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Abstract

We propose a Bayesian approach to estimating dynamic models that can have state
variables that are latent, serially correlated, and heterogeneous. Our approach employs
sequential importance sampling and is based on deriving an unbiased estimate of the
likelihood within a Metropolis chain. Under fairly weak regularity conditions unbiased-
ness guarantees that the stationary density of the chain is the exact posterior, not an
approximation. Results are verified by Monte Carlo simulation using two examples.
The first is a dynamic game of entry involving a small number of firms whose hetero-
geneity is based on their current costs due to feedback through capacity constraints
arising from past entry. The second is an Ericson-Pakes (1995) style game with a large
number of firms whose heterogeneity is based on the quality of their products with
firms competing through investment in product quality that affects their market share
and profitability. Our approach facilitates estimation of dynamic games with either
small or large number of players whose heterogeneity is determined by latent state
variables, discrete or continuous, that are subject to endogenous feedback from past
actions.
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1 Introduction

In many economic applications a researcher is interested in estimating a dynamic model
where some of the agent specific states may be subject to feedback from past actions
(e.g., Rust (1987)), partially observed and heterogeneous (e.g., Keane and Wolpin (1997)) or
serially correlated (e.g., Miller (1984), Pakes (1986))." In this paper we propose a Bayesian
approach to estimating dynamic models with a partially observed state that has a Markovian
representation of the dynamics and an algorithm to solve the model including those with
serially correlated, endogenous, heterogeneous, state variables. The method uses sequen-
tial importance sampling (particle filter) to compute an unbiased estimate of the likelihood
within a Metropolis MCMC chain. Here, unbiasedness means that expectation is with re-
spect to the uniform draws that are used to compute the particle filter with all else held
fixed. Unbiasedness guarantees that the stationary density of the chain is the exact poste-
rior, not an approximation. The regularity conditions are weak and should be satisfied by
most stationary, parametric models of interest.

Our approach contributes to the literature in several ways. We derive the unbiasedness
of the estimator of the likelihood that leads to an exact posterior. This allows for tractable
computation and feasible estimation of a dynamic model. In addition the latent state vari-
ables can be either discrete or continuous. Moreover, it permits endogenous feedback of
past actions on the latent state variables that leads to heterogeneity among the players.
We illustrate our method with two examples. The first example in Section 6.1 is based
on a dynamic model of entry developed in Gallant, Hong, and Khwaja (2017). This is a
dynamic discrete game in which a firm’s cost of production is a continuous state variable
that is serially persistent, unobserved (to the researcher), and endogenous to past actions.
The endogenous feedback arises because past entry in markets for other products creates a
capacity constraint that affects the costs of entering a market in the current period. This en-
dogenous evolution of costs induces heterogeneity among firms over time in the model. Our
second example, in Section 6.2, is an Ericson and Pakes (1995) style model from Weintraub,

Benkard, and Roy (2010) with a large number of firms whose heterogeneity is based on the

IFor more elaborate discussion on the motivations and rationale for estimating such dynamic models see
e.g., Rust (1994), Keane (2010), Wolpin (2013).



quality of their products. The firms compete by investing in product quality that in turn
affects their market share, revenues and profits.

Empirical models of static and dynamic games are differentiated by their information
structures. A unified approach for dynamic models of incomplete information has been de-
veloped by Hu and Shum (2012). Blevins (2016) also uses sequential importance sampling
for estimating games of incomplete information, while Blevins, Khwaja, and Yang (2017)
allow for two-step estimation of such games with endogenous feedback. In our paper we
focus on dynamic, complete information games because of the paucity of literature on esti-
mation of such games. These games typically require the use of a combinatorial algorithm to
search for an equilibrium instead of the continuous fixed point mapping used in incomplete
information models. Unlike games of incomplete information, the complete information as-
sumption requires that no player has any private information. However, it allows substantial
unobserved heterogeneity at the level of the firms because the researcher does not observe all
the information that the players have. In contrast, games of incomplete information require
there to be no difference between what is observed by the players and the researcher. While
static games of complete information have been estimated by, e.g., Bresnahan and Reiss
(1991), Berry (1992), Ciliberto and Tamer (2009) and Bajari, Hong, and Ryan (2010), to
our knowledge, we are the first to study dynamic games of complete information.

We prove the unbiasedness of an estimator of a likelihood obtained via particle filtering
under regularity conditions that allow for endogenous feedback from the observed measure-
ments to the dynamic state variables. Endogenous feedback is the feature that distinguishes
this paper from the bulk of the particle filter literature. We establish our results by means of
a recursive setup and an inductive argument that avoids the complexity of ancestor tracing
during the resampling steps. This process allows elegant, compact proofs.

The rest of paper is organized as follows. We discuss related literature in Section 2. Sec-
tion 3 describes the games to which our results apply. An algorithm for unbiased estimation
of a likelihood is proposed and unbiasedness is proved in Section 4. The MCMC estimation
algorithm is presented in Section 5. Two examples are described in Section 6: the first has
a small number of players, the second a large number of players. Simulation results for the

two examples are presented in Section 7. Section 8 concludes.



2 Related Literature

There is a growing literature on the estimation of games. Some of this literature focuses on
games of incomplete information, either static (e.g., Haile, Hortagsu, and Kosenok (2008),
Ho (2009)) or dynamic (e.g., Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin
(2007), Pakes, Ostrovsky, and Berry (2007)). The literature on estimating games of incom-
plete information is largely based on the two-step conditional choice probability estimator of
Hotz and Miller (1993).2 Arcidiacono and Miller (2011) have extended the literature on two
step estimation of dynamic models of discrete choice to allow for unobserved heterogeneity
in discrete types of latent states using the EM algorithm. Bayesian approaches that use
MCMC for integrating out the unobserved state variables that are serially correlated over
time have been developed by Imai, Jain, and Ching (2009) and Norets (2009). These papers
focus on single agent dynamic discrete choice models with unobserved state variables. In
contrast, we use sequential importance sampling to integrate out the unobserved state vari-
ables. Additionally, we are the first to apply this method to multi-agent dynamic games with
strategic interaction, which are more computationally complex than single agent dynamic
models.

The purely methodological papers most closely related to the econometric approach used
here are Keane (1994), and more recently, Flury and Shephard (2010) and Pitt, Silva, Gior-
dani, and Kohn (2012).> Fernandez-Villaverde and Rubio-Ramirez (2005) used sequential
importance sampling to estimate dynamic stochastic general equilibrium models. Most of
this literature, however, abstracts from the strategic interaction between agents. Ackerberg
(2009) has developed a method for using importance sampling coupled with a change of
variables technique to provide computational gains in estimating certain game theoretic and

dynamic discrete choice models that admit a random coefficient representation.

2The two step estimation strategy makes the restrictive assumption that there is no market or firm level
unobserved heterogeneity other than an IID random shock across both time and players. This assumption
rules out any dynamics in the latent state variables. Moreover, it precludes any private information that an
agent might possess about its rivals that is unavailable to the researcher.

3See Doucet, De Freitas, Gordon, et al. (2001) and Liu (2008) for an overview and examples of other
applications.



3 The Game

A prominent example of a model to which our results apply is a dynamic game of complete
information which we describe next. The game consists of I players, ¢ = 1,...,1, who can
choose action a; at each time period ¢t. Let a; = (ay, as, ..., ar). In an entry game as
in our first Monte Carlo example below in Section 6.1, a; = 1 if firm ¢ enters at time ¢,
if not, a;; = 0. Another example of a;; could be the level of investment which affects the
quality of a firm’s product as in an Ericson and Pakes (1995) style model, that is found in
our second Monte Carlo example below in Section 6.2. Time runs in discrete increments
from t = 0,...,00. The state vector is x; = (214, x2), where in turn xy; = (T1z4, T1r,—i)
and xo; = (Tat4, wat—;). The actions of all players a; and the state vector x; = (14, Tor)
is observable by all players. We (the researchers) only observe the actions of all players a,
and the state xo; but not xy;. The xy; = (2144, 21—;) is an agent specific latent (to the
researcher) state that is allowed to be serially correlated. In our first Monte Carlo example
below in Section 6.1, this is considered to be the latent firm specific cost of production. In
the our second Monte Carlo example below in Section 6.2, this is the firm’s product quality.
The x9; = (a4, Tar—;) is any observable market level or firm specific observable state, such
as a market level demand or cost shifter or firm characteristic such as past market entry
experience. The game is indexed by a parameter vector # that is known to the players and
which we seek to estimate.

