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Periodic driving of optical lattices has enabled the creation of novel band structures not realizable
in static lattice systems, such as topological bands for neutral particles. However, especially driven
systems of interacting bosonic particles often suffer from strong heating. We have systematically
studied heating in an interacting Bose-Einstein condensate in a driven one-dimensional optical lat-
tice. We find interaction-dependent heating rates that depend both on the scattering length and the
driving strength and identify the underlying resonant intra- and interband scattering processes. By
comparing experimental data and theory, we find that for driving frequencies well above the trap
depth, the heating rate is dramatically reduced by the fact that resonantly scattered atoms leave
the trap before dissipating their energy into the system. This mechanism of Floquet evaporative
cooling offers a powerful strategy to minimize heating in Floquet engineered quantum gases.

Introduction.— Floquet engineering, the coherent
control of quantum systems by means of time-periodic
driving, enables the realization of novel band structures
and many-body phases beyond what is possible in static
systems [1–12]. It has become an important tool for
studies of quantum gases [13], where it e.g. enables the
breaking of time-reversal symmetry and thereby the real-
ization of topological bands even for charge-neutral par-
ticles [5, 10–12]. In the form of infrared laser pulses,
time-periodic driving can give rise to novel effects in tra-
ditional condensed matter systems, such as graphene-
like systems [14–16] or high-temperature superconduc-
tors [17–19]. It also lies at the heart of the recently real-
ized discrete time crystals [20–25].

Despite those recent accomplishments, successfully
combining periodic driving with interactions remains a
major experimental challenge: In a driven system energy
is not conserved, as the system can absorb or emit energy
from or into the drive. Therefore, for any fully ergodic
driven system, there can only be one steady state, namely
the fully mixed density matrix corresponding to an infi-
nite temperature state [26–39]. While this scenario could
be avoided by using non-ergodic systems, such as e.g.
many-body localized states [40], their use cannot solve
the problem in general, as many interesting phases, such
as fractional quantum Hall states, are typically ergodic.
Therefore, one has to find setups and parameter regimes
that allow experimental studies of novel, driven phases
on intermediate timescales before the unavoidable heat-
ing dominates.

In this work, we experimentally study loss rates of
condensed atoms in a driven optical lattice as a func-
tion of both driving and interaction strength and can
thereby distinguish single-particle from interaction ef-
fects. Single-particle heating occurs via discrete single-
or multiphoton interband resonances [41] that can easily
be avoided. This is in contrast to two-particle processes,
which in one- or two-dimensional lattices are always res-
onant, as collisions can convert arbitrary energies into

transverse excitations [32, 34, 35]. This is in stark con-
trast to three-dimensional lattices where these processes
can be suppressed [28, 32, 34]. We focus on the two
experimentally most relevant driving regimes: For low
shaking frequencies ω much smaller than the resonance
frequency to the first excited band but above the band-
width of the lowest band, the tunneling matrix element
of the lowest band is effectively renormalized by a Bessel
function (corresponding to dynamic localization [42, 43]).
At the same time, multiphoton resonances are weak as
they require many photons. This regime is typically em-
ployed for engineering artificial gauge fields [3, 5, 12].
The second regime lies between the two lowest single-
photon single-particle resonances. Here, the dispersion
relation can acquire two separate minima that can be ex-
ploited to study the formation of symmetry-broken do-
mains [4, 6]. We find that for large driving frequencies
heating is strongly reduced by the fact that scattered
particles with energy � Òhω typically leave the trap before
dissipating the absorbed energy into the system.

