multilink motifs and reciprocity. As
before network measures are compared to 100 null model networks (shown in the
boxplots) generated using the degree-preserving randomisation procedure described in
Chapter 2 (Algorithm 5), where the networks were randomised by performing 10×M
edge-swaps. The same null model networks were also used to compute the multilink
motif z-scores, with each layer being randomised independently. As per the definition
given in Humphries and Gurney (2008), the small-world index was normalised against
100 Erdös-Rényi (ER) reference networks containing the same number of nodes and
edges as the actual networks.
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5.2.1 Neuropeptide network construction

The neuropeptide network was constructed from published expression data for peptides
and receptors, using a similar approach as was used for the monoamines. Only those
systems were included for which sufficient expression and ligand-receptor interaction
data existed in the literature, with interactions being limited to those with biologically
plausible peptide-receptor EC50 values (shown in Table 5.1). In total, 15 neuropeptides
and 12 receptors were matched and included in the network. Networks were classified by
receptor, allowing a many-to-many relationship between neuropeptides and receptors
(Figure 5.1). For caveats on the gene expression data, see Appendix D (page 237).

5.2.2 Network data

Edge lists for individual network layers are provided in the supporting information (S1
dataset) of Bentley et al. (2016), and can be accessed online from PLOS1 or PubMed
Central2.
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Fig. 5.1 Neuropeptide data model. UML class diagram (ISO, 2012a,b) of the conceptual
data model used to construct the extrasynaptic neuropeptide network. Each box
represents a class of data, with lines depicting their associations. The numbers
represent the multiplicity of the constraints assumed in the modelling. Triangles
denote the directionality of the relationships, and * represents an unbounded (i.e. ∞)
multiplicity. For more details, see Figure legend 4.2 on page 116.

1http://dx.doi.org/10.1371/journal.pcbi.1005283.s004
2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215746/bin/pcbi.1005283.s004.zip

http://dx.doi.org/10.1371/journal.pcbi.1005283.s004
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215746/bin/pcbi.1005283.s004.zip
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Receptor Ligand EC50 Reference
NPY(npr) / RFamide receptor group
NPR-1 FLP-18 ∼100 nM Rogers et al. (2003)

FLP-21 2.5 nM Kubiak et al. (2003a)

NPR-2 FLP-21 34.4 nM Ezcurra et al. (2016)

NPR-3 FLP-15 162-599 nM Kubiak et al. (2003b)

NPR-4 FLP-1 0.4-9 µM Geary et al. (2002)
FLP-4 5-80 nM Geary et al. (2002)
FLP-18 5 nM-1.2 µM Cohen et al. (2009)

NPR-5 FLP-18 13.3-117.2 nM Kubiak et al. (2008)
FLP-21 267 nM Kubiak et al. (2008)

NPR-11 FLP-1 1-8 µM Geary et al. (2002)
FLP-5 1-8 µM Geary et al. (2002)
FLP-18 180-800 nM Geary et al. (2002)
FLP-21 1-10 nM Geary et al. (2002)
NLP-1 1-100 µM?⋆ Chalasani et al. (2010)

FRPR-4 FLP-13 67-541 nM Nelson et al. (2015)

Somatostatin / Urotensin II receptor group
NPR-17 NLP-24 0.1-1 µM Cheong et al. (2015)

Gastrin / CCK-like receptor group
CKR-2 NLP-12 15-30 nM Janssen et al. (2008b)

Vasopressin-like receptor group
NTR-1 NTC-1 19 nM Beets et al. (2012)

Neurotensin / TPH-like receptor group
EGL-6 FLP-10 11 nM Ringstad and Horvitz (2008)

FLP-17 1-28 nM Ringstad and Horvitz (2008)

Class B / Secretin receptor group
PDFR-1 PDF-1 0.4-5 µM Janssen et al. (2008a)

PDF-2 /
NLP-37

114 nM Janssen et al. (2008a)

Table 5.1 Neuropeptide receptor-ligand binding. ⋆No EC50 value reported for NPR-
11/NLP-1; strong biological activity seen in the micromolar range.
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5.3 Results
Including the neuropeptide networks with the existing physical and monoamine layers, a
multiplex network can be formed consisting of 18 layers (Figure 5.2). From aggregating
the neuropeptide networks into a single layer (NP), it is clear that neuropeptide
signalling forms a large component of the nervous system (see Table 5.2), with edges
distributed throughout all of the neuron types (Figure 5.3). In just the partial network
presented here, 239 neurons are seen to be involved in neuropeptide signalling (out
of 302 possible), with 7035 connections between them providing greater connectivity
than either the synaptic or monoamine layers alone.

The adjacency matrix reveals that the sending nodes are primarily sensory and
interneurons, with the majority of connections between these classes. Few motor
neuron to motor neuron connections are observed (Figure 5.3). Results shown in
Table 5.3 support that the neuropeptide network is non-synaptic, with almost 60 % of
receptor-expressing neurons receiving no synaptic input from cells that express cognate
peptides. This table further shows that the majority of edges do not overlap with
synapses (97 % non-overlapping), again consistent with a largely extrasynaptic mode
of signalling.

Examining the degree-degree correlations of the network types (Figure 5.4) shows
that the neuropeptides are neither correlated with the physical layers (synaptic and gap
junction) nor the monoamine layer, demonstrating them to be a distinct signalling class.
This is further seen in the reducibility results, where the synaptic and gap junction
layers are highly-reducible, but not the MA or NP layers (Figure 5.5). Performing the
same reducibility analysis on the individual, decomposed, network layers yields a more
complex picture, with the physical layers still clustering together and the extrasynaptic
layers showing variable outcomes (Figure 5.6). Some neuropeptide systems, in particu-
lar CKR-2, overlapped significantly with the networks of monoamine systems, while
others, including the neuropeptide F/Y receptors NPR-1/2/5/11, showed little overlap
with either the physical or other extrasynaptic networks.
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Fig. 5.2 Multilayer projection of the neuropeptide networks, including physical and
monoamine layers. Node positions are the same in all layers.
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Network Nodes
N

№ ligand
expressing

№ receptor
expressing

Edges
M→

NPR-1 82 41 55 2241
NPR-2 44 31 19 583
NPR-3 54 4 50 200
NPR-4 46 39 9 349
NPR-5 59 41 30 1218
NPR-11 60 60 4 236
NPR-17 8 2 8 14
CKR-2 53 1 52 52
NTR-1 57 39 20 778
EGL-6 21 16 5 80
PDFR-1 83 50 44 2189
FRPR-4 27 19 8 152
Aggregate 239 141 187 7035

Table 5.2 Neuropeptide networks.

Network Cells with no synaptic input Non-synaptic edges
№ % № %

NPR-1 38 69.1 2209 98.6
NPR-2 7 36.8 563 96.6
NPR-3 49 98 199 99.5
NPR-4 4 44.4 319 91.4
NPR-5 16 53.3 1182 97
NPR-11 0 0 209 88.6
NPR-17 8 100 14 100
CKR-2 42 80.8 42 80.8
NTR-1 14 70 771 99.1
EGL-6 1 20 74 92.5
PDFR-1 17 38.6 2096 95.8
FRPR-4 4 50 144 94.7
Aggregate 106 56.7 6802 96.7

Table 5.3 The number of neuropeptide receptor-expressing cells that do not receive
synapses from releasing cells, and the number of connections in each layer that are
non-synaptic. Due to a many-to-many relationship between senders and receivers, the
fraction of non-synaptic edges can exceed the fraction of non-synaptic cells.
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Fig. 5.3 Adjacency matrix showing the synaptic (magenta) and neuropeptide (green)
networks.
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Fig. 5.4 Degree-degree correlation matrix. Off-diagonal panels show the degree-degree
correlation between a pair of network layers. Panels on the diagonal show the degree
distribution of the individual layers.
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Fig. 5.5 Multilayer reducibility dendrogram for the synaptic, gap junction, monoamine,
and neuropeptide layers. Layers close on the dendrogram have more overlapping edges
and are more reducible. Branching height gives the Jensen-Shannon distance between
the layers.
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Fig. 5.6 Multilayer reducibility dendrogram showing all of the multiplex network
layers. Layers close on the dendrogram have more overlapping edges and are more
reducible. Physical and monoamine layers are italicised. Branching height gives the
Jensen-Shannon distance between the layers.
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5.3.1 Network measures

Examining the network measures for the NP network reveal it to have many properties
in common with the MA network, including having a shorter characteristic path length
and lower modularity and robustness than the physical network (Figure 5.8 & 5.10a).
Both networks are also small-world (Figure 5.10b), have heavy-tailed degree distri-
butions (Figure 5.9), and possess distinct rich-club organisation (Figure 5.11); the
main differences are that the NP network has much higher reciprocity (Figure 5.7)
and clustering (Figure 5.8a), which is an expected consequence of the much greater
number of connections in the NP network; however, the addition of the neuropeptide
connections to the physical and monoamine network have little effect on the aggregate
properties, with the largest difference seen in the degree distribution power-law expo-
nent (αAC = 3.57 vs αag = 5).

Fig. 5.7 Reciprocity for the directed synaptic network (Syn), neuropeptide network
(NP), and aggregate synaptic+monoamine+neuropeptide network (All). Plot shows
the observed values (filled squares) and expected values from 100 randomised networks
(boxplots).
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(a) Clustering coefficient
Cnp = 0.34 (znp = 9.36)
Cag = 0.30 (zag = 9.75)

(b) Modularity
Qnp = 0.28 (znp = 9.84)
Qag = 0.25 (zag = 9.79)

(c) Characteristic path length
Lnp = 1.83 (znp = −1.8)
Lag = 2.16 (zag = 7.69)

(d) Assortativity coefficient
Rnp = −0.24 (znp = −3.44)
Rag = −0.23 (zag = −3.94)

Fig. 5.8 Comparison of network metrics for the synaptic (Syn), gap junction (Gap),
monoamine (MA), monoamine+syn+gap (MA+), neuropeptide (NP), and aggregate
physical+monoamine+neuropeptide networks (All). Plots show the observed values

(filled squares) and expected values from 100 randomised networks (boxplots).
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(a) NP (α = 2.89) (b) Phys+MA+NP (α = 5)

Fig. 5.9 Scale-free properties of the (a) neuropeptide network, and (b) aggregate
synaptic, gap junction, monoamine, and neuropeptide network (showing best fit for

the power-law distribution P (k) = k−α).

(a) Robustness
ρnp = 0.38 (znp = −4.44)
ρag = 0.50 (zag = 0.94)

(b) Small-worldness
Snp = 12.52
Sag = 4.9

Fig. 5.10 Robustness and small-worldness of the synaptic (Syn), gap junction (Gap),
monoamine (MA), monoamine+syn+gap (MA+), neuropeptide (NP), and aggregate
physical+monoamine+neuropeptide networks (All). Plots show the observed values

(filled squares) and expected values from 100 randomised networks (boxplots).
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5.3.2 Rich-club

The neuropeptide network can be seen to exhibit its own rich-club of highly-connected
hub nodes. This rich-club is mostly composed of sensory neurons (Table 5.4), following
the same pattern previously seen with the monoamines. This suggests that the
neuropeptides also provide a signalling short-cut from sensory neurons to the rest of
the nervous system. Examining the relationships between the high-degree neurons
in each layer (using the normalised degree rank-product; Table 5.5) shows that the
previously identified RIM and DVA neurons continue to play a central role in linking
all of the network layers (Figure 5.12).

Fig. 5.11 Rich-club curve for the directed neuropeptide network. Dashed line indicates
the rich-club coefficient for the C. elegans network and the solid curve represents the
average rich-club coefficient of 100 randomised networks (preserving degree distribu-
tion).
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Neuron knp Receptors Peptides Type
PHA 182 NPR-1,-5; PDFR-1 FLP-4,-15; NLP-37 Sensory
ASEL 176 NPR-1,-5; NTR-1 FLP-4,-5,-13,-21 Sensory
PQR 176 NPR-1,-4,-17;NTR-1;PDFR-1 FLP-10;NLP-37;PDF-1 Sensory
ASER 170 NPR-1,-5; NTR-1 FLP-5,-13,-21 Sensory
URX 170 NPR-1; PDFR-1 FLP-10,-11,-21 Sensory
FLP 165 NPR-2; PDFR-1 FLP-4,-21 Sensory
ADF 162 NPR-2,-5; NTR-1 FLP-21 Sensory
ASH 162 NPR-1,-2; NTR-1 FLP-21 Sensory
ASI 160 NPR-5,-17 FLP-10,-21;NLP-1,-24;PDF-1 Sensory
RMG 160 NPR-1 FLP-1,-5,-21; PDF-1 Inter
ASK 159 NPR-5 FLP-13,-21; PDF-1 Sensory
ASG 144 NPR-1,5 FLP-13,-21; NTC-1 Sensory
AIY 140 NPR-11; CKR-2 FLP-1,-18 Inter
PHB 137 NPR-1,-5; PDFR-1 FLP-4;NLP-1;PDF-1;NLP-37 Sensory
ADL 131 NTR-1 FLP-4,-21 Sensory
M3 128 NPR-1 FLP-13,-18 Pharynx
BDU 126 NPR-4; NTR-1 FLP-10; NLP-1,-37 Inter
ASJ 125 NPR-5 FLP-21 Sensory
RIG 120 NPR-1 FLP-1,-18 Inter
AVA 118 NPR-4 FLP-1,-18 Inter
RIM 114 n/a FLP-18; NLP-37 Motor
PVQ 110 NPR-2,-17;NTR-1;PDFR-1 n/a Inter
DVA 104 EGL-6; FRPR-4 NLP-12;NTC-1 Inter
I2 93 NTR-1 FLP-5,-15 Pharynx

Table 5.4 Rich-club neurons of the aggregate neuropeptide network. Note that neuron
IDs denote all neurons of that classes, with the exception of ASEL & ASER which
have different expression profiles.
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Neuron knorm ksyn kgap kma knp

RIMR⋆ 0.164 34 14 128 114
RIML⋆ 0.120 28 12 128 114
PVQR 0.047 22 10 16 110
ASHR 0.046 21 12 10 162
DVA⋆ 0.046 54 10 8 104
RIS 0.036 27 16 14 44
VD01 0.033 14 16 16 61
ASHL 0.033 18 10 10 162
ADFR 0.030 21 4 82 162

Table 5.5 The normalised degree-rank product (knorm) showing the neurons that have
the highest interaction in all of the network layers. Rich-club neurons are indicated
with ⋆.

Syn 
Gap 

MA 
NP 

Fig. 5.12 Multilayer projection showing the RIM (blue) & DVA (green) rich-club
neurons with the highest degree-rank production, acting as hubs across all four of the
network layers.
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5.3.3 Multilink motifs

Performing multilink analysis with neuropeptides as the extrasynaptic layer, once again
reveals a similar pattern to the monoamines: Motifs 1 - 6, which consider only the
physical networks with no extrasynaptic links, show similar z-score distribution patterns
to before, while Motif 10 (a unidirectional neuromodulatory connection coincident
with a reciprocal synaptic connection) is also significantly overrepresented, as it was
previously in the MA network. This supports the notion that this feedback motif
plays a key role in extrasynaptic modulation of synaptic computation. Even more
highly overrepresented relative to expectation was motif 20, reciprocal neuropeptide and
synaptic connections coincident with a gap junction. This motif was not overrepresented
in the multilink analysis for monoamines, perhaps because of the low reciprocity of
the monoamine network. Interestingly, several of the motif 20 multilinks (Table 5.6)
are components of the RMG hub-and-spoke network, which has been implicated in
the control of various behaviours including locomotion, aggregation, and pheromone
response (Jang et al., 2012; Macosko et al., 2009).

Cell A Cell B

FLPL ↔ FLPR
PHAL ↔ PHAR
PHBL ↔ PHBR
RMGL ↔ URXL
RMGR ↔ URXR
RMGR ↔ ASHR
PVR ↔ DVA
AVAL ↔ AVAR

Table 5.6 Examples of neuropeptide multilink motif 20. List of neurons connected by
motif 20 (i.e. reciprocal NP link, gap junction, and reciprocal synapses).
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Fig. 5.13 Multilink motifs. Overrepresented motifs are represented by red upward-
pointing triangles. Underrepresented motifs are represented by blue downward-pointing
triangles. Non-significant motifs are shown by black squares. Values for 100 null model
networks are shown as grey crosses. Asterisks report the significance level using the
z-test, with Bonferroni-adjusted p-values: * indicates p ≤ 0.05 ; ** indicates p ≤ 0.01;
**** indicates p ≤ 0.0001.

Fig. 5.14 Multilink motif IDs. These correspond to all possible configurations of links
between two neurons allowing for: no connection of a given type (dotted line), directed
extrasynaptic neuropeptide links (Ext, represented as arrows on the top), bidirectional
gap junctions (represented as bars in the middle) and synapses (represented as inverted
arrowheads on the bottom line).
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Motif ID Frequency Expected Z-score
1 37076 36699 19.84
2 1358 1765 -24.34
3 150 43 17.62
4 298 430 -15.15
5 140 43 16.18
6 40 3 21.67
7 5404 5498 -3.27
8 117 153 -3.22
9 122 158 -3.46
10 40 10 10.02
11 45 67 -3.52
12 4 5 -0.35
13 10 7 1.49
14 1 1 -0.15
15 570 525 3.25
16 48 35 2.71
17 3 1 1.78
18 16 5 4.78
19 1 1 -0.20
20 8 0 22.54

Table 5.7 Multilink motif frequencies for the neuropeptide, synaptic and gap junction
layers. Motif IDs correspond to the numbers shown in Figure 5.14.
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5.4 Conclusions

Although the neuropeptide networks presented here are far from complete, it has been
possible to analyse their structural properties to gain information about the patterns
of organism-wide neuropeptide signalling for the first time.

While monoamine and neuropeptide signalling both occur extrasynaptically and
act on similar timescales, the monoamine and neuropeptide networks show distinct
non-overlapping topologies. In particular, the neuropeptide layer shows strikingly high
clustering – even taking into account its high density of connections – and higher
reciprocity than the monoamine network. These properties suggest the neuropeptide
networks are important for cohesiveness within the nervous system. Multilink analysis
also identified differences between the extrasynaptic monoamine and neuropeptide
networks. In both cases, a unidirectional extrasynaptic connection coincident with a
reciprocal synaptic connection (motif 10 ) was overrepresented in the multiplex connec-
tome. This motif is well-suited to provide feedback between linked nodes, and occurs
in several microcircuits implicated in learning and memory.

For neuropeptides, a second multilink motif, involving reciprocal neuromodulatory
and synaptic connections coincident with a gap junction (motif 20 ) was found to be
even more highly overrepresented than motif 10. This motif occurs in several places in
the RMG-centred hub-and-spoke circuit that plays a key role in control of aggregation
and arousal. As more neuropeptide systems become characterised (through expression
analysis and deorphanisation), it is reasonable to expect additional examples of this
motif will be identified; these may likewise have important computational roles in key
neural circuits.

As with the previous analysis of the monoamine network, the RIM and DVA neurons
continue to play a central role in linking the various layers of the multiplex network,
suggesting they might function as interlayer communication hubs, facilitating and
coordinating interaction between the wired, aminergic, and peptidergic transmission
systems.

Unlike small-molecules, where gene-expression analysis can only infer their location
through the associated synthesis or transport molecules, neuropeptides can be detected
more directly, by identifying precisely where they are expressed. Even though there
are more neuropeptides than small-molecule ligands, this property makes them more



170 Neuropeptide networks of C. elegans

amenable to large-scale mapping approaches. As mentioned previously, immunogold
staining for neuropeptides has been used to map neuropeptides in the context of EM
generated connectomic maps (Shahidi et al., 2015), providing an alternate route to
mapping these networks in larger animals.



Part IV

Conclusions





Chapter 6

Conclusions & discussion

6.1 Contributions

6.1.1 Major results

V olume transmission (VT), through the release and diffusion of molecules such as
monoamines (MA) and neuropeptides (NP), plays numerous important roles in

neural communication. Dysfunctional aminergic and peptidergic signalling has been
implicated in the aetiology of many psychiatric and neurological disorders (Belzung
et al., 2006; Lin et al., 2011), yet the ability to analyse the structural properties of
these interaction networks has previous been lacking.

This thesis has demonstrated that maps of neuronal extrasynaptic VT can be
constructed from gene expression data, presenting the first draft whole-animal map
of monoamine signalling for the nervous system of C. elegans, along with a partial
map of neuropeptide signalling. These represent the first such maps of VT signalling
for any animal. The aminergic and peptidergic signalling networks were analysed
alongside synaptic connections as part of a multiplex network, fulfilling the project
objective to extend the definition of connectomics to include both wired synaptic
communication and wireless volume transmission, increasing the information resolution
of the C. elegans connectome model.

Analysing the topological structures of the aminergic and peptidergic networks,
several important results were found:

1. Both the MA and NP systems are distinct networks with a low degree of connec-
tion overlap with either the synaptic network, or with each other. This suggests
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that these systems do indeed function extrasynaptically and represent unique,
non-redundant, channels of communication.

2. The MA and NP networks consist of predominantly disassortative star-like
topologies, containing cores of high-degree broadcasting hubs.

3. The broadcasting hubs of the various VT layers are interconnected into a central
rich-club, suggesting that the different systems interact to regulate their activities.

4. Several of the broadcasting hubs have a high degree of connectivity in more
than one signalling layer. These nodes are likely to play an important role in
coordinating the various aminergic, peptidergic, and synaptic signalling systems.
The most notable examples are the interneurons RIM and DVA.

5. Performing motif analysis of the multilayer network identified several overrepre-
sented connectivity patterns. One motif, consisting of a unidirectional extrasynap-
tic connection coincident with a reciprocal synaptic connection, is overrepresented
in both the MA and NP networks, suggesting an important role for VT as a
feedback mechanism.

6.1.2 Minor results

Chapter 3 analysed an updated version of the synaptic network of C. elegans, generated
using computer-aided neuron tracing and published by the WormWiring project. This
was compared to the original connectome derived by manual methods. The analysis of
this network revealed a large increase in the number of synapses in the updated network,
some of which were identified as having a high likelihood of being false-positives. These
findings are being used to inform verification of the WormWiring network to improve
its accuracy.

