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Invariant natural killer T (iNKT) cells recognize lipid antigens presented by CD1d and 

play a central role in regulating immunity and inflammation in peripheral tissues. 

However, the mechanisms which govern iNKT cell homeostasis after thymic emigration 

are incompletely understood. Here we demonstrate that microsomal triglyceride 

transfer protein (MTP), a protein involved in the transfer of lipids onto CD1d, regulates 

liver iNKT cell homeostasis in a manner dependent on hepatocyte CD1d. Mice with 

hepatocyte-specific loss of MTP exhibit defects in the function of CD1d and show 

increased hepatic iNKT cell numbers as a consequence of altered iNKT cell apoptosis. 

Similar findings were made in mice with hepatocyte-specific loss of CD1d confirming a 

critical role of CD1d in this process. Moreover, increased hepatic iNKT cell abundance 

in the absence of MTP is associated with susceptibility to severe iNKT cell-mediated 

hepatitis thus demonstrating the importance of CD1d-dependent control of liver iNKT 

cells in maintaining immunological homeostasis in the liver. Together, these data 

demonstrate an unanticipated role of parenchymal cells, as shown here for hepatocytes, 

in tissue-specific regulation of CD1d-restricted immunity and further suggest that 

alterations in lipid metabolism may affect iNKT cell homeostasis through effects on 

CD1d-associated lipid antigens. 
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SIGNIFICANCE STATEMENT 

Invariant natural killer T (iNKT) cells recognize lipid antigens in the context of CD1d and 

have potent effects on immunity. Control of iNKT cells is critical to prevent inflammation, 

but the mechanisms that maintain homeostasis of iNKT cells in peripheral tissues are 

incompletely understood. Here, we demonstrate that hepatocytes promote the apoptosis of 

local, liver-resident iNKT cells in a manner dependent on CD1d. In the absence of hepatocyte 

CD1d or microsomal triglyceride transfer protein, a protein responsible for lipid transfer onto 

CD1d, hepatic iNKT cell numbers are increased, which is associated with susceptibility to 

iNKT cell-dependent hepatitis. This work thus reveals a novel pathway of peripheral 

induction of immune tolerance, which limits susceptibility to iNKT cell-dependent 

inflammation in the liver. (120/120 words)  
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INTRODUCTION 

NKT cells recognize lipid antigens presented by CD1d and are distinguished into invariant (i) 

and non-invariant NKT cells (1). NKT cells demonstrate autoreactivity towards endogenous 

lipid antigens, show enrichment in tissues such as the liver and adipose tissue, and exhibit 

potent effector functions in immunity (2, 3). Since iNKT cells represent long-lived tissue 

resident cells in most organs (4), tight regulation of iNKT cell homeostasis is required to 

prevent inappropriate inflammation. Studies of intestinal iNKT cells suggest that this tissue 

residency may be established during narrow time frames of early life through microbially 

regulated homing and expansion that results in a finely tuned steady-state level of local iNKT 

cells (5, 6).  Further, as iNKT cells exhibit limited proliferation and carefully coordinated 

tissue trafficking under non-inflammatory conditions (4, 5, 7-9), it is likely that strict control 

of iNKT cell levels and their activation is important to maintain tissue homeostasis. 

Consistent with this, triggering iNKT cell activation in the context of their numeric increase 

in germ-free mice leads to profound inflammation of the colon which is prevented by 

blockade of CD1d (5, 6). 

 

These peripheral, extrathymic mechanisms of control of iNKT cells are poorly understood but 

likely include the levels of cytokines and hormones, for example, which can directly regulate 

iNKT cell responses as well as alter the threshold to iNKT cell activation by endogenous lipid 

autoantigens (10-12). This further suggests that the activation of iNKT cells, and potentially 

their homeostasis, may be regulated by the balance between activating and non-activating 

lipids, and thus by lipid presentation by CD1d (13, 14). However, iNKT cells exhibit similar 

proliferation and survival after transfer into wild-type (WT) and CD1d-deficient mice, which 

has suggested that CD1d expression in the periphery is dispensable for the regulation of iNKT 
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cell homeostasis (7, 8). Whether tissue- and cell-type specific effects of CD1d-dependent 

regulation of iNKT cell homeostasis exist remains to be addressed, however.  

 

Here we demonstrate, using mouse models with hepatocyte-specific deletion of CD1d and 

microsomal triglyceride transfer protein (MTP), an intracellular lipid transfer protein 

responsible for CD1d lipidation and biogenesis (15-19), that hepatocytes control liver iNKT 

cell homeostasis through MTP- and CD1d-dependent transcriptional regulation of iNKT cell 

apoptosis. Furthermore, we show that these regulatory mechanisms are critical for the 

prevention of uncontrolled hepatic inflammation upon iNKT cell activation.  