To formalize the model further, we define the reduced form one-shot payoff function

(e.g., Bresnahan and Reiss (1991), Berry (1992)) as,
Hi(am Aty X1tis T1t,—iy L2t,55 L2, —is 9)
_ R R R R R c .C c .C c
= R(aita@—z‘t,xlt,mxlt,—iax2t,i=x2t,—ia(9 )_C(aitva—itaxlt,ivxlt,—i7x2t,ivx2t,—i79 ), (1)
where R(-) is a revenue function, and C(-) is a cost function. The state variables can

R .
qt,j

C

qt.; respectively as

affect either the revenue or cost functions, and are denoted as z’: . and x
appropriate, for ¢ = 1,2 and j = i, —i. Moreover, the latent firm specific stochastic state,
21, can in principle affect either the revenue or cost function or both. In our first Monte
Carlo example it is modeled as firm specific cost of production. However, in the our second

Monte Carlo example it affects the revenue function. The % and 6 are vectors of model



parameters associated with the revenue and cost functions respectively. It should be noted
that the "structural error” or the primary source of randomness from the point of view of
the researcher is provided by xy.

The dynamics in the model arise because given the state x;, the players choose actions a,
according to the probability density function p(a,|z;, #). Furthermore, the transition density
p(w¢|ai_1,x4-1,0) governs the evolution of the state vector. This transition density allows for
serial persistence and endogenous feedback from the past actions a;_; on the latent states
Ty

Given an initial state x; at time ¢, the firm’s expected present discounted profit is

1D AT Milair, azir, )

T=t

xt] ) (2>

where [ is the discount factor, 0 < f < 1. Each firm 7 seeks to maximize the present
discounted value of its stream of profits at each time period ¢ conditional on its rivals’ action
profiles being best response equilibrium strategies. The expectation operator here £ is with
respect to the future evolution of state variables and actions of all firms.

In specifying a dynamic game of complete information we focus on Markov Perfect Equi-
libria (MPE) in pure strategies. In doing this we build on the literature on estimating static
games of complete information (e.g., Bresnahan and Reiss (1991), Berry (1992), Ciliberto and
Tamer (2009)) and dynamic games of incomplete information (e.g., Aguirregabiria and Mira
(2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007)). We use the
following notation in order to define the MPE strategies for the game. As stated above z; is
the payoff-relevant state for each firm ¢ at time t. Let X represent the state space containing
all feasible values of x; for each firm 4. Similarly, let A; represent firm i’s choice set (i.e.,
ayz € A;). Then we define a Markov strategy for firm ¢ as a function o; : X — A; mapping
payoff-relevant state variables to the set of all possible actions. Furthermore, o = (071, ...,07)
denotes a profile of Markov strategies for all firms.

Dropping the time indices, and denoting the Markov Perfect Equilibrium strategy profile
(to be defined below in the next paragraph) (&;,5_;), when the the realized actions and
strategies in the current period are, a; = o;(x) and a_; = o_;(x), the choice specific value

function is given by,



Vi(z;05,0-;) = ILi(0i(x), 0-(x), x;)

+ BE Vi(a';64,0-4) | x,a; = o4(x),a_; = o_i(x)] (3)

In the above equation, the first component is the current payoff, I;. The first argument of
the payoff function II; is a; = o;(z), which is the implied action by firm ¢ under strategy o;
when the state is z. Similarly, the second argument is a_; = o_;(x), which is a profile of
rival actions given the state x. The second component in the above equation is the present
discounted value of the stream of profits conditional on the current actions of all firms and
the current state, when the firms play MPE strategies in the future. The expectation is with
respect to the future states and actions of all players.

The Markov Perfect Equilibrium strategy profile ¢ is defined such that no firm ¢ uni-
laterally deviates from its strategy ; when &_; is the strategy profile adopted by its rivals.
Hence, there is no alternative Markov strategy o; for any firm ¢ that provides a higher level
of present discounted value of expected profits (in terms of V;(-)) than &; when the firm’s
rivals are using their equilibrium strategies 6_;. Stated more formally, a Markov Perfect
Equilibrium (MPE) strategy profile & is one such that for all firms 4, all states z, and for all

alternative Markov strategies o; the following condition holds:
Vi(z;6i,6-4) > Vi(x;04,54). (4)

From Equation (4), it should be noted that Vj(z) = V;(x;6;,6_;) is defined in the lit-
erature to be the ex-ante value function. It gives the expected present discounted value of
profits obtained by firm ¢ when players use MPE strategies ¢ and the state is x. Implicit in
what follows is an assumption that the game is stationary, an algorithm to solve the game
is available and that an equilibrium to the game exists.

One limitation of relying on the Markov Perfect Equilibrium solution concept is that it
is computationally intractable when a game consists of a large number of players. Thus, we
show below in Section 6.2 that our approach can also apply in the context of the Oblivious
Equilibrium solution concept developed by Weintraub, Benkard, and Roy (2008) to deal
specifically with games with a large number of players. In particular we do this because
Weintraub, Benkard, and Roy (2008) show that this approach can be quite accurate in

approximating the MPE solution for games with a large number of players.
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4 Evaluating the Likelihood

In this section we derive an unbiased particle filter estimate of the likelihood for a Markov
process with partially observed state and endogenous feedback that is general enough to
accommodate the game described in Subsection 3. Because of endogenous feedback, no
previous proof of unbiasedness, e.g., Pitt, Silva, Giordani, and Kohn (2012), applies to our
knowledge. In fact, we think that the remarkable simplicity of our proofs makes them of
interest regardless. In Theorem 1 we establish a recursion using Bayes theorem. The idea
is straightforward and is expressed as one four line equation. The remainder of the proof
is algebra to reduce the basic expression to model primitives. In Corollary 1 we establish
unbiasedness via a simple two line telescoping expression. In Theorem 2 we show that
resampling is a mere footnote requiring only three sentences to dismiss.

Because we only require unbiasedness, our regularity conditions are quite weak — much
weaker than is standard in the particle filter literature.* While the result does not require
that the number of particles tend to infinity, the number of particles does affect the rejection
rate of the MCMC chain so that the number of particles, like the scale of the proposal density,
becomes a tuning parameter of the chain that has to be adjusted. Below in Section 5 we
use MCMC to compute the posterior. If one has an unbiased estimator of the likelihood the
posterior is the stationary distribution of the MCMC chain.?

What distinguishes our approach from, e.g., simulation methods, which would be appli-
cable, is that an inference is exact within the Bayesian paradigm.® All other approaches
known to us only approximate the likelihood to within an accuracy that is often not known.
Therefore, inferences using other methods are approximate, not exact.

The last sentence of the preceding paragraph has to be taken with a grain of salt. To

quote a referee:

This is somewhat “snarky”; non-Bayesians are probably just as happy with their

4See, e.g. Andrieu, Douced, and Holenstein (2010) and the references therein.

5See e.g., Flury and Shephard (2010) and Pitt, Silva, Giordani, and Kohn (2012).

6 A recent exception is the simulation estimator proposed by Gallant and Tauchen (2017). It is exact as to
theory but does require that the distributional assumption regarding a semi-pivotal that implies exactness
be verified by simulation in practice. Depending on one’s attitude toward verification by simulation, one
may or may not regard the method as exact.



asymptotic or approximate inference as Bayesians are with their “exact” inference

(and mutually suspicious of each others approaches!)

In the case one has a conditional density of the form f(y|z,f) and a marginal f(z|6),
where y, x, are vectors of the same length with y observed and x not, the property of a particle
filter that is usually of interest is its ability to generate a sample from the density f(z|y, )
for given 6. In the abstract, a particle filter algorithm can be viewed as a transformation
of a vector u of independent uniform draws to a set of draws {x(k)}gzl from f(x|y,d). We
are not concerned with that property of the algorithm here. Rather, we are concerned with
a side effect of the algorithm which is that at an intermediate stage of the computations
it generates an estimate f(u) of £ = [ f(y|z,6)f(x|@) dz that is unbiased in the sense that
f@(u)f(u) du = {, where f(u) is the density of u. In Subsection 4.2 we provide a bare
bones description of a particle filter that is adequate to allow one to follow the theoretical
discussion. The theoretical discussion is followed by a detailed description of the algorithm

that we propose in Subsection 4.6.

4.1 Requirements

The essentials of the game of Section 3 relative to the requirements of filtering are as follows.