Despite differences in the number of synapses, most statistical measures of the
network structure remained essentially unchanged between the original and updated
connectomes, supporting the validity of existing network analyses in the literature and
the overall accuracy of the Elegance / WormWiring approach to network reconstruction.
However, as small-scale discrepancies exist between the two networks at the level of
individual synapses, caution should be taken when using either dataset to inform the
investigation of specific circuits.
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6.2 Outlook & future work

6.2.1 Extending & validating the network

As developments in high-resolution neuroimaging and circuit reconstruction have begun
to make the task of mapping large connectomes a realisable goal, concerns have been
raised about the need to account for neuromodulatory VT (Bargmann, 2012; Bargmann
and Marder, 2013; Brezina, 2010). This thesis has provided a proof-of-concept that
these interactions can be mapped for an entire nervous system, at least in C. elegans;
however, this work stands only as a first prototype.

As discussed in Chapters 4 & 5 (esp. § 4.4, page 141), work remains to be done
in several areas to clarify the details of extrasynaptic interactions and obtain a more
complete picture of VT signalling in C. elegans. Future work to extend the network
might include:

1. additional expression profiling to identify missing neurons in the MA and NP
systems;

2. the determination of the valence and strength of extrasynaptic interactions
to provide network weights, eventually verifying these properties in vivo and
exploring possible cross-reactivity between the various systems;

3. the deorphanisation of putative NP receptors;

4. verifying that the observed reporter expression patterns match functional expres-
sion, e.g. ensuring that the receptors are active in the cells where the reporters
are expressed;

5. the determination of quantitative expression levels, and the relationship between
expression levels and activity;

6. the quantification of in vivo VT diffusion dynamics and their effects on signalling
speed and strength at various locations;

7. the investigation of additional molecules with the potential to act extrasynapti-
cally, such as melatonin (Tanaka et al., 2007) or traditional neurotransmitters;

8. clarifying whether dop-5 & dop-6 are dopamine receptors; and

9. investigating conditional expression and state-dependent changes in signalling.
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In C. elegans the tools already exist to answer many of these questions. With the
continued development and application of such tools, the answers should be obtainable
in the near future.

6.2.2 Network function

Obtaining a more complete map of extrasynaptic interactions will only provide insights
into the structures of the VT signalling networks. A complete understanding will also
require study into how the networks function and interact with the synaptic network
to modulate information processing and behavioural output.

Approaches such as the noninvasive imaging of neural activity, optogenetic neu-
rostimulation, and quantitative behavioural analysis (see § 3.4.3, page 105), coupled
with traditional genetic and pharmacological techniques, offer several routes to investi-
gate the functions of the MA and NP networks. Promising starting points for such
investigations are the overrepresented multilink motifs (identified in § 4.3.6 & § 5.3.3),
as identifying conserved functions performed by these motifs would greatly aid in under-
standing network organisation, behaviour generation, and furthermore provide a path
to technological applications; for example, by revealing ways to more precisely predict
and control neural activity. While difficult, such an investigation is uniquely feasible in
C. elegans given the small size and precise cellular characterisation of its nervous system.

Recent work applying control theory to networks (Badhwar and Bagler, 2015; Gu
et al., 2015; Liu et al., 2011; Tang et al., 2012; Yuan et al., 2013) has shown that certain
functional properties of neural circuits can be accurately predicted from the network
topology alone (Yan et al., 2017). This approach, along with similar ones, provides
the means to begin exploring possible functions of the extrasynaptic VT networks in
the absence of additional experimental data. Refining and verifying such predictive
methods will likely be a necessary step to eventually understanding mammalian brains,
due to the inability to exhaustively test the large number of neurons involved.

6.2.3 Mapping larger nervous systems

Although much work remains to be done to understand extrasynaptic neuromodulation
in the small nervous system of C. elegans, it is foreseeable that it will eventually be
possible to map the VT networks of larger nervous systems, including the human brain.
This endeavour will require the development of new methods and theories to account
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for the increased number of neurons, as well as the additional complex structures and
dynamics, such as glial diffusion barriers and CSF circulation (Syková and Nicholson,
2008; Taber and Hurley, 2014).

As discussed in § 4.4.3 (page 147), several approaches exist which could allow for
extrasynaptic networks to be mapped in humans, including immunolabeling (Shahidi
et al., 2015) and in situ sequencing (Marblestone et al., 2014). Existing coarse-grained
maps of brain transcriptomes (Hawrylycz et al., 2012; Lein et al., 2007) provide a use-
ful first approximation for the distribution of molecules involved in volume transmission.

6.2.4 Outlook

As extrasynaptic MA and NP signalling has been implicated in numerous diseases
(Belzung et al., 2006; Lin et al., 2011), with non-synaptic receptors suggested as the
primary site of action for many psychotherapeutic drugs (Vizi et al., 2010), it seems
likely that understanding the structure and function of VT signalling networks will
eventually provide important scientific and clinical insights. This thesis has explored
how these networks can be mapped and analysed in the small nervous system of
C. elegans, and serves to inform the direction of further investigation.





References





References

Abramoff, M. D., Magalhães, P. J., and Ram, S. J. (2004). Image processing with
ImageJ. Biophotonics International, 11(7):36–42. ISSN: 1081-8693.

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006). A
Resilient, Low-Frequency, Small-World Human Brain Functional Network with
Highly Connected Association Cortical Hubs. The Journal of Neuroscience, 26(1):63–
72. doi:10.1523/jneurosci.3874-05.2006.

Agnati, L. F. and Fuxe, K. (2014). Extracellular-vesicle type of volume transmission
and tunnelling-nanotube type of wiring transmission add a new dimension to brain
neuro-glial networks. Philosophical Transactions of the Royal Society B: Biological
Sciences, 369(1652). doi:10.1098/rstb.2013.0505.

Agnati, L. F., Guidolin, D., Guescini, M., Genedani, S., and Fuxe, K. (2010). Under-
standing wiring and volume transmission. Brain Research Reviews, 64(1):137–159.
doi:10.1016/j.brainresrev.2010.03.003.

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47–97. doi:10.1103/RevModPhys.74.47.

Albert, R., Jeong, H., and Barabási, A.-L. (1999). Internet: Diameter of the World-
Wide Web. Nature, 401(6749):130–131. doi:10.1038/43601.

Albert, R., Jeong, H., and Barabási, A.-L. (2000). Error and attack tolerance of
complex networks. Nature, 406(6794):378–382. doi:10.1038/35019019.

Albertson, D. G. and Thomson, J. N. (1976). The pharynx of Caenorhabditis elegans.
Philosophical Transactions of the Royal Society B: Biological Sciences, 275(938):299–
325. doi:10.1098/rstb.1976.0085.

Alkema, M. J., Hunter-Ensor, M., Ringstad, N., and Horvitz, H. R. (2005). Tyramine
Functions Independently of Octopamine in the Caenorhabditis elegans Nervous
System. Neuron, 46(2):247–260. doi:10.1016/j.neuron.2005.02.024.

Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews
Genetics, 8(6):450–461. doi:10.1038/nrg2102.



182 References

Altun, Z. F., Chen, B., Wang, Z.-W., and Hall, D. H. (2009). High resolution map of
Caenorhabditis elegans gap junction proteins. Developmental Dynamics, 238(8):1936–
1950. doi:10.1002/dvdy.22025.

Altun, Z. F., Herndon, L. A., Wolkow, C. A., Crocker, C., Lints, R., and Hall, D. H.
(2002). WormAtlas. http://www.wormatlas.org.

Amaral, L. A. N., Scala, A., Barthelemy, M., and Stanley, H. E. (2000). Classes of
small-world networks. Proceedings of the national academy of sciences, 97(21):11149–
11152.

Anand, K. and Bianconi, G. (2009). Entropy measures for complex networks: To-
ward an information theory of complex topologies. Physical Review E, 80(4).
doi:10.1103/PhysRevE.80.045102.

Anand, K., Bianconi, G., and Severini, S. (2011). Shannon and von Neumann en-
tropy of random networks with heterogeneous expected degree. Physical Review E,
83(3):036109. doi:10.1103/PhysRevE.83.036109.

Anastassiou, C. A., Perin, R., Markram, H., and Koch, C. (2011). Ephaptic coupling
of cortical neurons. Nature Neuroscience, 14(2):217–223. doi:10.1038/nn.2727.

Aparicio, S., Villazón-Terrazas, J., and Álvarez, G. (2015). A Model for Scale-Free
Networks: Application to Twitter. Entropy, 17(8):5848–5867. doi:10.3390/e17085848.

Artzy-Randrup, Y., Fleishman, S. J., Ben-Tal, N., and Stone, L. (2004). Com-
ment on "Network Motifs: Simple Building Blocks of Complex Networks" and
"Superfamilies of Evolved and Designed Networks". Science, 305(5687):1107–1107.
doi:10.1126/science.1099334.

Ashby, W. R. (1952). Design for a brain. John Wiley & Sons Inc., New York.

Avery, L. and Horvitz, H. R. (1989). Pharyngeal pumping continues after laser killing of
the pharyngeal nervous system of C. elegans. Neuron, 3(4):473–485. doi:10.1016/0896-
6273(89)90206-7.

Babai, L. (2015). Graph Isomorphism in Quasipolynomial Time. arXiv [cs, math].
arXiv: 1512.03547.

Badhwar, R. and Bagler, G. (2015). Control of Neuronal Network in Caenorhabditis
elegans. PLOS ONE, 10(9):e0139204. doi:10.1371/journal.pone.0139204.

Bais, F. A. and Farmer, J. D. (2007). The physics of information. arXiv. arXiv:
0708.2837.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.
Science, 286(5439):509–512. doi:10.1126/science.286.5439.509.



References 183

Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2):101–113. doi:10.1038/nrg1272.

Barabási, A.-L. and Pósfai, M. (2016). Network science. Cambridge University Press,
Cambridge, UK. ISBN: 978-1-107-07626-6.

Bargmann, C. I. (2012). Beyond the connectome: How neuromodulators shape neural
circuits. BioEssays, 34(6):458–465. doi:10.1002/bies.201100185.

Bargmann, C. I. and Horvitz, H. R. (1991). Control of larval development
by chemosensory neurons in Caenorhabditis elegans. Science, 251(4998):1243.
doi:10.1126/science.2006412.

Bargmann, C. I. and Marder, E. (2013). From the connectome to brain function.
Nature Methods, 10(6):483–490. doi:10.1038/nmeth.2451.

Barnes, C. L. (2016). hiveplotter. GitHub, http://github.com/clbarnes/hiveplotter.

Barrat, A., Barthelemy, M., and Vespignani, A. (2013). Dynamical processes on
complex networks. Cambridge University Press, Cambridge, UK, 1st edition. ISBN:
978-0-521-87950-7.

Barrios, A., Ghosh, R., Fang, C., Emmons, S. W., and Barr, M. M. (2012). PDF-1
neuropeptide signaling modulates a neural circuit for mate-searching behavior in C.
elegans. Nature Neuroscience, 15(12):1675–1682. doi:10.1038/nn.3253.

Bassett, D. S. and Sporns, O. (2017). Network neuroscience. Nature Neuroscience,
20(3):353–364. doi:10.1038/nn.4502.

Battiston, F., Nicosia, V., and Latora, V. (2014). Structural measures for multiplex
networks. Physical Review E, 89(3). doi:10.1103/PhysRevE.89.032804.

Battiston, F., Nicosia, V., and Latora, V. (2016). The new challenges of multiplex
networks: measures and models. arXiv. arXiv: 1606.09221.

Beets, I., Janssen, T., Meelkop, E., Temmerman, L., Suetens, N., Rademakers, S.,
Jansen, G., and Schoofs, L. (2012). Vasopressin/Oxytocin-Related Signaling Reg-
ulates Gustatory Associative Learning in C. elegans. Science, 338(6106):543–545.
doi:10.1126/science.1226860.

Belzung, C., Yalcin, I., Griebel, G., Surget, A., and Leman, S. (2006). Neuropep-
tides in psychiatric diseases: an overview with a particular focus on depression
and anxiety disorders. CNS & Neurological Disorders-Drug Targets, 5(2):135–145.
doi:10.2174/187152706776359682.

Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L., and Bargmann, C. I.
(2011). Catecholamine receptor polymorphisms affect decision-making in C. elegans.
Nature, 472(7343):313–318. doi:10.1038/nature09821.



184 References

Bentley, B., Branicky, R., Barnes, C. L., Chew, Y. L., Yemini, E., Bullmore,
E. T., Vértes, P. E., and Schafer, W. R. (2016). The Multilayer Connec-
tome of Caenorhabditis elegans. PLOS Computational Biology, 12(12):e1005283.
http://dx.doi.org/10.1371/journal.pcbi.1005283.

Betzel, R. F. and Bassett, D. S. (2017). Generative Models for Network Neuroscience:
Prospects and Promise. arXiv [q-bio]. arXiv: 1708.07958.

Bhatla, N. (2014). WormWeb.org - C. elegans Interactive Neural Network. WormWeb,
http://wormweb.org/neuralnet.

Bhatla, N., Droste, R., Sando, S. R., Huang, A., and Horvitz, H. R. (2015). Distinct
Neural Circuits Control Rhythm Inhibition and Spitting by the Myogenic Pharynx
of C. elegans. Current Biology, 25(16):2075–2089. doi:10.1016/j.cub.2015.06.052.

Bhattacharya, R. and Francis, M. M. (2015). In the proper context: Neuropeptide
regulation of behavioral transitions during food searching. Worm, 4(3):e1062971.
doi:10.1080/21624054.2015.1062971.

Bianconi, G. (2013). Statistical mechanics of multiplex networks: Entropy and overlap.
Physical Review E, 87(6). doi:10.1103/PhysRevE.87.062806.

Blau, A., Callaly, F., Cawley, S., Coffey, A., De Mauro, A., Epelde, G., Ferrara, L.,
Krewer, F., Liberale, C., Machado, P., and others (2014). The Si elegans Project–The
Challenges and Prospects of Emulating Caenorhabditis elegans. In Conference on
Biomimetic and Biohybrid Systems, pages 436–438. Springer. doi:10.1007/978-3-319-
09435-9_54.

Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardeñes,
J., Romance, M., Sendina-Nadal, I., Wang, Z., and Zanin, M. (2014). The
structure and dynamics of multilayer networks. Physics Reports, 544(1):1–122.
doi:10.1016/j.physrep.2014.07.001.

Boulin, T., Etchberger, J. F., and Hobert, O. (2006). Reporter gene fusions. WormBook,
doi:10.1895/wormbook.1.106.1.

Bounova, G. (2014). Octave Networks Toolbox First Release. GitHub,
doi:10.5281/zenodo.10778.

Bounova, G. and de Weck, O. (2012). Overview of metrics and their correlation patterns
for multiple-metric topology analysis on heterogeneous graph ensembles. Physical
Review E, 85(1). doi:10.1103/PhysRevE.85.016117.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., and
Wagner, D. (2008). On Modularity Clustering. IEEE Transactions on Knowledge
and Data Engineering, 20(2):172–188. doi:10.1109/tkde.2007.190689.



References 185

Braunstein, S. L., Ghosh, S., and Severini, S. (2006). The laplacian of a graph as
a density matrix: a basic combinatorial approach to separability of mixed states.
Annals of Combinatorics, 10(3):291–317. doi:10.1007/s00026-006-0289-3.

Brezina, V. (2010). Beyond the wiring diagram: signalling through complex neuro-
modulator networks. Philosophical Transactions of the Royal Society B: Biological
Sciences, 365(1551):2363–2374. doi:10.1098/rstb.2010.0105.

Briët, J. and Harremoës, P. (2009). Properties of Classical and Quantum Jensen-
Shannon Divergence. Physical Review A, 79(5). doi:10.1103/PhysRevA.79.052311
arXiv: 0806.4472.

Brown, S. R. (2013). Emergence in the central nervous system. Cognitive Neurody-
namics, 7(3):173–195. doi:10.1007/s11571-012-9229-6.

Budnik, V., Ruiz-Cañada, C., and Wendler, F. (2016). Extracellular vesicles round off
communication in the nervous system. Nature Reviews Neuroscience, 17(3):160–172.
doi:10.1038/nrn.2015.29.

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature Reviews Neuroscience, 10(3):186–198.
doi:10.1038/nrn2575.

Burago, D., Burago, Y., and Ivanov, S. (2001). A course in metric geometry. American
Mathematical Society. ISBN: 978-0-8218-2129-9.

Caeyenberghs, K., Powell, H., Thomas, R., Brindley, L., Church, C., Evans, J.,
Muthukumaraswamy, S., Jones, D., and Hamandi, K. (2014). Hyperconnectivity in
juvenile myoclonic epilepsy: A network analysis. NeuroImage : Clinical, 7:98–104.
doi:10.1016/j.nicl.2014.11.018.

Cajal, S. R. y. (1888). Estructura de los centros nerviosos de las aves. Rev. Trim.
Histol. Norm. Patol., 1:1–10.

Cajal, S. R. y. (1899). Comparative study of the sensory areas of the human cortex. In
Clark University, 1889–1899: Decennial Celebration, pages 311–382. Clark University,
Worcester, MA.

Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological
Reviews, 9(3):399–431.

Carnell, L. (2005). The G-Protein-Coupled Serotonin Receptor SER-1 Regulates
Egg Laying and Male Mating Behaviors in Caenorhabditis elegans. Journal of
Neuroscience, 25(46):10671–10681. doi:10.1523/jneurosci.3399-05.2005.

Carre-Pierrat, M., Baillie, D., Johnsen, R., Hyde, R., Hart, A., Granger, L., and Ségalat,
L. (2006). Characterization of the Caenorhabditis elegans G protein-coupled serotonin
receptors. Invertebrate Neuroscience, 6(4):189–205. doi:10.1007/s10158-006-0033-z.



186 References

Chalasani, S. H., Kato, S., Albrecht, D. R., Nakagawa, T., Abbott, L. F., and
Bargmann, C. I. (2010). Neuropeptide feedback modifies odor-evoked dynamics
in Caenorhabditis elegans olfactory neurons. Nature Neuroscience, 13(5):615–621.
doi:10.1038/nn.2526.

Chalfie, M., Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., and Brenner,
S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The
Journal of Neuroscience, 5(4):956–964.

Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of
Consciousness Studies, 2(3):200–219.

Chase, D. L. and Koelle, M. R. (2007). Biogenic amine neurotransmitters in C. elegans.
WormBook, doi:10.1895/wormbook.1.132.1.

Chase, D. L., Pepper, J. S., and Koelle, M. R. (2004). Mechanism of extrasynaptic
dopamine signaling in Caenorhabditis elegans. Nature Neuroscience, 7(10):1096–1103.
doi:10.1038/nn1316.

Chen, B. L. (2007). Neuronal Network of C. elegans: from Anatomy to Behav-
ior. PhD thesis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
http://www.wormatlas.org/images/BethChenThesis.pdf.

Chen, B. L., Hall, D. H., and Chklovskii, D. B. (2006). Wiring optimization can relate
neuronal structure and function. Proceedings of the National Academy of Sciences
of the United States of America, 103(12):4723–4728. doi:10.1073/pnas.0506806103.

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., and Liu, C.
(2011a). Removing Batch Effects in Analysis of Expression Microarray Data:
An Evaluation of Six Batch Adjustment Methods. PLOS ONE, 6(2):e17238.
doi:10.1371/journal.pone.0017238.

Chen, S. X., Osipovich, A. B., Ustione, A., Potter, L. A., Hipkens, S., Gangula,
R., Yuan, W., Piston, D. W., and Magnuson, M. A. (2011b). Quantification of
factors influencing fluorescent protein expression using RMCE to generate an allelic
series in the ROSA26 locus in mice. Disease Models & Mechanisms, 4(4):537–547.
doi:10.1242/dmm.006569.

Cheong, M. C., Artyukhin, A. B., You, Y.-J., and Avery, L. (2015). An
opioid-like system regulating feeding behavior in C. elegans. eLife, 4:e06683.
doi:10.7554/eLife.06683.001.

Chklovskii, D. B., Vitaladevuni, S., and Scheffer, L. K. (2010). Semi-automated
reconstruction of neural circuits using electron microscopy. Current Opinion in
Neurobiology, 20(5):667–675. doi:10.1016/j.conb.2010.08.002.



References 187

Chung, F. and Lu, L. (2002). The average distances in random graphs with given
expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879–
15882. doi:10.1073/pnas.252631999.

Chung, F. R. K. (1997). Spectral graph theory. Number no. 92 in Regional conference
series in mathematics. Published for the Conference Board of the mathematical
sciences by the American Mathematical Society, Providence, R.I. ISBN: 978-0-8218-
0315-8.

Chung, S., Schmalz, A., Ruiz, R. H., Gabel, C., and Mazur, E. (2013). Femtosec-
ond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling
that Underlie C. elegans Behavior and Development. Cell Reports, 4(2):316–326.
doi:10.1016/j.celrep.2013.06.027.

Clauset, A. (2016a). Clustering; Network Analysis and Modeling Lecture Notes. Santa
Fe Institute. http://tuvalu.santafe.edu/~aaronc/courses/5352/.

Clauset, A. (2016b). Random graphs with specifed degrees; Net-
work Analysis and Modeling Lecture Notes. Santa Fe Institute.
http://tuvalu.santafe.edu/~aaronc/courses/5352/.

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding commu-
nity structure in very large networks. Physical Review E, 70(6):066111.
doi:10.1103/PhysRevE.70.066111.

Clauset, A., Shalizi, C., and Newman, M. E. J. (2009). Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661–703. doi:10.1137/070710111.

Coates, J. C. and de Bono, M. (2002). Antagonistic pathways in neurons exposed to
body fluid regulate social feeding in Caenorhabditis elegans. Nature, 419(6910):925–
929. doi:10.1038/nature01170.

Cohen, M., Reale, V., Olofsson, B., Knights, A., Evans, P., and de Bono, M. (2009).
Coordinated Regulation of Foraging and Metabolism in C. elegans by RFamide Neu-
ropeptide Signaling. Cell Metabolism, 9(4):375–385. doi:10.1016/j.cmet.2009.02.003.

Colizza, V., Flammini, A., Serrano, M. A., and Vespignani, A. (2006). De-
tecting rich-club ordering in complex networks. Nature Physics, 2(2):110–115.
doi:10.1038/nphys209.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. The MIT Press, Cambridge, MA, 3rd edition. ISBN: 978-0-262-53305-8.