 

 
RESULTS  

Hepatocyte-specific deletion of Mttp is associated with structural and functional 

alterations in CD1d 

To delete Mttp, the gene encoding MTP, in a hepatocyte-specific manner, Alb-Cre mice 

expressing Cre recombinase under control of the albumin promoter (20) were crossed with 

Mttpfl/fl mice harboring loxP sites which flank exon 1A of the Mttp gene (14, 21, 22). Two of 

the three known Mttp transcripts (Mttp-A, Mttp-C) include exon 1A, while the Mttp-B 

transcript uses an alternative exon 1B that would escape targeting in the conditional knockout 

mice described above (16, 23). However, quantitative PCR (qPCR) with exon-specific 

primers revealed that Mttp transcripts in hepatocytes almost exclusively contained exon 1A 

(Fig. 1A). Accordingly, primary hepatocytes from Alb-Cre;Mttpfl/fl mice (hereafter, 

hepatocyte (H)-Mttp-/- mice) exhibited a dramatic decrease in Mttp transcripts containing exon 

1A without a compensatory increase in the expression of transcripts containing exon 1B (Fig. 

1B). This is consistent with strongly reduced hepatocyte MTP protein expression in these 

mice (14). 
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MTP can directly transfer phospholipids onto CD1d (16, 17). Accordingly, Mttp mutations in 

patients with abetalipoproteinemia (ABL) are associated with severe defects in lipid antigen 

presentation by group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 (18). In dendritic 

cells of ABL patients, group 1 CD1 undergoes proteasomal degradation, while CD1d shows 

unimpaired expression but is unable to load exogenous antigens (18). Consistent with these 

findings, hepatocytes of H-Mttp-/- mice demonstrated unimpaired cell surface and intracellular 

expression of CD1d as measured by the 1B1 monoclonal antibody (Fig. 1C). However, 

analysis of CD1d expression using an extended panel of monoclonal and polyclonal 

antibodies showed that a subset of antibodies exhibited impaired recognition of CD1d at the 

cell-surface of H-Mttp-/- hepatocytes (Fig. 1D). This subset of antibodies included the 

monoclonal antibodies 19G11, 15C6, and 20H2, which potently blocked CD1d-restricted 

antigen presentation by hepatocytes (Fig. 1E) and were previously demonstrated to bind to 

adjacent clusters of epitopes in the vicinity of the CD1d antigen binding groove (24). 

Quantitative PCR showed a minor increase in Cd1d1 expression by H-Mttp-/- hepatocytes 

indicating that impaired CD1d recognition by a subset of monoclonal anti-CD1d antibodies 

was not the consequence of decreased CD1d expression (Fig. 1F). Together, these results 

show that deletion of hepatocyte Mttp and associated defects in lipid transfer onto CD1d lead 

to impaired recognition of CD1d by a subset of monoclonal antibodies, thus suggesting 

structural alterations in CD1d in the absence of this lipid transfer protein.  

 

To address whether deletion of Mttp affects CD1d antigen binding and presentation, we 

studied the presentation of α-galactosylceramide (α-GalCer), an iNKT cell-activating 

glycosphingolipid, by wildtype and Mttp-deficient hepatocytes. Alpha-GalCer presentation by 

Mttp-deficient hepatocytes was associated with reduced iNKT cell activation, which could not 

be compensated by loading with higher concentrations of α-GalCer (Fig. 1G, left). Indeed, 
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iNKT cell-dependent IL-2 release reached a plateau at considerably lower concentrations of 

α-GalCer upon presentation by H-Mttp-/- compared to WT hepatocytes (Fig. 1G, left). 

Impaired α-GalCer presentation by H-Mttp-/- hepatocytes was not the consequence of altered 

CD1d trafficking as similar observations were made upon surface loading of α-GalCer onto 

fixed hepatocytes (Fig. 1G, right). In addition, defects in antigen presentation were specific to 

CD1d since H-2Kb-restricted presentation of SIINFEKL did not differ between H-Mttp-/- and 

WT hepatocytes (Fig. 1H). Together, these results are in accordance with structural defects of 

CD1d in the absence of hepatocyte Mttp, which lead to impaired antibody-mediated 

recognition and defects in antigen loading and/or presentation. 

 

Cognate lipids stabilize heterodimers of CD1d and β2-microglobulin thus contributing to the 

structural integrity of CD1d (25). This raised the question of whether Mttp deficiency and 

associated structural defects in CD1d affect the stability of interactions between CD1d and 

cognate lipid antigens. To address this question, α-GalCer-loaded hepatocytes were 

maintained in the absence of exogenous lipids to allow for the dissociation of CD1d-bound 

lipids, after which hepatocytes were co-cultured with iNKT cells. In accordance with the 

reported stability of α-GalCer-CD1d complexes , α-GalCer presentation by WT hepatocytes 

was not affected by extended culture of hepatocytes in the absence of exogenous antigen (Fig. 

