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Abstract 
 
When information about a distribution consists of statistical moments only, a self-
consistent approach to deriving a subjective probability density function (pdf) is 
Maximum Entropy. Nonetheless, the available information may have uncertainty, 
and statistical moments maybe known only to lie in a certain domain. If Maximum 
Entropy is used to find the distribution with the largest entropy whose statistical 
moments lie within the domain, the information at only a single point in the domain 
would be used and other information would be discarded. In this paper, the bounded 
information on statistical moments is used to construct a family of Maximum 
Entropy distributions, leading to an uncertain probability function.   This uncertainty 
description enables the investigation of how the uncertainty in the probabilistic 
assignment affects the predicted performance of an engineering system with respect 
to safety, quality and design constraints. It is shown that the pdf which maximizes 
(or equivalently minimizes) an engineering metric is potentially different from the 
pdf which maximizes the entropy. The feasibility of the proposed uncertainty model 
is shown through its application to: (i) fatigue failure analysis of a structural joint; 
(ii) evaluation of the probability that a response variable of an engineering system 
exceeds a critical level, and (iii) random vibration. 
 
 
Keywords: Maximum Entropy, uncertain probability density function, inequality 
constraints on statistical moments, bounds on failure probability, bounds on 
performance metric. 
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1  Introduction 
 
In engineering, several parameters of a computational model (such as geometry, 
material properties, loadings, boundary conditions, and structural joints) used to 
investigate the behaviour of a system may not be known precisely, and yet an 
engineering assessment of a design must nonetheless be performed. These 
uncertainties can be modelled in a parametric [1,2] or non-parametric way [2-5], or a 
combination of both [6-9]. While parametric approaches consider specific physical 
properties of the system to be uncertain, the non-parametric approaches account for 
the uncertainty effects at a higher level. Parametric uncertainty models can be 
probabilistic [1] or non-probabilistic (such as intervals [10], convex [11], and fuzzy 
[12]) and they are used in conjunction with a computational model to compute the 
effects of the uncertainties on the response. 
  
The most widely used parametric uncertainty description is the probabilistic one 
based on a specified probability density function (pdf). This description requires a 
large amount of data if the pdf is constructed using a frequentist view, or it may be 
interpreted as a statement of belief based on expert opinion, as in the subjective 
approach to probability theory. The more common frequentist approach is concerned 
with the outcome of experiments performed (hypothetically or in reality) on large 
ensembles of systems; these ensembles may either be real (for example cars from a 
production line), or virtual but realizable in principle (such as an ensemble of 
manufactured satellites, when only one satellite may actually be built). In contrast, 
with the subjective approach, no ensemble is necessarily involved. The pdf is 
interpreted as a statement of belief, rather than a frequentist statement, meaning that 
the analyst can specify a pdf in the absence of large quantities of data. The 
frequentist and subjective views can be roughly aligned with the notion of aleatory 
and epistemic uncertainty: aleatory uncertainty is an irreducible uncertainty due to 
an inherent variability of the system parameters, while epistemic uncertainty is 
reducible, being associated to a lack of knowledge of the actual values of the 
parameters which are fixed. 
 