The state vector is
Ty = (xlta l’zt), (5)

where 1, is not observed and zy; is observed. The observation (or measurement) density is

plas |z, 0). (6)
The transition density is denoted by
p(@e | a1, z-1,0). (7)
The marginal for xy; is
p(z1|ag—1, x4-1,0). (8)

The marginal stationary density is denoted by

p(1 | 0). (9)



ASSUMPTION 1 We assume that we can draw from (8) and (9). As to the latter, one
way to draw a sample of size N from (9) is to simulate the game and set x&k) = T1 ;4 Mk fOT
k=1,..., N for some 7 past the point where transients have died off and some M. Large M
has the advantage that the xgk) are nearly serially uncorrelated. We can draw from (8) by
drawing from (7) and discarding zo;. We assume that there is either an analytic expression

or algorithm to compute (6) and (7). We assume the same for (8) but if this is difficult some

other importance sampler can be substituted as discussed in Subsection 4.5.

The full information likelihood is

T T
¢ = p(ao, T2,) HP(CLu To| @1, o1, . .., A0, T2,0,0) = plao, T2,0) H Ct. (10)
t=1

t=1
We are unwilling to impose the additional structure on the game necessary to be able to
estimate p(ag, x20) unbiasedly. Therefore, as is routinely done in time series analysis, we
discard the information in the stationary density for (ag,x20). With this convention, the
object of interest is the partial information likelihood

T
v =T]Jc (11)
t=1
In the event that one can evaluate the density p(a;, xo | 214, 60) or has some other means

to estimate p(ag, r20) unbiasedly, the modifications to what we propose are trivial and are

discussed later.

4.2 A Particle Filter

A particle for the latent variable z,; is a sequence of the form
k k) (k k
xg,(g:t = (xg,(gv xg,lv e 7x§,t)) )

where £k = 1,2,..., N indexes the particles. They are i.i.d. draws from the conditional
density

p($1,0;t | a1,0:t—1, L2,0:¢—1, 9)-

An algorithm using particles to estimate the partial information likelihood ¢’ unbiasedly is

as follows:

10



. N
e Initialize by putting Cy = 1 and letting {aﬁ’f&o} be draws x&kg from the marginal

k=1
stationary density (9).

N
If one has particles {x&kg.t_l}k in hand, one advances as follows:
w =1
e Draw fg’;) from the transition density
k
p(r1 | a1, xg,t)—la To-1,0).

e Compute

~ (k) ~(k (k)
p<at ‘ x17t ) x2,t7 H p x17t ) x2,t ‘ at—1, xl,t—b x2,t—17 0

~(k k
(#0220, 0)

_(k k ~(k
xg,gt = (mg,O.t—lvxg,t)>
_(k
At(k) _ Uﬁ)
N _(k
k=1 Ut( )

® Y. . o (k) ~ (k)
e Draw {xw:t}k_l i.i.d. from the discrete distribution P(:)sl,o:t = :1:1,0:,5) =w, .

Repeat until t =T

e An unbiased estimate of the partial information likelihood is ¢/ = H?:o C,.

We next verify the algorithm.

4.3 Verification

In the Bayesian paradigm, the parameter vector  is manipulated as if it were distributed
jointly with the data even though one might actually regard 6 as fixed. Thus, formally, we

as, x¢, and 0. Let F, = o {{as, xgs}i:_TO ,6’}. Let P(-|F;) denote the conditional probability

may let {{at, (S S N } be defined on a common probability space P over the support of

measure given F; over P. Let £(-|F;) denote conditional expectation given F;.
The elements of a; and x; may have either atomless or discrete distributions. No generality

is lost by presuming that the discrete elements are positive integers. Let z denote a generic

11



vector some of whose coordinates are real numbers and the others positive integers. Let
A(z) denote a product measure whose marginals are either counting measure on the positive
integers or Lebesgue ordered as is appropriate to define an integral of the form [ g(z) dA(z).
The densities defined in Subsection 4.1 are with respect to a measure of the form A(z). We
will often write, e.g., [ g(x:) dP(x¢|as—1,2-1,0) to mean integration of g(x;)p(xi|as_1, x—1,6)
with respect to the product measure \(x;).

Particle filters are advanced by drawing independent uniform random variables uﬁr)l, ey ugfl)

and then evaluating a function of the form X{ﬁll(uﬁﬂ, ap.t, :E%:t, Tg0+) and putting 5:§’f2 =

Xl(lzlrl(uili)l, ag:t, a:ﬁ’% 4 ZTaoy) for k =1,..., N. Denote expectation with respect to ugl, o ,ugl)

by £14+1. Due to the recursive nature of a particle filter, x§ 31& will itself depend on uniform
draws. Denote expectation with respect to the uniform draws involved in i%:t by 51701. For
now we are excluding resampling. In Subsection 4.4 we show that the extension of the results
of this subsection to the case where resampling is employed amounts to simply increasing
the scope of SNLO;t to include not only the uniform draws that advance the filter but also the
uniform draws involved in resampling.

Under these conventions, note that what is random in an expression such as € [g(a?glfo):t) | ft}
are the uniform draws involved in fg’fo):t. All else is fixed due to conditioning on F;.

In this subsection we show that estimate of the likelihood given in Subsection 4.2 is unbi-

ased for either the full information likelihood or a partial information likelihood, depending

on how initial conditions are handled.

THEOREM 1 Under Assumption 1, if the particles :’i’%:t and weights wg’“), k=1,...,N,
satisfy

/9(36’1,0:15) AP (z1,04F2) = 10 { [Z oM g(i \ft] } (12)

for every integrable function g(x;.), then draws :E;Hl from p(:)sl,t+1|i§]fg:t, F:) and weights

~ (k) Uzg—kk)l ~ (k)
Wy = C Wy (13)
t+1

12



satisfy

/9($1,0:t7$1,t+1)dP($1,0:t75€1,t+1|-/Tt+1)

= gl,t—l—lgl,O:t { [Z wﬁ1 g 351 0t7 351 t+1) | }—t+1] } (14)

where
_(k (K ~(k
(k) p(at—i-l | xg,t)+1a T2.t4+1, 9) p(‘xg,t)-yla T2 t+1 | Gy, Ig,t)a Tt 9)
t+1 = ~(k) ~(k) (15)
p<x17t+1 | Qty Ty 5 T2, 9)
and
Cir1 = payg1, To 1| F2). (16)
Proof We first show the result for the weights
~(k)  ~(k)
- (k p(at+17x2,t+1|x170:t7th L) g
Bih = D g, (17)

P(at+1, T2 t+1 |-Ft)

which we write as wgi)l below when evaluated at z; 44, instead of ig'ft) 11, and then show that
(17) and (13) are equivalent expressions for wﬂ?l.

Bayes theorem states that

P(@t+17 T2,t+1, L1,0:t5 L1,t41 |-7:t)

P(T1,0:05 T1t41| Q15 T4, Ft) = 18
( : erlars a 2 p(at+1>I2,t+l|ft) (18)
Note that
P(@1,0:45 T1 41| Qg 1, Top41, Ft) = D(X1,04, T1,041 | Fer1) (19)
and that
P(at+1> T2,t+15 L1,0:t» T1,t41 |]:t)
= plaps1, Top41]21,04, T1,041, Fr)P(@1 141 |T1,0:5 F)D(21,0:4) F)- (20)

Then
/g(xl,O:taxl,t—i-l)dP(Il,O:taxl,t+1|E+1)

(A1, To 1|10, T1041, Ft)
= g\(T1,0:t, T1,t41 P(T1,t4+1]71,0: F
// ( ts t+ ) p(at+1>I2,t+l|ft) ( t+ | ts t)

13



Xd)\(xl,t—i-l)dp(xl,O:tLE) (21)

N
= Eiou / £ [Z 9@ w1e0) Wi (1T, F) m] AN (1441) (22)
k=1
N
4 4 ~(k ~(k ~(k
= E1im1&104 € [Z g(xg,(%:tu xg,t)—i-l) w§+)1 | ]:t+1] (23)
k=1

where (21) is due to (18) after substituting (19) and (20), (22) is due to (12) and (17), and
(23) is due to the fact that iglft)ﬂ is a draw from p(x17t+1|:)5§]f3:t,ft). This proves the result
for the weights (17).