1I left; P=0.52 for IL-2 in two-tailed t test of 0h vs. 12h). In contrast, H-Mttp-/- hepatocytes 

exhibited a time-dependent decrease in α-GalCer presentation with a 39.5 % decrease in NKT 

cell-derived IL-2 after 12 hours of hepatocyte culture in the absence of α-GalCer (Fig. 1I left, 

P=0.03 for IL-2 in two-tailed t test of 0h vs. 12h). Importantly, differences in antigen 

presentation between WT and H-Mttp-/- hepatocytes were not the consequence of altered 

CD1d trafficking as similar observations were made with fixed hepatocytes (Fig. 1I right, IL-

2 in two-tailed t test of 0h vs. 12h P=0.33 for WT and P=0.005 for H-Mttp-/-). 
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Together, these results demonstrate that MTP is critically involved in the regulation of CD1d-

restricted antigen presentation by hepatocytes, while its deletion is associated with structural 

alterations in hepatocyte CD1d, impaired loading of CD1d with exogenous antigens and 

decreased stability of CD1d-lipid complexes.  

 

Hepatocyte MTP controls liver iNKT cell homeostasis through regulation of apoptosis 

We next investigated whether hepatocyte-specific deletion of Mttp and associated defects in 

CD1d-restricted antigen presentation affect the homeostasis of hepatic iNKT cells. Flow 

cytometry-based analysis revealed no alterations in the expression of activation, memory, and 

NK cell markers expressed by hepatic iNKT cells obtained from H-Mttp-/- mice (Fig. 2A). 

Moreover, T cell receptor (TCR) Vβ usage by hepatic iNKT cells and the ratio of CD4+ to 

double-negative iNKT cells was not altered in H-Mttp-/- mice (Fig. 2B-C). While the 

phenotype of iNKT cells was not altered, H-Mttp-/- mice consistently showed an increase in 

relative and absolute numbers of hepatic iNKT cells, whereas B cells, NK cells, and α-

GalCer/CD1d-tetramer-negative hepatic T cells, which mainly consist of non-CD1d-restricted 

classical T cells (hereafter termed conventional T cells), were not altered in abundance (Fig. 

2D-E). Moreover, the increase in iNKT cells was specific for the liver and not observed in the 

spleen or lymph nodes of H-Mttp-/- mice (Fig. 2F).  

 

To provide insight into the mechanistic basis of increased hepatic iNKT cell numbers in H-

Mttp-/- mice, we first investigated the proliferation of iNKT cells in vivo. In accordance with 

previous observations (7, 8), incorporation of bromodeoxyuridine (BrdU) by hepatic iNKT 

cells required continuous BrdU exposure for several days. Importantly, BrdU incorporation 

by hepatic iNKT cells and conventional T cells did not differ between WT and H-Mttp-/- mice 

(Fig. 2G). Further, analysis of chemokine receptors critical for T cell homing to the liver, such 

as CXCR6 and CXCR3 (9), revealed no difference in expression by iNKT cells obtained from 
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WT and H-Mttp-/- mice (Fig. 2H). We therefore investigated whether iNKT cell death 

contributes to MTP-dependent regulation of hepatic iNKT cells. Indeed, H-Mttp-/- mice, 

compared to WT littermates, showed a decrease in the percentage of annexin V+ hepatic 

iNKT cells (Fig. 2I). In contrast, hepatic conventional T cells as well as splenic iNKT cells 

and conventional T cells did not exhibit differences in annexin V+ staining between WT and 

H-Mttp-/- mice (Fig. 2I-J). Similar findings were made when analyzing the subG0/G1 fraction 

of apoptotic hepatic and splenic iNKT and conventional T cells (Fig. S1). Together, these 

results suggest that hepatocyte MTP regulates liver iNKT cell homeostasis through effects on 

iNKT cell apoptosis.  

 

Control of liver iNKT cell homeostasis is mediated by hepatocyte CD1d  

MTP not only facilitates the loading of lipids onto CD1d but also transfers triglycerides and 

phospholipids onto apolipoprotein B thus contributing to the secretion of chylomicrons and 

very low density lipoproteins (VLDL) . Consequently, H-Mttp-/- mice showed an increase in 

hepatic triglyceride, cholesterol and phospholipid levels (Fig. 3A and (22)). These results 

raised the question of whether defects in hepatocyte CD1d observed in H-Mttp-/- mice are a 

direct consequence of altered MTP-mediated lipid transfer onto CD1d or represent an indirect 

consequence of hepatic steatosis. To delineate these possibilities, we first investigated WT 

mice on a high fat (HF) and high fat/sucrose (HS) diet to induce hepatic steatosis. WT mice 

on HF and HS diet exhibited increased weight gain compared to mice on a standard diet (Fig. 

