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Abstract

This paper addresses the consensus problem and the formation problem on SE(3) in multi-agent systems with directed and
switching interconnection topologies. Several control laws are introduced for the consensus problem. By a simple transformation,
it is shown that the proposed control laws can be used for the formation problem. The design is first conducted on the kinematic
level, where the velocities are the control laws. Then, for rigid bodies in space, the design is conducted on the dynamic level,
where the torques and the forces are the control laws. On the kinematic level, first two control laws are introduced that explicitly
use Euclidean transformations, then separate control laws are defined for the rotations and the translations. In the special case
of purely rotational motion, the consensus problem is referred to as consensus on SO(3) or attitude synchronization. In this
problem, for a broad class of local representations or parameterizations of SO(3), including the Axis-Angle Representation, the
Rodrigues Parameters and the Modified Rodrigues Parameters, two types of control laws are presented that look structurally
the same for any choice of local representation. For these two control laws we provide conditions on the initial rotations and
the connectivity of the graph such that the system reaches consensus on SO(3). Among the contributions of this paper, there
are conditions for when exponential rate of convergence occur. A theorem is provided showing that for any choice of local
representation for the rotations, there is a change of coordinates such that the transformed system has a well known structure.

Key words: Attitude synchronization, formation control, multi-agent systems, networked robotics.

1 Introduction

This work addresses the problem of continuous time con-
sensus and formation control on SE(3) for switching in-
terconnection topologies. We start by designing control
laws on a kinematic level, where the velocities are con-
trol signals and then continue to design control laws on
the dynamic level for rigid bodies in space, where the
forces and the torques are the control laws.

The main focus in this paper is on the kinematic control
laws. This approach is not justified from a physical per-
spective. Nevertheless, there are reasons why this path is
still reasonable to take. Firstly, dynamics are often plat-
form dependent, and especially in the robotics commu-
nity it is desired to specify control laws on the kinematic
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level. Secondly, a deeper understanding of how the ge-
ometry of SE(3) (and in particular SO(3)) affects the
control design can be acquired by designing the control
laws on a kinematic level, since we are then working di-
rectly in the tangent space of SE(3) or SO(3).

On SE(3), consensus control is a special case of forma-
tion control, but actually formation control can be seen
as a special case of consensus control, a fact that will be
used in this paper. The approach is to develop consensus
control laws, which after a simple transformation can be
used as formation control laws. By taking this approach
we can use existing theory for consensus in order to pro-
vide convergence results for the formation problem.

The consensus control problem on SO(3) comprises a
subset of the consensus control problem on SE(3), but it
is, from many perspectives, the most challenging part of
the control design. Hence, most emphasis will be taken
towards this problem. Whereas the translations are el-
ements of R3, the rotations are elements of the com-
pact manifold SO(3), the group of orthogonal matrices
in R3×3 with determinant equal to 1.
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There is a wide range of applications for the proposed
control laws, e.g., satellites or spacecraft that shall reach
a certain formation, multiple robotic arms that shall hold
a rigid object or cameras that shall look in some desired
directions (or the same direction in case of consensus).
For rigid bodies in space, i.e., spacecraft or satellites,
there has recently been an extensive research on the con-
sensus on SO(3) problem [1,2,3,4,5]. In that problem,
the goal is to design a control torque such that the rota-
tions of the rigid bodies become synchronized or reach
consensus. There are also adjacent problems, such as
the problem where a group of spacecraft shall follow a
leader while synchronizing the rotations between each
other [6,7]. In the recent work by D. Lee et al. [8], a dy-
namic level control scheme is presented for spacecraft
formation flying with collision avoidance.

In this work we propose six kinematic control laws. The
first two are constructed as elements of se(3); they are
linear functions of the transformations or the relative
transformations of neighboring agents. The third and
fourth are defined for the rotations only. They are con-
structed for the tangent space of SO(3) using the an-
gular velocity. Finally, the fifth and the sixth control
laws are defined for the translations only. They are con-
structed in the tangent space of R3. All the control laws
lead to consensus (or equivalently formation) under dif-
ferent assumptions on the graphs, the initial conditions
and measurable entities.

The results for consensus on SO(3) expands on the pub-
lications [9,10,11], by considering a larger class of local
representations. Moreover, Proposition 20 provides the
result that for certain topologies and all the considered
local representations, the rate of convergence is expo-
nential. An interesting geometric insight is provided in
Theorem 16 where it is shown that for any of the local
representations considered, if the second rotation con-
trol law is used and the rotations initially are contained
inside the injectivity region, there is a change of coordi-
nates so that the system has a well known-structure.

Towards the end of this paper we also consider the second
order dynamics and torque control laws for rigid bodies
in space. We use methods similar to backstepping in
order to generalize the kinematic control laws to this
scenario. This generalization is only performed for the
case of time-invariant topologies.

The paper proceeds as follows. In Section 2, preliminary
concepts are defined such as Euclidean transformations,
rotations, translations, network topologies and switching
signal functions. The concept of local representations for
the rotations is also are introduced. In Section 3, the
problem formulation is given. Section 4 introduces the
six kinematic control laws, which are categorized into
two groups. Convergence results for the first group of
control laws are provided in Section 5, whereas the sec-
ond group is treated in Section 6. In Section 7 – for the

application of rigid bodies in space – we provide results
for control laws on the dynamic level.

2 Preliminaries

2.1 Euclidean transformations, rotations, and transla-
tions

We consider a system of n agents with states in SE(3),
the group of Euclidean transformations. This means that
each agent i has a matrix

Gi(t) =

[
Ri(t) Ti(t)

0 1

]
∈ SE(3)

at each time t ≥ t0. The matrix Ri(t) is an element of
SO(3), the matrix group which is defined by

SO(3) = {R ∈ R3×3 : RTR = I, det(R) = 1}.

The vector Ti(t) is an element in R3.

Each agent has a corresponding rigid body. We denote
the world coordinate frame byFW and the instantaneous
body coordinate frame of the rigid body of each agent
i by Fi. Let Ri(t) ∈ SO(3) be the rotation of Fi in the
world frame FW at time t and let Rij(t) ∈ SO(3) be the
rotation of Fj in the frame Fi, i.e.,

Rij(t) = RTi (t)Rj(t).

We refer to Ri(t) as absolute rotation and Rij(t) as rel-
ative rotation.

The vector Ti(t) is the position of agent i in FW at time
t. The relative positions between agent i and agent j in
the frame Fi at time t is

Tij(t) = RTi (t)(Tj(t)− Ti(t)),

which in general is different from Tj(t)− Ti(t), the rela-
tive positions between agent i and agent j in the world
frame. In the same way as for the rotations, we refer to
Ti(t) as absolute translation and Tij(t) as relative trans-
lation.

The relative Euclidean transformation

Gij(t) = G−1i (t)Gj(t)

=

[
RTi (t)Rj(t) R

T
i (t)(Tj(t)− Ti(t))

0 1

]

contains both the relative rotation and the relative trans-
lation. From now on, in general we suppress the explicit
time-dependence for the variables, i.e., Gi should be in-
terpreted as Gi(t).
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2.2 Local representations for the rotations

For a vector p = [p1, p2, p3]T in R3 we define p̂ = p∧ by

p̂ = p∧ =


0 −p3 p2

p3 0 −p1
−p2 p1 0

 . (1)

We also define (·)∨ as the inverse of (·)∧, i.e., (p∧)∨ = p.

We consider local representations or parameterizations
of SO(3). Often we simply refer to them as represen-
tations or parameterizations. In this context, what is
meant by a local representation is a diffeomorphism f :
Br(I)→ Br′,3(0) ⊂ R3, whereBr(I) is an open geodesic
ball around the identity matrix in SO(3) of radius r less
than or equal to π, and Br′,3(0) is an open ball around
the point 0 in R3 with radius r′. B̄r(I) and B̄r′,3(0) are
the closures of said balls. If we write Br,3 or Br, this
is short hand notation for Br,3(0) or Br(I) respectively.
The same goes for the closed balls. The local represen-
tations can be seen as coordinates in a chart covering an
open ball around the identity matrix in SO(3).