In the frequentist case there is often insufficient data to empirically determine the 
pdf, due to cost or time constraints, and it may not be possible to take measurements 
if the structure does not yet exist. Similarly, in the subjective case, the analyst may 
have uncertainties in belief, meaning that the specified pdf is itself subject to doubt.  
Alternative uncertainty models have been developed by introducing uncertainty in 
the assignment of the parameters of a probability density function (pdf), and/or the 
pdf itself.  These models are broadly referred to as “imprecise probability 
approaches”. The idea of specifying upper and lower bounds on an imprecisely 
known probability of an event was introduced about 100 years ago by Boole [13] 
and Keynes [14]. Later, Walley [15] and Weichselberger [16] developed generalized 
probability theories. The imprecise probability approaches which are most widely 
used can be broadly classified into five groups: (i) Probability boxes [17,18]; (ii) 
Possibility theory [19,20], (iii) Evidence theory [21-25], (iv) Imprecise pdf 
descriptions based on the specification of interval constraints on the expectation of 
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functions of the uncertain variable, such as the approach proposed by Utkin and co-
workers [26,27]; (v) Probability and cumulative density functions (pdf and cdf) with 
non-probabilistic parameters (i.e. interval, convex, fuzzy descriptions), such as: (a) 
Parameterized P-Box [28]; (b) Fuzzy probability theory (also known as Fuzzy 
randomness) [29-31]; (c) Fuzzy random variable [32, 32]; (d) First Order Reliability 
Method (FORM) [1] approaches which employ pdfs with one [34] or two [35] 
bounded parameters (mean, variance or another distribution parameter); (e) 
Reliability models based on imprecise Bayesian inference models [36]; (f) Interval 
importance sampling methods combined with specified pdf with bounded 
parameters [37].  
 
Another way of dealing with limited information about a distribution is Maximum 
Entropy [38].  Maximum Entropy is a well-established approach to deriving a 
subjective probability density function (pdf) using statistical moments information 
only. However, there might be little confidence on statistical moments estimated 
from a small data set. Moreover, if no data is available and the pdf is interpreted as a 
statement of belief, the analyst may have uncertainties in belief and might prefer not 
to specify exact statistical moments. Therefore, statistical moments might be known 
only to lie in a certain domain, rather than being precisely known. In this case 
Maximum Entropy would select a unique distribution which maximises the entropy 
and whose statistical properties are within the statistical moment domain [38,39]. 
However, in this process some of the initial information is lost, since only one point 
of the statistical moment domain would be considered and other points, to which 
correspond different pdfs, are discarded. However, the pdf which maximizes (or 
equivalently minimizes) an engineering metric is potentially different from the pdf 
which maximizes the entropy.  
 
A new approach to uncertainty modelling which is based on a generalization of 
maximum entropy theory is presented in this paper, and applied to a number of 
engineering examples. With this approach, when the statistical moments are known 
only to lie in a certain domain, instead of selecting the pdf which maximize the 
entropy, a family of Maximum Entropy distributions is constructed. This is achieved 
by representing the pdf of the vaguely known variable as the exponential of a linear 
combination of functions of the uncertain variable and bounded parameters. This 
form is equivalent to the Maximum entropy distribution, where the Lagrange 
multipliers (which are constant values) are substituted by bounded parameters, 
leading to a set of pdfs. These bounded parameters are referred to as basic variables, 
defined as having any form of distribution lying between certain bounds, 
encompassing at the extreme a delta function at any point between the bounds. A 
mapping procedure is devised to convert bounded information on the statistical 
moments into bounds on the basic variables. With this approach a bounded response 
description is then obtained by maximising (minimising) a response metric over the 
set of pdfs to: (i) establish the effects of the imprecisely known pdf on the response; 
and (ii) identify of the worst case scenario (e.g. the highest failure probability 
expected).  
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The present approach has similarities to that proposed by Utkin [26,27], in that the 
information considered is a set of constraints on the statistical moments. However, 
in [26,27] the set of moments yield to many possible distributions with no 
consideration of Entropy, and a set of complex optimization problems is performed 
to yield bounds on the expectation of the response or on the reliability of the system, 
which restrict its application to simple problems. Instead, within the proposed 
approach, the specified set of constraints are used to: (i) identify the form of the 
Maximum Entropy distribution, and to (ii) yield bounds on the basic variables of the 
pdf to construct a set of maximum entropy pdfs.   
 
As described above, the main aim of the present paper is to present a generalisation 
of the Maximum Entropy principle given uncertain statistical information, leading to 
a family of probability distributions that can be used to make engineering 
judgements.  The theory behind this approach is presented in Section 2, with a 
numerical example of the treatment of bounded information in Section 2.2.4.  
Attention is then turned to three engineering applications, namely the fatigue failure 
of a structural joint (section 3.1), the overstress failure of a structural joint (section 
3.2), and the random vibration of an oscillator (section 3.3). Aspects of theory 
relating specifically to the example applications are contained in the relevant 
subsections, to emphasise the fact that the theory presented in Section 2 is general, 
and not directed at any specific example.  
 