We show that (17) and (13) are equivalent, by reexpressing the numerator of (17) in

terms of the primitives (6), (7), and (8) as follows.

p(at+1, T2 t+1 ‘xl,O:tv T1,t4+1, ft)

= p(at+1, T2.t+1 |$1,0;t, T1,t+15 L2,0:t, A0:t, 9)

(@41, Tog1,s Qoit, Tost, 0)
fp(at+17 Li41, Q0:t, Lo:t, 9) d>\(at+17 x2,t+1)

P(@rg1|Tes1, oty Tot, 0)D(Tg1] Q05 o, 0)P(@0:t, To:t, 0)
fp(at+1 |It+1, Q0:t, T0:ts H)P($t+1\ao;t, L0:t5 e)dA(QtH, x2,t+1) p(ao;t, Z0:t, 9)

p(at+1 |=Tt+1, 9) P($t+1 |at> T, 9)
fp(at+1 |It+17 9) p($t+1 ‘atu T, 9) d>\(at+17 x2,t+1)

plagr1|mig1, 0) p(Tig1]a, 2, 0)
fp(il?t+1|&t, Ty, 9) d>\($2,t+1)

plais1|@isr, 0) p(wis1|as, x4, 0)

24
p(T141lar, 1, 0) (24
O
REMARK 1 An implication of (14) is that N affects the second moment of
N
~(k) (k) Ak
& w§+)1 g(ifg,g;ta 5”§ t)+1) | Fey1
k=1
but not the first moment. O

REMARK 2 We may assume without loss of generality that all N of the weights 7])15_]?1

given by (13) are positive because one can, e.g., discard all particles with zero weight then,
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as often as necessary to get N particles, replicate the particle with the largest weight and

divide that weight evenly between that particle and its replicates. O

COROLLARY 1 Under Assumption 1, if one starts the recursion of Theorem 1 with draws
from the marginal stationary density (9) and weights wék) = 1/N, then

:@”( . )(Z T oD ) (Zvl Sl )(Z“’U) >

is an unbiased estimator of ¢’.

Proof Set g(z10.4,u) =1 in Theorem 1 whence 1 = gl,oq {8 [ij:l wg’“) | fT} } . Write
N N (k) (k) (k) N
Zw(k) L(Zk 1U(Tw - )(Zk 1U(T 1w (T) ) (Zk v ( 0)><Zw(k)>
T _(k) 0
k=1 ¢ Zk 1 UT 1w Zk 1 U(T W (T)s Zk:l Wo k=1

(i)t ) (Bt
= —, ’l_]T N v 1 N - k) e /l_Jl ﬁ
¢ k=1 Zk: k=1 k: 1 Wr-o k=1 Zk:l Wy

The result follows. |

(k)
REMARK 3 Note that the terms ﬁ in (25) are invariant to C, so that ¢’ can be
k=1

computed without knowledge of the C;. Thus, one can arbitrarily set C; = 1 in (13) for
weights that are to be used in (25) as is done in the algorithms of Subsections 4.2 and 4.6. O

REMARK 4 If one has an expression for p(ag, Z2 | Z1,0,6), then

N
R ~ 1 -
(= FN E plag, T2 | x%v 0)

is an unbiased estimator of £. |

4.4 Resampling

N
One often resamples particles such as {x%t}k in order to prevent the variance of the
-1

weights wt ) from increasing with t. Most common is multinomial resampling where one
N )

samples {igko)t} with replacement with probability W Some particles will get
k=1 W

k=1W¢
N
copied and some particles will not survive. The new particles {x%t} each have weight
) k=1
1
N.

15



Multinomial resampling is usually performed by drawing uniform random numbers
{u,}f\il on the interval (0, 1) and evaluating the quantile function g(u) of the discrete density

ol : (i) ~(q(ui)) ;
p(k) = =+ at the u; to get the resampled particles z;, = %, ’. Other resampling
1wt . .

N
schemeszs:;k to improve performance by having one uniform random number in each interval
(i —1)/N,i/N] for i = 1,--- , N. One approach is stratified resampling where one uniform
u is drawn inside each interval. Another is systematic resampling where the same uniform u
is placed inside each interval. As with multinomial resampling, the weights for stratified and

systematic sampling are % In a comparison of stratified and systematic resampling, Douc,

Cappé, and Moulines (2005) find that their performance is similar.

THEOREM 2 Theorem 1 and Corollary 1 remain valid if resampling is applied between

recursive steps as in the algorithm of Subsection 4.2.

Proof By construction, if a set of particles and weights satisfy condition (12) then so will
the particles and weights generated from them by resampling. Because a set of particles
and weights satisfy condition (12) at the end of an iterate, the set of particles and weights
generated from them by resampling will satisfy (12) when used at the beginning of an iterate.
The only formal change to the development of Subsection 4.3 required is that 5’1701 becomes
expectation both with respect to the uniform draws that advance the filter and to the uniform

draws involved in resampling. O

REMARK 5 For any resampling scheme that produces equal weights, the conclusion of

1 N 1 N 1 N
il 2 : —(k) 2 : —(k 2 : (k)

is an unbiased estimator of ¢’. |

Corollary 1 becomes

4.5 An Alternative Importance Sampler

If computing p(zi411|ar, ¢, 0) is costly or drawing from it troublesome, one can substitute

an alternative importance sampler. The idea is that one can advance a filter from (fﬁ’“), u:JEk))
that satisfies (12) to (ngi)l, u:Jﬁ)l) that satisfies (14) by drawing Sl,:’ﬁ_)l from
f(xl,t+1|$1t,ﬂ) = f(ifl,t+1 | Gy, fﬁf),xzt, 9) (26)
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for k =1, N, and setting
~ (k) p<@t+1 ‘j‘?g,gt)+17 T2 t+1; 9) p<x:gkt)+17 L2441 ‘ at,fﬁ'?, Tot, 9) -

Cig1 f(fggﬁt)ﬂ ‘ at,x:gf),xgt,@) "
) can be rewritten as

X T1.0: f
( 1,t+1| I,Ota-; t) (xl,t 1|;)§'1t,‘; t)

as is seen by noting that (21), (22), and (
plar1, 21|71 0.0, 71011, Ft)
f(@remloe, Fr)

P(@t+1, T2 t+1 ‘]:t)

//g(ifl,o:uil?l,tﬂ
X dN(@11) AP (21 04| Ft)

N ~ ~

9(Z1 0.4, T1 t+1)7~5§-k+)1 f(xl,t+1|f§k)> Ft) |]:t] dX(1,441)

= Eou / £ [Z 9o
k=1
) b Wl]

N
5 5 (k)
= 14416104 € [Z q( ngt?xt-i-l wt—i—l
k=1
due to the cancellation p(1 441|210, Ft)/P(21 141 as, 71, 0) = 1 that occurs after the expres-

sion for p(asi1, To 41|10, T1041, Ft) given by (24) is substituted in (28)
The equations that replace (13) and (15) when an alternative importance sampler is used
(13')

are
=(k)
O Vi1 0
t+1 C 1 t
and
- ~(k
(k) p( t+1 |951 t4+15 L2,t+1, 9) p<93§,2+1, T2t4+1 | Aty L7 15 L2ty 9) (15/)
f (x:glft)+1 ‘ ag, nglft)v L2,ts 0)

Vg1 =

The requisite regularity condition is the following

p (Clt+1 | L1441, L2,t4+1, 9) b ($1,t+17 T2 t+1 | Qty L1ty T2ty 9)

ASSUMPTION 2
f($17t+1 | Ay, T1¢, T2t ‘9)

g(ifl,o:t, ﬂfl,t+1)
is integrable with respect to f (1441 | s, 14, T2y, 0) , the support of which contains the sup-

port of p (1,441 | ar, T1,t, Tae, 0)
Another reason to consider an alternative importance sampler is to improve efficiency.
Pitt and Shephard (1999) suggest some adaptive importance samplers that one might con-

In addition to Pitt and Shephard’s (1999) suggestions, one can use the notion

sider.
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of reprojection (Gallant and Tauchen (1998)) to construct an adaptive density for (26)
as follows. The model can be simulated. Therefore, for given 6* a large simulation of
(@¢, 14, Top, Qrg1, T1p41, T22+1) can be generated. Using multivariate regression one can de-

termine the location u(v) of 1441 as a linear function of

v = (at, L1ty Loty g1, iEz,t+1) (29)

and the conditional variance ¥. The simulation can be taken so large that p(v) and 3 can

be regarded as population quantities. We put

h($1,t+1‘$1t7 ]:t+1) = n(xl,t—l—l‘,u(v)u 2)7 (30)

where n(|u, X) denotes the multivariate normal density and use (30) in place of (26), which
is a slight abuse of notation because the argument lists are different. Substituting the
multivariate Student-t density on five degrees of freedom with the same location and scale
had little effect on results other than increase run times.

The mean or the mode of an informative prior is a reasonable choice of 8* for the sim-
ulation that determines p(v) and . If the prior is flat, one can start with a guess, run a

preliminary chain, and use the mean of the preliminary chain for 6*.

4.6 Computing the Likelihood

In this subsection we refine the algorithm of Subsection 4.2 to incorporate the developments of
the foregoing subsections and to to discuss how seeds must be handled in order for the MCMC
chain that uses an unbiased estimate of the likelihood to target the intended posterior.
Handling the seed correctly is of critical importance; on this see Flury and Shephard (2010)
and Pitt, Silva, Giordani, and Kohn (2012).