A set in SO(3) is convex if any geodesic shortest path
segment between any two points in the set is contained
in the set. The set is strongly convex if there is a unique
geodesic shortest path segment contained in the set [12].
If r = π, Br(I) comprises almost all of SO(3) (in terms
of measure), and Br(I) is convex if and only if r ≤ π/2.
The radius r is referred to as the radius of injectivity.
The parameterizations that we use have the following
special structure

f(R) = g(θ)u, (2)

where θ is the geodesic distance between I and R on
SO(3), also referred to as the Riemannian distance, writ-
ten as d(I,R). The variable u ∈ S2 is the rotational axis
of R, and g : (−r, r)→ R is an odd, analytic and strictly
increasing function such that f is a diffeomorphism. On
Bπ(I) the vector u and the positive variable θ are ob-
tained as functions of R in the following way

θ = cos−1
(

trace(R)− 1

2

)
, u =

1

2 sin(θ)


r32 − r23
r13 − r31
r21 − r12

 ,
where R = [rij ]. Let us denote yi = f(Ri) and yij =
f(Rij). It holds that yij = −yji, but in general yj−yi 6=
yij . For each representation, i.e., choice of g, r ≤ π is
the largest radius such that f is a diffeomorphism. The
radius r is the radius of injectivity and depends on the
representation, but we suppress this explicit dependence

and throughout this paper, r corresponds to the repre-
sentation at hand, i.e., the one we have chosen to con-
sider at the moment. For the representation at hand we
also define

r′ = sup
s↑r

g(s).

Some common representations are:

• The Axis-Angle Representation, in which case
g(θ) = θ and r = r′ = π. This representation is al-
most global. The set SO(3)\Bπ(I) has measure zero
in SO(3). The Axis-Angle Representation is obtained
from the logarithmic map by

xi = (Log(Ri))
∨,

xij = (Log(RTi Rj))
∨.

In the other direction, a rotation matrixRi is obtained
via the exponential map by

Ri(xi) = exp(x̂i).

The matrix Rij is obtained by

Rij(xi, xj) = exp(x̂i)
T exp(x̂j).

The function expRi is the exponential map at Ri.
Using this notation, the function exp is short hand
notation for expI .

• The Rodrigues Parameters, in which case
g(θ) = tan(θ/2). The corresponding r and r′ are
equal to π and∞ respectively.

• The Modified Rodrigues Parameters, in which
case g(θ) = tan(θ/4), r = π and r′ = 1. This repre-
sentation is obtained from the rotation matrices by a
second order Cayley transform [13].

• The representation (R − RT )∨, in which case
g(θ) = sin(θ), and the corresponding r and r′ are
π/2 and 1 respectively. This representation is popular
because it is easy to express in terms of the rotation
matrices. Unfortunately, since r = π/2, only Bπ/2(I)
is covered.

• The Unit Quaternions, or rather parts of it. The
unit quaternion qi, expressed as a function of the Axis-
Angle Representation xi = θiui of Ri ∈ Bπ(I), is
given by

q(xi) = (cos(θi/2), sin(θi/2)ui)
T ∈ S3.

This means that we can choose the last three elements
of the unit quaternion vector as our representation,
i.e., sin(θi/2)ui, in which case r = π. The unit quater-
nion representation is popular since the mapping from
SO(3) to the quaternion sphere is a Lie group homo-
morphism.
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Let xi(t) and xij(t) denote the axis-angle representa-
tions of the rotations Ri(t) and Rij(t), respectively.
In the following, since we are only addressing repre-
sentations of (subsets of) Bπ(I), we choose x(t) =
[xT1 (t), xT2 (t), . . . , xTn (t)]T ∈ (Bπ,3(0))n as the state of
the system instead of (R1(t), . . . , Rn(t)) ∈ (Bπ(I))n.
Note that since θi = ‖xi‖, it holds that g(θi) = g(‖xi‖).
The variables yi and yij can be seen as functions of xi
and xi, xj respectively, i.e.,

yi(xi) = (f ◦ exp)(x̂i),

yij(xi, xj) = (f ◦ exp)(Log(RTi (xi)Rj(xj))).

Since xi and xj are elements of the vector x, we can write
yi(x) and yij(x). When we write yi(t) and yij(t), this
is equivalent to yi(x(t)) and yij(x(t)) respectively. If we
want to emphasize the dependence of the initial condi-
tion, instead of writing x(t) (or y(t)) we write x(t, t0, x0)
(or y(t, t0, y0)) where x0 is the initial state and t0 is the
initial time.

2.3 Kinematics

We denote the instantaneous angular velocity of Fi by
ωi. From now on, until Section 7, we assume that ωi
is the control variable for the rotation of agent i. The
kinematics for Ri is given by

Ṙi = Riω̂i,

whereRiω̂i is an element of the tangent space TRiSO(3).

The kinematics is given by

ẋi = Lxiωi, (3)

where the Jacobian (or transition) matrix Lxi is given by

Lxi = Lθiui = I3 +
θ

2
ûi +

(
1− sinc(θi)

sinc2( θi2 )

)
û2i . (4)

The proof is found in [14]. The function sinc(β) is defined
so that β sinc(β) = sin(β) and sinc(0) = 1. It was shown
in [15] that Lθu is invertible for θ ∈ (−2π, 2π). Note
however that θ ∈ [0, π) here.

The linear velocity of agent i, expressed in Fi, is de-
noted by vi. Up until Section 7, we assume that vi is the
control variable for the translation of agent i. The time
derivative of Ti(t) is given by

Ṫi(t) = Ri(t)vi.

Define

ξi =

[
ω̂i vi

0 0

]
.

It holds that
Ġi(t) = Gi(t)ξi.

2.4 Dynamics

The dynamics for agent i is given by

Ġi = Giξi

ξ̇i =

[
(J−1i (−ω̂iJiωi + τ i))

∧ ( f i
mi
− ω̂ivi)

0 0

]
,

where Ji is the inertia matrix, mi is the mass, τi is the
control torque, and f i is control force – the latter two
are given as a bold symbols since we do not want to mix
them up with other defined entities.

2.5 Connectivity

Definition 1 A directed graph (or digraph) G = (V, E)
consists of a set of nodes, V = {1, ..., n} and a set of edges
E ⊂ V × V.

Each node in the graph corresponds to a unique agent.
We also define neighbor sets or neighborhoods. LetNi ∈
V comprise the neighbor set (sometimes referred to sim-
ply as neighbors) of agent i, where j ∈ Ni if and only
if (i, j) ∈ E . We assume that i ∈ Ni i.e., we restrict the
collection of graphs to those for which (i, i) ∈ E for all
i ∈ V.

A directed path of G is an ordered sequence of distinct
nodes in V such that any consecutive pair of nodes in
the sequence corresponds to an edge in the graph. An
agent i is connected to an agent j if there is a directed
path starting in i and ending in j.

Definition 2 A digraph is strongly connected if each
node i is connected to all other nodes.

Definition 3 A digraph is quasi-strongly connected if
there exists a rooted spanning tree or a center, i.e., at
least one node such that all other nodes are connected to
it.

An adjacency matrix A = [aij ] for a graph G = (V, E)
is a matrix where aij ≥ 0 for all i, j, and furthermore
aij > 0 if and only if (i, j) ∈ E for all i, j. Given our
definition of graph, i.e., Definition 1, there are infinitely
many adjacency matrices for a graph.

From Definition 1 we see that there are 2n
2

directed
graphs with n nodes, i.e., the power set of the edge
set. Since we assume that (i, i) is an edge in the graph

for all i, there are 2n
2−n graphs we consider. For

k ∈ {1, . . . , 2n2−n} we associate a corresponding unique
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graph Gk = (V, Ek) and a unique adjacency matrix Ak.
The Ak matrices are constructed in the following way.
We construct a positive adjacency matrix A′ = [aij ] for
the complete (fully connected) graph. For the matrix
Ak = [akij ], it holds that akij = aij if (i, j) ∈ Ek, oth-

erwise akij = 0. Thus, if (i, j) ∈ Ek, we can write aij
instead of akij .