Correa, P., LeBoeuf, B., and García, L. R. (2012). C. elegans Dopamin-
ergic D2-Like Receptors Delimit Recurrent Cholinergic-Mediated Motor Pro-
grams during a Goal-Oriented Behavior. PLOS Genetics, 8(11):e1003015.
doi:10.1371/journal.pgen.1003015.



188 References

Crucitti, P., Latora, V., Marchiori, M., and Rapisarda, A. (2003). Efficiency of scale-
free networks: error and attack tolerance. Physica A: Statistical Mechanics and its
Applications, 320:622–642. doi:10.1016/S0378-4371(02)01545-5.

Crucitti, P., Latora, V., Marchiori, M., and Rapisarda, A. (2004). Error and attack
tolerance of complex networks. Physica A: Statistical Mechanics and its Applications,
340(1-3):388–394. doi:10.1016/j.physa.2004.04.031.

Cunningham, K. A., Hua, Z., Srinivasan, S., Liu, J., Lee, B. H., Edwards, R. H.,
and Ashrafi, K. (2012). AMP-Activated Kinase Links Serotonergic Signaling to
Glutamate Release for Regulation of Feeding Behavior in C. elegans. Cell Metabolism,
16(1):113–121. doi:10.1016/j.cmet.2012.05.014.

Dayan, P. and Abbott, L. F. (2005). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT Press, Cambridge, MA. ISBN:
978-0-262-54185-5.

de Arruda, G. F., Cozzo, E., Moreno, Y., and Rodrigues, F. A. (2015). On degree-
degree correlations in multilayer networks. arXiv [cond-mat, physics:physics]. arXiv:
1507.04550.

de Beaudrap, N., Giovannetti, V., Severini, S., and Wilson, R. (2016). Interpreting
the Von Neumann entropy of graph laplacians, and coentropic graphs. Panor. Math.
Pure Appl, 658:227–235.

De Domenico, M., Nicosia, V., Arenas, A., and Latora, V. (2014). Layer aggregation
and reducibility of multilayer interconnected networks. arXiv. arXiv:1405.0425.

De Domenico, M., Nicosia, V., Arenas, A., and Latora, V. (2015a). Struc-
tural reducibility of multilayer networks. Nature Communications, 6:6864.
doi:10.1038/ncomms7864.

De Domenico, M., Porter, M. A., and Arenas, A. (2015b). MuxViz: a tool for multilayer
analysis and visualization of networks. Journal of Complex Networks, 3(2):159–176.
doi:10.1093/comnet/cnu038.

De Domenico, M., Sasai, S., and Arenas, A. (2016). Mapping multiplex
hubs in human functional brain networks. Frontiers in Neuroscience, 10:326.
doi:10.3389/fnins.2016.00326.

De-Miguel, F. F. and Fuxe, K. (2012). Extrasynaptic Neurotransmission as
a Way of Modulating Neuronal Functions. Frontiers in Physiology, 3:16.
doi:10.3389/fphys.2012.00016.

de Silva, E. and Stumpf, M. P. (2005). Complex networks and simple models in biology.
Journal of the Royal Society Interface, 2(5):419–430. doi:10.1098/rsif.2005.0067.



References 189

Dehmer, M. and Mowshowitz, A. (2011). A history of graph entropy measures.
Information Sciences, 181(1):57–78. doi:10.1016/j.ins.2010.08.041.

Del Genio, C. I., Gross, T., and Bassler, K. E. (2011). All Scale-
Free Networks Are Sparse. Physical Review Letters, 107(17):178701.
doi:10.1103/PhysRevLett.107.178701.

Dernovici, S., Starc, T., Dent, J. A., and Ribeiro, P. (2007). The serotonin receptor
SER-1 (5ht2ce) contributes to the regulation of locomotion in Caenorhabditis elegans.
Developmental Neurobiology, 67(2):189–204. doi:10.1002/dneu.20340.

Dickinson, D. J. and Goldstein, B. (2016). CRISPR-Based Methods for
Caenorhabditis elegans Genome Engineering. Genetics, 202(3):885–901.
doi:10.1534/genetics.115.182162.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271. doi:10.1007/bf01386390.

Donnelly, J. L., Clark, C. M., Leifer, A. M., Pirri, J. K., Haburcak, M., Francis, M. M.,
Samuel, A. D. T., and Alkema, M. J. (2013). Monoaminergic Orchestration of
Motor Programs in a Complex C. elegans Behavior. PLOS Biology, 11(4):e1001529.
doi:10.1371/journal.pbio.1001529.

Driscoll, M. and Kaplan, J. (1997). Mechanotransduction. In Riddle, D. L., Blumenthal,
T., Meyer, B. J., and Priess, J. R., editors, C. elegans II. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, NY, 2nd edition. ISBN: 978-0-87969-532-3.

Duerr, J. S., Frisby, D. L., Gaskin, J., Duke, A., Asermely, K., Huddleston, D., Eiden,
L. E., and Rand, J. B. (1999). The cat-1 Gene of Caenorhabditis elegans Encodes
a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent
Behaviors. The Journal of Neuroscience, 19(1):72–84.

Dunne, C. and Shneiderman, B. (2013). Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 3247–3256.
ACM. doi:10.1145/2470654.2466444.

Edelman, G. M. and Gally, J. A. (2013). Reentry: a key mechanism for
integration of brain function. Frontiers in Integrative Neuroscience, 7(63).
doi:10.3389/fnint.2013.00063.

Ekstrand, M. I., Nectow, A. R., Knight, Z. A., Latcha, K. N., Pomeranz, L. E., and
Friedman, J. M. (2014). Molecular Profiling of Neurons Based on Connectivity. Cell,
157(5):1230–1242. doi:10.1016/j.cell.2014.03.059.

Emmons, S. W. (2015). The beginning of connectomics: a commentary on White et
al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis



190 References

elegans’. Philosophical Transactions of the Royal Society B: Biological Sciences,
370(1666):20140309. doi:10.1098/rstb.2014.0309.

Emmons, S. W., Hall, D. H., Brittin, C., and Cook, S. J. (2015). WormWiring project:
Adult Hermaphrodite Connectivity. http://wormwiring.org/.

Endres, D. M. and Schindelin, J. E. (2003). A new metric for probabil-
ity distributions. IEEE Transactions on Information theory, 49(7):1858–1860.
doi:10.1109/tit.2003.813506.

Erdös, P. and Rényi, A. (1959). On random graphs I. Publicationes Mathematicae,
6:290–297.

Erdös, P. and Rényi, A. (1960). On the evolution of random graphs. Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61.

Erdös, P. and Rényi, A. (1961). On the strength of connectedness of a random
graph. Acta Mathematica Academiae Scientiarum Hungarica, 12(1-2):261–267.
doi:10.1007/BF02066689.

Etchberger, J. F., Flowers, E. B., Poole, R. J., Bashllari, E., and Hobert, O. (2009).
Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in
C. elegans. Development, 136(1):147–160. doi:10.1242/dev.030064.

Etchberger, J. F., Lorch, A., Sleumer, M. C., Zapf, R., Jones, S. J., Marra, M. A.,
Holt, R. A., Moerman, D. G., and Hobert, O. (2007). The molecular signature and
cis-regulatory architecture of a C. elegans gustatory neuron. Genes & Development,
21(13):1653–1674. doi:10.1101/gad.1560107.

Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128–140.

Ezak, M. J. and Ferkey, D. M. (2010). The C. elegans D2-Like Dopamine Receptor
DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol. PLOS
ONE, 5(3):e9487. doi:10.1371/journal.pone.0009487.

Ezcurra, M., Tanizawa, Y., Swoboda, P., and Schafer, W. R. (2011). Food sensi-
tizes C. elegans avoidance behaviours through acute dopamine signalling: Food
sensitizes C. elegans avoidance behaviours. The EMBO Journal, 30(6):1110–1122.
doi:10.1038/emboj.2011.22.

Ezcurra, M., Walker, D. S., Beets, I., Swoboda, P., and Schafer, W. R. (2016). Neuropep-
tidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis
elegans. The Journal of Neuroscience, 36(11):3157–3169. doi:10.1523/jneurosci.1128-
15.2016.

Fagiolo, G. (2007). Clustering in Complex Directed Networks. Physical Review E,
76(2). doi:10.1103/PhysRevE.76.026107 arXiv: physics/0612169.



References 191

Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On Power-law Relationships of
the Internet Topology. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’99, pages
251–262, New York, NY, USA. ACM. doi:10.1145/316188.316229.

Farah, M. J. and McClelland, J. L. (1991). A computational model of semantic memory
impairment: Modality specificity and emergent category specificity. Journal of
Experimental Psychology: General, 120(4):339–357. doi:10.1037/0096-3445.120.4.339.

Farrant, M. and Kaila, K. (2007). The cellular, molecular and ionic basis of GABAA
receptor signalling. In Progress in Brain Research, volume 160, pages 59–87. Elsevier.
doi:10.1016/S0079-6123(06)60005-8.

Fay, D. S. (2013). Classical genetic methods. WormBook,
doi:10.1895/wormbook.1.165.1:1–58.

Fiore, V. G., Dolan, R. J., Strausfeld, N. J., and Hirth, F. (2015). Evolutionarily con-
served mechanisms for the selection and maintenance of behavioural activity. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 370(1684):20150053.
doi:10.1098/rstb.2015.0053.

Fornito, A., Zalesky, A., and Bullmore, E. T. (2010). Network Scaling Effects in
Graph Analytic Studies of Human Resting-State fMRI Data. Frontiers in Systems
Neuroscience, 4. doi:10.3389/fnsys.2010.00022.

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5):75–174.
doi:10.1016/j.physrep.2009.11.002.

Fosdick, B. K., Larremore, D. B., Nishimura, J., and Ugander, J. (2016). Configuring
Random Graph Models with Fixed Degree Sequences. arXiv. arXiv: 1608.00607.

Friedrich, R. W., Genoud, C., and Wanner, A. A. (2013). Analyzing the structure
and function of neuronal circuits in zebrafish. Frontiers in Neural Circuits, 7:71.
doi:10.3389/fncir.2013.00071.

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis.
Human Brain Mapping, 2(1-2):56–78. doi:10.1002/hbm.460020107.

Fry, A. L., Laboy, J. T., and Norman, K. R. (2014). VAV-1 acts in a single interneuron
to inhibit motor circuit activity in Caenorhabditis elegans. Nature Communications,
5:5579. doi:10.1038/ncomms6579.

Frøkjær-Jensen, C. (2015). Transposon-Assisted Genetic Engineering with Mos1-
Mediated Single-Copy Insertion (MosSCI). In C. elegans, Methods in Molecular
Biology, pages 49–58. Humana Press, Totowa, NJ. doi:10.1007/978-1-4939-2842-2_5.



192 References

Frøkjær-Jensen, C., Davis, M. W., Hopkins, C. E., Newman, B., Thummel, J. M.,
Olesen, S.-P., Grunnet, M., and Jorgensen, E. M. (2008). Single copy insertion of
transgenes in C. elegans. Nature Genetics, 40(11):1375–1383. doi:10.1038/ng.248.

Fuxe, K., Borroto-Escuela, D. O., Romero-Fernandez, W., Diaz-Cabiale, Z., Rivera, A.,
Ferraro, L., Tanganelli, S., Tarakanov, A. O., Garriga, P., Narváez, J. A., Ciruela,
F., Guescini, M., and Agnati, L. F. (2012). Extrasynaptic Neurotransmission in
the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks.
Frontiers in Physiology, 3:136. doi:10.3389/fphys.2012.00136.

Galvani, L. (1791). De Viribus Electricitatis In Motu Musculari Commentarius. Ty-
pographia Instituti Scientiarium, Bologna, Italy.

Gardner, M. R. and Ashby, W. R. (1970). Connectance of Large Dynamic (Cy-
bernetic) Systems: Critical Values for Stability. Nature, 228(5273):784–784.
doi:10.1038/228784a0.

Garrison, J. L., Macosko, E. Z., Bernstein, S., Pokala, N., Albrecht, D. R.,
and Bargmann, C. I. (2012). Oxytocin/Vasopressin-Related Peptides Have
an Ancient Role in Reproductive Behavior. Science, 338(6106):540–543.
doi:10.1126/science.1226201.

Gastner, M. T. and Ódor, G. (2016). The topology of large Open Connectome networks
for the human brain. Scientific Reports, 6:srep27249. doi:10.1038/srep27249.

Geary, T., Kubiak, T., Larsen, M., and Lowery, D. (2002). G protein-coupled receptor-
like receptors and modulators thereof. United States Patent, PCT/US2000/032225.

Geng, W., Cosman, P., Huang, C., and Schafer, W. R. (2003). Automated worm
tracking and classification. In Signals, Systems and Computers, volume 2, pages
2063–2068. IEEE. doi:10.1109/acssc.2003.1292343.

Getting, P. A. (1989). Emerging principles governing the operation
of neural networks. Annual Review of Neuroscience, 12(1):185–204.
doi:10.1146/annurev.ne.12.030189.001153.

Gibbons, A. (1985). Algorithmic graph theory. Cambridge University Press, Cambridge,
UK. ISBN: 978-0-521-28881-1.

Gilbert, E. N. (1959). Random Graphs. The Annals of Mathematical Statistics,
30(4):1141–1144.

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: A Tool
for Modeling Networks of Neurons in 3d Space. Neuron, 54(2):219–235.
doi:10.1016/j.neuron.2007.03.025.



References 193

Gląbowski, M., Musznicki, B., Nowak, P., and Zwierzykowski, P. (2013). Efficiency eval-
uation of shortest path algorithms. In AICT 2013, The Ninth Advanced International
Conference on Telecommunications, pages 154–160. ISBN: 978-1-61208-279-0.

Goh, W. W. B., Wang, W., and Wong, L. (2017). Why Batch Effects Matter in
Omics Data, and How to Avoid Them. Trends in Biotechnology, 35(6):498–507.
doi:10.1016/j.tibtech.2017.02.012.

Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., and Beaulieu, C.
(2009). Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using
In Vivo Diffusion Tensor Imaging Tractography. Cerebral Cortex, 19(3):524–536.
doi:10.1093/cercor/bhn102.

Goulas, A., Bastiani, M., Bezgin, G., Uylings, H. B. M., Roebroeck, A., and Stiers,
P. (2014). Comparative Analysis of the Macroscale Structural Connectivity in
the Macaque and Human Brain. PLOS Computational Biology, 10(3):e1003529.
doi:10.1371/journal.pcbi.1003529.

Gray, J. M., Hill, J. J., and Bargmann, C. I. (2005). A circuit for navigation in
Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the
United States of America, 102(9):3184–3191. doi:10.1073/pnas.0409009101.

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E., Medaglia,
J. D., Vettel, J. M., Miller, M. B., Grafton, S. T., and Bassett, D. S. (2015).
Controllability of structural brain networks. Nature Communications, 6(8414).
doi:10.1038/ncomms9414.

Gürel, G., Gustafson, M. A., Pepper, J. S., Horvitz, H. R., and Koelle, M. R.
(2012). Receptors and Other Signaling Proteins Required for Serotonin Con-
trol of Locomotion in Caenorhabditis elegans. Genetics, 192(4):1359–1371.
doi:10.1534/genetics.112.142125.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring Network Structure,
Dynamics, and Function using NetworkX. In Varoquaux, G., Vaught, T., and
Millman, J., editors, Proceedings of the 7th Python in Science Conference (SciPy
2008), pages 11 – 15, Pasadena, CA USA.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,
and Sporns, O. (2008). Mapping the Structural Core of Human Cerebral Cortex.
PLOS Biology, 6(7):e159. doi:10.1371/journal.pbio.0060159.

Hamdan, F. F., Ungrin, M. D., Abramovitz, M., and Ribeiro, P. (1999). Charac-
terization of a Novel Serotonin Receptor from Caenorhabditis elegans. Journal of
Neurochemistry, 72(4):1372–1383. doi:10.1046/j.1471-4159.1999.721372.x.

Han, L. (2012). Graph Generative Models from Information Theory. PhD thesis,
University of York, York, UK.



194 References

Han, L., Hancock, E. R., and Wilson, R. C. (2011). Characterizing graphs using
approximate von Neumann entropy. In Iberian Conference on Pattern Recognition
and Image Analysis, pages 484–491. Springer. doi:10.1007/978-3-642-21257-4_60.

Hao, D. and Li, C. (2011). The Dichotomy in Degree Correlation of Biological Networks.
PLOS ONE, 6(12):e28322. doi:10.1371/journal.pone.0028322.

Hapiak, V., Summers, P., Ortega, A., Law, W. J., Stein, A., and Komuniecki, R.
(2013). Neuropeptides Amplify and Focus the Monoaminergic Inhibition of Nocicep-
tion in Caenorhabditis elegans. The Journal of Neuroscience, 33(35):14107–14116.
doi:10.1523/jneurosci.1324-13.2013.

Hapiak, V. M., Hobson, R. J., Hughes, L., Smith, K., Harris, G., Condon, C., Ko-
muniecki, P., and Komuniecki, R. W. (2009). Dual Excitatory and Inhibitory
Serotonergic Inputs Modulate Egg Laying in Caenorhabditis elegans. Genetics,
181(1):153–163. doi:10.1534/genetics.108.096891.

Harary, F. and Palmer, E. M. (1973). Graphical Enumeration. Academic Press, New
York. Pages 124 & 241.

Harriger, L., van den Heuvel, M. P., and Sporns, O. (2012). Rich Club Organization of
Macaque Cerebral Cortex and Its Role in Network Communication. PLOS ONE,
7(9):e46497. doi:10.1371/journal.pone.0046497.

Harris, G., Mills, H., Wragg, R., Hapiak, V., Castelletto, M., Korchnak, A., and Komu-
niecki, R. W. (2010). The Monoaminergic Modulation of Sensory-Mediated Aversive
Responses in Caenorhabditis elegans Requires Glutamatergic/Peptidergic Cotrans-
mission. The Journal of Neuroscience, 30(23):7889–7899. doi:10.1523/jneurosci.0497-
10.2010.

Harris, G. P., Hapiak, V. M., Wragg, R. T., Miller, S. B., Hughes, L. J., Hobson, R. J.,
Steven, R., Bamber, B., and Komuniecki, R. W. (2009). Three Distinct Amine
Receptors Operating at Different Levels within the Locomotory Circuit Are Each
Essential for the Serotonergic Modulation of Chemosensation in Caenorhabditis
elegans. The Journal of Neuroscience, 29(5):1446–1456. doi:10.1523/jneurosci.4585-
08.2009.

Harvard/MGH-UCLA (2015). The Human Connectome Project.
http://www.humanconnectomeproject.org/.

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2):245–258.
doi:10.1016/j.neuron.2017.06.011.

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller,
J. A., van de Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., Abajian,
C., Beckmann, C. F., Bernard, A., Bertagnolli, D., Boe, A. F., Cartagena, P. M.,



References 195

Chakravarty, M. M., Chapin, M., Chong, J., Dalley, R. A., Daly, B. D., Dang, C.,
Datta, S., Dee, N., Dolbeare, T. A., Faber, V., Feng, D., Fowler, D. R., Goldy,
J., Gregor, B. W., Haradon, Z., Haynor, D. R., Hohmann, J. G., Horvath, S.,
Howard, R. E., Jeromin, A., Jochim, J. M., Kinnunen, M., Lau, C., Lazarz, E. T.,
Lee, C., Lemon, T. A., Li, L., Li, Y., Morris, J. A., Overly, C. C., Parker, P. D.,
Parry, S. E., Reding, M., Royall, J. J., Schulkin, J., Sequeira, P. A., Slaughterbeck,
C. R., Smith, S. C., Sodt, A. J., Sunkin, S. M., Swanson, B. E., Vawter, M. P.,
Williams, D., Wohnoutka, P., Zielke, H. R., Geschwind, D. H., Hof, P. R., Smith,
S. M., Koch, C., Grant, S. G. N., and Jones, A. R. (2012). An anatomically
comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416):391–
399. doi:10.1038/nature11405.

Hayasaka, S. and Laurienti, P. J. (2010). Comparison of Characteristics between
Region- and Voxel-Based Network Analyses in Resting-State fMRI Data. NeuroImage,
50(2):499–508. doi:10.1016/j.neuroimage.2009.12.051.

Hebb, D. (1949). The organization of behavior: a neuropsychological theory. John
Wiley & Sons Inc., New York.

Hernandez, V. H., Bortolozzi, M., Pertegato, V., Beltramello, M., Giarin, M., Zaccolo,
M., Pantano, S., and Mammano, F. (2007). Unitary permeability of gap junction
channels to second messengers measured by FRET microscopy. Nature Methods,
4(4):353–358. doi:10.1038/nmeth1031.

Heuvel, M. P. v. d., Bullmore, E. T., and Sporns, O. (2016). Comparative Connectomics.
Trends in Cognitive Sciences, 20(5):345–361. doi:10.1016/j.tics.2016.03.001.

Heuvel, M. P. v. d. and Sporns, O. (2011). Rich-Club Organization of
the Human Connectome. The Journal of Neuroscience, 31(44):15775–15786.
doi:10.1523/jneurosci.3539-11.2011.

Heuvel, M. P. v. d., Stam, C. J., Boersma, M., and Hulshoff Pol, H. E.
(2008). Small-world and scale-free organization of voxel-based resting-state
functional connectivity in the human brain. NeuroImage, 43(3):528–539.
doi:10.1016/j.neuroimage.2008.08.010.

Hildebrand, D. G. C., Cicconet, M., Torres, R. M., Choi, W., Quan, T. M., Moon, J.,
Wetzel, A. W., Scott Champion, A., Graham, B. J., Randlett, O., Plummer, G. S.,
Portugues, R., Bianco, I. H., Saalfeld, S., Baden, A. D., Lillaney, K., Burns, R.,
Vogelstein, J. T., Schier, A. F., Lee, W.-C. A., Jeong, W.-K., Lichtman, J. W., and
Engert, F. (2017). Whole-brain serial-section electron microscopy in larval zebrafish.
Nature, 545(7654):345–349. doi:10.1038/nature22356.

Hobert, O. (2013). The neuronal genome of Caenorhabditis elegans. WormBook,
doi:10.1895/wormbook.1.161.1.



196 References

Hobson, R. J., Hapiak, V. M., Xiao, H., Buehrer, K. L., Komuniecki, P. R., and
Komuniecki, R. W. (2006). SER-7, a Caenorhabditis elegans 5-HT7-like Receptor, Is
Essential for the 5-HT Stimulation of Pharyngeal Pumping and Egg Laying. Genetics,
172(1):159–169. doi:10.1534/genetics.105.044495.