3B) and showed significant hepatic steatosis, which was comparable to that found in H-Mttp-/- 

mice on a control diet (Fig. 3A, C-D). Genetically induced obesity and hepatic steatosis are 

associated with reduced hepatocyte CD1d expression (26, 27). In accordance with these 

observations, mice on a HS diet exhibited a moderate reduction in cell surface CD1d 

expression by primary hepatocytes, while a similar but non-significant trend was observed for 

mice on HF diet (Fig. 3E). In contrast to observations in H-Mttp-/- mice, however, this 
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decrease in cell surface CD1d expression was observed with all anti-CD1d antibodies 

investigated including 1B1 (Fig. 3E) and associated with a decrease in Cd1d1 mRNA 

expression (Fig. 3F). Moreover, the decrease in cell surface CD1d expression by primary 

hepatocytes of mice on a HS diet was not associated with defects in CD1d-restricted 

presentation of α-GalCer (Fig. 3G), which is consistent with limited correlation between cell 

surface CD1d expression and the ability of antigen presenting cells to activate iNKT cells 

(28). In addition, while H-Mttp-/- mice exhibited an increase in hepatic iNKT cells (Fig. 2D-

E), WT mice on a HF or HS diet exhibited unaltered levels of hepatic iNKT cells (Fig. 3H). 

Furthermore, several recent studies on diet- and genetically induced obesity and steatosis 

showed reduced rather than increased levels of hepatic iNKT cells in steatotic mice (26, 27, 

29, 30). This is in accordance with an increase in annexin V+ apoptotic iNKT cells in mice on 

a HF diet (27), while H-Mttp-/- mice exhibited a decrease in the percentage of annexin V+ 

hepatic iNKT cells (Fig. 2I). Together, these data suggest that CD1d defects observed in H-

Mttp-/- mice are a direct consequence of altered MTP-mediated lipid transfer onto CD1d and 

not an indirect result of hepatic steatosis.  

 

To further extend these findings, we generated mice with hepatocyte-specific deletion of 

Cd1d1 (hereafter, H-Cd1d1-/- mice) by crossing Alb-Cre mice with Cd1d1fl/fl mice (28). 

Cd1d1fl/fl mice were generated and maintained on the C57BL/6J background, which harbors 

an inactivating frameshift mutation in Cd1d2 (31). H-Cd1d1-/- mice, similar to H-Mttp-/- mice, 

showed an increase in the abundance of iNKT cells but not conventional T cells among liver 

mononuclear cells (Fig. 4A). Consistent with results in H-Mttp-/- mice, these alterations in 

iNKT cell abundance in H-Cd1d1-/- mice were specific to the liver and not observed in the 

spleen (Fig. 4B). Moreover, hepatic iNKT cells but not conventional T cells obtained from H-

Cd1d1-/- mice exhibited a reduction in the percentage of annexin V+ cells (Fig. 4C).  These 

results show that hepatocyte-specific deletion of CD1d is associated with alterations in iNKT 
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homeostasis that are similar to those observed in mice with deletion of MTP thus 

demonstrating that hepatocyte CD1d regulates liver iNKT cell homeostasis under constitutive 

conditions. 

 

Decreased hepatic iNKT cell apoptosis in H-Mttp-/- and H-Cd1d1-/- mice raised the question 

of whether CD1d-restricted antigen presentation by hepatocytes directly regulates liver iNKT 

cell apoptosis. To test this hypothesis, we turned to a reductionist in vitro approach, in which 

hepatic iNKT cells obtained from WT mice were co-cultured with primary WT, MTP- and 

CD1d-deficient hepatocytes. Invariant NKT cells co-cultured with MTP- and CD1d-deficient 

hepatocytes exhibited considerably less apoptosis compared to iNKT cells cocultured with 

WT hepatocytes (Fig. 4D). These findings suggest that hepatocytes can directly induce iNKT 

cell apoptosis in a manner dependent on CD1d and MTP. 