Now, for each agent i there are 2n−1 unique neigh-
borhoods N l

i , where l ∈ {1, . . . , 2n−1}. Given k ∈
{1, . . . , 2n2−n}, for agent i there is a unique l ∈
{1, . . . , 2n−1} such that N l

i is the neighborhood of agent
i in the graph Gk. Also, if each agent i has chosen an
l ∈ {1, . . . , 2n−1} such that N l

i is the neighborhood of

agent i, then there is a unique k ∈ {1, . . . , 2n2−n} such
that Gk is the graph for the system.

We are now ready to address time-varying graphs. In
order to do so, for each agent i, we introduce a switching
signal function

σi : R→ {1, . . . , 2n−1},

which is piece-wise constant and right-continuous. Let
{τ ik} be the monotonically strictly increasing sequence
of times for which σi is discontinuous. We assume that
there is a positive lower bound τD between two consec-
utive switches, i.e.,

sup
k

(τ ik+1 − τ ik) > τD for all i.

The time-varying neighborhood of agent i is N σi(t)
i .

Given the set of switching signal functions σi we can
construct a piece-wise constant and right-continuous
switching signal function for the graph of the multi-
agent system. This switching signal function σ has range

{1, . . . , 2n2−n} and switching times

{τk} =
⋃
i

{τ il },

where {τk} is monotonically strictly increasing in k. Note
that for σ it is not necessarily true that there is a positive
lower bound on the dwell time between two consecutive
switches as is the case for σi.

Now, between any two switching times, σ(t) is equal to
the k for which the graph Gk it holds that the neighbor-

hood of each agent i is equal to N σi(t)
i .

Definition 4 The union graph of Gσ(t) during the time
interval [t1, t2) is defined by

G([t1, t2)) =
⋃
t∈[t1,t2) Gσ(t) = (V,

⋃
t∈[t1,t2) Eσ(t)),

where t1 < t2 ≤ +∞.

Definition 5 The graph Gσ(t) is uniformly (quasi-)
strongly connected if there is Tσ > 0 such that the union
graph G([t, t+ Tσ)) is (quasi-) strongly connected for all
t.

The idea of using an individual switching signal σi for
each agent, is that each agent shall be able to choose
independently which neighbors it decides to receive in-
formation from.

Instead of using the term communication graph for Gσ(t),
we deliberately use the terms neighborhood graph, con-
nectivity graph or interaction graph. Direct communica-
tion does not necessarily take place between the agents
in practice. Instead, they can choose to just observe each
other via cameras or other sensors, i.e., indirect commu-
nication.

3 Consensus and formation control

3.1 Consensus

We start this section by introducing the consensus
problem on SE(3). Consensus on SE(3) means that,
as time tends to infinity, the set of transformations
(G1(t), G2(t), . . . , Gn(t)) ∈ (SE(3))n approaches the
consensus set where all the transformations are equal.
The problem is to construct a distributed control law
for each agent i, where only information from the neigh-
bors Ni is used in the control law, such that the system
reaches consensus. This information could be the rel-
ative transformations to the neighbors or the absolute
transformations of the neighbors. An other desired
property is that the velocities ξi tend to zero sufficiently
fast so that the transformations converge to a static
transformation.

When we say that the Euclidean transformations of the
agents “approaches” the consensus set, we mean that
the rotations

(R1(t), R2(t), . . . , Rn(t)) ∈ SO(3)n

approach {(R1, . . . , Rn) ∈ (B̄q(I))n : R1 = . . . = Rn}
and the translations

T tot = [TT1 (t), TT2 (t), . . . , TTn (t)]T ∈ R3n

approach the set where all the translations are equal. For
the translations the convergence is defined in terms of
the Euclidean metric. For the rotations, the convergence
is defined in terms of the Riemannian metric on SO(3).
If the rotations are contained within the region of injec-
tivity of a local parameterization, asymptotic stability
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in terms of the Riemannian metric on SO(3) is equiva-
lent to asymptotic stability using the Euclidean metric
in the parameterization domain for x.

The consensus problem on SE(3) might seem uninter-
esting in practice, since for rigid bodies in space it is not
physically possible to reach consensus in the positions.
There are two reasons for considering this problem any-
way. Firstly, if we look at the consensus problem as two
subproblems, consensus in the rotations and consensus
in the positions, the former is still interesting in prac-
tice and has received a great deal of attention lately.
Secondly and more importantly, the consensus control
problem is equivalent to the formation control problem
after a change of coordinates. Thus, all the control laws
we develop for the consensus control problems can also
be used for the formation control problem after a sim-
ple transformation. This will be elaborated more in Sec-
tion 3.2.

The subproblem of reaching consensus in the rotations
is referred to as the attitude synchronization problem
or consensus on SO(3). Then we shall find a feedback
control law ωi for each agent i using the local represen-
tations of either absolute rotations or relative rotations
so that the absolute rotations of all agents converge to
the set where all the rotations are equal as time goes to
infinity, i.e.,

‖Ri(t)−Rj(t)‖ → 0, for all i, j, as t→∞, (5)

or equivalently,

‖Rij(t)− I‖ → 0, for all i, j, as t→∞.

If y ∈ (Br′,3(0))n it is true that

Ri = Rj ⇐⇒ xi = xj ⇐⇒ xij = 0 (6)

⇐⇒ yi = yj ⇐⇒ yij = 0 for all i, j.

We define the consensus set A in R3n as follows:

A = {z = [zT1 , z
T
2 , . . . , z

T
n ]T ∈ R3n : zi = zj ∈ R3,∀i, j}.

According to (6) and the fact that the map

Ri 7→ xi

is a diffeomorphism on Bπ(I), (5) can equivalently be
written as x(t)→ A as t→∞. This means that the so-
lution approaches A. Thus, provided we can guarantee
that y(t) ∈ (Br′,3(0))n for all t ≥ t0, where t0 is the ini-
tial time, consensus on SE(3) for the multi-agent system
is the following

(x(t), T tot(t))→ A×A, as t→∞.

A stronger assumption on the convergence to A × A is
global uniform asymptotic stability of A × A relative
to a strongly forward-invariant set, see Definition 6 and
Definition 7 below. The distance from a point z in Rp to
a set D in Rp is defined by

‖z‖D = inf
w∈D
‖z − w‖.

For a time-invariant system, forward invariance or posi-
tive invariance of a set means that every solution to the
system with initial condition in the set is forward com-
plete and the solution at any time greater than the ini-
tial time is contained in the set. For switched systems
we have the following type of invariance. The f -vectors
used in the following two definitions are locally defined
in that context.

Definition 6 Consider dynamical systems of the follow-
ing class. The dynamical equation is given by

ż = fσ(t)(z),

where z(t) ∈ Rp for some positive integer p. The right-
hand side is switching between a finite set F = {fk}
of time-invariant functions according to a switching sig-
nal function σ. The switching signal function σ is well-
behaved in the sense that there are only finitely many
switches on any compact time interval.

A set D ⊂ Rp is strongly forward-invariant if for any
time t0, any z0 ∈ D and any such well behaved switching
signal function σ switching between functions in F , the
solution z(t, t0, z0) exists, is unique, forward complete
and contained in D for all t ≥ t0.