Actually, the reasoning is straightforward: The seed s is a random variable distributed
over a finite set of integers S; its density is u(s). Let £(f) be the likelihood of a game and
L(0,s) its unbiased approximation in the sense that £(6) = > s £(6,s)u(s). If one draws
(0, s) from the joint density L£(0, s)u(s)p(6), where p(f) is the prior, and discards s then 6
that remains is a draw from the marginal £(0)p(6). The crucial observation is that the ratio

L(6%, 5" )ul(s*)p(0°)A (0%, 0%)u(s#)
L(6%, s#)u(s#)p(0%)A(07, 0% )u(s*)
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that determines acceptance in an MCMC algorithm becomes

L(6*, s*)p(0*)N(0, 67)
L(67#, s#)p(07 )N(07, 6%)

as in the algorithm described in Section 5, where (%, s#) is the end of the chain, (6%, s*) is

the proposed extension of the chain, and (6%, 6*)u(s*) is the proposal density. One can see
that if s and s* were not independent draws from u(s) then the MCMC algorithm would
not target L£(6, s)u(s)p(d). One would not have to devote such attention to the seed were it
not that one is usually advised to use the same seed every time to compute £(6, s) in order
to reduce Monte Carlo jitter. Here the advice is exactly the opposite.

Random number algorithms have different designs varying from those that generate an
array of random numbers intended to supply all that are ever needed with one call, through

intermediate designs, to a simple functional recursion that may be conceptualized as follows:

A draw from a density f(v) is obtained by drawing a seed s from a uniform
density u(s) defined over a finite set of integers and executing an algorithm that
evaluates a function V(s) and returns v’ = V(s) and s’ such that v" has density
f(v), s’ has density u(s), and s is independent of s. The next draw from the
same or a different density uses s’ to return a draw v” from that density and

another new seed s”, and so on.

We may, without loss of generality, assume that whatever algorithm is used, a wrapper has
been coded so that becomes a simple functional recursion.

The algorithm that we describe next may have a sequence of draws within it but viewed
as a whole it is a functional recursion: One specifies # and provides a random draw s from
u(s). The algorithm evaluates a function £(6, s) and returns ¢’ = £(6, s) and a draw s’ from
u(s) that is independent of s.

Given seed s and parameter 6, the algorithm for evaluating £(6, s) follows. All draws
use the seed returned by the previous draw; there are no fixed seeds anywhere within the

algorithm.
1. Fort =0
(a) Start N particles by drawing 53% from p(x;0|6) using s as the initial seed.
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(b)

If p(ay, T | 214, 0) is available, compute Cy = ~ SV plag, Ta | :7:%, 6) otherwise

put C’o =1.

2. Fort=1,...,T

(a)

(f)

For each particle, draw fg’;) from the transition density
) 0 31
(@1 | a1, Lyp15L2,4—1, )- (31)

Compute

(k) - (k (k)
p(at | T4, 20,0 ) P\ Ty, T | @y, 7 1, 24-1,0

~(k k
P(xgt) | a1, 375,2-17 Tot—1, 9)

o o= L i e
t N t
(Note that the draw pair is (:)3@_1, :igkt)) and the weight is T)}k)%.)
Set

k k ~(k
7(%:t = (zg,g:t—l’ xg,t)> .

Compute the normalized weights

7

(k)

~ (k) Uy
Wy = ————
VTS
For k =1,...,N draw x%:t by sampling with replacement from the set {5:§’“3t}

according to the weights {QZJEk)}
(Note the convention: Particles with unequal weights are denoted by {Z}. After

resampling the particles are denoted by {x(()kt)})

For use in (31) and (32) at the next iterate, set 2" to the last element of xglf&t.

3. Done

(a)

An unbiased estimate of the likelihood is

i _TI6 (33)

20



(b) s’ is the last seed returned in Step 2e.

Systematic or stratified sampling can be used at step 2e instead of multinomial resampling.
To use the alternative importance sampler of Section 4.5, replace (31) with (26) or (30) and

replace (32) with

~(k ~(k k
p<at ‘ x§7t)7 x2,t7 0) p(x§7t)7 x2,t ‘ at—1, 1’§,2_17 xQ,t—17 0)

f(xgkt) | at—laxglft)—laxlt—lae)

5 Computing the Posterior

In this section we let £ mean either £ of (10) or ¢’ of (11) as appropriate.

Metropolis algorithm is an iterative scheme that generates a Markov chain whose
stationary distribution is the posterior of #. To implement it, we require the parti-
cle filter algorithm for drawing (¢, s) described in Section 4.6, a prior v(6), and a tran-
sition density in € called the proposal density. For a given 6%, a proposal density
A7, 0%) defines a distribution of potential new values #*. We use the move-one-at-a-time,
random-walk, proposal density that is built in to the public domain software that we use:
http://www.aronaldg.org/webfiles/emm/.The algorithm for the Markov chain is as fol-
lows.

Start the chain at a reasonable value for # and write to memory a draw s”# from the
uniform density on a finite set of integers. Given a current ## we obtain the next 0## as

follows:
1. Draw 6* according to (07, 6*).
2. Set s* to s retrieved from memory.

3. Compute ¢* corresponding to (6%, s*) using the particle filter in Section 4.6 and write

to memory the s## returned by the particle filter.
. 2~y (0*) \(0*,0 %
4. Compute o = min (1, W).
5. With probability «, set §7# = 6*, otherwise set 7% = 0.
6. Return to 1.
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The choice for the parameter N of the particle filter in Section 4.6 influences the rejection
rate of the MCMC chain. If N is too small then £(6,s) = ¢# given by (33) will be a jittery
estimator of £(#) which will increase the chance that the chain gets stuck. Pitt, Silva,

Giordani, and Kohn (2012) show that what is relevant is the variance

Var {log £(6, s)} :/ [logﬁ(@, s) — /logﬁ(ﬁ, s) ds} 2ds, (35)

which can be computed from draws of ¢# obtained by putting the filter in a loop. It is
interesting that for an entry game such as in Subsection 6.1, the classification error rate
can be so small that one is almost matching 0’s and 1’s and using the particle filter to
solve backwards for {zy;} that will allow the match. The consequence is that N can be
quite small. For our example, Pitt et. al.’s charts suggest that N = 300 will suffice. We
actually use N = 512. In practice charts are unnecessary because one can easily determine
N empirically by increasing it until the chain is no longer sticky.

One could set forth regularity conditions such that limy_,., sup, Var {log £(6,s)} = 0.
They will be stringent: see Andrieu, Douced, and Holenstein (2010). One can argue that
there is no point to verifying that variance declines with N because one must still determine
the requisite N empirically. If an acceptable N is found, it does not matter if variance
declines with N or not. If an affordable N cannot be found, a proof that variance declines

with N does not help except to provide support for a request for more computing resources.

6 Examples

6.1 A Game with a Small Number of Players

In this section we describe an dynamic oligopolistic entry game. It is a modest variation
on the game presented in Gallant, Hong, and Khwaja (2017), and the description in this
section is based on and borrows from that paper. We present it here for completeness of
exposition. However, for additional details regarding the motivation and rationale for the
specification, computation of the model and its estimation, the reader is referred to that
paper. Having described the game, we then test our proposed methodology with several

simulation experiments.
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At each market entry opportunity ¢ the actions available to profit maximizing firm i are
whether to choose to enter the market, E; = 1, or decide to not enter E;, = 0. In what
follows, a time period uniquely identifies a market opening therefore we interchangeably
use t to denote a time period or a market entry opportunity associated with it. Firms can
not always achieve entry decision profiles E,. Rather, firms are aware that the realized
entry profiles E; follow a conditional distribution p(Et|Et) given E,. We use the following
specification for p(E;|E;)

I
p(E; |Ey, 0) = [ [ (pe) Fe=F0 (1 — pe)t—0Fu=Fin), (36)

i=1
where 0 < p. < 1 and 6(a = b) = 1 if a = b and 0 if not. The intended outcome E, is
not observed by us. Instead E;; is observed, which is a Bernoulli random variable taking
value Ej; with probability p. and value 1 — E;; with probability ¢. = 1 — p.. The number of

entrants in market ¢ is ,
Q=) Ea (37)
i=1

To illustrate, consider the generic pharmaceutical drug market. The entry decision of
firm i is F; = 1 if the firm submits an application to the Federal Drug Administration
(FDA) and E;; = 1 if approved. The FDA reveals application approvals E;; submissions E;
are not revealed. Each application carries a small probability of being rejected by the FDA.
Firms collectively decide on the equilibrium E,. We observe the ex post realization of E;.