 

Hepatocyte MTP controls liver NKT cell homeostasis through transcriptional regulation 

of apoptosis 

We next investigated the mechanisms underlying the regulation of liver NKT cell apoptosis 

by hepatocytes. To sort hepatic NKT cells and to avoid α-GalCer/CD1d tetramer-induced 

activation of NKT cells during sorting, we crossed H-Mttp-/- mice with IL-4/GFP-enhanced 

transcript (4Get) mice, which express GFP via an internal ribosome entry site in the Il4 

transcript. 4Get mice allow for sensitive and specific detection of iNKT cells due to iNKT 

cell-specific transcription of Il4 under constitutive conditions (32). Indeed, more than 90 % of 

GFP+ CD3+ liver mononuclear cells (LMNCs) stained with α-GalCer/CD1d tetramers thus 

representing iNKT cells (Fig. 5A). In addition, similar to observations on α-GalCer/CD1d 

tetramer+ iNKT cells in H-Mttp-/- mice, GFP+ CD3+ liver NKT cells obtained from H-Mttp-/-

;4Get mice exhibited decreased cell death compared to Alb-Cre-negative 4Get littermates 

(Fig. 5B). Of note, percentages of apoptotic cells, both among NKT cells and conventional T 
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cells, were higher in H-Mttp-/-;4Get mice (Fig. 5B) compared to H-Mttp-/- mice (Fig. 2I), 

presumably as a consequence of a mixed genetic background of H-Mttp-/-;4Get mice (see 

Materials and Methods). Using the 4Get model, GFP+ CD3+ NKT cells and GFP− CD3+ 

conventional T cells were sorted from LMNCs of H-Mttp-/-;4Get mice and Alb-Cre-negative 

4Get littermates. Sorted NKT and conventional T cells were then subjected to qPCR-based 

expression analysis of a broad panel of pro- and anti-apoptotic mediators. As shown in Fig. 

5C, GFP+ CD3+ NKT cells obtained from H-Mttp-/-;4Get mice, as compared to NKT cells 

from Alb-Cre-negative Mttpfl/fl;4Get littermates, exhibited increased expression of selected 

negative regulators of apoptosis including Bcl2, a potent inhibitor of iNKT cell apoptosis 

(33). In contrast, expression of the proapoptotic gene Fasl, a critical mediator of iNKT cell 

apoptosis (34), was decreased in NKT cells obtained from H-Mttp-/-;4Get mice compared to 

Alb-Cre-negative Mttpfl/fl;4Get mice (Fig. 5C). Importantly, altered expression of these 

regulators of apoptosis in H-Mttp-/- mice was significantly more pronounced for GFP+ CD3+ 

NKT cells compared to GFP- CD3+ conventional T cells (Fig. 5D). These results were 

confirmed in sorted iNKT cells and conventional T cells of H-Mttp-/- mice and wildtype 

littermates (Fig. S2). Thus, hepatocyte-specific deletion of Mttp is associated with increased 

transcription of inhibitors of apoptosis as well as decreased transcription of pro-apoptotic 

genes in hepatic NKT cells, both of which likely contributes to decreased apoptosis of liver 

iNKT cells in H-Mttp-/- mice. 

 

MTP-dependent control of liver iNKT cells regulates the susceptibility to hepatic 

inflammation 

NKT cells represent a major subset of liver mononuclear cells with critical roles in the 

pathogenesis of hepatic inflammation. We therefore investigated whether alterations in 

hepatic iNKT cell homeostasis with a numerically increased level of iNKT cells as observed 

in H-Mttp-/- mice influences the severity of concanavalin A (ConA) hepatitis, a mouse model 
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of NKT cell-dependent autoimmune hepatitis that is elicited by direct, CD1d-independent 

NKT cell activation by the lectin ConA (34). H-Mttp-/- mice, compared to WT littermates, 

exhibited significantly increased severity of ConA hepatitis as determined by serum alanine 

aminotransferase (ALT) levels (Fig. 5E). Moreover, while ConA administration induced 

substantial activation-induced cell death in iNKT cells and conventional T cells, H-Mttp-/- 

mice showed reduced hepatic iNKT cell but not conventional T cell apoptosis compared to 

WT littermates (Fig. 5F), which was not the consequence of alterations in ConA-induced 

iNKT cell activation (Fig. 5G). Together, these results suggest that increased levels of hepatic 

iNKT cells as well as resistance of iNKT cells to activation-induced apoptosis, as observed in 

H-Mttp-/- mice, are associated with increased susceptibility to iNKT cell-mediated hepatic 

inflammation.  

 

DISCUSSION 

NKT cells are potent effector T cells, which play protective roles in antimicrobial immunity 

but can also promote autoimmunity (2, 3, 5, 6, 14, 28).  Tight control of NKT cell 

homeostasis is therefore required to prevent uncontrolled inflammation. However, little is 

known about how this occurs and in particular whether CD1d-restricted presentation of tissue- 

or cell type-specific antigens contributes to this process. Here, we describe a novel and 

unanticipated pathway of peripheral induction of immune tolerance, in which hepatocytes 

govern control of iNKT cells in the liver and protect from hepatic inflammation through 

CD1d- and MTP-dependent transcriptional regulation of iNKT cell apoptosis. 