Definition 7 Consider the dynamical system

ż = f(t, z),

where y(t) ∈ Rp for some positive integer p. A set D1 ⊂
Rp is globally uniformly asymptotically stable relative to
the compact strongly forward-invariant set D2, if

(1) D1 is uniformly stable relative to D2, i.e., for every
ε > 0, there is a δ(ε) > 0 such that

(‖z0‖D1
≤ δ, z0 ∈ D2) =⇒

(‖z(t2, t1, z0)‖D1 ≤ ε for all t1, t2 where t2 ≥ t1),

(2) D1 is globally uniformly attractive relative to D2,
i.e., for every ε > 0, there is a τ(ε) > 0 such that

z0 ∈ D2 =⇒
(‖z(t2, t1, z0)‖D1 ≤ ε for all t1, t2,

such that t2 ≥ t1 + τ(ε)).
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One can show that if A is globally uniformly asymp-
totically stable relative to the strongly forward invari-
ant set (B̄q,3(0))n for x(t) where q < π, then the set
{(R1, . . . , Rn) ∈ (B̄q(I))n : R1 = . . . = Rn} is glob-
ally uniformly asymptotically stable relative to (B̄q(I))n

(when the Riemannian metric is used). The notation of
“strong forward invariance” is adopted from [16], where
it is defined for hybrid systems.

3.2 Formation

The consensus problem has many applications in the
cases where the motion is purely rotational, e.g., attitude
synchronization for spacecraft or orientation alignment
for cameras. However, as already mentioned, reaching
consensus in the positions is obviously not physically
possible for rigid bodies, but reaching a formation is.

The objective is to make the G−1i (t)Gj(t) matrices con-
verge to some desired G∗ij matrices. The G∗ij matrices
are assumed to be transitively consistent in that

G∗ijG
∗
jk = G∗ik for all i, j, k.

A necessary and sufficient condition for transitive con-
sistency [17,18,19] of the G∗ij is that there are G∗i such
that

G∗ij = G∗−1i G∗j for all i, j.

In this light, we formulate the objective in the formation
problem as follows. Given some desired constant Eu-
clidean transformation matricesG∗1, . . . , G

∗
n, construct a

control law for each agent i such that

‖G1 (t)−Q−1(t)G∗1‖ → 0,

‖G2 (t)−Q−1(t)G∗2‖ → 0,

...

‖Gn (t)−Q−1(t)G∗n‖ → 0,

as t → ∞, where Q(t) is a Euclidean transformation.
This implies that

‖G−1i (t)Gj (t)−G∗−1i G∗j‖ → 0 as t→∞.

Thus, in some (possibly time-varying) coordinate frame,
the Euclidean transformation of agent i converges to G∗i
as time tends to infinity. Each matrix G∗i contains the
rotation matrix R∗i and the translation T ∗i .

On a kinematic level the formation control problem is
equivalent to the consensus problem. Let us define

G̃i = GiG
∗−1
i and G̃ij = G∗iGijG

∗−1
j , for all i.

The kinematics for G̃i is given by

˙̃Gi = GiξiG
∗−1
i = G̃iG

∗
i ξiG

∗−1
i = G̃iξ̃i,

where

ξ̃i = G∗i ξiG
∗−1
i =

[̂̃ωi ṽi
0 0

]

=

[
R∗i ω̂iR

∗T
i −R∗i ω̂iR∗Ti T ∗i +R∗i vi

0 0

]
.

and

ξi = G∗−1i ξ̃iG
∗
i =

[
ω̂i vi

0 0

]

=

[
R∗Ti ̂̃ωiR∗i R∗Ti (̂̃ωiT ∗i + ṽi)

0 0

]
.

It easy to see that if the system reaches consensus in the
G̃i, it also reaches the desired formation. Thus, a consen-
sus control law ξ̃i can be constructed for each agent and
provided that each agent i knows G∗i , ξi is obtained by

ξi = G∗−1i ξ̃iG
∗
i . In general, unless the design is limited

to the ωi, the proposed control laws in the next section
should be used for formation control of the ξ̃i.

On the dynamic level we have that

˙̃ωi = R∗i J
−1
i

(
−
(
R∗Ti ̂̃ωiR∗i ) JiR∗Ti ω̃i + τ i

)
, (7)

˙̃vi = R∗i

(
f i
mi
−R∗Ti ̂̃ωi (̂̃ωiT ∗i + ṽi

))
−
(

˙̃ωi
)∧
T ∗i .

(8)

For the control design on the dynamic level, the approach
is to design a consensus control law for the ω̃i and the
ṽi and then track this desired kinematic control law us-
ing methods similar to backstepping. For control laws
designed on the kinematic level, since the problems of
consensus and formation are equivalent, we will only fo-
cus on the consensus problem. The consensus problem
more tractable, since one can use existing theory for that
problem. On the dynamic level we will also only consider
the consensus problem – the formation control laws have
a similar structure as the consensus control laws in this
case.

4 Kinematic control laws

We use two approaches for the design of the ξi. The first
approach is to treat ξi as one control variable and de-
sign a feedback control law as an expression of the Gi,
the second approach is to design ωi and vi separately.
Most emphasis will be on the second approach. The con-
trol laws in the first approach are referred to as the first
control laws, whereas the control laws in the second ap-
proach are referred to as the second control laws.

7



The first control laws

We propose the following control laws based on absolute
and relative transformations respectively.

ξi =
∑

j∈Nσ
i(t)

i

aij
((
Gj −Gi) + (G−1i −G

−1
j

))
, (9)

ξi =
∑

j∈Nσ
i(t)

i

aij
(
Gij −G−1ij

)
. (10)

The second control laws

In the first two control laws below, yi and yij could be
any of the local representations considered in Section 2.

ωi =
∑

j∈Nσ
i(t)

i

aij(yj − yi), (11)

ωi =
∑

j∈Nσ
i(t)

i

aijyij , (12)

vi =
∑

j∈Nσ
i(t)

i

aij(Tj − Ti), (13)

vi =
∑

j∈Nσ
i(t)

i

aijTij . (14)

The structure of these second control laws and especially
(11) and (13) are well known from the literature [20,21].
In Section 6 we provide new results on the rate of conver-
gence and regions of attractions for these control laws in
this context. When the control laws are used for forma-
tion instead of consensus, the ξ̃i are designed instead of
the ξi; the controllers are obtained through the relation

ξ̃i = G∗i ξiG
∗−1
i ,

as given in Section 3.2. As an example, suppose all the
Ri rotations and all the desired R∗i rotations in the for-
mation are equal to the identity matrix. Then the agents
shall reach a desired formation in the positions only. All
the agents construct ṽi according to (13) or (14) and
solve for vi through the following relation

[
I T ∗i

0 1

]−1 [
0 ṽi

0 0

][
I T ∗i

0 1

]
=

[
0 ṽi

0 0

]
=

[
0 vi

0 0

]
.

In this simple case vi = ṽi and ξi = ξ̃i. However, in
general ξi 6= ξ̃i.

The following two sections are devoted to the study of
the control laws (9-14).

5 Results for the first control laws

Proposition 8 Suppose the graph Gσ(t) is time-
invariant and strongly connected. Suppose that each ro-
tation is contained in Bπ/2(I), then if control law (9) is
used, the set (Bπ/2,3(0))n is strongly forward invariant
for the dynamics of x and

(x(t), T tot(t))→ A×A as t→∞.

Proposition 9 Suppose the graph Gσ(t) is time-
invariant and quasi-strongly connected. Suppose q <
π/4, if all the rotations are contained in B̄q(I), then if
control law (10) is used, the set (B̄q,3(0))n is strongly
forward invariant for the dynamics of x and A × A is
globally asymptotically stable relative to (B̄q,3(0))n×R3n.

Remark 10 It can be shown that the results in propo-
sitions 8 and 9 are slightly more general. It is true that
(x(t), T tot(t)) converges to a fixed point in A × A, i.e.,
not a limit cycle. This result is however not shown here.

In proposition 9, we only guarantee stability of a set
instead of uniform stability of the set.

In the following two proofs, since the graph is time-

invariant, we write G and Ni instead of Gσ(t) and N σi(t)
i

respectively. The graph Laplacian matrixL(G, A) for the
graph G with the adjacency matrix A, is

L(G, A) = D −A,

where

D = diag(d1, . . . , dn) = diag

 n∑
j=1

a1j , . . . ,

n∑
j=1

anj

 .