 
 

2. Generalized Maximum Entropy distribution under 
uncertain statistical information 
 
In subsection 2.1 the procedure for deriving a probability density function with the 
Maximum Entropy principle is first reviewed. The approach is then generalised to 
account for uncertainty in the statistical moments in subsection 2.2.  
 
2.1 Review of Maximum Entropy  
  
The principle of Maximum Entropy [38] allows the construction of a subjective pdf 

 p x  of an uncertain variable x [38] which incorporates the current state of 

knowledge by maximizing the relative entropy subject to constraints representing 
the available information.  
The relative entropy, that is the amount of uncertainty in the probability distribution  

 p x , is given by [38]: 

 

    
 

log d
p x

H p x x
t x





 
    

 
  (1) 
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where  t x  is a reference pdf (which is also known as the prior distribution) 

introduced to allow the entropy to be frame invariant [38, 40] 
The available information regarding the statistics of the variable x is expressed in 
terms of n equality constraints on the statistical expectations in the form: 
 

      E d 2,3,...,j jf x f x p x x j n



       (2) 

 
where  jf x  are specified functions of x, and  E jf x    is the statistical 

expectation of  jf x . If  jf x x  then the constraints are specified on the mean 

value, alternatively if   2
jf x x  they are specified on the second moment. The 

function  jf x  can be also defined as an interval of possible values that the 

uncertain variable may take, i.e.    ,jf x b c ; in this case the constraints 

corresponds to the probability of finding x within those bounds. 
 
This constrained maximization problem (maximizing Eq. (1) subject to Eq. (2)) can 
be solved by using the method of Lagrange multipliers [38], which is based on 
transforming the original constrained optimization problem into an unconstrained 
dual optimization problem in the form: 
 

    
        

1

log d d E
n

j j
j

p x
p x x f x p x x f x

t x


 

 


 
       

 
   (3) 

 
where j  are the n Lagrange multipliers. The maximization of the functional in Eq. 

(3) is then obtained using the calculus of variations, which lead to the well-known 
general form of the maximum entropy distribution [38]:  
 

      
1

exp .
n

j j
j

p x t x f x


 
  

 
  (4) 

 
where the normalization condition on  p x  is enforced by setting  1 1f x   and 

 1E 1f x    , and considering a Lagrange multiplier 1 1 1   . The n-Lagrange 

multipliers are constant values computed by solving a set of n simultaneous non-
linear equations obtained by substituting Eq. (4) into Eq. (2).  
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2.2 Family of Maximum Entropy distributions 
 
2.2.2 Basic concepts 
 
The available information might have uncertainty so that the statistical moments are 
known to lie in a certain domain. For simplicity, let us express the available 
information by a set of inequality constraints on the statistical expectation:  
 

      ,min ,maxE d , 2,3,...,j j j j jv v f x f x p x x v j n         (5) 

 
where ,minjv  and ,maxjv  are the lower and upper bounds on the thj  statistical 

expectation jv .  

Many distributions can satisfy the inequality constraints specified in Equation (5). 
The proposed uncertainty description first constructs a family of Maximum Entropy 
distributions consistent with the statistical inequality constraints, then propagates the 
family of pdfs through the equations describing the problem on hand in order to 
yield the pdf which maximizes (or equivalently minimizes) a specified engineering 
metric.   
 