Experimental setup.— We load an almost pure
Bose-Einstein condensate (BEC) of about 4 � 105 39K
atoms into the lowest band of a one-dimensional lattice
with lattice constant a � 425 nm, which is created by in-
terfering two blue-detuned laser beams with a wavelength
of λ � 736.8 nm at an angle of θ=120X, see Fig. 1 (a).
Then, we shake the lattice position by periodically mod-
ulating the frequency of one of the two laser beams.
The atoms feel a periodic inertial force in the frame
co-moving with the lattice, which is given by Fx�t� �

��K~a� cos�ωt�, where we have introduced the driving
amplitude K. In order to avoid strong, non-adiabatic
excitations to higher bands during the switch-on of the
modulation, we continuously ramp the driving amplitude
in 10 ms to its desired value. After a variable shaking du-
ration, we determine the heating and losses induced by
the drive by measuring the remaining atom number in the
BEC. To this end we abruptly stop the drive after an in-
teger number of shaking cycles, immediately followed by
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FIG. 1. Schematic of the experiment and frequency
scan. (a) Two lattice beams with linear out-of-plane polar-
ization intersect at an angle of 120X to form a one dimen-
sional lattice of “pancakes”. By periodically modulating the
frequency of one of the lattice beams we can shake the lat-
tice, i.e., modulate its position. (b) Normalized atom number
after modulating for 50 ms (for ω~ω10 A 0.7) or 100 ms (for
ω~ω10 @ 0.7) with variable frequency at a driving strength of
α � 0.9. Error bars indicate the standard error of the mean
from four measurements per data point. The solid blue line
shows the theoretically expected single-particle excitations to
higher bands. Thin lines mark the resonance positions of
single-, and multiphoton transitions to higher bands labeled
by �b, ν�. In the frequency region from roughly 0.7ω10 to
1.1ω10 we observe a splitting of the BEC due to two degener-
ate minima in the lowest dressed band, which is included in
the theory curve. The insets show raw quasimomentum im-
ages of the BEC. (c) Zoom into the regime of small shaking
frequencies with α � 2.2 and 200 ms shaking duration.

bandmapping in the static lattice and 15 ms of time-of-
flight (TOF). This TOF is long enough to dilute any ther-
mal background such that we can reliably determine the
remaining number of condensed atoms. For all measure-
ments we use a lattice depth of V0 � 11.0�3�Er, where
Er=h

2~�8Ma2� � h�7.1 kHz is the effective recoil energy
of this lattice with M being the mass of 39K. In this static
lattice, the first interband excitation at zero momentum
appears at a frequency of ω10 � 2π � 41.6�5� kHz.

Frequency scan.— Single-particle transitions only
occur at specific resonances where the shaking frequency
ω fulfills a multiphoton resonance condition νÒhω �

∆b0�q�, with ν being an integer and ∆b0�q� denoting
the separation of the lowest band to the bth excited band
at a given quasimomentum q. To ensure that we avoid
these resonances, we measure the remaining BEC atom
number after shaking with variable frequency at a di-
mensionless driving strength α � K~�Òhω� and scattering
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FIG. 2. Loss rates in the presence of periodic driving.
(a,d) Effective loss rates for different driving amplitudes and
scattering lengths. Each dot corresponds to a single lifetime
measurement. The shaking frequency is (a-c) ω � ωl and (d-f)
ω � ωh. (b,e) Crosscuts at fixed scattering lengths. The solid
lines correspond to the theoretically predicted scattering rates
and error bars indicate fit uncertainties. (c,f) Corresponding
crosscuts at fixed driving strengths. Theory lines in (b,c) as-
sume fβÒhω � 10 to account for the thermalization of scattered
atoms (see text).

length as � 60a0, with a0 being Bohr’s radius, using a
Feshbach resonance at 400 G [44], see Fig. 1. The solid
blue line shows the result of a numerical single-particle
simulation assuming a Gaussian width of the BEC in mo-
mentum space of ∆q � 0.2π~a (for method see [41, 45]).
While the resonances at large frequencies are clearly vis-
ible, multiphoton resonances at small driving frequencies
are highly suppressed. For our subsequent lifetime mea-
surements we choose ωl � 0.084ω10 and ωh � 1.27ω10

(green dashed lines) as low and high frequency, far away
from all single-particle resonances.