Proof of Proposition 8: When the control law (9) is
used, ωi is given by the following expression

ωi =
∑
j∈Ni

aij(yj − yi),

where yi = sin(θi)ui for all i. This control law for ωi is
on the form (11) and we will later show that, provided
the rotations are contained within the region of injec-
tivity, which in this case is the ball around the identity
with radius π/2, x(t) approachesA asymptotically. Also,
(Bπ/2,3(0))n is forward invariant.

Given the initial states xi(t0), since there are finitely
many agents, there is a positive q < π/2 such that
x(t0) ∈ (B̄q,3(0))n. Let X = (B̄q,3(0))n×R3n and define

8



the two closed sets

Γ2 = A ∩ (B̄q,3(0))n × R3n

Γ1 = A ∩ (B̄q,3(0))n ×A.

We can choose the state space asX for (x, T tot) since this
set is forward invariant, see Proposition 11 in Section 6.
We observe that Γ1 ⊂ Γ2 ⊂ X .

On X , the dynamics for Ti is given by

Ṫi =
∑
j∈Ni

aij
((
Ri +RiR

T
j )
)
Tj − (Ri + I)Ti

)
.

But on the set Γ2 the dynamics for Ti is given by

Ṫi =
∑
j∈Ni

aij ((I +Q∗) (Tj − Ti)) ,

where Q∗ ∈ B̄q,3(0) is some constant rotation matrix.
On Γ2, the dynamics for T tot is given by

Ṫ tot = −(L(G, A)⊗ (I +Q∗))T tot.

By using the fact that the eigenvalues of (I + Q∗)
have real parts strictly greater than zero, the fact that
((Bπ/2,3(0))n is forward invariant), and the fact that
L(G, A) is the graph Laplacian matrix for a strongly
connected graph, one can show that Γ1 is exponentially
stable relative to Γ2. Now one can use Theorem 8 in [22]
in order to show that Γ1 is globally attractive relative
to X . �

Proof of Proposition 9: When the control law (10) is
used, ωi is given by the following expression

ωi =
∑
j∈Ni

aijyij ,

where yij = sin(θij)uij for all i. This control law for ωi
is on the form (12).

Let X = (B̄q,3(0))n×R3n and define the two closed sets

Γ2 = A ∩ (B̄q,3(0))n × R3n

Γ1 = A ∩ (B̄q,3(0))n ×A.

We observe that Γ1 ⊂ Γ2 ⊂ X . Proposition 14 in Sec-
tion 6 in combination with the fact that the right-hand
sides of the Ṫi are well-defined, guarantees that X is
forward invariant and can serve as the state space for
(x, T tot). Also the set Γ2 is globally uniformly asymp-
totically stable relative to X .

On X , the dynamics for Ti is given by

Ṫi =
∑
j∈Ni

aij
(
(Tj − Ti)−RiRTj (Ti − Tj)

)
,

but on the set Γ2 the dynamics for Ti is given by

Ṫi =
∑
j∈Ni

aij (Tj − Ti) .

The dynamics for T tot is given by

Ṫ tot = −(L(G, A)⊗ I)T tot,

where L(G, A) is the graph Laplacian matrix for a quasi-
strongly connected graph. It is well known that the
consensus set is exponentially stable for this dynam-
ics. Thus, the set Γ1 is globally asymptotically stable
relative to Γ2. Now one can use Theorem 10 in [22] in
order to show that Γ1 is globally asymptotically stable
relative to X . �

5.1 Numerical experiments

In order to illustrate the relation between consensus and
formation the following example is considered. For a sys-
tem of five agents, in Figure 1 the convergence of the
G̃i variables to consensus and the convergence of the
Gi variables to a desired formation is shown. The adja-
cency matrix was chosen to that of a quasi-strongly con-
nected graph with entries equal to 0, 1 or 2. The initial
rotations are drawn from the uniform distribution over
Bπ/2(I). Each initial translation vector is drawn from

the uniform distribution over the unit box in R3. The
initial Ri(0) rotations and initial Ti(0) translations are
the building blocks of the Gi(0) transformations. The
desired G∗i are constructed in the same manner as the

Gi(0), after which the G̃i(0) transformations are con-

structed by G̃i(0) = Gi(0)G∗−1i .

For the same initial conditions, the four upper plots in
Figure 1 show the convergence when controller (9) is
used, whereas the four lower plots in Figure 1 show the
convergence when controller (10) is used. In each of these
four subplots, the first plot is showing the difference
‖G̃i(t)− G̃1(t)‖F for all i; the second plot is showing one

of the elements of G̃i(t) for all i as function of time, this

element is the upper left one in the G̃i(t), i.e., it is an
element of the rotation matrix; the third plot is showing
the difference ‖Gi(t) − G1(t)‖F for all i as function of
time; the fourth plot is showing one of the elements of
Gi(t) as function of time for all i. This element is chosen
as the upper left element in the Gi(t).

The construction of the initial rotations in this example
does not guarantee that initial rotations are contained in

9
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Fig. 1. These plots illustrate the difference between reaching
consensus in the G̃i variables and reaching a formation in
the Gi variables.
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Fig. 2. These plots show the convergence to consensus un-
der discrete sampling, additive absolute noise, and switching
between quasi-strongly connected graphs.

the regions specified in Proposition 8 and Proposition 9,
yet the convergence is obtained for both control laws.
For 1000 simulations with five agents and random quasi-
strongly connected topologies, where the initial rotations
are drawn from the uniform distribution over SO(3) and
the translations are drawn from the uniform distribu-
tion over the unit cube in R3, the G̃i(t) transformations
converged to consensus 909 respective 910 times for the
two different control laws, i.e., a success rate of over 90
%. If the initial rotations in G̃i were drawn from the uni-
form distribution over Bπ/2(I) the transformations con-
verged to consensus 1000 respective 1000 times for the
two different control laws, i.e., a success rate of 100 %.

Furthermore, numerical experiments were conducted
when there was additive absolute, noise and when the
transformations were measured discretely the topolo-
gies were switching. The “noise” were random skew
symmetric matrices, whose magnitudes were equal to
0.1. Under these conditions the controllers (9) and (10)
were tested in 100 simulations where the graphs were
switching between quasi-strongly connected topologies
and the initial rotations in G̃i were drawn from the uni-
form distribution over Bπ/2(I). The number of agents
was 5. The matrices converged to consensus in every
simulation for both controller (9) and controller (10). In
the simulations the graphs switched with a frequency of
10, which was the same as the sampling frequency; the
consensus is shown for one simulation in Figure 2. The
simulations show stronger results than those presented

in Proposition 8 and Proposition 9.

The input is constant between sample points. Thus, we
can solve the system exactly between those points (it
becomes a linear time-invariant system). The solutions
between the sampling points are not shown in the figure,
instead there are straight lines connecting the solutions
at the sample points.

In all simulations the “random” graphs were created by
constructing adjacency matrices in the following way:
First an adjacency matrix for a tree graph was created
and then a binary matrix was created where each element
in the matrix was drawn from the uniform distribution
over {0, 1}. The final adjacency was then chosen as the
sum of the adjacency matrix for the tree graph and the
binary matrix.

6 Results for the second control laws

6.1 Rotations

Here we address the controllers (11) and (12). We start
with (11). The structure of controller (11) is well known
from the consensus problem in a system of agents with
single integrator dynamics and states in Rm [20]. The
question is if this simple control law also works for rota-
tions expressed in any of the local representations that
we consider. The answer is yes. For all the convergence
results provided in this section it is true that the state
x(t) converges to a fixed point, i.e., not a limit cycle.

Proposition 11 Suppose q < r and the graph Gσ(t) is
uniformly strongly connected, then if controller (11) is
used, (B̄q,3(0))n is strongly forward invariant, 0 ∈ Rmn is
uniformly stable and (B̄q,3(0))n ∩A is globally attractive
relative to (B̄q,3(0))n.

In order to prove Proposition 11, we use the following
proposition.

Proposition 12 Suppose controller (11) is used, Gσ(t)
is uniformly strongly connected, and q < r.