The dynamics in the model come mainly through the evolution of costs based on past
firm actions. The evolution of current total cost Z;; for firm ¢ is determined by past entry
decisions and random shocks. In the model estimated in Gallant, Hong, and Khwaja (2017),
current entry can decrease the cost of an entry next period by, e.g., through learning by
doing. However, in contrast in the simulations presented later in Section 6, the evolution of
total costs will be configured to represent a situation where past entry constrains capacity
and raises current total costs. The cost state variable evolves according to the actual outcome
E; rather than the intended outcome Et. All firms know each others’ costs and hence this

is a game of complete information. We follow the convention that a lower case quantity

denotes the logarithm of an upper case quantity, e.g., Z; = log(z;), with the exception that
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for the outcome both E and e denote variables that take the value zero or one. Log cost is

the sum of two components
Zit = Zugt T 2kt (38)

We assume that z,,;, cannot be observed by us and that z;,: can be observed. The first
component follows a stationary autoregressive process of order one; the second accumulates

the consequences of past entry outcomes:

Zuit = Mzt Pz (Zu,i,t—l - Mz) + 0.6 (39)
kit = PeChit—1+ Kelii1 (40)
= Z Me"ieEi,t—j—l-
=0

In the above, €; is a normally distributed shock with mean zero and unit variance, o, is
a scale parameter, k. is the effect of entry in market £ — 1 on cost at market ¢, u, is the
unconditional mean of the unobservable portion of log cost; p, and p. are autoregressive
parameters that determine persistence. All firms are ex ante identical,” with heterogeneity
arising endogenously in the model depending on the effects of past actions on the total costs
of the firms.

The total size of the market ¢ or the lump sum total revenue in a market is denoted by

Si. It evolves according to the following process,

St = Hs + Os€ry1s (41)

where s; = log(S;), and the €41, are normally and independently distributed with mean
zero and unit variance. In (41), s represents the long run average total revenue for all firms
across all market opportunities, while o, is a scale parameter. In this example we assume
revenue to be exogenous, however, in Section 7 we provide an example where revenue may
be endogenously determined.

At time t a firm’s present discounted value of profits is given by

Y B Ei; (Sii/ Qs — Zitrs) (42)

=0

"One could allow the initial condition z;o to vary by firm if desired.

24



where the discount factor is 5. Each firm maximizes the present discounted value of its profit
in each time period ¢ conditioning on the equilibrium strategy profiles of its rivals.
For firm #’s dynamic problem at time ¢, the Bellman equation for the choice specific value

function V;(€;4, €_iv, Ziy, Z_iy, Sy) is,

VilCises €—its Zists Zis St)

1
= Z p%mlzélt)(QE)l dlmi=eu). Z Pﬂm[ Ere) E)1_6(mI:éIt){mi (7215 —Z¢t>

m1=0 my=0 Jj=

+ Bg|: ( 2t+17E—2t+17 Zzt+17 Z—2t+17 St—l—l) | M2t7 M—Zt7 th7 Z—2t7 St] }

where M, , = m; and M_;, is M; = (mq,...,my) with m; deleted.

For firm ¢ at stage t of the game, V;(é;¢,€_i4, Zit, Z_i4,St) is the expected payoft if it
chooses €;; and its rivals choose €_;;. A a best response strategy profile (EM, E_Z-,t) for
a stationary, pure strategy, Markov perfect equilibrium of the dynamic game is one that
satisfies the familiar (Nash) condition described above in Equation (4) in Section 3.

Since this is a game of complete information it implies that the equilibrium is known if
the state that consists of the current total costs of all firms (Z;;, Z_,;) and total revenue S,
is known.

Using the above defined choice specific value function it is possible to compute the ex

ante value function as follows,
V(th7Z—Zt7St> = (EztvE—2t7ZZt7Z—Zt75t> (44)
The ex ante value function satisfies the following Bellman equation

‘/i(Zi,h Z—i,t7 St)

1 1

Z S(m1= Elt )1 S(li=E1y) . Z d(mr= EIt )1_5(mf:Eft){mi (ZIL _Zit>

j=

+ BE [Vi(Zi,tJrl, Z i1, Se01) | My, M_i 4, Ziy, Z_i 4, Sf} }
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A comprehensive discussion of results for existence of equilibria in Markovian games
is provided by Dutta and Sundaram (1998). Additional discussion may be found in Reny
(1999). When the state space can only take on a finite set of values, Theorem 3.1 of Dutta and
Sundaram (1998) implies that the entry game has a stationary Markov perfect equilibrium
in mixed strategies. Parthasarathy (1973) showed that this support condition can be relaxed
to include a state space with countable values. The regularity conditions of Theorem 5.1 of
Dutta and Sundaram (1998) are closer to our model, i.e., that the revenue and cost do not
have to be discrete but they do need to be bounded.

In our computations we rely on Theorem 5.1 of Dutta and Sundaram (1998) because we
are able to compute pure strategy equilibria for our model that has a continuous state space.
The equilibrium profiles guaranteed by Theorem 5.1 depend on period ¢ of the state vector
and might depend on period ¢t —1 as well. We find that we can always compute pure strategy
equilibria that depend only on period ¢ of the state vector, and hence automatically satisfy
the regularity conditions of Theorem 5.1. However, our model could also be transformed to
satisfy the conditions of Theorem 3.1 of Dutta and Sundaram (1998) that require the state
space to be finite and countable. The proof of Theorem 3.1 of Dutta and Sundaram (1998)
is significant for us because it relies on a dynamic programming approach that motivates our
computational strategy.®

In the numerical computation we have always been able to find an equilibrium for each
trial value of the parameters. Thus, computationally a bigger problem we encounter is
multiplicity of equilibria. The assumption we make to resolve the issue of multiple equilibria
is to adopt an explicit equilibrium selection rule. When we encounter multiple equilibria
we adopt an explicit equilibrium selection rule as follows. We pick the equilibrium with
the lowest aggregate costs (i.e., entrants are such that the most profitable production takes
place). This idea is similar to that used by Berry (1992). That is, the strategy profiles
E, are ranked by aggregate cost in ascending order, Z = Zle EyZy, and the first E, that

satisfies the equilibrium condition (4) is accepted as the solution. Note that our distributional

8More details about computing equilibria for this example are provided in the web version of the paper,
http://wuw.aronaldg.org/papers/soccweb.pdf. However, the basic idea in computing E, is that one
uses (43) after substituting (44) to find the F;, that satisfy the Nash condition (4). Then the Bellman
equation (45) is used as a recursion to update V;(Z; ¢, Z_;+,St). One repeats until the terms on both sides
of (45) are equal within a tolerance.
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assumptions guarantee that no two Z can be equal so that this ordering of the E; is unique.
Moreover, none of the Z;; can equal one another. When this condition is met we have never
had trouble in being able to compute a pure strategy equilibrium for any parameter value
as soon as we compute a sufficient number of value function iterations.

Additional details about the computation of the model and our procedure to deal with
multiple equilibria may be found in the web version of the paper. Like much of the literature
on estimation and computation of dynamic games, overall, our method works conditional
on the existence of an equilibrium being guaranteed. In the event of multiple equilibria
it also works if there is a procedure available or if the econometrician is willing to make
an assumption to deal with such multiple equilibria. As an example, in our case we use
an explicit equilibrium selection rule based on economic criteria to account for multiple
equilibria.

The parameters of the entry game model are given by
0 = (Has P21 O sy Ty Pes Kes By Pe).- (46)
The function that provides the decision profile is
E, = H (2, 215 51, 0), (47)

where 2z, = (Z1ut, -, 21ut); similarly z,;. The notation of the entry game maps to the

notation of the generic game as follows

Tt = Zut
Tot = (Zkt> St)
ay — Et

p(xe| a1, x1-1,0) = nlzue | p1+ po(zui-1 — p.1), 031]

X 0(2k,t = Pehi—1 T Keli—1)

x n(s; | prs, 02) (48)
plriel a1, 21,0) = nlzw|p1+ po(2ui-1 — p21), 031] (49)
p(at ‘ T, ‘9) = p[Et ‘ H(zu,ta Rkt St ‘9)7 ‘9] (50)
2
O-Z
p(r1e|0) = n[zuth,mI] (51)
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In equations (50)

I
> (B =E; —8(Bi =B
PLE: | H(2us, 200 50, 0), 0] = p(Ey| B, 0) = T o0 =5 (1 — pp)t—0Fia=Fi),

i=1
Hidden within H(zy,4, zx+, St,0) are equations (4), (43), and (44), which describe the com-
putation of the value function and the search algorithm for the Nash equilibrium used to
compute the decision profiles E, from each Zut, ki, and sq.