Experimental loss rates.— The total loss rate of
condensate atoms in our system is given by summing
over background losses in the static system, character-
ized by a lifetime τ , and heating and losses induced by
lattice shaking. We assume that all losses happen on a
sufficiently slow timescale such that the system heats up,
but stays in global thermal equilibrium, and describe the
condensed part using the Thomas-Fermi approximation.
We have verified independently that the cloud size indeed
shrinks according to the decreasing number of condensed
atoms N0 [45]. Within this approximation, the driving
induced loss rate of condensed atoms due to two-particle

collisions takes the form �κN
7~5
0 [45]. Including the back-
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FIG. 3. Examples of two-particle scattering chan-
nels. The lowest two bands of a schematic lattice dispersion
are sketched by solid lines, Floquet modes shifted by �

Òhω
�m � �1� are depicted by dashed lines. The condensate is
represented by a large sphere, scattered particles by small
spheres. The pair of yellow wiggly arrows in (a) denotes a
two-photon scattering process, where the atoms absorb two
photons, while the red wiggly lines in (b,c) denote a zero-
photon (ordinary) collision between two atoms and blue ar-
rows describe single-photon interband transitions. (a) When
the driving frequency is much smaller than the band gap,
the dominant loss process are two-photon intraband collisions.
(b,c) For driving frequencies larger than the band gap, the
leading (subleading) excitation channels combine one (two)
single-photon interband transitions with zero-photon colli-
sions. Note that only one photon number m is associated
with the whole system and not one per particle as suggested,
for simplicity, in the diagrams.

ground losses �N0~τ of the static system we obtain

N0�t� � N0�0� e �t
τ �1 �N0�0� 2

5κτ �1 � e
�2t
5τ � �

�
5
2

. (1)

We measure τ independently for each scattering length
in the static lattice. In order to form a more intuitive
quantity, we define a scaled loss rate κ̃ � κN0�0�2~5 such
that the initial driving-induced losses scale as � κ̃N0�0�.
As shown in Fig. 2, both stronger interactions and larger
driving strengths lead to dramatically higher loss rates
for the BEC.

Theoretical description.— In order to identify
and estimate the dominant heating channels associated
with two-particle scattering, we start by describing a ho-
mogeneous system in the Floquet space of time-periodic
states, where an integer Fourier index m describes the
change in “photon” number relative to a large classical
background, i.e., �m counts the number of absorbed pho-
tons. In this dressed-atom-like picture, the dynamics is
generated by the quasienergy operator Q. Within the
subspace of a given relative photon number m, it acts
like Qm,m � H�0�

�mÒhω, whereas the coupling between
subspaces m� and m corresponds to an �m �m�� photon

process which is captured by Qm�,m � H�m�
�m�. Here

H�ν�
�

1
T R

T
0 dt eiνωtH�t� denotes the νth Fourier com-

ponent of the time-dependent Hamiltonian H�t�. The

time-averaged Hamiltonian H�0� describes a dispersion
relation εb�kx� � EÙ�ky, kz�, with effective band struc-

ture εb�kx� and transverse kinetic energy EÙ � Òh2�k2
y �

k2
z�~�2M�, as well as interactions.
In Fig. 3 we sketch the lowest two bands b � 0,1 for

the relative photon numbers m � 0,�1 (solid and dashed
lines, respectively), given by εb�kx� � mÒhω. The dia-
grams depict three examples of relevant scattering chan-
nels, where two particles (small spheres) are excited out
of the condensate into the states Sb,ke and Sb�,�ke ab-
sorbing ν �m �m� photons, as indicated by the number
of particles transferred to the dashed bands (ν � 1 in
b and ν � 2 in a and c). The resonance condition for
two-particle excitations can be written as

εb�kx� � εb���kx� � νÒhω � 2ε0�0� � �2EÙ B 0. (2)

Here, we have separated the transverse kinetic energy
2EÙ � EÙ�ky, kz� � EÙ��ky,�kz� created in the scatter-
ing process on one side of the equation. As there is no
lattice potential along these directions, the transverse ki-
netic energy can take arbitrary non-negative values. As
a consequence, in Fig. 3 all states with total energy below
the original BEC are accessible.