  

The finding of CD1d-dependent regulation of hepatic iNKT cells is reminiscent of recent 

observations in the intestine. There, neonatal exposure to the microbiota was found to limit 

local recruitment and proliferation of iNKT cells in a CD1d-dependent manner (5, 6). 

Interference with these pathways was associated with increased iNKT cell numbers and 
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susceptibility to severe inflammation upon activation of iNKT cells (5, 6). Similar to these 

findings, we observed here that the deletion of CD1d or MTP in hepatocytes is associated 

with an increase in liver iNKT cells, which promotes susceptibility to iNKT cell-mediated 

hepatic inflammation. While the underlying mechanisms of CD1d-dependent regulation of 

iNKT cells differ between the intestine (proliferation, recruitment) and the liver (apoptosis), 

both tissues thus harbor pathways which promote a regulatory environment and protect from 

inflammation through numeric control of iNKT cells.  

 

MTP- and CD1d-mediated control of hepatic iNKT cells suggests that the presentation of 

lipid antigens by CD1d and thus the balance between iNKT cell-activating and -non-

activating lipids acts as a rheostat in the control of NKT cell-dependent immunity. Since the 

balance between activating and -non-activating lipids is tightly connected to lipid metabolism, 

our results further indicate a central role of hepatocellular metabolism in this process. 

Moreover, given the recent demonstration of iNKT cell-dependent regulation of hepatic 

metabolism (27, 29, 30), such pathways of interaction between iNKT cells and lipid 

metabolism are likely bidirectional and consistent with cross talk between immunity and 

metabolism in the liver. These observations have far-ranging implications for metabolic 

disorders associated with NKT cell-dependent hepatic inflammation, such as non-alcoholic 

fatty liver disease (35-37), in which alterations in lipid metabolism may act as triggers of 

NKT cell-dependent hepatic inflammation. Enzymes involved in the generation or 

degradation of disease-associated lipids and lipid antigens as well as proteins involved in the 

transfer of these lipids onto CD1d may thus provide suitable targets for pharmacologic 

intervention with disease progression.   

 

The cell-specific nature of the Mttp deletion in H-Mttp-/- mice as well as the observation of 

CD1d-dependent regulation of iNKT cell death by hepatocytes in vitro suggest that direct 
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interactions between hepatocytes and liver iNKT cells regulate the homeostasis of iNKT cells 

in the liver. This is in accordance with previous findings by us and others, which 

demonstrated that hepatocytes can directly present antigens to hepatic NKT cells and 

conventional T cells in vivo (14, 38, 39). While we did not investigate the structural basis of 

such interactions in the present study, previous ultrastructural work revealed that T cells 

interact with hepatocytes through cytoplasmic extensions, which penetrate sinusoidal 

endothelial fenestrations (40). As such, it is anticipated that similar interactions provide the 

basis for interactions between NKT cells and hepatocytes within liver sinusoids.   

 

Previous studies which investigated the homeostasis of iNKT cells upon transfer into CD1d-

deficient as compared to WT hosts did not reveal CD1d-dependent effects on iNKT cell 

proliferation and expansion (7, 8). While we were also unable to detect alterations in iNKT 

cell proliferation upon deletion of CD1d, we observed an increase in the expansion of iNKT 

cells in hosts with hepatocyte-specific deletion of CD1d and MTP. These results differ from 

those obtained in previous studies, which is likely due to differences in the methodological 

approach. As such, while previous work analyzed the homeostasis of iNKT cells within 

transferred suspensions of thymocytes, splenocytes and liver mononuclear cells and focused 

on hosts globally deficient in CD1d (7, 8), we investigated the proliferation and apoptosis of 

endogenous iNKT cells in the context of cell-specific deletion of CD1d. The investigation of 

endogenous iNKT cells is of particular relevance given the long-lived and tissue-resident 

nature of liver iNKT cells, which limits the ability to study these cells in experiments based 

on cell transfer (4). In addition, recent observations of opposing, cell-type specific roles of 

CD1d the intestine (28) suggest that similar principles may be operative in other tissues such 

as the liver and may require mice with conditional deletion of CD1d, as used here, for their 

identification.  
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Together, our findings reveal a novel pathway of local, tissue-specific control of immunity in 

the liver, which has important implications for autoimmune and metabolic disorders as well as 

their associated inflammatory and malignant complications.  