Hofstad, R. v. d. (2017). Random graphs and complex networks. Number 43 in
Cambridge series in statistical and probabilistic mathematics. Cambridge University
Press, Cambridge, UK. ISBN: 978-1-107-17287-6.

Holme, P., Kim, B. J., Yoon, C. N., and Han, S. K. (2002). Attack vulnerability of
complex networks. Physical Review E, 65(5). doi:10.1103/PhysRevE.65.056109.

Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: Efficient Algorithms for Graph
Manipulation. Commun. ACM, 16(6):372–378. doi:10.1145/362248.362272.

Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J., and Evans, P. (1982). Serotonin and
octopamine in the nematode Caenorhabditis elegans. Science, 216(4549):1012–1014.
doi:10.1126/science.6805073.

Hosseini, S. M. H. and Kesler, S. R. (2013). Influence of Choice of Null Network on Small-
World Parameters of Structural Correlation Networks. PLOS ONE, 8(6):e67354.
doi:10.1371/journal.pone.0067354.

Howe, K. L., Bolt, B. J., Cain, S., Chan, J., Chen, W. J., Davis, P., Done, J., Down,
T., Gao, S., Grove, C., Harris, T. W., Kishore, R., Lee, R., Lomax, J., Li, Y., Muller,
H.-M., Nakamura, C., Nuin, P., Paulini, M., Raciti, D., Schindelman, G., Stanley, E.,
Tuli, M. A., Van Auken, K., Wang, D., Wang, X., Williams, G., Wright, A., Yook,
K., Berriman, M., Kersey, P., Schedl, T., Stein, L., and Sternberg, P. W. (2016).
WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids
Research, 44(D1):D774–D780. doi:10.1093/nar/gkv1217.

Hu, Z., Pym, E. C. G., Babu, K., Vashlishan Murray, A. B., and Kaplan, J. M. (2011).
A Neuropeptide-Mediated Stretch Response Links Muscle Contraction to Changes in
Neurotransmitter Release. Neuron, 71(1):92–102. doi:10.1016/j.neuron.2011.04.021.

Humphries, M. D. and Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative
Method for Determining Canonical Network Equivalence. PLOS ONE, 3(4):e0002051.
doi:10.1371/journal.pone.0002051.

Humphries, M. D., Gurney, K., and Prescott, T. (2006). The brainstem reticular
formation is a small-world, not scale-free, network. Proceedings of the Royal Society
B: Biological Sciences, 273(1585):503–511. doi:10.1098/rspb.2005.3354.

Hunt-Newbury, R., Viveiros, R., Johnsen, R., Mah, A., Anastas, D., Fang, L., Halfnight,
E., Lee, D., Lin, J., Lorch, A., McKay, S., Okada, H. M., Pan, J., Schulz, A. K., Tu,
D., Wong, K., Zhao, Z., Alexeyenko, A., Burglin, T., Sonnhammer, E., Schnabel,



References 197

R., Jones, S. J., Marra, M. A., Baillie, D. L., and Moerman, D. G. (2007). High-
Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans. PLOS
Biology, 5(9):e237. doi:10.1371/journal.pbio.0050237.

Husson, S. J. (2012). Keeping track of worm trackers. WormBook,
doi:10.1895/wormbook.1.156.1:1–17.

Ideker, T. and Sharan, R. (2008). Protein networks in disease. Genome Research,
18(4):644–652. doi:10.1101/gr.071852.107.

ISO (2012a). ISO/IEC 19505-1:2012 Information technology - Object Man-
agement Group Unified Modeling Language (OMG UML), Infrastructure.
http://www.omg.org/spec/UML/.

ISO (2012b). ISO/IEC 19505-2:2012 Information technology - Object Man-
agement Group Unified Modeling Language (OMG UML), Superstructure.
http://www.omg.org/spec/UML/.

Iturria-Medina, Y., Sotero, R. C., Canales-Rodríguez, E. J., Alemán-Gómez, Y.,
and Melie-García, L. (2008). Studying the human brain anatomical network
via diffusion-weighted MRI and Graph Theory. NeuroImage, 40(3):1064–1076.
doi:10.1016/j.neuroimage.2007.10.060.

Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in
Medicine & Biology, 58(11):R37. doi:10.1088/0031-9155/58/11/R37.

Jafari, G., Xie, Y., Kullyev, A., Liang, B., and Sze, J. Y. (2011). Regulation of
Extrasynaptic 5-HT by Serotonin Reuptake Transporter Function in 5-HT-Absorbing
Neurons Underscores Adaptation Behavior in Caenorhabditis elegans. The Journal
of Neuroscience, 31(24):8948–8957. doi:10.1523/jneurosci.1692-11.2011.

Jang, H., Kim, K., Neal, S., Macosko, E., Kim, D., Butcher, R., Zeiger, D., Bargmann,
C., and Sengupta, P. (2012). Neuromodulatory State and Sex Specify Alternative
Behaviors through Antagonistic Synaptic Pathways in C. elegans. Neuron, 75(4):585–
592. doi:10.1016/j.neuron.2012.06.034.

Janssen, T., Husson, S. J., Lindemans, M., Mertens, I., Rademakers, S., Donck,
K. V., Geysen, J., Jansen, G., and Schoofs, L. (2008a). Functional Characteri-
zation of Three G Protein-coupled Receptors for Pigment Dispersing Factors in
Caenorhabditis elegans. Journal of Biological Chemistry, 283(22):15241–15249.
doi:10.1074/jbc.M709060200.

Janssen, T., Meelkop, E., Lindemans, M., Verstraelen, K., Husson, S. J., Temmerman,
L., Nachman, R. J., and Schoofs, L. (2008b). Discovery of a Cholecystokinin-
Gastrin-Like Signaling System in Nematodes. Endocrinology, 149(6):2826–2839.
doi:10.1210/en.2007-1772.



198 References

Jarrell, T. A., Wang, Y., Bloniarz, A. E., Brittin, C. A., Xu, M., Thomson, J. N., Albert-
son, D. G., Hall, D. H., and Emmons, S. W. (2012). The Connectome of a Decision-
Making Neural Network. Science, 337(6093):437–444. doi:10.1126/science.1221762.

Jayanthi, L. D., Apparsundaram, S., Malone, M. D., Ward, E., Miller, D. M., Ep-
pler, M., and Blakely, R. D. (1998). The Caenorhabditis elegans Gene T23g5.5
Encodes an Antidepressant- and Cocaine-Sensitive Dopamine Transporter. Molecular
Pharmacology, 54(4):601–609.

Jefferys, J. G. (1995). Nonsynaptic modulation of neuronal activity in the brain:
electric currents and extracellular ions. Physiological Reviews, 75(4):689–723.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. (2000).
The large-scale organization of metabolic networks. Nature, 407(6804):651–654.
doi:10.1038/35036627.

Jin, M.-M. and Zhong, C. (2011). Role of gap junctions in epilepsy. Neuroscience
Bulletin, 27(6):389–406. doi:10.1007/s12264-011-1944-1.

Jin, Y., Jorgensen, E., Hartwieg, E., and Horvitz, H. R. (1999). The Caenorhabditis
elegans Gene unc-25 Encodes Glutamic Acid Decarboxylase and Is Required for
Synaptic Transmission But Not Synaptic Development. The Journal of Neuroscience,
19(2):539–548.

Joyce, K. E., Hayasaka, S., and Laurienti, P. J. (2013). The Human Functional Brain
Network Demonstrates Structural and Dynamical Resilience to Targeted Attack.
PLOS Computational Biology, 9(1). doi:10.1371/journal.pcbi.1002885.

Kaiser, M., Martin, R., Andras, P., and Young, M. P. (2007). Simulation of ro-
bustness against lesions of cortical networks: Simulation of robustness of cortical
networks. European Journal of Neuroscience, 25(10):3185–3192. doi:10.1111/j.1460-
9568.2007.05574.x.

Kaplan, J. M. and Horvitz, H. R. (1993). A dual mechanosensory and chemosensory
neuron in Caenorhabditis elegans. Proceedings of the National Academy of Sciences,
90(6):2227–2231. doi:10.1073/pnas.90.6.2227.

Karakuzu, O., Wang, D. P., and Cameron, S. (2009). MIG-32 and SPAT-3a are PRC1
homologs that control neuronal migration in Caenorhabditis elegans. Development
(Cambridge, England), 136(6):943–953. doi:10.1242/dev.029363.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity and network
motifs. Proceedings of the National Academy of Sciences of the United States of
America, 102(39):13773–13778. doi:10.1073/pnas.0503610102.

Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Topological generalizations of
network motifs. Physical Review E, 70(3):031909. doi:10.1103/PhysRevE.70.031909
arXiv preprint q-bio/0312019.



References 199

Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-
Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., Roberts, M., Morgan,
J. L., Tapia, J. C., Seung, H. S., Roncal, W. G., Vogelstein, J. T., Burns, R., Sussman,
D. L., Priebe, C. E., Pfister, H., and Lichtman, J. W. (2015). Saturated Reconstruc-
tion of a Volume of Neocortex. Cell, 162(3):648–661. doi:10.1016/j.cell.2015.06.054.

Kawano, T., Po, M. D., Gao, S., Leung, G., Ryu, W. S., and Zhen, M. (2011).
An Imbalancing Act: Gap Junctions Reduce the Backward Motor Circuit Ac-
tivity to Bias C. elegans for Forward Locomotion. Neuron, 72(4):572–586.
doi:10.1016/j.neuron.2011.09.005.

Keating, C. D., Kriek, N., Daniels, M., Ashcroft, N. R., Hopper, N. A., Siney, E. J.,
Holden-Dye, L., and Burke, J. F. (2003). Whole-Genome Analysis of 60 G Protein-
Coupled Receptors in Caenorhabditis elegans by Gene Knockout with RNAi. Current
Biology, 13(19):1715–1720. doi:10.1016/j.cub.2003.09.003.

Kebschull, J., Garcia da Silva, P., Reid, A., Peikon, I., Albeanu, D., and Zador, A.
(2016). High-Throughput Mapping of Single-Neuron Projections by Sequencing of
Barcoded RNA. Neuron, 91(5):975–987. doi:10.1016/j.neuron.2016.07.036.

Kelly, J. R., Rubin, A. J., Davis, J. H., Ajo-Franklin, C. M., Cumbers, J., Czar, M. J.,
de Mora, K., Glieberman, A. L., Monie, D. D., and Endy, D. (2009). Measuring
the activity of BioBrick promoters using an in vivo reference standard. Journal of
Biological Engineering, 3:4. doi:10.1186/1754-1611-3-4.

Kerr, R. A. (2006). Imaging the activity of neurons and muscles. WormBook,
doi:10.1895/wormbook.1.113.

Kim, K. and Li, C. (2004). Expression and regulation of an FMRFamide-related
neuropeptide gene family in Caenorhabditis elegans. The Journal of Comparative
Neurology, 475(4):540–550. doi:10.1002/cne.20189.

Kitano, H., Hamahashi, S., and Luke, S. G. (1998). The perfect C. elegans project:
An initial report. Artificial Life, 4(2):141–156. doi:10.1162/106454698568495.

Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter,
M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3):203–271.
doi:10.1093/comnet/cnu016.

Klimm, F., Bassett, D. S., Carlson, J. M., and Mucha, P. J. (2014). Resolving Structural
Variability in Network Models and the Brain. PLOS Computational Biology, 10(3).
doi:10.1371/journal.pcbi.1003491.

Koelle, M. R. (1994). Integrating extrachromasomal arrays into the
C. elegans chromosomes. Koelle Lab, Yale School of Medicine,
https://medicine.yale.edu/lab/koelle/protocols/.



200 References

Kong, X.-z., Liu, Z., Huang, L., Wang, X., Yang, Z., Zhou, G., Zhen, Z.,
and Liu, J. (2015). Mapping Individual Brain Networks Using Statistical
Similarity in Regional Morphology from MRI. PLOS ONE, 10(11):e0141840.
doi:10.1371/journal.pone.0141840.

Kopell, N. J., Gritton, H., Whittington, M., and Kramer, M. (2014). Beyond the Con-
nectome: The Dynome. Neuron, 83(6):1319–1328. doi:10.1016/j.neuron.2014.08.016.

Krzywinski, M., Birol, I., Jones, S. J., and Marra, M. A. (2011). Hive plots—rational
approach to visualizing networks. Briefings in Bioinformatics, 13(5):627–644.
doi:10.1093/bib/bbr069.

Kubiak, T. M., Larsen, M. J., Bowman, J. W., Geary, T. G., and Lowery, D. E.
(2008). FMRFamide-like peptides encoded on the flp-18 precursor gene activate
two isoforms of the orphan Caenorhabditis elegans G-protein-coupled receptor
Y58g8a.4 heterologously expressed in mammalian cells. Biopolymers, 90(3):339–
348. doi:10.1002/bip.20850.

Kubiak, T. M., Larsen, M. J., Nulf, S. C., Zantello, M. R., Burton, K. J., Bowman,
J. W., Modric, T., and Lowery, D. E. (2003a). Differential Activation of “Social” and
“Solitary” Variants of the Caenorhabditis elegans G Protein-coupled Receptor NPR-1
by Its Cognate Ligand AF9. Journal of Biological Chemistry, 278(36):33724–33729.
doi:10.1074/jbc.M304861200.

Kubiak, T. M., Larsen, M. J., Zantello, M. R., Bowman, J. W., Nulf, S. C., and Lowery,
D. E. (2003b). Functional Annotation of the Putative Orphan Caenorhabditis
elegans G-protein-coupled Receptor C10c6.2 as a FLP15 Peptide Receptor. Journal
of Biological Chemistry, 278(43):42115–42120. doi:10.1074/jbc.M304056200.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86. doi:doi:10.1214/aoms/1177729694.

Lamberti, P. W., Majtey, A. P., Borras, A., Casas, M., and Plastino, A. (2008). Metric
character of the quantum Jensen-Shannon divergence. Physical Review A, 77(5).
doi:10.1103/PhysRevA.77.052311.

Lancichinetti, A. and Fortunato, S. (2009). Community detection algorithms: A
comparative analysis. Physical Review E, 80(5). doi:10.1103/PhysRevE.80.056117.

Latora, V. and Marchiori, M. (2001). Efficient Behavior of Small-World Networks.
Physical Review Letters, 87(19):198701. doi:10.1103/PhysRevLett.87.198701.

LeBoeuf, B., Correa, P., Jee, C., and García, L. R. (2014). Caenorhabditis elegans
male sensory-motor neurons and dopaminergic support cells couple ejaculation and
post-ejaculatory behaviors. eLife, 3:e02938. doi:10.7554/eLife.02938.



References 201

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E.,
Geman, D., Baggerly, K., and Irizarry, R. A. (2010). Tackling the widespread and
critical impact of batch effects in high-throughput data. Nature Reviews Genetics,
11(10):733–739. doi:10.1038/nrg2825.

Leicht, E. A. and Newman, M. E. (2008). Community structure in directed net-
works. Physical review letters, 100(11):118703. doi:10.1103/PhysRevLett.100.118703
arXiv:0709.4500.

Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J., and Samuel, A. D. T. (2011).
Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans.
Nature Methods, 8(2):147–152. doi:10.1038/nmeth.1554.

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A. F.,
Boguski, M. S., Brockway, K. S., Byrnes, E. J., Chen, L., Chen, L., Chen, T.-M.,
Chi Chin, M., Chong, J., Crook, B. E., Czaplinska, A., Dang, C. N., Datta, S., Dee,
N. R., Desaki, A. L., Desta, T., Diep, E., Dolbeare, T. A., Donelan, M. J., Dong,
H.-W., Dougherty, J. G., Duncan, B. J., Ebbert, A. J., Eichele, G., Estin, L. K.,
Faber, C., Facer, B. A., Fields, R., Fischer, S. R., Fliss, T. P., Frensley, C., Gates,
S. N., Glattfelder, K. J., Halverson, K. R., Hart, M. R., Hohmann, J. G., Howell,
M. P., Jeung, D. P., Johnson, R. A., Karr, P. T., Kawal, R., Kidney, J. M., Knapik,
R. H., Kuan, C. L., Lake, J. H., Laramee, A. R., Larsen, K. D., Lau, C., Lemon,
T. A., Liang, A. J., Liu, Y., Luong, L. T., Michaels, J., Morgan, J. J., Morgan,
R. J., Mortrud, M. T., Mosqueda, N. F., Ng, L. L., Ng, R., Orta, G. J., Overly,
C. C., Pak, T. H., Parry, S. E., Pathak, S. D., Pearson, O. C., Puchalski, R. B.,
Riley, Z. L., Rockett, H. R., Rowland, S. A., Royall, J. J., Ruiz, M. J., Sarno, N. R.,
Schaffnit, K., Shapovalova, N. V., Sivisay, T., Slaughterbeck, C. R., Smith, S. C.,
Smith, K. A., Smith, B. I., Sodt, A. J., Stewart, N. N., Stumpf, K.-R., Sunkin, S. M.,
Sutram, M., Tam, A., Teemer, C. D., Thaller, C., Thompson, C. L., Varnam, L. R.,
Visel, A., Whitlock, R. M., Wohnoutka, P. E., Wolkey, C. K., Wong, V. Y., Wood,
M., Yaylaoglu, M. B., Young, R. C., Youngstrom, B. L., Feng Yuan, X., Zhang, B.,
Zwingman, T. A., and Jones, A. R. (2007). Genome-wide atlas of gene expression in
the adult mouse brain. Nature, 445(7124):168–176. doi:10.1038/nature05453.

Levitin, A. (2012). Introduction to the design & analysis of algorithms. Pearson, Boston,
3rd edition. ISBN: 978-0-13-231681-1.

Li, C. and Kim, K. (2008). Neuropeptides. WormBook, doi:10.1895/wormbook.1.142.1:1–
36.

Li, N., Daie, K., Svoboda, K., and Druckmann, S. (2016). Robust neuronal dy-
namics in premotor cortex during motor planning. Nature, 532(7600):459–464.
doi:10.1038/nature17643.

Li, S., Dent, J. A., and Roy, R. (2003). Regulation of Intermuscular Electrical
Coupling by the Caenorhabditis elegans Innexin inx-6. Molecular Biology of the Cell,
14(7):2630–2644. doi:10.1091/mbc.E02-11-0716.



202 References

Li, Z., Li, Y., Yi, Y., Huang, W., Yang, S., Niu, W., Zhang, L., Xu, Z., Qu, A.,
Wu, Z., and Xu, T. (2012). Dissecting a central flip-flop circuit that integrates
contradictory sensory cues in C. elegans feeding regulation. Nature Communications,
3:776. doi:10.1038/ncomms1780.

Liang, X., Hsu, L.-M., Lu, H., Sumiyoshi, A., He, Y., and Yang, Y. (2017). The
Rich-Club Organization in Rat Functional Brain Network to Balance Between Com-
munication Cost and Efficiency. Cerebral Cortex, 26(12). doi:10.1093/cercor/bhw416.

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions
on Information theory, 37(1):145–151. doi:10.1109/18.61115.

Lin, Z., Canales, J. J., Björgvinsson, T., Thomsen, M. M., Qu, H., Liu, Q.-R., Torres,
G. E., and Caine, S. B. (2011). Monoamine Transporters: Vulnerable and Vital
Doorkeepers. Progress in Molecular Biology and Translational Science, 98:1–46.
doi:10.1016/B978-0-12-385506-0.00001-6.

Lindner, A. (2014). Methods, indicators of progress and target values for mapping of
the human brain. Report D2.3.1, The Human Brain Project.

Lints, R. and Emmons, S. W. (1999). Patterning of dopaminergic neurotransmitter
identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family
signaling pathway and a Hox gene. Development, 126(24):5819–5831.

Liu, X. F. and Tse, C. K. (2015). A General Framework for Complex Network
Applications. arXiv [physics, q-fin]. arXiv: 1507.05687.

Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. (2011). Controllability of complex
networks. Nature, 473(7346):167–173. doi:10.1038/nature10011.

Loer, C. (2010). Neurotransmitters in Caenorhabditis elegans. WormAtlas,
doi:10.3908/wormatlas.5.200.

Luo, J., Xu, Z., Tan, Z., Zhang, Z., and Ma, L. (2015). Neuropeptide Recep-
tors NPR-1 and NPR-2 Regulate Caenorhabditis elegans Avoidance Response
to the Plant Stress Hormone Methyl Salicylate. Genetics, 199(2):523–531.
doi:10.1534/genetics.114.172239.

Macosko, E. Z., Pokala, N., Feinberg, E. H., Chalasani, S. H., Butcher, R. A.,
Clardy, J., and Bargmann, C. I. (2009). A hub-and-spoke circuit drives pheromone
attraction and social behaviour in C. elegans. Nature, 458(7242):1171–1175.
doi:10.1038/nature07886.

Majtey, A. P., Lamberti, P. W., and Prato, D. P. (2005). Jensen-Shannon divergence
as a measure of distinguishability between mixed quantum states. Physical Review
A, 72(5):052310. doi:10.1103/PhysRevA.72.052310.



References 203

Marblestone, A. H., Daugharthy, E. R., Kalhor, R., Peikon, I. D., Kebschull, J. M.,
Shipman, S. L., Mishchenko, Y., Lee, J. H., Kording, K. P., Boyden, E. S., Zador,
A. M., and Church, G. M. (2014). Rosetta Brains: A Strategy for Molecularly-
Annotated Connectomics. arXiv [q-bio]. arXiv: 1404.5103.

Marder, E. (2012). Neuromodulation of Neuronal Circuits: Back to the Future. Neuron,
76(1):1–11. doi:10.1016/j.neuron.2012.09.010.

Marder, E., O’Leary, T., and Shruti, S. (2014). Neuromodulation of Circuits with
Variable Parameters: Single Neurons and Small Circuits Reveal Principles of State-
Dependent and Robust Neuromodulation. Annual Review of Neuroscience, 37(1):329–
346. doi:10.1146/annurev-neuro-071013-013958.

Maslov, S. and Sneppen, K. (2002). Specificity and stability in topology of protein
networks. Science, 296(5569):910–913. doi:10.1126/science.1069415.

May, R. M. (1972). Will a Large Complex System be Stable? Nature, 238(5364):413–414.
doi:10.1038/238413a0.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas imma-
nent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.
doi:10.1007/bf02478259.