For the smaller driving frequency ωl, the tunneling in
the lowest band is modified by a Bessel-function Jeff �

J0�α�J0 [45, 46], where Jν�α� is a Bessel function and
J0 the tunneling matrix element of band b � 0. In this
regime, scattering particles to an excited band would
require absorbing a large number of photons. There-
fore, the dominant heating channel is intraband scatter-
ing with small ν. Processes with odd ν are forbidden by
symmetry for a condensate with zero momentum, and
only acquire finite values due to the momentum spread
of the condensate [45]. For a ν-photon scattering process
the matrix element scales like � Òh2asn0J0Jν�α�~�νÒhωM�
[45], with a prefactor that for odd ν is about five times
smaller than for even ν at the measured momentum
spread of 0.2π~a and where n0 is the condensate density.

For the larger driving frequency, ωh, interband scat-
tering dominates. In this regime, single-photon single-
particle interband coupling is strong (with matrix ele-
ments � αEr [45]) but off resonant. This leads to a
perturbative admixture of states from the first excited
band (b � 1) with m � �1 to the lowest band (b � 0)
with m � 0 and vice versa. As a result of this cou-
pling, already ordinary zero-photon collisions, which are
stronger than ν photon scattering processes, give rise to
excitations by scattering atoms between these dressed
bands. Another consequence of this admixture of the
highly dispersive first excited band to the rather nar-
row lowest band is the formation of a double-well struc-
ture within the lowest band for sufficiently large driv-
ing strengths α [4, 6, 45]. As a result, the condensate
reforms at the new minima of the dispersion at finite
quasimomenta, see insets in Fig. 1 (b). We compute the
matrix elements for resonant interband excitations us-
ing degenerate perturbation theory. In leading order,
we encounter three different single-photon �ν � 1� pro-
cesses, such as the one depicted in Fig. 3 (b), involving a
single-particle single-photon interband transition and a
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zero-photon two-particle scattering event. Their matrix
elements scale like � Òh2asn0Erα~�ÒhωM�. The leading
correction stems from two-photon �ν � 2� processes, an
example of which is shown in Fig. 3 (c), giving rise to
matrix elements that are a factor of αEr~�Òhω� smaller
[45].

Applying Fermi’s golden rule and integrating over the
time-dependent Thomas-Fermi profile in a local density
approximation, we derive the rates Γν of atoms scattered
out of the condensate via ν-photon processes [45] and

find that they are proportional to �asN0�7~5. For the
lower driving frequency ωl, the scattered particles will not
have enough energy to leave the trap and will dissipate
their entire energy into the system via ordinary (zero-
photon) collisions. This excites additional atoms out of
the condensate, leading to a decay rate for condensed
atoms Ṅ0 � �fβÒhωPν νΓν~2 with inverse temperature
β and a numerical factor f � O�1� that depends on the
details of the system [45]. Due to the finite momentum of
these newly created thermal atoms, ν � 1 scattering now
becomes dominant and they will absorb photons at an
even faster rate than condensed atoms. In a truly closed
system, this form of heating would scale linearly with the
photon energy Òhω. Due to the finite trap depth, however,
the system is effectively open and, for the higher driving
frequency ωh, scattered particles typically have sufficient
energy to quickly leave the trap without dissipating the
absorbed energy. In this regime we expect Ṅ0 � �Pν Γν .