 

MATERIALS AND METHODS 

Mice  

Experiments were performed with the approval of authorities at the Christian-Albrechts-

University Kiel, the Technical University Dresden, and Harvard Medical School. Mice were 

housed in a specific pathogen-free (SPF) barrier facility. Cd1d1-/-;Cd1d2-/- (CD1d-/-), H-Mttp-/-

, and H-Mttp-/-;4Get mice were described before (14, 22, 41). H-Cd1d1-/- mice were generated 

by crossing of Cd1d1fl/fl mice (28) with Alb-Cre mice (20). H-Mttp-/-;4Get mice were on a  

mixed C57BL/6J, BALB/cJ background, all other mice on a C57BL/6J background. Both 

male and female mice were used. Co-housed littermates were used as controls in all 

experiments. For further information on mouse treatment, please refer to SI. 

 

Extraction of primary hepatocytes 

Primary mouse hepatocytes were isolated as described before (14).  

 

Flow cytometry  

Flow cytometry was performed as previously described (14). For further information, please 

refer to SI. 

 

Antigen presentation and ELISAs 

Antigen presentation assays were described before (14). For further information, please refer 

to SI. 
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RNA extraction and quantitative PCR 

Real-time PCR was performed as described before (14). For further information, please refer 

to SI. 

 

Hepatic triglycerides 

Hepatic trigylceride levels were determined as described before (22). 

 

Statistical analysis 

Datasets of skewed distribution were analyzed using the Mann-Whitney U test and those of 

Gaussian distribution using the two-tailed Student’s t test or, in case of multiple testing, one-

way ANOVA followed by the Dunnett’s test.  
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FIGURE LEGENDS 

Fig. 1. Mttp-deficient hepatocytes show defects in CD1d. (A-B) Transcription of Mttp 

exons (qPCR) in primary hepatocytes of H-Mttp-/- (B) and WT mice (A). (C) Mean 

fluorescence intensity (MFI) of CD1d (1B1) on primary hepatocytes (flow cytometry). (D) 

Cell surface staining of CD1d on primary hepatocytes by the indicated antibodies (flow 

cytometry). Polycl., polyclonal. (E) Blocking of α-GalCer presentation to the iNKT cell 

hybridoma 24.7 by the indicated antibodies. (F) Cd1d1 mRNA (qPCR) in purified 

hepatocytes. (G-I) Presentation by primary hepatocytes of α-GalCer to the iNKT cell 

hybridoma 24.7 (G, I) or of SIINFEKL to the T cell hybridoma RF33.70 (H). Results are 

representative of 2 independent experiments and based on 3 (A-B, F) or individual (C-D) 

mice per group. In E, G-I, results of triplicates are shown. Mean (A-I) ± s.e.m. (A-B, E-I) are 

shown. For statistical analysis, the Mann-Whitney U test (A, B), the unpaired Student’s t test 

(F, G, I), and ANOVA followed by Dunnett’s multiple comparison test (E) were applied.  

 

Fig. 2. Hepatocyte MTP regulates liver iNKT cell homeostasis. (A-C) Percentage of 

hepatic iNKT cells expressing the indicated cell surface markers (A left, B-C) or MFI of 

markers (A right panel) on hepatic iNKT cells. DN, double-negative. (D) Percentage of iNKT 

cells among hepatic TCR Vβ+ cells and of conventional T cells, NK cells, and B cells among 

liver mononuclear cells (LMNCs). (E) Absolute number of hepatic iNKT cells. Each dot 

represents one mouse. Bar indicates the median. (F) Percentage of iNKT cells among 

splenocytes, mesenteric lymph node (MLN) and peripheral lymph node (PLN) cells. (G) 

Representative plots (left) and quantification (right) of BrdU+ cells among hepatic iNKT and 

conventional T cells. (H) Percentage of hepatic iNKT and conventional T cells expressing the 

indicated chemokine receptor. (I-J) Percentage of annexin V+ iNKT and conventional T cells 

in the liver (I) and spleen (J). The histogram in (I, left) is gated on iNKT cells. Results are 

representative of 2 independent experiments and based on 3 (A-C), 10 (D), 8 (WT) and 7 (H-
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Mttp-/-) (E), 4 (WT) and 6 (H-Mttp-/-) (F), 3 (WT) and 6 (H-Mttp-/-) (G), 5 (WT) and 7 (H-

Mttp-/-) (H), and 4 (WT) and 5 (H-Mttp-/-) (I-J) mice per group. Mean ± s.e.m. are shown in 

(A-D, F-J). For statistical analysis, the Mann-Whitney U test (E) or the unpaired Student’s t 

test (D, F-J) were applied. NS, not significant. 