McDiarmid, T. A., Ardiel, E. L., and Rankin, C. H. (2015). The role of neuropeptides
in learning and memory in Caenorhabditis elegans. Current Opinion in Behavioral
Sciences, 2:15–20. doi:10.1016/j.cobeha.2014.07.002.

McDonald, P. W., Hardie, S. L., Jessen, T. N., Carvelli, L., Matthies, D. S., and
Blakely, R. D. (2007). Vigorous Motor Activity in Caenorhabditis elegans Re-
quires Efficient Clearance of Dopamine Mediated by Synaptic Localization of the
Dopamine Transporter DAT-1. The Journal of Neuroscience, 27(51):14216–14227.
doi:10.1523/jneurosci.2992-07.2007.

McIntire, S. L., Jorgensen, E., Kaplan, J., and Horvitz, H. R. (1993). The
GABAergic nervous system of Caenorhabditis elegans. Nature, 364(6435):337–341.
doi:10.1038/364337a0.

Medaglia, J. D. and Bassett, D. S. (2017). Network Analyses and Nervous System
Disorders. arXiv. arXiv: 1701.01101.

Meinertzhagen, I. A. (2017). Perspective: A New Era of Comparative Connectomics.
In Decoding Neural Circuit Structure and Function, pages 509–518. Springer, Cham.
doi:10.1007/978-3-319-57363-2_20.

Melzer, N., Torres-Salazar, D., and Fahlke, C. (2005). A dynamic switch between
inhibitory and excitatory currents in a neuronal glutamate transporter. Proceedings
of the National Academy of Sciences of the United States of America, 102(52):19214–
19218. doi:10.1073/pnas.0508837103.



204 References

Menichetti, G., Remondini, D., Panzarasa, P., Mondragón, R. J., and Bian-
coni, G. (2014). Weighted multiplex networks. PLOS ONE, 9(6):e97857.
doi:10.1371/journal.pone.0097857.

Miklós, I. and Podani, J. (2004). Randomization of presence–absence matrices: com-
ments and new algorithms. Ecology, 85(1):86–92. doi:10.1890/03-0101.

Mikula, S. and Denk, W. (2015). High-resolution whole-brain staining for
electron microscopic circuit reconstruction. Nature Methods, 12(6):541–546.
doi:10.1038/nmeth.3361.

Mills, H., Wragg, R., Hapiak, V., Castelletto, M., Zahratka, J., Harris, G., Summers,
P., Korchnak, A., Law, W., Bamber, B., and Komuniecki, R. (2012). Monoamines
and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans:
Monoamines and peptides modulate nociception. The EMBO Journal, 31(3):667–678.
doi:10.1038/emboj.2011.422.

Milo, R. (2002). Network Motifs: Simple Building Blocks of Complex Networks. Science,
298(5594):824–827. doi:10.1126/science.298.5594.824.

Milo, R., Kashtan, N., Itzkovitz, S., Newman, M. E., and Alon, U. (2003). On the
uniform generation of random graphs with prescribed degree sequences. arXiv
[cond-mat]. arXiv: 0312028.

Molloy, M. and Reed, B. (1995). A critical point for random graphs with
a given degree sequence. Random structures & algorithms, 6(2-3):161–180.
doi:10.1002/rsa.3240060204.

Mondragon, R. J., Iacovacci, J., and Bianconi, G. (2017). Multilink Communities of
Multiplex Networks. arXiv [physics]. arXiv: 1706.09011.

Morgan, J. L. and Lichtman, J. W. (2013). Why not connectomics? Nature Methods,
10(6):494–500. doi:10.1038/nmeth.2480.

Mori, I. and Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis
elegans. Nature, 376(6538):344–348. doi:10.1038/376344a0.

Morita, S., Oshio, K.-i., Osana, Y., Funabashi, Y., Oka, K., and Kawamura, K. (2001).
Geometrical structure of the neuronal network of Caenorhabditis elegans. Physica
A: Statistical Mechanics and its Applications, 298(3):553–561. doi:10.1016/S0378-
4371(01)00266-7.

Muldoon, S. F., Bridgeford, E. W., and Bassett, D. S. (2016). Small-World Propensity
and Weighted Brain Networks. Scientific Reports, 6:22057. doi:10.1038/srep22057.

Murray, J. I., Bao, Z., Boyle, T. J., Boeck, M. E., Mericle, B. L., Nicholas, T. J., Zhao,
Z., Sandel, M. J., and Waterston, R. H. (2008). Automated analysis of embryonic



References 205

gene expression with cellular resolution in C. elegans. Nature Methods, 5(8):703–709.
doi:10.1038/nmeth.1228.

Murray, J. I., Boyle, T. J., Preston, E., Vafeados, D., Mericle, B., Weisdepp, P., Zhao,
Z., Bao, Z., Boeck, M., and Waterston, R. H. (2012). Multidimensional regulation
of gene expression in the C. elegans embryo. Genome Research, 22(7):1282–1294.
doi:10.1101/gr.131920.111.

Nathoo, A. N., Moeller, R. A., Westlund, B. A., and Hart, A. C. (2001). Identification
of neuropeptide-like protein gene families in Caenorhabditis elegans and other
species. Proceedings of the National Academy of Sciences, 98(24):14000–14005.
doi:10.1073/pnas.241231298.

Nelson, M. D., Janssen, T., York, N., Lee, K. H., Schoofs, L., and Raizen, D. M. (2015).
FRPR-4 Is a G-Protein Coupled Neuropeptide Receptor That Regulates Behavioral
Quiescence and Posture in Caenorhabditis elegans. PLOS ONE, 10(11):e0142938.
doi:10.1371/journal.pone.0142938.

Newman, M. E. J. (2002). Assortative Mixing in Networks. Physical Review Letters,
89(20). doi:10.1103/PhysRevLett.89.208701.

Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E, 67(2).
doi:10.1103/PhysRevE.67.026126.

Newman, M. E. J. (2003b). The Structure and Function of Complex Networks. SIAM
Review, 45(2):167–256. doi:10.1137/S003614450342480.

Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks.
Physical Review E, 69(6). doi:10.1103/PhysRevE.69.066133.

Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contempo-
rary Physics, 46(5):323–351. doi:10.1080/00107510500052444.

Newman, M. E. J. (2006). Modularity and community structure in net-
works. Proceedings of the National Academy of Sciences, 103(23):8577–8582.
doi:10.1073/pnas.0601602103.

Newman, M. E. J. (2010). Networks: an introduction. Oxford University Press, Oxford,
UK. ISBN: 978-0-19-920665-0.

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure
in networks. Physical Review E, 69(2). doi:10.1103/PhysRevE.69.026113 arXiv:
cond-mat/0308217.

Nguyen, J. P., Shipley, F. B., Linder, A. N., Plummer, G. S., Liu, M., Setru, S. U.,
Shaevitz, J. W., and Leifer, A. M. (2016). Whole-brain calcium imaging with cellular
resolution in freely behaving Caenorhabditis elegans. Proceedings of the National
Academy of Sciences, 113(8):E1074–E1081. doi:10.1073/pnas.1507110112.



206 References

Nicosia, V. and Latora, V. (2015). Measuring and modeling correlations in multiplex
networks. Physical Review E, 92(3). doi:10.1103/PhysRevE.92.032805.

Nicosia, V., Vertes, P. E., Schafer, W. R., Latora, V., and Bullmore, E. T.
(2013). Phase transition in the economically modeled growth of a cellular ner-
vous system. Proceedings of the National Academy of Sciences, 110(19):7880–7885.
doi:10.1073/pnas.1300753110.

Niswender, K. D., Blackman, S. M., Rohde, L., Magnuson, M. A., and Piston, D. W.
(1995). Quantitative imaging of green fluorescent protein in cultured cells: Compari-
son of microscopic techniques, use in fusion proteins and detection limits. Journal
of Microscopy, 180(2):109–116. doi:10.1111/j.1365-2818.1995.tb03665.x.

Nunez-Iglesias, J., Kennedy, R., Plaza, S. M., Chakraborty, A., and Katz, W. T.
(2014). Graph-based active learning of agglomeration (GALA): a Python li-
brary to segment 2d and 3d neuroimages. Frontiers in Neuroinformatics, 8:34.
doi:10.3389/fninf.2014.00034.

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau,
C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen,
S. A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E.,
Hirokawa, K. E., Bohn, P., Joines, K. M., Peng, H., Hawrylycz, M. J., Phillips,
J. W., Hohmann, J. G., Wohnoutka, P., Gerfen, C. R., Koch, C., Bernard, A., Dang,
C., Jones, A. R., and Zeng, H. (2014). A mesoscale connectome of the mouse brain.
Nature, 508(7495):207–214. doi:10.1038/nature13186.

Ohno, N., Katoh, M., Saitoh, Y., and Saitoh, S. (2015). Recent advancement in the
challenges to connectomics. Microscopy, 65(2):97–107. doi:10.1093/jmicro/dfv371.

Olde, B. and McCombie, W. R. (1997). Molecular cloning and functional expression of
a serotonin receptor from Caenorhabditis elegans. Journal of Molecular Neuroscience,
8(1):53–62. doi:10.1007/bf02736863.

Orman, G. and Labatut, V. (2009). A Comparison of Community Detection Algorithms
on Articial Networks. In Gama, J., Costa, V. S., Jorge, A. M., and Brazdil, P. B.,
editors, Discovery Science, volume 5808 of Lecture Notes in Computer Science, pages
242–256. Springer, Berlin, Heidelberg. ISBN: 978-3-642-04746-6.

Oshio, K., Iwasaki, Y., Morita, S., Osana, Y., Gomi, S., Akiyama, E., Omata,
K., Oka, K., and Kawamura, K. (2003). Database of Synaptic Connectivity of
C. elegans. Technical Report of the CCeP 3, Keio University, Tokyo, Japan.
http://ims.dse.ibaraki.ac.jp/ccep/.

Osten, P. and Margrie, T. W. (2013). Mapping brain circuitry with a light microscope.
Nature Methods, 10(6):515–523. doi:10.1038/nmeth.2477.



References 207

Osterreicher, F. and Vajda, I. (2003). A new class of metric divergences on probabil-
ity spaces and its applicability in statistics. Annals of the Institute of Statistical
Mathematics, 55(3):639–653. doi:10.1007/bf02517812.

Owald, D. and Waddell, S. (2015). Olfactory learning skews mushroom body output
pathways to steer behavioral choice in Drosophila. Current Opinion in Neurobiology,
35:178–184. doi:10.1016/j.conb.2015.10.002.

Passerini, F. and Severini, S. (2011). The von Neumann entropy of networks. arXiv
[cond-mat, physics:quant-ph, q-bio]. arXiv: 0812.2597.

Pastor-Satorras, R., Vázquez, A., and Vespignani, A. (2001). Dynamical
and Correlation Properties of the Internet. Physical Review Letters, 87(25).
doi:10.1103/PhysRevLett.87.258701.

Perc, M., Gómez-Gardeñes, J., Szolnoki, A., Floría, L. M., and Moreno, Y. (2013).
Evolutionary dynamics of group interactions on structured populations: A review.
Journal of The Royal Society Interface, 10(80):20120997–20120997. arXiv: 1301.2247.

Pereda, A. E., Curti, S., Hoge, G., Cachope, R., Flores, C. E., and Rash, J. E.
(2013). Gap junction-mediated electrical transmission: Regulatory mechanisms and
plasticity. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(1):134–146.
doi:10.1016/j.bbamem.2012.05.026.

Pereira, L., Kratsios, P., Serrano-Saiz, E., Sheftel, H., Mayo, A. E., Hall, D. H., White,
J. G., LeBoeuf, B., Garcia, L. R., Alon, U., and Hobert, O. (2015). A cellular and
regulatory map of the cholinergic nervous system of C. elegans. eLife, 4:e12432.
doi:10.7554/eLife.12432.

Petrushin, A., Ferrara, L., and Blau, A. (2015). Past and Recent Endeavours to
Simulate Caenorhabditis elegans. In Proceedings of the 3rd International Congress
on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2015), pages
133–137, Lisbon, Portugal. SCITEPRESS. doi:10.5220/0005712701330137.

Petrushin, A., Ferrara, L., and Blau, A. (2016). The Si elegans project at the interface of
experimental and computational Caenorhabditis elegans neurobiology and behavior.
Journal of Neural Engineering, 13(6):065001. doi:10.1088/1741-2560/13/6/065001.

Piggott, B., Liu, J., Feng, Z., Wescott, S., and Xu, X. (2011). The Neural Circuits and
Synaptic Mechanisms Underlying Motor Initiation in C. elegans. Cell, 147(4):922–933.
doi:10.1016/j.cell.2011.08.053.

Pirri, J. K., McPherson, A. D., Donnelly, J. L., Francis, M. M., and Alkema,
M. J. (2009). A tyramine-gated chloride channel coordinates distinct motor
programs of a Caenorhabditis elegans escape response. Neuron, 62(4):526–538.
doi:10.1016/j.neuron.2009.04.013.



208 References

Pocock, R. and Hobert, O. (2010). Hypoxia activates a latent circuit for process-
ing gustatory information in C. elegans. Nature Neuroscience, 13(5):610–614.
doi:10.1038/nn.2537.

Poisot, T. and Gravel, D. (2014). When is an ecological network complex? Con-
nectance drives degree distribution and emerging network properties. PeerJ, 2(e251).
doi:10.7717/peerj.251.

Praitis, V. and Maduro, M. F. (2011). Transgenesis in C. elegans. In Methods in Cell
Biology, volume 106, pages 159–185. Elsevier. doi:10.1016/B978-0-12-544172-8.00006-
2.

Prevedel, R., Yoon, Y.-G., Hoffmann, M., Pak, N., Wetzstein, G., Kato, S., Schrödel,
T., Raskar, R., Zimmer, M., Boyden, E. S., and Vaziri, A. (2014). Simultaneous
whole-animal 3d imaging of neuronal activity using light-field microscopy. Nature
Methods, 11(7):727–730. doi:10.1038/nmeth.2964.

Qian, J., Hintze, A., and Adami, C. (2011). Colored Motifs Reveal Compu-
tational Building Blocks in the C. elegans Brain. PLOS ONE, 6(3):e17013.
doi:10.1371/journal.pone.0017013.

Rabinowitch, I., Chatzigeorgiou, M., and Schafer, W. (2013). A Gap Junction Cir-
cuit Enhances Processing of Coincident Mechanosensory Inputs. Current Biology,
23(11):963–967. doi:10.1016/j.cub.2013.04.030.

Ramani, A. K., Chuluunbaatar, T., Verster, A. J., Na, H., Vu, V., Pelte, N., Wannissorn,
N., Jiao, A., and Fraser, A. G. (2012). The Majority of Animal Genes Are Required
for Wild-Type Fitness. Cell, 148(4):792–802. doi:10.1016/j.cell.2012.01.019.

Ranganathan, R., Cannon, S. C., and Horvitz, H. R. (2000). MOD-1 is a serotonin-
gated chloride channel that modulates locomotory behaviour in C. elegans. Nature,
408(6811):470–475. doi:10.1038/35044083.

Ranganathan, R., Sawin, E. R., Trent, C., and Horvitz, H. R. (2001). Mutations in the
Caenorhabditis elegans Serotonin Reuptake Transporter MOD-5 Reveal Serotonin-
Dependent and -Independent Activities of Fluoxetine. The Journal of Neuroscience,
21(16):5871–5884.

Ray, J., Pinar, A., and Seshadhri, C. (2012). Are we there yet? When to stop a
Markov chain while generating random graphs. In Algorithms and Models for the
Web Graph: 9th International Workshop (WAW 2012), pages 153–164, Halifax, NS,
Canada. Springer. doi:10.1007/978-3-642-30541-2_12.

Reese, T. M., Brzoska, A., Yott, D. T., and Kelleher, D. J. (2012). Analyzing Self-
Similar and Fractal Properties of the C. elegans Neural Network. PLOS ONE,
7(10):e40483. doi:10.1371/journal.pone.0040483.



References 209

Reigl, M., Alon, U., and Chklovskii, D. B. (2004). Search for computational modules
in the C. elegans brain. BMC Biology, 2(1):25. 10.1186/1741-7007-2-25.

Reus, M. A. d. and Heuvel, M. P. v. d. (2013). Rich Club Organization and Intermodule
Communication in the Cat Connectome. The Journal of Neuroscience, 33(32):12929–
12939. doi:10.1523/jneurosci.1448-13.2013.

Rex, E., Hapiak, V., Hobson, R., Smith, K., Xiao, H., and Komuniecki, R. (2005).
TYRA-2 (F01e11.5): a Caenorhabditis elegans tyramine receptor expressed in the
MC and NSM pharyngeal neurons. Journal of Neurochemistry, 94(1):181–191.
doi:10.1111/j.1471-4159.2005.03180.x.

Rex, E., Molitor, S. C., Hapiak, V., Xiao, H., Henderson, M., and Komuniecki,
R. (2004). Tyramine receptor (SER-2) isoforms are involved in the regulation of
pharyngeal pumping and foraging behavior in Caenorhabditis elegans. Journal of
Neurochemistry, 91(5):1104–1115. doi:10.1111/j.1471-4159.2004.02787.x.

Rice, M. E. and Cragg, S. J. (2008). Dopamine Spillover after Quantal Release:
Rethinking Dopamine Transmission in the Nigrostriatal Pathway. Brain Research
Reviews, 58(2):303–313. doi:10.1016/j.brainresrev.2008.02.004.

Rice, M. E., Patel, J. C., and Cragg, S. J. (2011). Dopamine release in the basal
ganglia. Neuroscience, 198:112–137. doi:10.1016/j.neuroscience.2011.08.066.

Richmond, J. (2007). Synaptic function. WormBook, doi:10.1895/wormbook.1.69.1.

Ringstad, N., Abe, N., and Horvitz, H. R. (2009). Ligand-gated chloride chan-
nels are receptors for biogenic amines in C. elegans. Science, 325(5936):96–100.
doi:10.1126/science.1169243.

Ringstad, N. and Horvitz, H. R. (2008). FMRFamide neuropeptides and acetylcholine
synergistically inhibit egg-laying by C. elegans. Nature Neuroscience, 11(10):1168–
1176. doi:10.1038/nn.2186.

Rivard, L., Srinivasan, J., Stone, A., Ochoa, S., Sternberg, P. W., and Loer, C. M.
(2010). A comparison of experience-dependent locomotory behaviors and biogenic
amine neurons in nematode relatives of Caenorhabditis elegans. BMC Neuroscience,
11:22. doi:10.1186/1471-2202-11-22.

Roberts, W. M., Augustine, S. B., Lawton, K. J., Lindsay, T. H., Thiele, T. R., Izquierdo,
E. J., Faumont, S., Lindsay, R. A., Britton, M. C., Pokala, N., Bargmann, C. I., and
Lockery, S. R. (2016). A stochastic neuronal model predicts random search behaviors
at multiple spatial scales in C. elegans. eLife, 5:e12572. doi:10.7554/eLife.12572.

Rogers, C., Reale, V., Kim, K., Chatwin, H., Li, C., Evans, P., and de Bono, M. (2003).
Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide
activation of NPR-1. Nature Neuroscience, 6(11):1178–1185. doi:10.1038/nn1140.



210 References

Roshchina, V. V. (2010). Evolutionary Considerations of Neurotransmitters in Microbial,
Plant, and Animal Cells. In Lyte, M. and Freestone, P. P. E., editors, Microbial
Endocrinology, pages 17–52. Springer New York. doi:10.1007/978-1-4419-5576-0_2.

Rubinov, M. and Sporns, O. (2010). Complex network measures of brain
connectivity: Uses and interpretations. NeuroImage, 52(3):1059–1069.
doi:10.1016/j.neuroimage.2009.10.003.

Rudolph-Lilith, M. and Muller, L. E. (2014). Aspects of randomness in neural graph
structures. Biological Cybernetics, 108(4):381–396. doi:10.1007/s00422-014-0606-6.

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed Processing,
volume 1. MIT Press, Cambridge, MA. ISBN: 978-0-262-68053-0.

San-Miguel, A. and Lu, H. (2013). Microfluidics as a tool for C. elegans research.
WormBook, doi:10.1895/wormbook.1.162.1:1–19.

Sandberg, A. and Bostrom, N. (2008). Whole Brain Emulation: A Roadmap. Techni-
cal Report 2008-3, Future of Humanity Institute, Oxford University, Oxford, UK.
http://www.fhi.ox.ac.uk/brain-emulation-roadmap-report.pdf.

Sanyal, S., Wintle, R. F., Kindt, K. S., Nuttley, W. M., Arvan, R., Fitzmaurice,
P., Bigras, E., Merz, D. C., Hébert, T. E., van der Kooy, D., and others (2004).
Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis
elegans. The EMBO Journal, 23(2):473–482. doi:10.1038/sj.emboj.7600057.

Sawin, E. R. (1996). Genetic and cellular analysis of modulated be-
haviors in Caenorhabditis elegans. PhD thesis, MIT, Cambridge, MA.
http://dspace.mit.edu/handle/1721.1/7582.

Sawin, E. R., Ranganathan, R., and Horvitz, H. R. (2000). C. elegans Locomotory
Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Ex-
perience through a Serotonergic Pathway. Neuron, 26(3):619–631. doi:10.1016/S0896-
6273(00)81199-x.

Schafer, W. (2005). Egg-laying. WormBook, doi:10.1895/wormbook.1.38.1.

Scheffer, L. K., Karsh, B., and Vitaladevun, S. (2013). Automated Alignment of
Imperfect EM Images for Neural Reconstruction. arXiv [q-bio]. arXiv: 1304.6034.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks, 61:85–117. doi:10.1016/j.neunet.2014.09.003 arXiv: 1404.7828.

Schneider, C. M., Andrade, R. F. S., Shinbrot, T., and Herrmann, H. J. (2011a).
The fragility of protein-protein interaction networks. EPL (Europhysics Letters),
95(1):16001. doi:10.1209/0295-5075/95/16001.



References 211

Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S., and Herrmann, H. J.
(2011b). Mitigation of malicious attacks on networks. Proceedings of the National
Academy of Sciences, 108(10):3838–3841. doi:10.1073/pnas.1009440108.

Schneider-Mizell, C. M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart,
M. F., Champion, A., Midgley, F. M., Fetter, R. D., Saalfeld, S., and Cardona, A.
(2016). Quantitative neuroanatomy for connectomics in Drosophila. eLife, 5:e12059.
doi:10.7554/eLife.12059.