Comparison between theory and experiment.—
Due to the thermalization of the absorbed photon en-
ergies described above, the measured loss rates of con-
densed atoms at low driving frequency ωl will be larger
than the total scattering rate Pν Γν (Fig. 2 (a-c)). We
observe a factor of fβÒhω � 10, which provides a lower
bound for the temperature of the condensate. Assuming
for simplicity an ideal homogeneous gas results in a real-
istic lower bound of 15 nK. While typical temperatures
of the BEC will likely be higher [45], the differences are
most likely due to resonant scattering of thermal atoms,
which is not included in the theory. In contrast, for a
driving frequency of ωh, shown in Fig. 2 (d-f), the loss
rate of condensed atoms coincides with the total scat-
tering rate since the absorbed photon energy is carried
away with the scattered particles leaving the trap. This
highlights the advantage of working at larger driving fre-
quencies.

Fig. 2 (c) and (f) show a rather good general agree-
ment with the expected scaling with scattering length

of Ṅ0 � a
7~5
s , demonstrating that the dominant loss

mechanisms are indeed interaction driven and that the
Thomas-Fermi local-density approximation is consistent
with our data. While the data at large driving frequency
ωh follows the theory rather well for not too strong in-
teractions and driving, we observe increasing discrepan-
cies both for larger scattering lengths and larger driving
strengths. When the mean free path of excited atoms
(� 1~a2

s) becomes on the order of the size of the BEC, ex-
cited atoms will undergo additional collisions while leav-
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FIG. 4. Loss rates for large driving strengths and small
frequencies (a) When scanning the driving strength α at
frequency ωl, we observe peaks in the loss rate whenever the
effective tunneling Jeff � J0 �J0�α� goes through zero (dashed
lines). The insets sketch the lowest band for positive and
negative tunneling. (b) For a fixed driving strength α � 1.1,
we observe a peak in the loss rate for driving frequencies close
to the bandwidth of the lowest band. The solid line shows the
theory scaled by fβÒhω with a temperature of 15 nK (see text).
The dashed black lines indicate one (two) times the effective
bandwidth, below which the number of accessible states for
two (single) photon scattering becomes reduced [45]. The
dashed green line marks the frequency ωl. Error bars indicate
fit errors.

ing the cloud, thereby giving rise to an additional loss
of condensate atoms similarly to the low frequency case
[45]. This is most clearly visible when plotting the data
vs scattering length, see Fig. 2 (f), where for weak driv-

ing a discrepancy to the a
7~5
s scaling can be observed for

scattering lengths larger than � 100a0. For higher driv-
ing strengths we expect the onset of additional scattering
channels with ν A 2, which are not included in the theory
for ωh [45]. We note that two degenerate minima appear
in the lowest band for α A 0.7, giving rise to the small
kinks in the expected loss rates in Fig. 2 (e).

We also measured the loss rates for large driving am-
plitudes and low frequency ωl, see Fig. 4 (a). We can
observe clear maxima in the loss rate whenever the ef-
fective tunneling matrix element Jeff is close to zero and
attribute them to zero-photon scattering in the effectively
flat band. Interestingly, the loss rate decreases again
once the sign of the effective tunneling matrix element
Jeff changes. Fig. 4 (b) shows the loss rate for various fre-
quencies close to the bandwidth. Since there are fewer
modes available for frequencies below the bandwidth of
the lowest band, a clear decrease in the loss rates can be
observed [45].

Conclusion and Outlook.— We have measured
the loss rates of an interacting BEC in a driven one-
dimensional optical lattice. They approximately scale
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with the interaction as a
7~5
s , in agreement with a the-

oretical description based on a Thomas-Fermi approxi-
mation and Fermi’s golden rule. For large driving fre-
quencies, scattered particles can leave the trap and carry
away the absorbed energy quanta Òhωh. This mechanism
of continuous Floquet evaporative cooling can act as a
powerful general strategy to reduce heating rates in Flo-
quet engineered quantum gases. Furthermore, the two-
particle scattering processes considered here rely on ex-
citing transverse motion and might therefore be absent
in a three-dimensional lattice. Another intriguing possi-
bility is the use of non-ergodic or many-body localized
systems, where the dynamics can be immune to these

heating processes.
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