 

Fig. 3. MTP-dependent regulation of hepatic iNKT cells is not the consequence of 

hepatic steatosis. (A) Hepatic triglyceride (TG) content after 10 weeks on a regular control 

(CTR), high-fat (HF) or high sucrose (HS) diet. (B) Body weight of WT mice. (C-D) H&E 

(C, bar 50 µm) and macroscopic appearance (D, WT mice) of livers at week 10 of the 

respective diets. H-Mttp-/- mice were on control diet. (E) Histograms and MFI of CD1d (1B1) 

and H-2kb by primary hepatocytes of WT mice at week 10 of diets (flow cytometry). (F) 

Cd1d1 mRNA (qPCR) in purified hepatocytes. (G) α-GalCer presentation by primary 

hepatocytes to the iNKT cell hybridoma 24.7. (H) Percentage of iNKT cells among hepatic 

TCR Vβ+ cells and of conventional T cells among LMNCs at week 10 of the respective diet. 

Results are representative of 2 independent experiments and based on 6-8 (A-B), 3 (E-F), and 

5-7 (H) mice per group. In (G), results of triplicates are shown. Mean ± s.e.m. are shown in 

(A-B, E-G). Statistical analysis was performed using ANOVA followed by the Dunnett’s test 

(A-B, E-F). 

 

Fig. 4. Liver iNKT cell apoptosis is regulated by hepatocyte CD1d. (A-B) Percentage of 

iNKT cells among TCR Vβ+ cells and of conventional T cells among CD45+ cells in the liver 

(A) and spleen (B). (C) Percentage of annexin V+ cells among hepatic iNKT cells and 

conventional T cells. (D) Percentage of annexin V+ iNKT cells after coculture of WT liver 

mononuclear cells with primary hepatocytes of the indicated genotype. Results are 

representative of 2 independent experiments and based on 4 (A-B) and 3 (C) mice per group. 
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In (D), results of triplicates are shown. Mean ± s.e.m. are shown. Statistical analysis was 

performed using the Student’s t test (A-C) or ANOVA followed by the Dunnett’s test (D). 

 

Fig. 5. Hepatocyte MTP regulates NKT cell apoptosis and susceptibility to hepatitis. (A) 

Representative plots of hepatic NKT cells in 4Get mice. (B) Percentage of Annexin V+ cells 

among hepatic GFP+ CD3+ NKT and GFP− CD3+ conventional T cells in the indicated mice. 

Representative histograms of GFP+ CD3+ NKT cells are shown on the left. (C-D). RNA 

expression of regulators of cell death in sorted hepatic GFP+ CD3+ NKT cells (C) and GFP− 

CD3+ conventional T cells (D) from H-Mttp-/-;4Get and Alb-Cre-negative Mttpfl/fl;4Get (WT) 

mice. RNA expression is shown as fold of WT. (E) Serum ALT 24 hours after ConA. (F) 

Annexin V+ staining of hepatic iNKT cells and conventional T cells 90 min after ConA. (G) 

Expression of CD25 (upper panel) and CD69 (lower panel) on iNKT cells 12 hours after 

ConA or vehicle (PBS). Results in C-D were obtained using cells pooled from 10 mice per 

group. Results in B, E-F, and G are based on 5 WT;4Get and 4 H-Mttp-/-;4Get (B), 10 WT and 

12 H-Mttp-/- (E-F), and 5 ConA-treated H-Mttp-/- and 6 ConA- and 6 PBS-treated WT (G) 

mice. Mean (B, C-E, G) ± s.e.m. (B, E, G) is shown. Statistical analysis in (B, E, G) was 

performed using the Student’s t test. NS, not significant. 
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Fig. S1. Mice with hepatocyte-specific deletion of Mttp exhibit decreased cell death of 
liver but not splenic iNKT cells. (A) Representative pseudocolor plots demonstrating the 
gating of the apopotic subG0/G1 fraction among gated α-GalCer/CD1d-tetramer+ CD3+ 
iNKT cells of liver mononuclear cells in the indicated mice. (B-C) Quantification of apoptotic 
(subG0/G1 fraction) α-GalCer/CD1d-tetramer+ CD3+ iNKT cells and α-GalCer/CD1d-
tetramer-negative CD3+ conventional cells among liver (B) and spleen (C) mononuclear 
cells. Results are representative of two independent experiments and based on three mice 
per group. Mean ± s.e.m. are shown. For statistical analysis, the unpaired Student’s t test 
was applied. NS, not significant.  



A B liver spleen 

Fig. S2. Expression of regulators of cell death in iNKT cells and conventional T cells 
of mice with hepatocyte-specific deletion of Mttp. RNA expression of selected 
regulators of cell death in sorted hepatic (A) and splenic (B) αGalCer/CD1d-tetramer+ CD3+ 
iNKT cells and αGalCer/CD1d-tetramer− CD3+ conventional T cells obtained from H-Mttp-/- 
mice and Alb-Cre-negative Mttpfl/fl (WT) littermates. RNA expression is shown as fold of WT 
cells. Results are based on four mice per group, whose liver or spleen mononuclear cells 
were pooled before FACS sorting and qPCR.  
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