Schreiber, F. and Schwöbbermeyer, H. (2008). Motifs in biological networks. Statistical
and Evolutionary Analysis of Biological Networks, pages 45–64.

Schrödinger, E. (1958). Mind and matter. Cambridge University Press, Cambridge,
UK.

Schwarz, R. F., Branicky, R., Grundy, L. J., Schafer, W. R., and Brown, A. E. X.
(2015). Changes in Postural Syntax Characterize Sensory Modulation and Natural
Variation of C. elegans Locomotion. PLOS Computational Biology, 11(8):e1004322.
doi:10.1371/journal.pcbi.1004322.

Sengupta, P. and Samuel, A. D. (2009). Caenorhabditis elegans: a model sys-
tem for systems neuroscience. Current Opinion in Neurobiology, 19(6):637–643.
doi:10.1016/j.conb.2009.09.009.

Serrano-Saiz, E., Poole, R. J., Felton, T., Zhang, F., De La Cruz, E. D., and Hobert, O.
(2013). Modular control of glutamatergic neuronal identity in C. elegans by distinct
homeodomain proteins. Cell, 155(3):659–673. doi:10.1016/j.cell.2013.09.052.

Shaham, S. (2006). Methods in cell biology. WormBook, doi:10.1895/wormbook.1.49.1.

Shahidi, R., Williams, E. A., Conzelmann, M., Asadulina, A., Verasztó, C., Jasek,
S., Bezares-Calderón, L. A., and Jékely, G. (2015). A serial multiplex immunogold
labeling method for identifying peptidergic neurons in connectomes. eLife, 4:e11147.
doi:10.7554/eLife.11147.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,
N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Research,
13(11):2498–2504. doi:10.1101/gr.1239303.

Sherrington, C. S. (1906a). The integrative action of the nervous system, volume xvi of
Yale University Mrs. Hepsa Ely Silliman memorial lectures. Yale University Press,
New Haven, CT.



212 References

Sherrington, C. S. (1906b). Observations on the scratch-reflex in the spinal dog. The
Journal of Physiology, 34(1-2):1–50. doi:0.1113/jphysiol.1906.sp001139.

Shih, C.-T., Sporns, O., Yuan, S.-L., Su, T.-S., Lin, Y.-J., Chuang, C.-C., Wang, T.-Y.,
Lo, C.-C., Greenspan, R., and Chiang, A.-S. (2015). Connectomics-Based Analysis
of Information Flow in the Drosophila Brain. Current Biology, 25(10):1249–1258.
doi:10.1016/j.cub.2015.03.021.

Shipley, F. B., Clark, C. M., Alkema, M. J., and Leifer, A. M. (2014). Simultaneous
optogenetic manipulation and calcium imaging in freely moving C. elegans. Frontiers
in Neural Circuits, 8:28. doi:10.3389/fncir.2014.00028.

Shyn, S. I. (2003). Cameleon Reveals a Physiologic Correlate for Alternative Behavioral
States in Caenorhabditis elegans Egg-laying. PhD thesis, University of California.
http://www2.mrc-lmb.cam.ac.uk/groups/wschafer/StanleyShyn.pdf.

Simonsen, K. T., Moerman, D. G., and Naus, C. C. (2014). Gap junctions in C. elegans.
Frontiers in Physiology, 5:40. doi:10.3389/fphys.2014.00040.

Sloane, N. J. A. (2017). Number of connected digraphs with n nodes (A003085). In
The On-Line Encyclopedia of Integer. https://oeis.org/A003085.

Smith, C. J., Watson, J. D., Spencer, W. C., O’Brien, T., Cha, B., Albeg, A.,
Treinin, M., and Miller III, D. M. (2010). Time-lapse imaging and cell-specific
expression profiling reveal dynamic branching and molecular determinants of a
multi-dendritic nociceptor in C. elegans. Developmental Biology, 345(1):18–33.
doi:10.1016/j.ydbio.2010.05.502.

Soboleski, M. R., Oaks, J., and Halford, W. P. (2005). Green fluorescent protein is a
quantitative reporter of gene expression in individual eukaryotic cells. The FASEB
Journal. Federation of American Societies for Experimental Biology, 19(3):440–442.
doi:10.1096/fj.04-3180fje.

Sohl, G., Maxeiner, S., and Willecke, K. (2005). Expression and functions of neuronal
gap junctions. Nature Reviews Neuroscience, 6(3):191–200. doi:10.1038/nrn1627.

Solomonoff, R. (1952). An exact method for the computation of the connectivity
of random nets. The bulletin of mathematical biophysics, 14(2):153–157. doi:
10.1007/bf02477714.

Solomonoff, R. and Rapoport, A. (1951). Connectivity of random nets. The bulletin of
mathematical biophysics, 13(2):107–117. doi: 10.1007/bf02478357.

Soman, S., jayadeva, and Suri, M. (2016). Recent trends in neuromorphic engineering.
Big Data Analytics, 1(15). doi:10.1186/s41044-016-0013-1.



References 213

Sommer, F. T. and Wennekers, T. (2003). Models of distributed associative memory
networks in the brain. Theory in Biosciences, 122(1):55–69. doi:10.1007/s12064-003-
0037-8.

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly
Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLOS
Biology, 3(3):e68. doi:10.1371/journal.pbio.0030068.

Sorrentino, F., di Bernardo, M., Cuéllar, G. H., and Boccaletti, S. (2006). Synchro-
nization in weighted scale-free networks with degree–degree correlation. Physica D:
Nonlinear Phenomena, 224(1–2):123–129. doi:10.1016/j.physd.2006.09.030.

Sporns, O. (2013a). The human connectome: Origins and challenges. NeuroImage,
80:53–61. doi:10.1016/j.neuroimage.2013.03.023.

Sporns, O. (2013b). Network attributes for segregation and integration
in the human brain. Current Opinion in Neurobiology, 23(2):162–171.
doi:10.1016/j.conb.2012.11.015.

Sporns, O. (2015). Cerebral cartography and connectomics. Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, 370(1668):20140173.
doi:10.1098/rstb.2014.0173.

Sporns, O. and Betzel, R. F. (2016). Modular Brain Networks. Annual Review of
Psychology, 67(1):613–640. doi:10.1146/annurev-psych-122414-033634.

Sporns, O. and Kötter, R. (2004). Motifs in Brain Networks. PLOS Biology, 2(11):e369.
doi:10.1371/journal.pbio.0020369.

Sporns, O., Tononi, G., and Kötter, R. (2005). The Human Connectome: A Struc-
tural Description of the Human Brain. PLOS Computational Biology, 1(4):e42.
doi:10.1371/journal.pcbi.0010042.

Stam, C. J. and Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks
in the brain. Nonlinear Biomedical Physics, 1(1):3. doi:10.1186/1753-4631-1-3.

Starich, T. A., Lee, R. Y., Panzarella, C., Avery, L., and Shaw, J. E. (1996). eat-5 and
unc-7 represent a multigene family in Caenorhabditis elegans involved in cell-cell
coupling. The Journal of Cell Biology, 134(2):537–548. doi:10.1083/jcb.134.2.537.

Strang, A., Haynes, O., Cahill, N. D., and Narayan, D. A. (2017). Relationships
Between Characteristic Path Length, Efficiency, Clustering Coefficients, and Graph
Density. arXiv. arXiv: 1702.02621.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825):268–276.
doi:10.1038/35065725.



214 References

Sugiura, M., Fuke, S., Suo, S., Sasagawa, N., Van Tol, H. H. M., and Ishiura, S. (2005).
Characterization of a novel D2-like dopamine receptor with a truncated splice variant
and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans.
Journal of Neurochemistry, 94(4):1146–1157. doi:10.1111/j.1471-4159.2005.03268.x.

Sulston, J., Dew, M., and Brenner, S. (1975). Dopaminergic neurons in the nematode
Caenorhabditis elegans. The Journal of Comparative Neurology, 163(2):215–226.
doi:10.1002/cne.901630207.

Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode,
Caenorhabditis elegans. Developmental Biology, 56(1):110–156. doi:10.1016/0012-
1606(77)90158-0.

Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983). The
embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental
Biology, 100(1):64–119. doi:10.1016/0012-1606(83)90201-4.

Suo, S., Culotti, J. G., and Van Tol, H. H. M. (2009). Dopamine counteracts octopamine
signalling in a neural circuit mediating food response in C. elegans. The EMBO
Journal, 28(16):2437–2448. doi:10.1038/emboj.2009.194.

Suo, S., Kimura, Y., and Tol, H. H. M. V. (2006). Starvation Induces cAMP Response
Element-Binding Protein-Dependent Gene Expression through Octopamine–Gq
Signaling in Caenorhabditis elegans. The Journal of Neuroscience, 26(40):10082–
10090. doi:10.1523/jneurosci.0819-06.2006.

Suo, S., Sasagawa, N., and Ishiura, S. (2002). Identification of a dopamine receptor
from Caenorhabditis elegans. Neuroscience Letters, 319(1):13–16. doi:10.1016/S0304-
3940(01)02477-6.

Suo, S., Sasagawa, N., and Ishiura, S. (2003). Cloning and characterization of a
Caenorhabditis elegans D2-like dopamine receptor. Journal of Neurochemistry,
86(4):869–878. doi:10.1046/j.1471-4159.2003.01896.x.

Swierczek, N. A., Giles, A. C., Rankin, C. H., and Kerr, R. A. (2011). High-
throughput behavioral analysis in C. elegans. Nature Methods, 8(7):592–598.
doi:10.1038/nmeth.1625.

Syková, E. and Nicholson, C. (2008). Diffusion in Brain Extracellular Space. Physio-
logical Reviews, 88(4):1277–1340. doi:10.1152/physrev.00027.2007.

Sze, J. Y., Victor, M., Loer, C., Shi, Y., and Ruvkun, G. (2000). Food and metabolic
signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature,
403(6769):560–564. doi:10.1038/35000609.

Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., Currie, M.,
Cantarelli, M., Idili, G., and Larson, S. (2014). OpenWorm: an open-science approach



References 215

to modeling Caenorhabditis elegans. Frontiers in Computational Neuroscience, 8:137.
doi:10.3389/fncom.2014.00137.

Taber, K. H. and Hurley, R. A. (2014). Volume transmission in the brain: beyond
the synapse. The Journal of Neuropsychiatry and Clinical Neurosciences, 26(1):iv–4.
doi:10.1176/appi.neuropsych.13110351.

Tanaka, D., Furusawa, K., Kameyama, K., Okamoto, H., and Doi, M. (2007). Melatonin
signaling regulates locomotion behavior and homeostatic states through distinct
receptor pathways in Caenorhabditis elegans. Neuropharmacology, 53(1):157–168.
doi:10.1016/j.neuropharm.2007.04.017.

Tang, Y., Gao, H., Zou, W., and Kurths, J. (2012). Identifying Controlling
Nodes in Neuronal Networks in Different Scales. PLOS ONE, 7(7):e41375.
doi:10.1371/journal.pone.0041375.

Teller, S., Granell, C., Domenico, M. D., Soriano, J., Gómez, S., and Arenas, A. (2014).
Emergence of Assortative Mixing between Clusters of Cultured Neurons. PLOS
Computational Biology, 10(9):e1003796. doi:10.1371/journal.pcbi.1003796.

Tesla, N. (1897). On Electricity. Electrical Review, 30(4):46–47.

Tieri, P., Valensin, S., Latora, V., Castellani, G. C., Marchiori, M., Remon-
dini, D., and Franceschi, C. (2005). Quantifying the relevance of different me-
diators in the human immune cell network. Bioinformatics, 21(8):1639–1643.
doi:10.1093/bioinformatics/bti239.

Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain complexity:
relating functional segregation and integration in the nervous system. Proceedings
of the National Academy of Sciences, 91(11):5033–5037.

Towlson, E. K., Vertes, P. E., Ahnert, S. E., Schafer, W. R., and Bullmore, E. T. (2013).
The Rich Club of the C. elegans Neuronal Connectome. Journal of Neuroscience,
33(15):6380–6387. 10.1523/jneurosci.3784-12.2013.

Trueta, C. and De-Miguel, F. F. (2012). Extrasynaptic exocytosis and its mechanisms:
a source of molecules mediating volume transmission in the nervous system. Frontiers
in Physiology, 3:319. doi:10.3389/fphys.2012.00319.

Tsalik, E. L. and Hobert, O. (2003). Functional mapping of neurons that control
locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology, 56(2):178–
197. doi:10.1002/neu.10245.

Tsalik, E. L., Niacaris, T., Wenick, A. S., Pau, K., Avery, L., and Hobert, O. (2003).
LIM homeobox gene-dependent expression of biogenic amine receptors in restricted
regions of the C. elegans nervous system. Developmental Biology, 263(1):81–102.
doi:10.1016/S0012-1606(03)00447-0.



216 References

Vaiana, M. and Muldoon, S. (2017). Multilayer Brain Networks. arXiv [physics, q-bio].
arXiv:1709.02325.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., and Ugurbil,
K. (2013). The WU-Minn Human Connectome Project: An overview. NeuroImage,
80:62–79. doi:10.1016/j.neuroimage.2013.05.041.

Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H., and Chklovskii, D. B. (2011).
Structural Properties of the Caenorhabditis elegans Neuronal Network. PLOS
Computational Biology, 7(2):e1001066. doi:10.1371/journal.pcbi.1001066.

Virkar, Y. and Clauset, A. (2014). Power-law distributions in binned empirical data.
The Annals of Applied Statistics, 8(1):89–119. doi:10.1214/13-AOAS710.

Vizi, E., Fekete, A., Karoly, R., and Mike, A. (2010). Non-synaptic receptors and
transporters involved in brain functions and targets of drug treatment. British
Journal of Pharmacology, 160(4):785–809. doi:10.1111/j.1476-5381.2009.00624.x.

Volman, V., Perc, M., and Bazhenov, M. (2011). Gap Junctions and Epilep-
tic Seizures – Two Sides of the Same Coin? PLOS ONE, 6(5):e20572.
doi:10.1371/journal.pone.0020572.

Von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton
University Press, Princeton, NJ. ISBN: 9780691028934.

Vértes, P. E. and Bullmore, E. T. (2015). Annual Research Review: Growth connec-
tomics – the organization and reorganization of brain networks during normal and
abnormal development. Journal of Child Psychology and Psychiatry, and Allied
Disciplines, 56(3):299–320. doi:10.1111/jcpp.12365.

Vértes, P. E., Nicol, R. M., Chapman, S., Watkins, N., Robertson, D. A., and Bullmore,
E. T. (2011). Topological Isomorphisms of Human Brain and Financial Market
Networks. Frontiers in Systems Neuroscience, 5. doi:10.3389/fnsys.2011.00075.

Wagner, A. and Fell, D. A. (2001). The small world inside large metabolic net-
works. Proceedings of the Royal Society B: Biological Sciences, 268(1478):1803–1810.
doi:10.1098/rspb.2001.1711.

Walker, R. J., Brooks, H. L., and Holden-Dye, L. (1996). Evolution and overview of
classical transmitter molecules and their receptors. Parasitology, 113(Supplement
S1):S3–S33. doi:10.1017/S0031182000077878.

Walsh, T. (1999). Search in a small world. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI ’99), pages 1172–1177, Stockholm,
Sweden. Morgan Kaufmann Publishers Inc., San Francisco, CA. ISBN: 1-55860-613-0.

Wang, J. and Barr, M. M. (2016). Ciliary Extracellular Vesicles: Txt Msg Organelles.
Cellular and Molecular Neurobiology, 36(3):449–457. doi:10.1007/s10571-016-0345-4.



References 217

Wang, J., Li, T., Sabel, B. A., Chen, Z., Wen, H., Li, J., Xie, X., Yang, D., Chen, W.,
Wang, N., Xian, J., and He, H. (2016). Structural brain alterations in primary open
angle glaucoma: a 3t MRI study. Scientific Reports, 6:18969. doi:10.1038/srep18969.

Wang, S., Szalay, M. S., Zhang, C., and Csermely, P. (2008). Learning and Innovative
Elements of Strategy Adoption Rules Expand Cooperative Network Topologies.
PLOS ONE, 3(4):e1917. doi:10.1371/journal.pone.0001917.

Wang, S.-J., Xu, X.-J., Wu, Z.-X., and Wang, Y.-H. (2006). Effects of degree distribution
in mutual synchronization of neural networks. Physical Review E, 74(4):041915.
doi:10.1103/PhysRevE.74.041915.

Wang, X. and Liu, J. (2017). A layer reduction based community detection algorithm
on multiplex networks. Physica A: Statistical Mechanics and its Applications, 471:244–
252. doi:10.1016/j.physa.2016.11.036.

Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal
of the American Statistical Association, 58(301):236. doi:10.2307/2282967.

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications.
Cambridge University Press. ISBN: 0521387078.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440–442. doi:10.1038/30918.

Weiss (2010). Field effects in the CNS play functional roles. Frontiers in Neural
Circuits, 4(15). doi:10.3389/fncir.2010.00015.

Wenick, A. S. and Hobert, O. (2004). Genomic cis-regulatory architecture and trans-
acting regulators of a single interneuron-specific gene battery in C. elegans. Develop-
mental cell, 6(6):757–770. doi:0.1016/j.devcel.2004.05.004.

Wernicke, S. (2005). A faster algorithm for detecting network motifs. 5th Interna-
tional Workshop on Algorithms in Bioinformatics, Lecture Notes in Bioinformatics,
3692:165–177. doi:10.1007/11557067_14.

Wernicke, S. and Rasche, F. (2006). FANMOD: a tool for fast network motif detection.
Bioinformatics, 22(9):1152–1153. doi:10.1093/bioinformatics/btl038.

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1983). Factors that
determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring
Harbor Symposia on Quantitative Biology, 48 Pt 2:633–640.

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The Struc-
ture of the Nervous System of the Nematode Caenorhabditis elegans. Philosoph-
ical Transactions of the Royal Society B: Biological Sciences, 314(1165):1–340.
doi:10.1098/rstb.1986.0056.



218 References

White, J. Q., Nicholas, T. J., Gritton, J., Truong, L., Davidson, E. R., and Jorgensen,
E. M. (2007). The Sensory Circuitry for Sexual Attraction in C. elegans Males.
Current Biology, 17(21):1847–1857. doi:10.1016/j.cub.2007.09.011.

Williams, R. W. and Herrup, K. (1988). The Control of Neuron Number. Annual
Review of Neuroscience, 11(1):423–453. doi:10.1146/annurev.ne.11.030188.002231.

Wong, E., Baur, B., Quader, S., and Huang, C.-H. (2012). Biological network motif
detection: principles and practice. Briefings in Bioinformatics, 13(2):202–215.
doi:10.1093/bib/bbr033.

Wragg, R. T., Hapiak, V., Miller, S. B., Harris, G. P., Gray, J., Komuniecki, P. R.,
and Komuniecki, R. W. (2007). Tyramine and Octopamine Independently In-
hibit Serotonin-Stimulated Aversive Behaviors in Caenorhabditis elegans through
Two Novel Amine Receptors. The Journal of Neuroscience, 27(49):13402–13412.
doi:10.1523/jneurosci.3495-07.2007.

Xiao, H., Hapiak, V. M., Smith, K. A., Lin, L., Hobson, R. J., Plenefisch, J., and
Komuniecki, R. (2006). SER-1, a Caenorhabditis elegans 5-HT2-like receptor,
and a multi-PDZ domain containing protein (MPZ-1) interact in vulval muscle to
facilitate serotonin-stimulated egg-laying. Developmental Biology, 298(2):379–391.
doi:10.1016/j.ydbio.2006.06.044.

Xu, K., Tavernarakis, N., and Driscoll, M. (2001). Necrotic Cell Death in C. elegans
Requires the Function of Calreticulin and Regulators of Ca2+ Release from the
Endoplasmic Reticulum. Neuron, 31(6):957–971. doi:10.1016/S0896-6273(01)00432-9.

Xu, M., Jarrell, T. A., Wang, Y., Cook, S. J., Hall, D. H., and Emmons,
S. W. (2013). Computer Assisted Assembly of Connectomes from Electron Mi-
crographs: Application to Caenorhabditis elegans. PLOS ONE, 8(1):e54050.
doi:10.1371/journal.pone.0054050.

Yan, G., Vértes, P. E., Towlson, E. K., Chew, Y. L., Walker, D. S., Schafer,
W. R., and Barabási, A.-L. (2017). Network control principles predict neuron
function in the Caenorhabditis elegans connectome. Nature, 550(7677):519–523.
doi:10.1038/nature24056.

Yang, Z., Algesheimer, R., and Tessone, C. J. (2016). A Comparative Analysis
of Community Detection Algorithms on Artificial Networks. Scientific Reports,
6:srep30750. doi:10.1038/srep30750.

Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X., and Schafer, W. R. (2013).
A database of Caenorhabditis elegans behavioral phenotypes. Nature Methods,
10(9):877–879. doi:10.1038/nmeth.2560.

Yook, S.-H., Oltvai, Z. N., and Barabási, A.-L. (2004). Functional and topolog-
ical characterization of protein interaction networks. Proteomics, 4(4):928–942.
doi:10.1002/pmic.200300636.



References 219

Yoshida, M., Oami, E., Wang, M., Ishiura, S., and Suo, S. (2014). Nonredundant
function of two highly homologous octopamine receptors in food-deprivation-mediated
signaling in Caenorhabditis elegans. Journal of Neuroscience Research, 92(5):671–678.
doi:10.1002/jnr.23345.

Yuan, Z., Zhao, C., Di, Z., Wang, W.-X., and Lai, Y.-C. (2013). Exact controllability
of complex networks. Nature Communications, 4(2447). doi:10.1038/ncomms3447.

Zador, A. M., Dubnau, J., Oyibo, H. K., Zhan, H., Cao, G., and Peikon,
I. D. (2012). Sequencing the Connectome. PLOS Biology, 10(10):e1001411.
doi:10.1371/journal.pbio.1001411.

Zhang, F., Bhattacharya, A., Nelson, J. C., Abe, N., Gordon, P., Lloret-Fernandez, C.,
Maicas, M., Flames, N., Mann, R. S., Colón-Ramos, D. A., and Hobert, O. (2014).
The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in
distinct cholinergic and serotonergic neuron types. Development, 141(2):422–435.
doi:10.1242/dev.099721.