Specifically, the pdf of a vaguely known variable x  is expressed as the exponential 
of a linear combination of specified functions of the random variable  jf x  and 

some bounded variables a  (referred to here as basic variables), so that: 
 

      
1

exp .
n

j j
j

p x R t x a f x


 
   

 
a  (6) 

 
The basic variables are contained in the vector a , which has entries ja  with 

2,3...,j n , and they lie within an admissible region R  (which can be an interval, a 
convex region, etc.). These basic variables substitute the Lagrange multipliers of Eq. 
(4) and are such that they can have any possible pdf within certain bounds, including 
the extreme case of a delta function at any point between the bounds. Therefore, Eq. 
(6) represents a family of Maximum Entropy distributions defined over the set of 
basic variables a . If a parameter is not “basic”, then its pdf can be expressed in 
terms of the basic parameters, and thus only this type of parameter is considered in 
what follows. The term  1 1f x  , and the coefficient 1a  is dependent on the basic 

variables ja  (with 2,3...,j n ) , being chosen to satisfy the normalisation 

condition.  
For ease of presentation, the following analysis adopts a uniform prior in equation 
(6), so that   1t x  , although this restriction could readily be relaxed if required.  

Strictly   1t x   corresponds to an “improper prior” [40], in the sense that the prior 

does not satisfy the normalisation condition, but this does not affect the analysis: the 
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posterior distribution is normalised, and this process absorbs any normalising 
constant that might be added to the prior.  
 
 
2.2.2 Constructing a family of Maximum Entropy distributions 
 
When the statistical moments are known to lie in a certain domain (for example as in 
Eq. (5)), the construction of the family of Maximum Entropy distributions consists 
of the following steps: 

1. Express the pdf of a vaguely known variable in the form of Eq. (6). 
2. Convert the statistical moments domain (m-domain) into a basic variable 

domain (so-called a-domain). 
3. Subdivide the a-domain into a sufficient number of grid of points. 
4. Compute the coefficient 1a  for each point of the grid (by using the 

normalisation condition) to derive the corresponding pdf.  
 

In the next subsection a procedure for efficiently performing step 2 is presented. 
 
2.2.3 Treatment of bounds 
 
Consider the case in which the information on the pdf of x  is given in terms of a 
bounded statistical moment, say  2,min 2 2,maxEv f x v    . The aim of the analysis is to 

evaluate the mapping to the basic variable domain (a-domain) as illustrated in 
Figure 1. 

 
Figure 1: Converting bounds on the statistical expectations   2E f x    (m-domain) 

into bounds on the basic variable 2a  (a-domain). 
 

According to Eq. (6), for the specified inequality constraint, the pdf is expressed as: 
 

    1 2 2exp .p x a a f x a          (7) 

 

 

 

 

 

 

 

 

2,maxa2,mina

2a

2,max
2,min

 2E f x  

-domaina

-domainm
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where 2a  is the unknown basic variable and 1a  is a coefficient which is chosen to 
satisfy the normalisation condition. By employing the definition of statistical 
expectation (Eq. (2)), the lower bound on 2a , 2,mina , is calculated from the equation 

 

     2 1 2,min 2,min 2 2,minexp df x a a a f x x v        (8) 

 
Similarly, the upper bound on 2a , 2,maxa , is obtained from 

 

     2 1 2,max 2,max 2 2,maxexp df x a a a f x x v         (9) 

 
The mapping into the a-domain can become much more computationally demanding 
when the m-domain is expressed as a general region defined by multiple reference 
points.  Consider for example the simple case where the information on the pdf of 
the uncertain variable x   is described via a rectangular m-domain, as shown in 
Figure 2(a). 

 
Figure 2: Converting a rectangular m-domain (a) into the corresponding a-domain 

(b). 
 