The specialization of the formulas for the algorithm described in Subsection 4.6 to the
game with a small number of players are as follows. Substituting (50) and (48) into the

numerator of (32) and (49) into the denominator,
@gk) = p[Et | Hf(ZQ(LITt)a 2kt St 9)? 9] n(st | s, O'?) 6[Zk7t = pzzk,t—l_l_KZHf(Zi(ft)—l’ Phyt—1, St—1; 9)]

For the alternative importance sampler,

k k
wy o LS el () — 1), 021

v = v
t t £ | 20z Si—1,0
ut u,t—17 “k,t—1, 9t—1,

The expressions needed at Step 1 to compute Cy are given by (51) and (51).

6.2 A Game with a Large Number of Players

In the last section we verified our results using Monte Carlo simulations from a dynamic game
of complete information with the Markov Perfect Equilibrium solution concept. However,
the MPE solution concept is intractable when a game consists of a large number of players
as the time to compute the solution to a game can increase exponentially with the number
of players. In this section we show how our method applies to a game with a large number of
players by following Weintraub, Benkard, and Roy (2008) who develop the solution concept
of Oblivious Equilibrium to deal with such games. Weintraub, Benkard, and Roy (2008) show
that this approach can be quite accurate in approximating the MPE solution for Ericson and
Pakes (1995) type games with five or more players. To illustrate, we apply our method to
one of the examples taken from Weintraub, Benkard, and Roy (2010), which has been used
in applications that they cite.’

9We used their Matlab® code, for which we thank the authors, translated verbatim to C++. See
http://wuw.columbia.edu/~gyw2105/GYW/GabrielWeintraub files/programsMPE120726.zip.
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The example is as follows. The set up is based on Weintraub, Benkard, and Roy (2010)
and we only present the details that are relevant for our Monte Carlo analysis and refer the
reader to that paper for additional details. The industry has differentiated products. Firm
1,2 =1,..., 1, produces at quality level z;; at time t,t = 1,...,T, where x;; is integer valued.

For our simulation, I = 20. In period ¢ consumer j,j = 1,...,m, receives utility
Tt
u,-jt = 91 ln (E + ].) + 92 ln (Y — pzt) + Uijta

where Y is income, p; is price, (6;,62,) are the utility function parameters, and v;;; are
distributed i.i.d. Gumbel. Each consumer buys one product, choosing the one that maximizes
utility. For our simulation, m = 50. This is a logit model for which there is a unique Nash
equilibrium {p}} in pure strategies that yields profit m(x;, s_;;) to firm ¢, where s_;; is a

list of the states of its competitors. Each firm has an investment strategy ty = ¢(Ti, S—it),

at
14ac’

which is successful with probability in which case the quality of its product increases by
one level. Quality depreciates by one level with probability §. Our simulation concerns the
parameters of the utility function and the transition dynamics, namely 6 = (01, 65,%, a, ),
set as shown in Table 3 for our simulation, which are the same as in the Matlab code
on the authors’ website. There are a number of subsidiary parameters, mostly respecting
t(x, s), that have also been set to the values in the distributed Matlab code: discount factor
£ = 0.95, marginal investment cost d = 0.5, sunk entry cost k = 35, entry state z¢ = 10,
average income Y = 1, marginal cost of production ¢ = 0.5, and the utility of the outside
good uy = 0. The oblivious equilibrium is computed by replacing s_;; by its expectation
under the stationary transition density for states. Details and the solution algorithm are in
Weintraub, Benkard, and Roy (2010).

This game is mapped to our notation as follows. The state vector (5) at time ¢ is com-
prised of the quality levels {xit}i[:y The state vector is known to all firms but not observed
by us. It follows the Markov process described above which has a transition density repre-
sented as a transition matrix evolving according to the investment function and a stationary
density represented as a vector, the elements for both of which are supplied by the solu-
tion algorithm. The transition matrix defines (8) and the vector of stationary probabilities

defines (9). No portion of the state is observed by us so that (7) is the same as (8). The
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measurement vector a; is comprised of the number of customers that each firm attracts at
time ¢. It follows a multinomial distribution whose parameters are a vector of probabili-
ties, the elements of which are supplied by the solution algorithm, and the total number of

customers m. This multinomial distribution is the density (6).

7 Simulation Experiments

To assess the efficacy of the approach proposed here that directly contradicts current practice
in that the seed is random and the number of particles small, we conduct a simulation

exercise.

7.1 Simulations for a Game with a Small Number of Players

We simulate the entry game game described in Subsection 6, that was previously estimated
in Gallant, Hong, and Khwaja (2017), configured to represent the manufacture of a single
object where entry constrains capacity. There are three firms. The time increment is one
year. We set parameters according to the following considerations. A hurdle rate of 20% is
a standard assumption in business which leads to a discount factor of § = 0.83333. Setting
pe = 0.95 seems intuitively reasonable and is in line with the estimates of Gallant, Hong, and
Khwaja (2017) who estimate a similar model from pharmaceutical data except that entry
has the effect of reducing rather than increasing costs. We set p. = 0.5, which gives the entry
effect a half-life of six-months. Costs are usually persistent so p, = 0.9 seems reasonable.
The remaining parameters scale with ps. The parameter p; can be chosen arbitrarily because
it is the log of the nominal price of the product. We chose u, = 10. A gross margin of 30%
puts pu, = 9.7. With k., = 0.2 the immediate impact of entry is to reduce the gross margin
to 10%. The two scale parameters o, and o, are determined by the foregoing because, if one
wants a sample that mimics competition to some extent, there is far less freedom in their
choice than one might imagine. One can easily produce samples where one firm is dominant
for long periods or a monopoly develops. By trial and error, we found o, = 0.1 and o5 = 2
to be satisfactory. In general, o, must be fairly large, as it is here, to prevent a monopoly.
Gallant, Hong, and Khwaja (2017) reported that p. was estimated precisely and varying

it within reason had little effect on estimates. Because the parameter was of no intrinsic
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interest, they fixed it to reduce computational cost. We estimated with p. both fixed and
free to see if that held true here.

The firm’s discount rate 3 is extremely difficult to estimate in studies of this sort (see
e.g., Magnac and Thesmar (2002)). On the other hand it is not difficult to form priors for
B. As mentioned above, a common rule of thumb in business is not to undertake a project
whose internal rate of return is less than 20%. Theoretically, a firm should not undertake
a project whose rate of return is less than its cost of capital. The historical risk premia for
various industries are available (e.g., Gebhardt, Lee, and Swaminathan (2001)) to which one
can add a nominal borrowing rate of 5% to arrive at a value for 5. We estimated with
both fixed and free to assess the value of prior information regarding (.

The model is recursive due to (40). The customary way of dealing with this situation in
time series analysis (e.g. GARCH models) is to run the recursion over initial lags prior to
estimation. We set the number of initial lags to a large value Ty = 160 to reduce effect of the
choice of Ty in our results. The choice of large Tj was also motivated by the Gallant, Hong,
and Khwaja (2017) study where a structural break — a bribery scandal — gave rise to 160
initial lags that could be used to run the recursion (40) but could not be used for estimation.
As in Gallant, Hong, and Khwaja (2017), we also pass (41) through the recursion as part of
the likelihood which is equivalent to determining a loose prior for us and o4 from the initial
lags. We simulated one long data set and from it constructed three data sets, small, medium,
and large, with T" = 40,120, and 360, respectively. The initial observations in a larger data
set are the same as those of its smaller predecessor.

We considered two cases keeping the data the same

1. The entry game model is fit to the data using a blind proposal and multinomial resam-
pling. Estimates are in Table 1. Histograms of the marginals of the posterior density

for the medium sample size are in Figure 1 with § constrained.

2. The entry game model is fit to the data using an adaptive proposal and systematic

resampling. Estimates are in Table 2.