Zhang, M., Chung, S. H., Fang-Yen, C., Craig, C., Kerr, R. A., Suzuki, H., Samuel,
A. D., Mazur, E., and Schafer, W. R. (2008). A Self-Regulating Feed-Forward Circuit
Controlling C. elegans Egg-Laying Behavior. Current Biology, 18(19):1445–1455.
doi:10.1016/j.cub.2008.08.047.

Zhang, M., Schafer, W. R., and Breitling, R. (2010). A circuit model of the temporal
pattern generator of Caenorhabditis egg-laying behavior. BMC Systems Biology,
4:81. doi:10.1186/1752-0509-4-81.

Zhang, Y., Lu, H., and Bargmann, C. I. (2005). Pathogenic bacteria induce aver-
sive olfactory learning in Caenorhabditis elegans. Nature, 438(7065):179–184.
doi:10.1038/nature04216.

Zhang, Z., Zhou, S., and Zou, T. (2007). Self-similarity, small-world, scale-free scaling,
disassortativity, and robustness in hierarchical lattices. The European Physical
Journal B, 56(3):259–271. doi:10.1140/epjb/e2007-00107-6.

Zhen, M. and Samuel, A. D. (2015). C. elegans locomotion: small circuits, complex func-
tions. Current Opinion in Neurobiology, 33:117–126. doi:10.1016/j.conb.2015.03.009.

Zhou, H. (2002). Scaling exponents and clustering coefficients of a growing random
network. Physical Review E, 66(1). doi:10.1103/PhysRevE.66.016125.

Zhou, S. and Mondragon, R. J. (2004). The rich-club phenomenon in the Internet topol-
ogy. IEEE Communications Letters, 8(3):180–182. doi:10.1109/lcomm.2004.823426.





Appendices





Appendix A

Monoamine expression patterns



224 Monoamine expression patterns

A.1 Monoamine expression

Marker WormBase ID Neurons Reference
tph-1 Expr959 RIH†, AIM†, ADF,

NSM, HSN
Sze et al. (2000)

Expr12176 ASG† Pocock and Hobert (2010)

mod-5 Expr9350 AIM†, NSM, ADF,
RIH†

Jafari et al. (2011)

Immuno- N/A VC04†, VC05† Duerr et al. (1999)
staining N/A PHB†, I5† Sawin et al. (2000)

Table A.1 Serotonin (5-HT) expressing cells. Cells with weak or conditional expression
are marked †.

Marker WormBase ID Neurons Reference
cat-2 Expr2619 ADE, PDE, CEP Suo et al. (2003)

dat-1 Expr8327 ADE, PDE, CEP McDonald et al. (2007)

Table A.2 Dopamine (DA) expressing cells.

Marker WormBase ID Neurons Reference
Octopamine Expr3721 RIC Alkema et al. (2005)
tbh-1

Tyramine Expr3722 RIM, RIC ⋆ Alkema et al. (2005)
tdc-1

Table A.3 Octopamine (OA) & tyramine (TA) expressing cells. ⋆RIC is excluded from
the TA network due to co-expression of tbh-1 which converts TA to OA.
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A.2 Receptor expression

Receptor WormBase ID Neurons Reference
ser-1 Expr7825 RIA, RIC, PVT,

DVC, URY
Dernovici et al. (2007)

Expr8282 PVQ Carnell (2005)
Expr3962 RMD, RMF, RMH Xiao et al. (2006)

ser-4 Expr2710 RIB, PVT, DVC,
DVA, RIS

Tsalik et al. (2003)

Expr10554 AIB, NSM Gürel et al. (2012)
N/A M1, RIM Shyn (2003)

ser-5 Expr12174 ASH, AWB Harris et al. (2009)
Expr12172 AVJ Cunningham et al. (2012)

ser-7 Expr3759 MC, M2, M3, M4,
M5, I2, I3, I4, I6

Hobson et al. (2006)

mod-1 Expr10023 RIM, RID, RIC,
AIZ, AIY, AIB,
AIA

Li et al. (2012)

Expr10553 RME, DD, VD Gürel et al. (2012)

Table A.4 Serotonin (5-HT) receptor expression patterns.

Receptor WormBase ID Neurons Reference
octr-1 Expr7846 ASH, ASI, AIY,

ADE, CEP
Wragg et al. (2007)

ser-3 Expr8275 PVQ, PHB, PHA,
SIA

Suo et al. (2006)

Expr10640 ASH Mills et al. (2012)

ser-6 Expr10641 AWB, ASI, ADL Mills et al. (2012)
Expr11709 RIC, SIA Yoshida et al. (2014)

Table A.5 Octopamine (OA) receptor expression patterns.
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Receptor WormBase ID Neurons Reference
dop-1 Expr2882 AUA, RIM, ALM,

RIB, PLM, PHC
Sanyal et al. (2004)

Expr2708 AVM, ALN, PVQ,
PLN, RIS

Tsalik et al. (2003)

Expr3047 PVD, VA, VB, AS,
DA, DB

Chase et al. (2004)

dop-2 Expr2618 ADE, PDE, CEP Suo et al. (2003)
Expr2709 RID, RIA, PDA,

SIB, SIA
Tsalik et al. (2003)

dop-3 Expr3048 PVD, VA, VB, AS,
DA, DB, DD, VD

Chase et al. (2004)

Expr7939 ASE Etchberger et al. (2007)
Expr8667 RIC, SIA Suo et al. (2009)
Expr11452 NSM Zhang et al. (2014)
Expr12177 ASK Ezak and Ferkey (2010)

dop-4 Expr3687 AVL, ASG, PQR,
I2, I1, CAN

Sugiura et al. (2005)

dop-5 Expr7939 ASE Etchberger et al. (2007)
N/A MI, M5, BDU,

RIB, PHA, PHB,
DVA, AIM, ADA,
DVC, ASI, RMG,
PVC, RIF, URX,
AIY, PVT

(Appendix C)

dop-6 Expr11993 OLL Smith et al. (2010)
N/A AUA, RID, RMD,

RIB, ASI, PHA,
IL2, PVQ, URA,
AVF, ADF, RIH,
URX

(Appendix C)

lgc-53 N/A HSN, PVD, CAN,
IL2, VA, AIM,
FLP, AVF, URY

(Appendix C)

Table A.6 Dopamine (DA) receptor expression patterns.
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Receptor WormBase ID Neurons Reference
ser-2 Expr2707 BDU, AVH, AUA,

ALN, RID, RIC,
AIZ, RIA, AIY,
PVT, PVD, PVC,
OLL, NSM, LUA,
DVA, DA09, CAN,
SIA, SDQ, SAB,
RME

Tsalik et al. (2003)

Expr3206 PVD Rex et al. (2004)
Expr10758 VD Donnelly et al. (2013)

tyra-2 Expr3415 ASI, ASH, ASG,
ASE, ALM, PVD,
NSM, MC, CAN

Rex et al. (2005)

tyra-3 Expr11003 BAG, AWC, AUA,
ASK, AIM, AFD,
ADL, OLQ, CEP,
SDQ

Bendesky et al. (2011)

Expr6415 PVT Hunt-Newbury et al. (2007)
Expr12173 ADE Wragg et al. (2007)

lgc-55 Expr8613 AVB, ALN, IL1,
HSN, SMD, SDQ,
RMD

Pirri et al. (2009)

Expr8997 AVM, ALM Ringstad et al. (2009)

Table A.7 Tyramine (TA) receptor expression patterns.
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Receptor WBID Neurons Reference

flp-1 Expr3003 AVK, AVE, AVA, RIG, AIY, AIA, M5,
RMG

Kim and Li (2004)

flp-4 Expr3006 AWC, AVM, ASEL, ADL, PVD, PHB,
PHA, NSM, I5, I6, FLP

Kim and Li (2004)

flp-5 Expr3007 ASE, PVT, M4, I4, I2 RMG Kim and Li (2004)

flp-10 Expr3011 AIM, ASI, AUA, BAG, BDU, DVB, PQR,
PVR, URX

Kim and Li (2004)

flp-13 Expr3014 ASE, ASG, ASK, BAG, DD, I5, M3, M5 Kim and Li (2004)
Expr12005 ALA Nelson et al. (2015)

flp-15 Expr3015 PHA, I2 Nelson et al. (2015)

flp-17 Expr3016 BAG, M5 Kim and Li (2004)

flp-18 Expr3017 AVA, AIY, RIG, RIM, M2, M3 Kim and Li (2004)

flp-21 Expr3020 ASI, ASH, ASE, ADL, MC, M4, FLP,
URA

Kim and Li (2004)

Expr12181 RMG, ASJ, URX, M2, ASK, ASG, ADF Macosko et al. (2009)

nlp-1 Expr1686 ASI, AWC, PHB, BDU Nathoo et al. (2001)
Marker88 HSN Karakuzu et al. (2009)

nlp-12 Expr8057 DVA Janssen et al. (2008b)

ntc-1 Expr11371 AVK, RIC, AIZ, AFD, NSM, M5, DVA,
DD, VD, VC

Garrison et al. (2012)

Expr11368 ASG Beets et al. (2012)

pdf-1 Expr11002 AVB, ASK, AIM, AFD, PVT, PVP, PVN,
LUA, SIA, SAA, RMG

Barrios et al. (2012)

Expr9958 ASI, RID, ADA, ADE, PQR, PHB, PHA,
RME

Janssen et al. (2008b)

pdf-2 /
nlp-3

Expr9959 BDU, AVG, AVD, RIM, AQR, RID, AIM,
PVT, PVP, PQR, PHB, PHA, RIS

Janssen et al. (2008b)

nlp-24 Expr1717 ASI Nathoo et al. (2001)

Table B.1 Neuropeptide expression patterns.
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Receptor WormBase ID Neurons Reference

npr-1 Expr2257 AUA, ASH, ASG, ASE,
AQR, RIG, PQR, PHB,
PHA, OLQ, IL2L, IL2R,
URX, SMBDL, SMBDR,
RMG, RIV, DD, VD, M3,
SAADL, SAADR, SDQ

Coates and de Bono
(2002)

npr-2 Expr12242 ADF, AIZ, ASH, FLP,
OLQ, PVD, PVQ, SAB

Luo et al. (2015)

npr-3 Expr2766 AS, DA, DB, VA, VB Keating et al. (2003)

npr-4 Expr8975 BDU, BAG, AVA, PQR,
RIV

Cohen et al. (2009)

npr-5 Expr8976 AWB, AWA, AUA, ASK,
ASJ, ASI, ASG, ASE,
AIA, ADF, PHB, PHA,
IL2

Cohen et al. (2009)

npr-11 Expr12179 AIA, AIY Chalasani et al. (2010)

frpr-4 N/A RIA, PVM, AVE, I1, DVA Nelson et al. (2015)

npr-17 Expr12182 AVG, ASI, PVP, PVQ,
PQR

Harris et al. (2010)

ckr-2 Expr10065 AIY Wenick and Hobert (2004)
Expr12178 AS, DA, DB, VA, VB Hu et al. (2011)

ntr-1 Expr11372 ASH, RIC, ADL, ADF,
PVW, PVR, PVQ, I2

Garrison et al. (2012)

Expr11369 BDU, ASE, PQR Beets et al. (2012)

egl-6 Expr8338 HSN, DVA, SDQ Ringstad and Horvitz
(2008)

pdfr-1 Expr10592 AVM, AVD, RIF, ALM,
PVW, PVQ, PVM, PVC,
PQR, PLM, PHA, OLL,
DB2, URY, URX, RME,
AVF

Barrios et al. (2012)

Expr8177 PHB, OLQ, I1 FLP Janssen et al. (2008a)

Table B.2 Neuropeptide receptor expression patterns.
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C.1 Acknowledgements
Courtesy of Robyn Branicky, Yee Lian Chew & William R. Schafer.

C.2 Materials & methods
The expression patterns of the dopamine receptors were determined using the re-
porter strains DA1646 lin-15B & lin-15A(n765) X; adEx1646 [lin-15(+) T02E9.3(dop-
5)::GFP], BC13771 dpy-5(e907) I; sEX13771 [rCesC24A8.1(dop-6)::GFP + pCeh361],
and FQ78 wzIs26 [lgc-53::gfp; lin-15(+)];lin-15B & lin-15A(n765) (kindly provided by
Niels Ringstad).

The neurons expressing the receptors were identified based on the position and
shape of the cell bodies and in most cases co-labelling with other markers. The reporter
strains were all crossed with the cholinergic reporter (Pereira et al., 2015) OH13646
pha-1(e2123) III; him-5(e1490) V; otIs544 [cho-1(fosmid)::SL2::mCherry::H2B + pha-
1(+)] and the glutamatergic reporter (Serrano-Saiz et al., 2013) OH13645 pha-1(e2123)
III; him-5(e1490) V; otIs518 [eat-4(fosmid)::SL2::mCherry::H2B + pha-1(+)] (both
kindly provided by Oliver Hobert), and dye-filled with DiI using standard procedures
(Shaham, 2006). Strains were also crossed to AQ3072 ljEx540[cat-1::mcherry] and
PT2351 him-5(e1490) V; myEx741 [pdfr-1(3kb)::NLS::RFP + unc-122::GFP], which
label cells expressing the vesicular monoamine transporter and the PDFR-1 receptor,
respectively. When ambiguous, reporter strains were crossed with the additional
strains listed below. Reporter expression in individual neurons was confirmed with the
following crosses:

C.2.1 For dop-5 :

• AIM and ADF were confirmed based on coexpression with cat-1.

• URX, PVC, RIF, RIB, AIY, M5, and DVA were identified based on position and
coexpression with cho-1 (Pereira et al., 2015).

• MI, DVC, ASE (previously identified in Etchberger et al. (2009)) and ADA were
confirmed based on position and coexpression with eat-4 (Serrano-Saiz et al.,
2013).

• ASI, PHA and PHB were confirmed based on costaining with DiI.
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• PVT, RMG and BDU were identified based on cell body position and shape
alone.

C.2.2 For dop-6 :

• RIH and ADF were confirmed based on coexpression with cat-1 (Duerr et al.,
1999).

• ASI and PHA were confirmed based on costaining with DiI.

• AQ3499 ljEx805 [sra-6::mcherry + PRF4] was used to confirm expression in
PVQ.

• AQ3682 ljEx921[flp-8::mcherry + unc-122::gfp] was used to confirm expression
in URX and AUA.

• IL2, RIB, RMD and URA were identified based on position and coexpression
with cho-1.

• AVF was identified based on position and failure to coexpress eat-4 and cho-1.

• RID was identified based on position relative to URX and morphology.

C.2.3 For lgc-53 :

• AIM was confirmed based on coexpression of cat-1.

• AVF was confirmed based on coexpression with pdfr-1 and failure to coexpress
eat-4 and cho-1.

• URY was confirmed based on position, coexpression with eat-4, and lack of
coexpression with ocr-4.

• AQ3526 ljEx822 [klp-6::mcherry + pRF4] was used to confirm IL2 expression.

• AQ3535 ljEx828 [unc-4::mcherry + pRF4] was used to confirm VA expression.

• FLP was confirmed based on position, morphology, and coexpression with eat-4.

• HSN, CAN and PVD expression were identified based on position and morphology.
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C.2.4 Microscopy

Strains were examined using a Zeiss Axioskop. Images were taken using a Zeiss LSM780
confocal microscope. Worms were immobilised on 3 % agarose pads with 2.5 mM
levamisole. Image stacks were acquired with the ZEN 2010 software and processed
with Image J (Abramoff et al., 2004).

Fig. C.1 Expression patterns of the dopamine receptors dop-5, dop-6 & lgc-53. Shown
are representative images showing expression of GFP reporters under the control of
indicated receptor promoters in the head (left panels) or tail/posterior body (right
panels). Identified neurons are labelled; procedures for confirmation of cell identities are
described in methods. In all panels, dorsal is up and anterior is to the left. In addition
to the neurons indicated, dopamine receptor reporters were detected in the following
neurons: dop-5 : BDU (some animals); lgc-53 : CAN (some animals). Courtesy of RB,
YLC & WRS (Bentley et al., 2016).
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D.1 Fluorescent reporter lines

M ost of the expression patterns presented in this thesis are inferred from GFP
reporter fusions. As such, a number of caveats apply.

The construction and analysis of the monoamine and neuropeptide VT networks –
covered in Chapters 4 & 5, respectively – included only those neurons that were
identified as having strong, consistent, expression of the reporter genes of interest. The
expression results in the literature are predominantly qualitative measures (e.g. strong
/ weak expression), due to the inherent difficulties of quantifying absolute expression
from reporter fluorescence.

The expression level of a reporter is only a proxy measure of the true expression of
the endogenous gene, due to potential differences in regulatory information between
the transgene and the endogenous counterpart (Boulin et al., 2006). Furthermore,
the signal from a fluorophore reporter is also subject to confounding factors such as
molecular interactions (quenching), reduced fluorescence from previous light exposure
and prolonged imaging (photobleaching), reporter copy number variation, and variable
brightness due to protein accumulation, aggregation, and the site of localisation. Many
of these are highly sensitive to environmental and inter-animal variation. Although
some variables can be partially controlled for – for example, by ensuring single copy
chromosomal integration (Frøkjær-Jensen, 2015; Frøkjær-Jensen et al., 2008) and us-
ing a reference marker or standard intensity signal to calculate relative expression
(Chen et al., 2011b; Kelly et al., 2009) – additional problems are often introduced,
such as epigenetic and position effects due to the site of integration (Koelle, 1994),
and measurement difficulties from fluorescence energy transfer (FRET), bleedthrough,
interference from background autofluorescence (Niswender et al., 1995), and variability
or nonlinearity in the optical properties of tissues (Jacques, 2013).

While work has been done to demonstrate that GFP reporters can be used to
quantitatively estimate absolute expression levels (Murray et al., 2008, 2012; Soboleski
et al., 2005), this is not common practice in standard experiments to analyse expression
patterns in C. elegans (Boulin et al., 2006). The reason for this is that most investi-
gations are primarily concerned with determining the locations of expression, rather
than the quantitative expression levels.
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D.2 Gene expression & network construction

Fortunately, precise measurements of gene expression levels are not required for the
objectives of this thesis: to construct and analyse extrasynaptic signalling networks.
Identifying which cells are involved as either releasing or receiving nodes in the network
is sufficient to construct an unweighted directed interaction map.

The lack of information on absolute expression levels means that it is not possible
to make predictions about the strength of interactions, but it is also not necessary. As
demonstrated in this thesis, the network topology can still be analysed on the basis
of which cells have the capacity to interact, as predicted from qualitatively strong
expression signals. This is similar to the current level of information available for the
wired connectome, where much remains unknown about the functional interaction
strengths and polarities of synapses. The lack of data on connection strengths has not
significantly hindered the ability to study synaptic circuits or large scale organisation
in the nervous system of C. elegans.

D.3 Data integration & batch effects

Usually, integrating gene expression data from different sources can present additional
unique problems. Variations in the genetic background of strains (as a result of genetic
drift), as well as differences in protocols, reagents, environmental conditions, and animal
handling techniques, are likely to result in batch effects, where results vary between
different batches of the same experiment, as well as between different experiments and
laboratories (Chen et al., 2011a; Goh et al., 2017; Leek et al., 2010). Such batch effects
are less important when working with descriptive measures of expression levels.

The course-grained approach of binary filtering used to construct the network in
this thesis (i.e. a neuron is included if it has strong expression, else it is excluded)
removes the issue of minor measurement noise and expression variability, as we are
not dealing with precise expression levels that are highly sensitive to experimental
conditions. Furthermore, many of the cell identifications used in the construction of
the network have been validated using more than one reporter line, and in the case of
the monoamines, additional support is provided by immunostaining (Duerr et al., 1999;
Sawin et al., 2000) and formaldehyde-induced fluorescence (FIF) experiments (Horvitz
et al., 1982; Lints and Emmons, 1999; Rivard et al., 2010; Sulston et al., 1975).
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D.4 Underreported expression
Reporter lines typically provide a good approximation of the expression locations of
endogenous genes; however, under certain circumstances reporters can fail to identify
cells where expression has been demonstrated via other methods, such as phenotypic
rescue in mutants, or evidence from cell-specific RNAi knockdown (e.g. Xu et al.,
2001). Reasons for such a discrepancy might include missing regulatory sequences in
the reporter construct, or expression being below the level of detection.

Examples of potential expression underreporting relevant to this thesis include
evidence of the dop-3 and dop-4 functioning in ASH (Ezak and Ferkey, 2010; Ezcurra
et al., 2011). These receptors, along with others that have only been identified as
having with weak expression, were excluded from the network construction to prevent
misreporting and false-positives. It is therefore likely that, at least in some instances,
the networks presented in this thesis understate the real extent of connectivity in
C. elegans. For further discussion, see § 4.4.1 on page 141.

D.5 Conditional expression
An important point to consider is that the approach and data used in this thesis only
focus on neurons that constitutively express the genes of interest. As mentioned in
Chapter 4, some cells can express VT-associated ligands or receptors conditionally, as
in the case of ASG and serotonin under hypoxic conditions (Pocock and Hobert, 2010).
More data will be required before such expression dynamics can be considered.
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E.1 Introduction

A s discussed in Chapter 2, network measures can be influenced by many of the
underlying structural features of the network, such as the density of the network

and its degree distribution (Strang et al., 2017); for example, two separate networks
with qualitatively similar architectures might appear different on some network mea-
sures due only to differences in the number of nodes and edges they contain. As
such, as well as studying the raw network measures, it is also useful to compare the
properties of a given network to comparable null hypothesis, or null model, networks
which can provide a baseline reference for a set of structural assumptions or constraints,
and determine whether the properties observed in a network can be explained by a
random process. That is to say, we can compare the distribution of results obtained
from a random statistical ensemble of artificial (null) networks to those observed in
a real-world network, and establish whether they are likely to come from the same
distribution. Alternatively, we can use the average ensemble measures to normalise the
real-world measures, and control for any variability caused by those features captured
in the null model, such as the network size. This approach allows us to then directly
compare networks with different structures.

The two most common methods for generating null model reference networks that
preserve the degree distribution and the number of nodes and edges (and thus the
network’s size and density), are the Markov chain Monte Carlo edge-swap (ES) al-
gorithm – where networks are randomised by iteratively swapping edges at random
while preserving the degrees of nodes, based on the procedure described by Maslov and
Sneppen (2002); Milo et al. (2003) (see Algorithm 5, page 58) – and the configuration
model (CM), which constructs synthetic random networks from a prescribed degree
sequence (Molloy and Reed, 1995) (Algorithm 6, page 59).