Now, suppose there is a continuously differentiable func-
tion

V : R3 → R
such that for any given k ∈ {1, . . . 2n−1} and x̄ =
[x̄T1 , x̄

T
2 , . . . , x̄

T
n ]T ∈ (B̄q,3(0))n

(1) if
i ∈ arg max

j∈Nk
i

(V (x̄j))

it holds that

〈∇V (x̄i),
∑
j∈Nk

i

aij(yj(x̄)− yi(x̄))〉 ≤ 0, (15)

10



where yi is the local representation.

(2) and equality holds for (15) if and only if x̄i = x̄j for
all j ∈ N k

i ,

then (B̄q,3(0))n is strongly forward invariant for the dy-
namics of x and (B̄q,3(0))n ∩A is globally attractive rel-
ative to (B̄q,3(0))n.

The proof of Proposition 12 is omitted here but follows,
up to small modifications, the procedure in the proof of
Theorem 2.21. in [23]. The essential difference between
the two is that besides the fact that in Theorem 2.21. in
[23] more general right-hand sides of the system dynam-
ics are considered, only one switching signal function is
used for the system in that theorem, whereas in in this
work we assume individual switching signal functions for
the agents.

Proof of Proposition 11: We verify that (1) and (2) are
satisfied in Proposition 12 by choosing V (x̄i) = x̄Ti x̄i.
Let i ∈ arg maxj∈Nk

i
(V (x̄j)). Then

〈∇V (x̄i),
∑
j∈Nk

i

aij(yj(x̄)− yi(x̄))〉 ≤

∑
j∈Nk

i

(‖x̄j‖g(‖x̄j‖)− ‖x̄i‖g(‖x̄i‖)) ≤ 0,

where we have used the fact that g is strictly increasing.
The last inequality is strict if and only if x̄i = x̄j for all
j ∈ N k

i . �

Remark 13 Instead of using (11), one could use feed-
back linearization and construct the following control law
for agent i,

ωi = L−1yi

∑
j∈Nσ

i(t)
i

aij(yj − yi),

where Lyi is the Jacobian matrix for the representation
yi. If this feedback linearization control law is used and
the graph Gσ(t) is quasi-strongly connected, the consen-

sus set, restricted to any closed ball (B̄q,3(0))n where
q < r, is globally uniformly asymptotically stable rela-
tive to (B̄q,3)n. However, for many representations such
as the Rodrigues Parameters, the Jacobian matrix Lyi is
close to singular as yi is close to the boundary of B̄q,3(0).
Furthermore, the expression is nonlinear in the yi. This
might make this type of control law more sensitive to mea-
surement errors than (11).

Now we continue with the study of (12) where only local
representations of the relative rotations are available.
Under stronger assumptions on the initial rotations of
the agents at time t0 and weaker assumptions on the

graph Gσ(t), the following proposition ensures uniform
asymptotic convergence to the consensus set.

Proposition 14 Suppose q < r/2 and the controller
(12) is used, then (B̄q,3(0))n is strongly forward invari-
ant and (B̄q,3(0))n ∩ A is globally uniformly asymptot-
ically stable relative to (B̄q,3(0))n if and only if Gσ(t) is
uniformly quasi-strongly connected.

Remark 15 In Proposition 14, since only information
that is independent ofFW is used in (12), the assumption
that the rotations initially are contained in B̄q(I) can be
relaxed. As long as there is a Q ∈ SO(3) such that all the
rotations are contained in (B̄q(Q))n initially, the rota-
tions will reach consensus asymptotically and uniformly
with respect to time.

In order to prove Proposition 14, we first provide a the-
orem, which gives some geometric insight. Then we pro-
vide a Proposition, which guarantees asymptotic stabil-
ity of the consensus set.

Theorem 16 Suppose that the control law (12) is used
and x ∈ (Bq,3(0))n, where q < r/2. Let zi = tan(θi/2)ui
and z = [zT1 , . . . , z

T
n ]T . Then

ż1 =
∑

j∈Nσ
1(t)

1

a1jh1j(z1, zj)(zj − z1),

...

żn =
∑

j∈Nσ
n(t)

n

anjhnj(zn, zj)(zj − zn),

where hij(zi, zj) ≥ 0 and hij(zi, zj) > 0 if zj 6= zi.

Remark 17 The hij functions in Theorem 16 depends
on the parameterization y.

A proof of Theorem 16 (up to small modifications due
to the assumptions on the switching signal functions)
can be found in [23]. It is based on the results in [12,24].
Theorem 16 states that, after a change of coordinates to
the Rodrigues Parameters, the system satisfies the well
known convexity assumption that the right-hand side
of each agent’s dynamics is inward-pointing [12] rela-
tive to the convex hull of its neighbors’ positions. There
are many publications addressing this type of dynamics,
e.g., [25,26,27].

Proposition 18 Suppose control law (12) is used, q <
r/2, and (B̄q,3(0))n is strongly forward invariant for the
dynamics of x.

Suppose there is a continuously differentiable function

W : R3 × R3 → R+,
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such that for any given k, l ∈ {1, . . . 2n−1} and x̄ =
[x̄T1 , x̄

T
2 , . . . , x̄

T
n ]T ∈ (B̄q,3(0))n,

(1) if
(i, j) ∈ arg max

k′∈Nk
i
,l′∈N l

j

(W (x̄i, x̄j))

it holds that

〈∇W (x̄i, x̄j), [

 ∑
k′∈Nk

i

aij(yk′(x̄)− yi(x̄))

T

,

∑
l′∈N l

j

aij(yl′(x̄)− yj(x̄))


T

]〉 ≤ 0

(2) and equality holds if and only if x̄i = x̄k′ for all
k′ ∈ N k

i and x̄j = x̄l′ for all l′ ∈ N l
j ,

then (B̄q,3(0))n ∩ A is globally uniformly asymptotically
stable relative to (B̄q,3(0))n if and only if Gσ(t) is uni-
formly quasi-strongly connected.

The proof of Proposition 18, is omitted here, but follows,
up to small modifications, the procedure in the proof of
Theorem 2.22. in [23].

Proof of Proposition 14 : Let us define the functions

V (xi) = xTi xi and

W (xi, xj) =(zj(xj)− zi(xi))T (zj(xj)− zi(xi)),

Using Theorem 16 and the function V together with
Proposition 12, along the lines of the proof of Propo-
sition 11, one can show that (B̄q,3(0))n is strongly for-
ward invariant and if Gσ(t) is uniformly strongly con-

nected, (B̄q,3(0))n ∩ A is globally attractive relative to
(B̄q,3(0))n.

Now, since (B̄q,3(0))n is strongly forward invariant, one
can use Theorem 16 in order to show that W satisfies
the criteria in Proposition 18. The mapping

xi 7→ zi

is a diffeomorphism on (B̄r,3(0))n. The set (B̄q,3(0))n∩A
is globally uniformly asymptotically stable relative to
(B̄q,3(0))n. �

Remark 19 We can generalize the results in Proposi-
tion 11 and Proposition 14. Up until now we have as-
sumed that we first fix a representation yi, yij and then
we use the control laws (11) and (12) for this represen-
tation. Instead, at each switching time τ ik we can allow
the representation to switch also.

The following proposition addresses a special case when
the the rate of convergence is exponential.

Proposition 20 Suppose Gσ(t) fulfills the following. At
each time t and for each pair (i, j), the edge (i, j) ∈
Eσ(t) or the edge (j, i) ∈ Eσ(t). Suppose controller (12)
is used and g(θi) ≥ kθi for some k > 0. For q < r/2,
the set {(R1, . . . , Rn) ∈ (B̄q(I))n : R1 = . . . = Rn} is
globally exponentially stable relative to (B̄q(I))n for the
closed loop dynamics of (R1, R2, . . . , Rn) with respect to
the Riemannian metric on SO(3).

Remark 21 Using the results in [28] it can be obtained
that for the Axis-Angle Representation the convergence
is exponential also for general uniformly quasi-strongly
connected graphs, i.e., not only the restricted class of
graphs considered Proposition 20.