The key parameter in the study of games of this sort is k. so we focus on it although our

remarks generally apply to the other parameters as well. Our results are not surprising.
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A large sample size is better. In Tables 1 and 2 the estimates shown in the columns

labeled “lg” would not give misleading results in an application.

e Constraining 3 is beneficial as it reduces the bimodality of the marginal posterior
distribution of o, and pushes all histograms closer to unimodality (Figure 1).!° In
consequence, the descriptive statistics in the columns labeled “f” and “B & p.” of
Tables 1 and 2 represent a posterior distribution better than those in the columns

labeled “Unconstrained.”

e Constraining p, is irrelevant except for a small savings in computational cost: compare

columns “f” and “B & p.” in Tables 1 and 2.

e Improvements to the particle filter are helpful. In particular, an adaptive proposal is
better than a blind proposal; compare Tables 1 and 2. In addition, the mean squared
error in tracking the true unobserved cost by the average over the particles improves

by 9%.1! Systematic resampling is better than multinomial resampling.2

Tables 1 and 2 about here
Figure 1 about here

7.2 Simulations for a Game with a Large Number of Players

The structure of the model is such that for each 6 proposed in the MCMC chain, the
oblivious equilibrium only needs to be computed once to provide the information to define
the transition and observation densities. This allows one to have a large number of particles
at minimal computational cost. It is as well because we found that N = 8174 was required
to get the rejection rate down to a reasonable value. The particle filtering does not become
a significant component of the computational cost up to N = 32696, which is the value we
used for the results reported in Table 3. As seen from Table 3, the method we propose here is
viable for this example thereby providing estimates of precision that the calibration methods

that are often used with this model cannot.

10Histograms for B unconstrained, which show more extreme bimodality, are available in the web version
of the paper at http://www.aronaldg.org/papers/socc_web.pdf.

HResults available in the web version of the paper.

12The results for an adaptive proposal with multinomial sampling are available in the web version of the

paper.
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Table 3 about here

8 Conclusion

We propose a Bayesian approach based on sequential importance sampling (particle filter-
ing) to estimate the parameters of a dynamic model that can have state variables that are
partially observed, serially correlated, endogenous, and heterogeneous. We illustrated by
application to two examples. The first is a dynamic game of entry involving a small number
of firms whose heterogeneity is based on their current costs due to feedback through capacity
constraints arising from past entry. The second is an Ericson-Pakes (1995) style game with
a large number of firms whose heterogeneity is based on the quality of their products with
firms competing through investment in product quality that affects their market share and
profitability.

Our paper makes several contributions to the literature. Our approach is based on
deriving an unbiased estimate of the likelihood that is used within a Metropolis chain to
conduct Bayesian inference. Unbiasedness guarantees that the stationary density of the
chain is the exact posterior, not an approximation. This allows for tractable computation
and feasible estimation of a dynamic model. In addition the latent state variables can be
either discrete or continuous. Moreover, the approach permits endogenous feedback of past
actions on the latent state variables that allows for heterogeneity among the players. Thus,
our approach facilitates computation and estimation of dynamic games with either small or
large number of players whose heterogeneity is affected by latent state variables, discrete or

continuous, that are subject to endogenous feedback.
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Table 1. Parameter Estimates for the Small Game
Blind Proposal, Multinomial Resampling

Constrained
Parameter Unconstrained I6] B & pa
value sm  md lg sm  md lg sm  md lg
. 9.70 10.10 9.72 9.68 9.94 9.67 9.68 9.86 9.72 9.68
(0.15) (0.12) (0.06) (0.19) (0.11) (0.06) (0.18) (0.12) (0.06)
p. 0.90 0.58 0.86 0.92 0.69 0.92 0.91 0.69 0.85 0.91
(0.25) (0.09) (0.03) (0.26) (0.05) (0.03) (0.25) (0.11) (0.03)
o, 0.10 0.16 0.09 0.09 0.17 0.08 0.10 0.15 0.09 0.10
(0.05) (0.03) (0.01) (0.06) (0.03) (0.01) (0.07) (0.03) (0.01)
s 10.00  9.87 998 9.96 9.88 9.99 9.98 9.84 9.99 9.99
(0.10) (0.03) (0.02) (0.10) (0.03) (0.02) (0.13) (0.06) (0.02)
o, 2.00 1.95 197 1.98 2.02 2.00 2.02 2.04 2.00 2.03
(0.09) (0.05) (0.01) (0.08) (0.02) (0.02) (0.10) (0.03) (0.01)
pe  0.50 0.76  0.56 0.58 0.59 0.57 056 0.76 0.57 0.52
(0.09) (0.07) (0.06) (0.22) (0.09) (0.05) (0.10) (0.07) (0.04)
ke 0.20 0.04 024 0.19 0.15 0.26 0.20 0.14 0.22 0.22
(0.05) (0.05) (0.02) (0.07) (0.05) (0.03) (0.06) (0.06) (0.03)
5 0.83 0.90 095 087 0.83 083 083 0.83 0.83 0.83
(0.07) (0.04) (0.04)
pe 0.95 0.97 094 0.95 096 094 0.95 0.95 0.95 0.95

(0.02) (0.01) (0.01)

(0.02) (0.01) (0.01)

The data were generated according to the game with a small number of players with parameters
set as shown in the column labeled “value”. For all data sets Ty = —160. For the small data set
T = 40; for the medium T = 120; and for the large T' = 360. The estimate is the mean of the
posterior distribution. The values below each estimate in parentheses are the standard deviation
of the posterior. The prior is uninformative except for the following support conditions |p.| < 1,
lpe] <1,0< B8 < 1,and 0 < p. < 1. The likelihood for s and o, includes the observations from
Ty to 0. In the columns labeled constrained, the parameters § and p. are constrained to equal
their true values as shown in the table. The number of MCMC repetitions is 240,000 with every

25th retained for use in estimation.
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Table 2. Parameter Estimates for the Small Game

Adaptive Proposal, Systematic Resampling

Constrained
Parameter Unconstrained 6] B & p,
value sm  md lg sm  md lg sm  md lg
e 9.70 987 982 972 981 9.78 9.68 9.78 9.76 9.65
(0.24) (0.07) (0.05) (0.12) (0.07) (0.06) (0.15) (0.09) (0.05)
p. 0.90 077 082 091 093 094 094 086 092 0.94
(0.03) (0.07) (0.05) (0.08) (0.04) (0.03) (0.09) (0.04) (0.02)
o, 0.10 0.14 0.10 0.09 0.14 0.08 0.08 0.11 0.08 0.08
(0.02) (0.02) (0.01) (0.04) (0.02) (0.01) (0.04) (0.03) (0.01)
us 10.00  10.05 10.00 9.97 995 996 994 978 9.95 9.96
(0.06) (0.02) (0.01) (0.05) (0.02) (0.02) (0.07) (0.03) (0.03)
os 2.00 194 199 199 193 197 201 207 198 1.97
(0.10) (0.02) (0.02) (0.09) (0.01) (0.01) (0.09) (0.02) (0.02)
pe 0.50 0.61 053 056 041 036 0.61 071 058 0.64
(0.21) (0.09) (0.06) (0.17) (0.06) (0.06) (0.20) (0.07) (0.05)
ke 0.20 0.21 0.22 0.18 0.20 0.18 0.18 0.17 0.19 0.18
(0.02) (0.03) (0.02) (0.06) (0.02) (0.02) (0.03) (0.02) (0.02)
g 0.83 093 096 090 083 083 083 083 0.83 0.83
(0.10) (0.03) (0.04)
pe  0.95 096 094 095 095 093 095 095 0.95 0.95

(0.01) (0.01) (0.01)

(0.02) (0.01) (0.01)

The data were generated according to the game with a small number of players with

parameters set as shown in the column labeled “value”. For all data sets Ty = —160.
For the small data set T' = 40; for the medium 7" = 120; and for the large T' = 360.

The estimate is the mean of the posterior distribution. The values below each estimate

in parentheses are the standard deviation of the posterior. The prior is uninformative

except for the following support conditions |p.| < 1, |pe] <1,0< B8 < 1, and 0 < p. <
P g supp P )y 1P ) ) p

1. The likelihood for us and o, includes the observations from Ty to 0. In the columns

labeled constrained, the parameters § and p,. are constrained to equal their true values
as shown in the table. The number of MCMC repetitions is 80,000 with every 25th

retained for use in estimation.
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Table 3. Parameter Estimates for the Large Game,
Blind Importance Sampler, Stratified Resampling

Posterior
Parameter  Value Mean  Std. Dev.

1.00000 0.97581  0.04799
0.50000 0.53576  0.07317
1.00000 1.01426  0.07070
3.00000 2.96310  0.06846
0.70000 0.64416  0.05814

e P>

The data were generated according to the game with a large number of play-
ers with parameters for the consumer’s utility function and firm’s transition
function set as shown in the column labeled “Value” and all others set to the
values specified in Section 6.2. The number of firms is 20 and the number
of consumers is 50. T'= 5. The prior is uninformative except for a support
condition that all values be positive. The number of MCMC repetitions is

109,000 and the number of particles per repetition is 32696.
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Figure 1. Small Game, § Constrained, Blind Proposal. Shown are histograms
constructed from the MCMC repetitions for the column labeled “Constrained,” “3,”
“md” in Table 1.
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