The edge-swap (ES) null model is used as the main reference model throughout
this thesis, in the analysis of the wired synaptic networks as well as the extrasynaptic
monoamine and neuropeptide networks. To determine whether the results in this thesis
are likely to be influenced by the choice of null model, a comparison was performed on
network measures for both ES and CM null model network ensembles, generated to
match the degree sequence of (1) the Albertson-Chklovskii (AC) aggregate synaptic
and gap-junction connectome, and (2) the aggregate monoamine (MA) network.
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E.2 Materials & methods
Four sets of null model networks were generated and compared on the standard set
of network measures. For the aggregate AC synaptic + gap-junction wired connec-
tome of C. elegans, 100 ES networks were generated by randomising the original
network with 10 ×M edge-swaps, and 100 CM networks were generated using the
degree sequence of the AC wired connectome. The same methods were used to con-
struct 100 ES networks and 100 CM networks for the aggregate monoamine connectome.

All of the analyses were performed on directed versions of the networks, with
multiple edges removed (i.e. unweighted networks). Network measures are the same as
those described in Chapter 2.

E.3 Results

E.3.1 Wired connectome

Measure ES mean ZES CM mean ZCM Observed
r Reciprocity 0.07 (9.86) 0.08 (9.85) 0.48
Q Modularity 0.18 (9.86) 0.18 (9.82) 0.46
C Clustering 0.07 (9.77) 0.08 (9.71) 0.16
L Path length 2.65 (9.89) 2.66 (9.87) 3.22
R Assortativity -0.08 (1.27) -0.07 (0.07) -0.07
ρ Robustness 0.486 (-6.52) 0.486 (-6.33) 0.466

Table E.1 Comparison of mean network measures computed for 100 randomised networks
generated from the degree sequence of the directed version of the Albertson-Chklovskii
synaptic & gap junction connectome of C. elegans (see Chapter 3); showing results for
the edge-swap rewiring procedure (ES), the configuration model (CM), and the observed
values from C. elegans. Z-scores comparing the observes values to the expected are
shown in parentheses.
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Fig. E.1 Reciprocity (rES = 0.07, rCM = 0.08). Comparison of reciprocity for null
model networks generated from the degree sequence of the AC connectome, using either
the edge-swap method (ES) or the configuration model (CM). Plots show the observed
values for the original AC connectome (filled squares) and expected values from 100
null model networks (boxplots).
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(a) Clustering coefficient
(CES = 0.07, CCM = 0.08)

(b) Modularity
(QES = 0.18, QCM = 0.18)

(c) Characteristic path length
(LES = 2.65, LCM = 2.66)

(d) Assortativity coefficient
(RES = −0.08, RCM = −0.07)

Fig. E.2 Comparison of network measures for null model networks generated from the
degree sequence of the AC connectome, using either the edge-swap method (ES) or the

configuration model (CM). Plots show the observed values for the original AC
connectome (filled squares) and expected values from 100 null model networks

(boxplots).
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Fig. E.3 Robustness (ρES = 0.486, ρCM = 0.486). Comparison of reciprocity for null
model networks generated from the degree sequence of the AC connectome, using either
the edge-swap method (ES) or the configuration model (CM). Plots show the observed
values for the original AC connectome (filled squares) and expected values from 100
null model networks (boxplots).

Fig. E.4 Small-worldness (SES = 3.82, SCM = 3.81). Comparison of small-worldness of
the AC connectome normalised using 100 null model networks generated using either
the edge-swap method (ES) or the configuration model (CM).
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E.3.2 Monoamine connectome

Measure ES mean ZES CM mean ZCM Observed
r Reciprocity 0.058 (2.1) 0.058 (1.94) 0.064
Q Modularity 0.11 (9.38) 0.11 (9.44) 0.32
C Clustering 0.125 (6.34) 0.125 (6.71) 0.137
L Path length 1.58 (5.84) 1.59 (5.99) 1.68
R Assortativity -0.797 (-1.06) -0.797 (-1.23) -0.8
ρ Robustness 0.39 (-9.17) 0.39 (-9.21) 0.36

Table E.2 Comparison of mean network measures computed for 100 randomised
networks generated from the degree sequence of the directed version of the monoamine
connectome of C. elegans (see Chapter 4); showing results for the edge-swap rewiring
procedure (ES), the configuration model (CM), and the observed values from C. elegans.
Z-scores comparing the observes values to the expected are shown in parentheses.

Fig. E.5 Reciprocity (rES = 0.058, rCM = 0.058). Comparison of reciprocity for null
model networks generated from the degree sequence of the MA connectome, using
either the edge-swap method (ES) or the configuration model (CM). Plots show the
observed values for the original MA connectome (filled squares) and expected values
from 100 null model networks (boxplots).
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(a) Clustering coefficient
(CES = 0.125, CCM = 0.125)

(b) Modularity
(QES = 0.11, QCM = 0.11)

(c) Characteristic path length
(LES = 1.58, LCM = 1.59)

(d) Assortativity coefficient
(RES = −0.797, RCM = −0.797)

Fig. E.6 Comparison of network measures for null model networks generated from the
degree sequence of the MA connectome, using either the edge-swap method (ES) or
the configuration model (CM). Plots show the observed values for the original MA

connectome (filled squares) and expected values from 100 null model networks
(boxplots).
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Fig. E.7 Robustness (ρES = 0.39, ρCM = 0.39). Comparison of reciprocity for null
model networks generated from the degree sequence of the MA connectome, using
either the edge-swap method (ES) or the configuration model (CM). Plots show the
observed values for the original MA connectome (filled squares) and expected values
from 100 null model networks (boxplots).

Fig. E.8 Small-worldness (SES = 12.56, SCM = 12.57). Comparison of small-worldness
of the MA connectome normalised using 100 null model networks generated using
either the edge-swap method (ES) or the configuration model (CM).
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E.4 Conclusions & discussion
No major differences were observed on any of the main network metrics between the
ES and CM null models, using either the synaptic + gap junction network (ACag) or
the wireless monoamine network (MAag).

The maximum difference identified on any of the mean network measures between
the ES and CM null models was ±0.01 (Tables E.1 & E.2). This was the case for both
the AC and MA conditions.

Currently, edge-swap randomisation and random network generation via the con-
figuration model represent two of the most common degree-preserving null network
models. The results presented here suggest that for the networks under investigation
the decision to use either the ES or CM model should have negligible effects on the
outcome of network measures. This is not surprising considering that both methods are
based on similar assumptions about the underlying network structures, and preserve
the same topological features; namely the number of nodes, edges, and their degree
sequences. As these are known to have large effects on other network properties (Strang
et al., 2017), they are useful variables to control for. It is likely that other null models,
based on different assumptions, would generate different results (Artzy-Randrup et al.,
2004; Hosseini and Kesler, 2013; Klimm et al., 2014); however, as research into the
generation, parameterisation, and applicability of null models is still an ongoing area
of research, the determination of the optimal null model for any given network is still
an open question.
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F.1 Neuron classification schema

I N THE analyses presented in this thesis, neurons are classified into one of four
categories based on their function and position in the network. These functional

classes are: pharyngeal neurons, sensory neurons, interneurons, and motor neurons.
These classes are derived from more complex classifications published by WormAtlas
(Altun et al., 2002) and the WormWiring project (Emmons et al., 2015). As the base
classification schemata used by WormAtlas and WormWiring are more detailed, having
more than four classes (see Tables F.1 – F.4 for the source data from WormWiring),
the neurons were here reclassified using a reduced schema with the following mapping:

Sensory neurons:

• Amphid sensory neurons

• Labial and cephalic sensory neurons

• Mechanosensory neurons

• Phasmid neurons

Interneurons:

• Amphid interneurons

• Ring interneurons

• Ventral cord interneurons

Motor neurons:

• Head motor neurons

• Bodywall motor neurons

• Hermaphrodite motor neurons

Pharyngeal neurons: unchanged.
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ADAL Amphid Interneuron ASEL Amphid sensory
ADAR Amphid Interneuron ASER Amphid sensory
ADEL Mechanosensory ASGL Amphid sensory
ADER Mechanosensory ASGR Amphid sensory
ADFL Amphid sensory ASHL Amphid sensory
ADFR Amphid sensory ASHR Amphid sensory
ADLL Amphid sensory ASIL Amphid sensory
ADLR Amphid sensory ASIR Amphid sensory
AFDL Amphid sensory ASJL Amphid sensory
AFDR Amphid sensory ASJR Amphid sensory
AIAL Amphid Interneuron ASKL Amphid sensory
AIAR Amphid Interneuron ASKR Amphid sensory
AIBL Amphid Interneuron AUAL Mechanosensory
AIBR Amphid Interneuron AUAR Mechanosensory
AIML Amphid Interneuron AVAL Ventral cord Interneuron
AIMR Amphid Interneuron AVAR Ventral cord Interneuron
AINL Amphid Interneuron AVBL Ventral cord Interneuron
AINR Amphid Interneuron AVBR Ventral cord Interneuron
AIYL Amphid Interneuron AVDL Ventral cord Interneuron
AIYR Amphid Interneuron AVDR Ventral cord Interneuron
AIZL Amphid Interneuron AVEL Ventral cord Interneuron
AIZR Amphid Interneuron AVER Ventral cord Interneuron
ALA Amphid Interneuron AVFL Ventral cord Interneuron
ALML Mechanosensory AVFR Ventral cord Interneuron
ALMR Mechanosensory AVG Ventral cord Interneuron
ALNL Mechanosensory AVHL Ventral cord Interneuron
ALNR Mechanosensory AVHR Ventral cord Interneuron
AQR Mechanosensory AVJL Ventral cord Interneuron
AS01 Bodywall motor neuron AVJR Ventral cord Interneuron
AS02 Bodywall motor neuron AVKL Ventral cord Interneuron
AS03 Bodywall motor neuron AVKR Ventral cord Interneuron
AS04 Bodywall motor neuron AVL Ventral cord Interneuron
AS05 Bodywall motor neuron AVM Mechanosensory
AS06 Bodywall motor neuron AWAL Amphid sensory
AS07 Bodywall motor neuron AWAR Amphid sensory
AS08 Bodywall motor neuron AWBL Amphid sensory
AS09 Bodywall motor neuron AWBR Amphid sensory
AS10 Bodywall motor neuron AWCL Amphid sensory
AS11 Bodywall motor neuron AWCR Amphid sensory

Table F.1 Neuron classes: A.
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BAGL Mechanosensory I1L Pharynx
BAGR Mechanosensory I1R Pharynx
BDUL Amphid Interneuron I2L Pharynx
BDUR Amphid Interneuron I2R Pharynx
CANL Amphid Interneuron I3 Pharynx
CANR Amphid Interneuron I4 Pharynx
CEPDL Labial / cephalic sensory I5 Pharynx
CEPDR Labial / cephalic sensory I6 Pharynx
CEPVL Labial / cephalic sensory IL1DL Labial / cephalic sensory
CEPVR Labial / cephalic sensory IL1DR Labial / cephalic sensory
DA01 Bodywall motor neuron IL1L Labial / cephalic sensory
DA02 Bodywall motor neuron IL1R Labial / cephalic sensory
DA03 Bodywall motor neuron IL1VL Labial / cephalic sensory
DA04 Bodywall motor neuron IL1VR Labial / cephalic sensory
DA05 Bodywall motor neuron IL2DL Labial / cephalic sensory
DA06 Bodywall motor neuron IL2DR Labial / cephalic sensory
DA07 Bodywall motor neuron IL2L Labial / cephalic sensory
DA08 Bodywall motor neuron IL2R Labial / cephalic sensory
DA09 Bodywall motor neuron IL2VL Labial / cephalic sensory
DB01 Bodywall motor neuron IL2VR Labial / cephalic sensory
DB02 Bodywall motor neuron LUAL Ventral cord Interneuron
DB03 Bodywall motor neuron LUAR Ventral cord Interneuron
DB04 Bodywall motor neuron M1 Pharynx
DB05 Bodywall motor neuron M2L Pharynx
DB06 Bodywall motor neuron M2R Pharynx
DB07 Bodywall motor neuron M3L Pharynx
DD01 Bodywall motor neuron M3R Pharynx
DD02 Bodywall motor neuron M4 Pharynx
DD03 Bodywall motor neuron M5 Pharynx
DD04 Bodywall motor neuron MCL Pharynx
DD05 Bodywall motor neuron MCR Pharynx
DD06 Bodywall motor neuron MI Pharynx
DVA Ventral cord Interneuron NSML Pharynx
DVB Ventral cord Interneuron NSMR Pharynx
DVC Ventral cord Interneuron OLLL Labial / cephalic sensory
FLPL Mechanosensory OLLR Labial / cephalic sensory
FLPR Mechanosensory OLQDL Labial / cephalic sensory
HSNL Herm motor neuron OLQDR Labial / cephalic sensory
HSNR Herm motor neuron OLQVL Labial / cephalic sensory

OLQVR Labial / cephalic sensory

Table F.2 Neuron classes: B – O.
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PDA Bodywall motor neuron RIBR Ring Interneuron
PDB Bodywall motor neuron RICL Ring Interneuron
PDEL Mechanosensory RICR Ring Interneuron
PDER Mechanosensory RID Ventral cord Interneuron
PHAL Phasmid RIFL Ring Interneuron
PHAR Phasmid RIFR Ring Interneuron
PHBL Phasmid RIGL Ring Interneuron
PHBR Phasmid RIGR Ring Interneuron
PHCL Phasmid RIH Ring Interneuron
PHCR Phasmid RIML Head motor neuron
PLML Mechanosensory RIMR Head motor neuron
PLMR Mechanosensory RIPL Ring Interneuron
PLNL Mechanosensory RIPR Ring Interneuron
PLNR Mechanosensory RIR Ring Interneuron
PQR Mechanosensory RIS Ring Interneuron
PVCL Ventral cord Interneuron RIVL Head motor neuron
PVCR Ventral cord Interneuron RIVR Head motor neuron
PVDL Mechanosensory RMDDL Head motor neuron
PVDR Mechanosensory RMDDR Head motor neuron
PVM Mechanosensory RMDL Head motor neuron
PVNL Ventral cord Interneuron RMDR Head motor neuron
PVNR Ventral cord Interneuron RMDVL Head motor neuron
PVPL Ventral cord Interneuron RMDVR Head motor neuron
PVPR Ventral cord Interneuron RMED Head motor neuron
PVQL Ventral cord Interneuron RMEL Head motor neuron
PVQR Ventral cord Interneuron RMER Head motor neuron
PVR Ventral cord Interneuron RMEV Head motor neuron
PVT Ventral cord Interneuron RMFL Head motor neuron
PVWL Ventral cord Interneuron RMFR Head motor neuron
PVWR Ventral cord Interneuron RMGL Ring Interneuron
RIAL Ring Interneuron RMGR Ring Interneuron
RIAR Ring Interneuron RMHL Head motor neuron
RIBL Ring Interneuron RMHR Head motor neuron

Table F.3 Neuron classes: P – R.
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SAADL Head motor neuron VA04 Bodywall motor neuron
SAADR Head motor neuron VA05 Bodywall motor neuron
SAAVL Head motor neuron VA06 Bodywall motor neuron
SAAVR Head motor neuron VA07 Bodywall motor neuron
SABD Head motor neuron VA08 Bodywall motor neuron
SABVL Head motor neuron VA09 Bodywall motor neuron
SABVR Head motor neuron VA10 Bodywall motor neuron
SDQL Ring Interneuron VA11 Bodywall motor neuron
SDQR Ring Interneuron VA12 Bodywall motor neuron
SIADL Ring Interneuron VB01 Bodywall motor neuron
SIADR Ring Interneuron VB02 Bodywall motor neuron
SIAVL Ring Interneuron VB03 Bodywall motor neuron
SIAVR Ring Interneuron VB04 Bodywall motor neuron
SIBDL Ring Interneuron VB05 Bodywall motor neuron
SIBDR Ring Interneuron VB06 Bodywall motor neuron
SIBVL Ring Interneuron VB07 Bodywall motor neuron
SIBVR Ring Interneuron VB08 Bodywall motor neuron
SMBDL Head motor neuron VB09 Bodywall motor neuron
SMBDR Head motor neuron VB10 Bodywall motor neuron
SMBVL Head motor neuron VB11 Bodywall motor neuron
SMBVR Head motor neuron VC01 Herm motor neuron
SMDDL Head motor neuron VC02 Herm motor neuron
SMDDR Head motor neuron VC03 Herm motor neuron
SMDVL Head motor neuron VC04 Herm motor neuron
SMDVR Head motor neuron VC05 Herm motor neuron
URADL Head motor neuron VC06 Herm motor neuron
URADR Head motor neuron VD01 Bodywall motor neuron
URAVL Head motor neuron VD02 Bodywall motor neuron
URAVR Head motor neuron VD03 Bodywall motor neuron
URBL Ring Interneuron VD04 Bodywall motor neuron
URBR Ring Interneuron VD05 Bodywall motor neuron
URXL Mechanosensory VD06 Bodywall motor neuron
URXR Mechanosensory VD07 Bodywall motor neuron
URYDL Mechanosensory VD08 Bodywall motor neuron
URYDR Mechanosensory VD09 Bodywall motor neuron
URYVL Mechanosensory VD10 Bodywall motor neuron
URYVR Mechanosensory VD11 Bodywall motor neuron
VA01 Bodywall motor neuron VD12 Bodywall motor neuron
VA02 Bodywall motor neuron VD13 Bodywall motor neuron
VA03 Bodywall motor neuron

Table F.4 Neuron classes: S – V.
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G.1 Hiveplot of individual MA networks
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Fig. G.1 Hiveplot showing individual dopamine (red), serotonin (green), tyramine
(purple), and octopamine connections (blue). Nodes are classified as sensory, motor, or
interneurons and are arranged along the three axes according to their degree. Hubs
are located further out along the axes. Plot generated using hiveplotter, courtesy of
Barnes (2016).
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G.2 Multilink analysis of separate MA networks
(incl. dop-5/-6 )
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Fig. G.2 Multilink motifs. (a) Motif IDs, as described in Figure 4.19, page 140, (b)
aggregate monoamine network including dop-5 & dop-6, (c) dopamine, (d) serotonin,
and (e) octopamine networks. Overrepresented motifs are represented by red upward-
pointing triangles. Underrepresented motifs are represented by blue downward-pointing
triangles. Non-significant motifs are shown by black squares. Values for 100 null model
networks are shown as grey crosses. Asterisks report the significance level using the
z-test, with Bonferroni-adjusted p-values: * indicates p ≤ 0.05 ; ** indicates p ≤ 0.01;
*** indicates p ≤ 0.001; **** indicates p ≤ 0.0001.
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Fig. G.3 Multilink motifs. (a) Motif IDs, as described in Figure 4.19, page 140, (b)
dopamine network including dop-5 & dop-6, and (c) tyramine network. Overrepresented
motifs are represented by red upward-pointing triangles. Underrepresented motifs are
represented by blue downward-pointing triangles. Non-significant motifs are shown by
black squares. Values for 100 null model networks are shown as grey crosses. Asterisks
report the significance level using the z-test, with Bonferroni-adjusted p-values: *
indicates p ≤ 0.05 ; ** indicates p ≤ 0.01; *** indicates p ≤ 0.001; **** indicates
p ≤ 0.0001.
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Cell A Cell B

RICL ↔ ADLL
RICR ↔ ADLR

RICL ↔ CEP
(V/D/L/R)

RICR ↔ CEP
(V/D/L/R)

Table G.1 Examples of octopamine multilink motif 9. List of neurons connected by
motif 9 (i.e. unidirectional OA link and synapse in reverse direction).

Cell A Cell B

RICL ↔ ASHL
RICR ↔ ASHR
RICL ↔ AWBR

Table G.2 Examples of octopamine multilink motif 11. List of neurons connected by
motif 11 (unidirectional OA link coincident with gap junction).
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G.3 Network measures of individual MA layers

(a) (b) 

(c) (d) 

(e) (f) 

DA 

TA 
5-HT 

OA 

Fig. G.4 (a) Multilayer projection including dop-5 & dop-6. (b-f) Network measures
for the individual dopamine (DA), dopamine incl. dop-5 & dop-6 (DA+dop-5/-6),
serotonin (5-HT), tyramine (TA) and octopamine networks (OA); and aggregate MA
network including dop-5 & dop-6 (MA+dop-5/-6).
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Name / URL Description
Pajek Application: general analysis
http://mrvar.fdv.uni-lj.si/pajek/

Gephi Application: general analysis
https://gephi.org/

Cytoscape* Application: general analysis
http://cytoscape.org/

NetMiner Application: general analysis
http://www.netminer.com/

Network Workbench Application: general analysis
http://nwb.cns.iu.edu/

GraphStream Application: dynamical nets
http://graphstream-project.org/

muxViz* Application: multilayer nets
http://muxviz.net/

FANMOD* Application: motif analysis
http://theinf1.informatik.uni-jena.de/motifs/

MAVisto Application: motif analysis
http://mavisto.ipk-gatersleben.de/

mfinder Application: motif analysis
https://www.weizmann.ac.il/mcb/UriAlon/

NetworkX* Library: Python
https://networkx.github.io/

Graph-tool Library: Python
https://graph-tool.skewed.de/

igraph Library: Python, R, C/C++
http://igraph.org/

JUNG Library: Java
http://jung.sourceforge.net/

BCT* Library: Matlab
http://www.brain-connectivity-toolbox.net/

Octave Network Toolbox* Library: Matlab / Octave
https://github.com/aeolianine/octave-networks-toolbox

Table H.1 List of software tools that implement network measures or algorithms detailed
in Chapter 2. Those used in the network analyses presented in this thesis are denoted
by an asterisk *.

http://mrvar.fdv.uni-lj.si/pajek/
https://gephi.org/
http://cytoscape.org/
http://www.netminer.com/
http://nwb.cns.iu.edu/
http://graphstream-project.org/
http://muxviz.net/
http://theinf1.informatik.uni-jena.de/motifs/
http://mavisto.ipk-gatersleben.de/
https://www.weizmann.ac.il/mcb/UriAlon/
https://networkx.github.io/
https://graph-tool.skewed.de/
http://igraph.org/
http://jung.sourceforge.net/
http://www.brain-connectivity-toolbox.net/
https://github.com/aeolianine/octave-networks-toolbox
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