In Proposition 20 (1), since we have assumed that g is
analytic, the condition g(θi) ≥ kθi can equivalently be
formulated as g(θi) = O(θi) as θi → 0. All the local
representations previously addressed fulfill this assump-
tion, e.g., the Axis-Angle Representation, the Rodrigues
Parameters and the Unit Quaternions.

Before we prove Proposition 20 we formulate the follow-
ing lemma.

Lemma 22 Suppose x ∈ (B̄q,3(0))n where q < r/2. If

(i, j) ∈ arg max
(k,l)∈V×V

‖xkl‖,

then
xTijyik ≥ 0 for all k.

The proof of Lemma 22 follows more or less as a conse-
quence of Theorem 16 and is omitted here.

Proof of Proposition 20 : We already know from Propo-
sition 14 that the set (B̄q,3(0))n is strongly forward in-
variant and (B̄q,3(0))n ∩A is globally uniformly asymp-
totically stable relative to (B̄q,3(0))n. What is left to
prove is that for the special structure of the graph con-
sidered, the rate of convergence is exponential relative
to (Bq(I))n when the Riemannian metric is used.

Let us define
α = min

(k,l)∈V×V
akl,

and
V (x) = max

(k,l)∈V×V
xTklxkl.

At time t let (i, j) be such that V (x(t)) = xTij(t)xij(t).

xTij (ωj − ωi) ≤ −αkV (x(t)),

12
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Fig. 3. Convergence to consensus. For the same initial rota-
tions, controller (11) and controller (12) are used. The left
plot shows the errors (in terms of Frobenius norm) between
the first rotation and the other rotations as a function of
time when controller (11) is used; in the right plot the same
type of errors is shown when controller (12) is used.

where the last inequality is due to Lemma 22 and the
assumption on the graph Gσ(t). Now one can show that

D+V (x(t)) ≤ −αkV (x(t)).

By using the Comparison Lemma, one can show that V
converges to zero with exponential rate of convergence.
�

6.2 Illustrative example

In order to illustrate the convergence of the rotations to
the consensus set, an illustrative example is constructed
where the representation (R − RT )∨ is chosen both for
control law (11) and (12). The number of agents is 5
and the graph the graphs were constructed in the same
manner as in Section 5.1. The initial rotations are drawn
from the uniform distribution over Bπ/2(I). The conver-
gence to consensus is shown in Figure 3.

6.3 Translations

Here we address the controllers (13) and (14)

Controller (13), despite its appealing structure does in
general not guarantee consensus in the translations. In
order to see this, we consider the following example.

Ṫi =
∑

j∈Nσ
i(t)

i

RTi (Tj − Ti).

Suppose 
1 0 0

0 1 0

0 0 0

Ti(0) = Ti(0) and

Ri(t) =


−1 0 0

0 −1 0

0 0 1

 for all i, t.

Then, for this particular choice of rotations and initial
conditions for the Ti,

Ṫi =
∑

j∈Nσ
i(t)

i

(Ti − Tj).

Thus,

Ṫ tot = (L(Gσ(t),A)⊗ I)T tot,

which is unstable.

One partial result for controller (13) is the following one.
By a change of coordinates one can prove that, if all
the rotations of the agents are the same and constant
and the translations are contained in the linear subspace
spanned by the rotational axis, the translations converge
asymptotically to consensus.

Controller (14) delivers a much stronger result.

Proposition 23 Suppose controller (14) is used and the
graph Gσ(t) is uniformly quasi-strongly connected. The
set A is globally asymptotically stable stable.

The proof of the proposition is based on the fact
that the closed loop dynamics is given by Ṫ tot =
−L(Gσ(t), A)T tot.

7 Control on the dynamic level for rigid bodies
in space

In this section we construct control laws on the dynamic
level for the case of rigid bodies in space. The dynamical
equations for agent i are given by

Ṙi = Riω̂i,

ω̇i = J−1i (−ω̂iJiωi + τ i) ,

Ṫi = Rivi,

v̇i = f i
mi
− ω̂ivi,

(16)

where Ji is the inertia matrix and τ i is the control
torque; ωi is a state variable. In the formation problem
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the goal is to reach consensus in the (̃·)-variables, and
the dynamical equations for those variables are

˙̃Ri = R̃i ̂̃ωi,
˙̃ωi = R∗i J

−1
i

(
−
(
R∗Ti ̂̃ωiR∗i ) JiR∗Ti ω̃i + τ i

)
,

˙̃Ti = R̃iṽi
˙̃vi = R∗i

(
f i
mi
−R∗Ti ̂̃ωi (̂̃ωiT ∗i + ṽi

))
−
(

˙̃ωi
)∧
T ∗i .

(17)

In this section, we strengthen the assumptions on Gσ(t)
by assuming it is time-invariant. Thus, we denote the
time-invariant (also referred to as constant or fixed)
graph by G. The reason for choosing time-invariant
graphs is that we are now considering a second order
system, and the methods we use here are based on
backstepping. In order to show stability, we introduce
auxiliary error variables, and in the case of a switching
graph, these variables suffer from discontinuities. One
way to avoid this problem is to replace the discontinu-
ities with continuous in time transitions. This is however
not something we do here.

7.1 Rotations

Only the consensus problem and the first set of equa-
tions, (16), will be considered here. When performing
formation control, the presented control laws below, (18)
and (19), are modified slightly. In both control laws, all

the variables should be replaced by (̃·)-variables, i.e., xi
should be x̃i instead, ω̃i should be ωi instead and so on.
The expression “Ji(” is replaced by “JiR

T
i (”, and the ex-

pression “ω̂iJiωi” is replaced by “
(
R∗Ti ̂̃ωiR∗i ) JiR∗Ti ω̃i”.

Based on the two kinematic control laws (11) and (12),
we now propose two torque control laws for each agent
i, where the first one is based on absolute rotations and
the second one is based on relative rotations. The control
laws are

τ i = Ji(−xi +
∑
j∈Ni

aij(Lxjωj − Lxiωi − ω̄i)) + ω̂iJiωi,

(18)

τ i = Ji(−kiω̄′i +
∑
j∈Ni

aijL−yijωij) + ω̂iJiωi. (19)

The parameter ki is a positive gain. The error variables
ω̄i and ω̄′i are by follows

ω̄i = ωi −
∑
j∈Ni

aij(xj − xi),

ω̄′i = ωi −
∑
j∈Ni

aijyij .

The matrix Lyij is the Jacobian matrix for yij , i.e.,

ẏij = L−yijωij ,

and
ωij = Rijωj − ωi

is the relative angular velocity between agent i and agent
j. In the following, the notation (xi, ω̄

′
i) = [xTi , ω̄

′T
i ]. We

collect all the xi and ω̄i into (x, ω̄) ∈ (Bπ,3)n×(R3)n and
all the xi and ω̄′i into (x, ω̄′) ∈ (Bπ,3)n × (R3)n. Now,
given i ∈ V, the right-hand side for (xi, ω̄i)

T when the
torque control law (18) is used is

ẋi = Lxi
∑
j∈Ni

aij(xj − xi) + Lxi ω̄i,

˙̄ωi = −xi −
∑
j∈Ni

aijω̄i,

whereas the closed loop system for (xi, ω̄
′
i)
T when the

torque control law (19) is used, is

ẋi = Lxi
∑
j∈Ni

aijyij + Lxi ω̄
′
i,

˙̄ω′i = −kiω̄′i.

We note that in (18), each agent i needs to know, not
only the absolute rotations of its neighbors, but also the
angular velocities of its neighbors. This requirement is
fair, in the sense that in order to obtain the absolute
rotations of the neighbors, communication is in general
necessary. In this case the angular velocities can also
be transmitted. In (19), we see that each agent i needs
to know the relative rotations, relative velocities to its
neighbors and the angular velocity of itself. The assump-
tion that agent i knows its own angular velocity is quite
strong the sense that this velocity is not to be regarded
as relative information. However, in practice the angular
velocity is possible to measure without the knowledge of
the global frame FW . Thus, the angular velocity is local
information.

Proposition 24 Suppose G is strongly connected. If

max
i∈V

xTi (t0)xi(t0) + ω̄i(t0)T ω̄i(t0) ≤ q < π,

i.e., (xi(t0), ω̄i(t0))T ∈ B̄q,6 for all i and some q <
π, then if controller (18) is used, B̄q,6 is invariant for
(x(t), ω̄(t)) and x(t) → A and ωi(t) → 0 for all i as
t→∞.

Proof : In the multi-agent system at hand we have n
agents, where each agent i has the state (xi, ω̄i)

T . We
first show the invariance of the ball B̄q,6.

V ((xi, ω̄i)
T ) =

1

2

(
xTi xi + ω̄Ti ω̄i

)
.
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We see that

d

dt
V ((xi, ω̄i)

T )

=
∑
j∈Ni

aij(xi, ω̄i)(xj − xi,−ω̄i)T

=
∑
j∈Ni

aij((xi, ω̄i)(xj , 0)T − (xi, ω̄i)(xi, ω̄i)
T )

≤
∑
j∈Ni

aijx
T
i (xj − xi).

Thus,
D+fV,6((x(t), ω̄(t))T ) ≤ 0.

Now, by using the Comparison Lemma one can show the
invariance.

In order to show the convergence, we define the following
function

γ̄(x, ω̄) =

n∑
i=1

ξi(x
T
i xi + ω̄Ti ω̄i),

where ξ = (ξ1, . . . , ξn)T is the positive vector chosen
such that (the symmetrical part of) diag(ξ)L(G, A) is
positive semi-definite. We have that

˙̄γ = −xT (L′ ⊗ I3)x−
n∑
i=1

ξi
∑
j∈Ni

aijω̄
T
i ω̄i.

By LaSalle’s theorem, (x(t), ω̄(t))T will converge to the
largest invariant set contained in

{(x, ω̄)T : ˙̄γ((x, ω̄)T ) = 0}

as the time goes to infinity. This largest invariant set is
contained in the set {(x, ω̄)T : x ∈ A, ω̄ = 0}. �

Remark 25 In the proof of Proposition 24, if we look at
the dynamics of (x, ω̄), we see that the largest invariant
set contained in {(x, ω̄)T : ˙̄γ((x, ω̄)T ) = 0} is actually
the point 0. Hence, the system will reach consensus in the
point x = 0.

Now let us turn to control law (19).

Proposition 26 Suppose G is quasi-strongly connected.
For any positive r1 and r2 such that r1 < r2 < r/2
and q > 0, there is a k > 0 such that if ki ≥ k and
(xi(t0), ω̄′i(t0))T ∈ B̄r1,3×B̄q,3 for all i, then if controller
(19) is used it holds that (xi(t), ω̄

′
i(t))

T ∈ B̄r2,3 × B̄q,3
for all i, t ≥ t0 and

(x(t), ω̄′(t))T → (B̄r2,3)n ∩ A× {0} as t→∞.

Furthermore, (B̄r2,3)n∩A×{0} is globally asymptotically
stable relative to the largest invariant set contained in
(B̄r2,3)n × (B̄q,3)n for the dynamics of (x(t), ω̄′(t))T .

Proof of Proposition 26 : Let us define

D∗ ⊂ D = (B̄r2,3)n × (B̄q,3)n,

as the largest invariant set contained in D. The set D∗
is compact and implicitly a function of k (or the ki).

Now we show that for a proper choice of the constant k,
it holds that

(B̄r1,3)n × (B̄q,3)n ⊂ D∗.

We assume without loss of generality that t0 = 0, and
note that

‖ω̄′i(t)‖ = ‖ω̄′i(0)‖ exp(−kit) ≤ q exp(−kit) ≤ q exp(−kt).

We choose
V (xi(t)) = xTi (t)xi(t).

By using Lemma 22, it is possible to show that there
exists an interval [0, t1) on which it holds that

D+(max
i
V (x(t))) ≤ qr2 exp(−kt).

By using the Comparison Principle, it follows that

max
i
V (xi(t)) ≤ max

i
V (xi(0)) + qr2

(1− exp(−kt))
k

on [0, t1). Now if we choose k ≥ qr2/(r2−r1) we see that
maxi V (xi(t)) ≤ r2 for t ≥ 0, and we can choose t1 =∞.

In order to show the desired convergence we use Theo-
rem 10 in [22], whereX = D∗, Γ2 = D∗∩((B̄r2,3)n×{0})
and Γ1 = D∗ ∩ (A× {0}). �

7.2 Translations

Also in this section only the consensus problem and
the first set of equations, (16), are considered here.
We introducing a generalized version of the control
law (14). When the formation control problem is con-

sidered the all variables are replaced by (̃·)-variables.
Furthermore the expression “mi(” is replaced by
“miR

∗T
i (”, and the expression “ω̂ivi” is replaced by

“̂̃ωi(̂̃ωiT ∗i + ṽi)) + ( ˙̃ωi)
∧T ∗i ”.

The proposed consensus controller is

f i =mi(−kiv̄i +
∑
j∈Ni

aijR
T
i (Rjvj −Rivi)

−
∑
j∈Ni

aijω̂iR
T
i (Tj − Ti) + ω̂ivi),
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where
v̄i = vi −

∑
j∈Ni

aijTij .

The closed loop dynamics is

Ṫi =
∑
j∈Ni

aij(Tj − Ti) +Ri(t)v̄i

˙̄vi − kiv̄i.

By treating the time as a variable z, we get the following
system

ż = 1

Ṫi =
∑
j∈Ni

aij(Tj − Ti) +Ri(z)v̄i

˙̄vi − kiv̄i.

Let the state of the entire system be (z, T tot, v̄tot), where
vtot = [v̄T1 (t), v̄T2 (t), . . . , v̄Tn (t)]T ∈ R3n.

Proposition 27 Suppose that Ri(z) is well behaved, in
the sense that the right-hand side of the dynamics for
(z, T tot, vtot) is locally Lipschitz, then the set R×A× 0
is globally asymptotically stable for the system.

Proof : Let the state space be X = R×R3n×R3n. We
define the two closed subsets Γ1 ⊂ Γ2 of X as follows

Γ1 = R×A× 0

Γ2 = R× R3n × 0

It is easy to show that Γ2 is globally asymptotically sta-
ble relative to X and Γ1 is globally asymptotically sta-
ble relative to Γ2. Now the desired result follows from
Theorem 10 in [22]. �

7.3 Illustrative examples

In Figure 4 the convergence to consensus is shown when
controllers (18), (19) and (20) are used. In the simula-
tions, five agents were considered and a random quasi-
strongly connected graph was used. The convergence
to consensus is shown for the rotations, left plots, and
the translation, right plots, when controller (18) was
used together with controller (20) and controller (19)
was used together with controller (20). The left plots
shows the Euclidean distance between xi(t) and x1(t)
for i = 2, . . . , 5, and the right plots show the Euclidean
distance between Ti and T1 as a function of time for
i = 2, . . . , 5.

In controller (19) as well as controller (20) the ki were
chosen to 3 for all i. The adjacency matrix was chosen
to that of a quasi-strongly connected graph with entries
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Fig. 4. Convergence to consensus.

equal to 0, 1 or 2. In controller (19) the representation
(R − RT )∨ was used as the local representation for the
yij .

Conclusions

This work has considered the consenus and formation
problems on SE(3) for multi-agent systems with switch-
ing interaction topologies. By a change of coordinates it
was shown that the consensus problem can be seen as
equivalent to the formation problem. Any control law de-
signed for the consensus problem can, after change of co-
ordinates, be used for the formation problem. New kine-
matic control laws have been presented as well as new
convergence results. It has been shown that the same
type of control laws can be used for many popular local
representations of SO(3) such as the Modified Rodrigues
Parameters and the Axis-Angle Representation. It has
been shown that some of the control laws guarantee al-
most global convergence. For non-switching topologies,
the kinematic control laws have been extended to torque
and force control laws for rigid bodies in space. The pro-
posed control approaches have been justified by numer-
ical simulations.
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