According to Eq. (6), the form of the pdf is now: 
 

      1 2 2 3 3expp x a a f x a f x  a         (10) 

 
where 2a  and 3a  are the unknown basic variables, and 1a  is chosen to satisfy the 
normalisation condition.  
Each point of the basic variables domain (a-domain), which is depicted in Figure 
2(b), can be obtained from the m-domain (Figure 2(a)) by solving a set of two non-
linear equations in terms of the statistical expectations of the random variable. For 
example, point 1 of the m-domain (Figure 2(a)) can be mapped in the corresponding 
point 1 of the a-domain (Figure 2(b)) by solving: 
 

 2E f x  

 3E f x  

2,max2,min

3,min

3,max

2a

3a

-domainm
-domaina

 a  b

1

2 3

4

1

2

3

4
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2 1 2,1 3,1 2,1 2 3,1 3 2,min

3 1 2,1 3,1 2,1 2 3,1 3 3,min

exp , d

exp , d

f x a a a a f x a f x x v

f x a a a a f x a f x x v

     


     




  (11) 

 
A good approximation of the shape of the a-domain can be obtained by considering 
enough sample points along the edges of the m-domain. However, even for the 
simple problem under investigation, the solution of each set of non-linear equations 
can be time consuming and convergence problems may occur. 
 
A computationally efficient approach is developed here by expressing the variation 
of the pdf over the m-domain as a Taylor series. The mid-point of the m-domain is 
denoted by *ν , and this point will map to a point in the a-domain which will be 

denoted by a . The dependency of the pdf on a in the vicinity of a  is written as a 
Taylor series in the form:  
 

                

       

     

       

2

2

2 2

3

3 3 3

1
2

1
...

6

n

j j
jj

n n

j j k k
j kj k

n n n

j j k k l l
j k lj k l

p x
p x p x a a

a

p x
a a a a

a a

p x
a a a a a a

a a a







 



 

 

  

  


   




  

 


    

  







a

a

a

a
a a

a

a

(12) 

 

where  p x a  is the distribution evaluated at the mid-point of the m-domain. As 

an example, let’s consider the case depicted in Figure 3.  
 

 
Figure 3: Example of the evaluation of the expansion point. (a) the middle points, *

2   
and *

3 ,  of the m-domain are identified. (b) the corresponding point in the a-domain 

is indicated with a . 
 

 2E f x  

 3E f x  

2,max2,min

3,min

3,max

2a

3a

 a  b

1

2 3

4

1

2

3

4

*a

*
2

*
3
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The terms *
2   and *

3  specified for the m-domain (Figure 3(a)) are employed to yield 

the term a  (depicted in Figure 3(b)), with coordinates 2a  and 3a , by solving a set of 
two simultaneous equations: 
 

   
   

* *
2 2

* *
3 3

d

d

f x p x x v

f x p x x v

 







a

a
          (13) 

 
The statistical expectation of a function  sf x  can now be approximated by 
truncating the Taylor series expansion to the second order term: 
 

               

       
2

2

2 2

d d d

1
d

2

1,2,...

n

s s s j j s
j j

n n

j j k k s
j k j k

p x
v f x p x x f x p x x a a f x x

a

p x
a a a a f x x

a a

s n





 



 

 


   




  

 



  

 

a

a

a
a a a

a  

                           (14) 
 
Expressions for the derivatives of the probability density function with respect to the 
basic variables can be derived by considering the relationship between the basic 
variables and  moments and cumulants of the pdf (as shown in appendix A).  Eq. 
(14) can be finally rewritten as: 
 

            1 2 3
, , ,

2 2 2

1

2

1,2,...

n n n

s s j j s j j j k k s j k
j j k

v c a a c a a a a c

s n

  

  

     



 * * *a a a a

                          (15) 
 
where    1 2

,,s s jc c* *a a  and  3
, ,s j kc *a  are the first, second and third order cumulants, 

respectively, calculated at the *a  point. The term  1
sc *a  corresponds to the statistical 

expectation calculated at *a , therefore it is equivalent to the term   *
s s *a  which 

can be obtained directly from the m-domain, while  2
,s jc *a  and  3

, ,s j kc *a  are 

calculated by the numerical integration of: 
 

          2 * * *
, d ,s j s s j jc f x f x p x x   *a a  (16) 

 

             3 * * * *
, , d .s j k s s j j k kc f x f x f x p x x     *a a  (17) 
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Each point of the a-domain a  corresponding to a point  v a  of the m-domain can 

be then computed by solving a set of n (where n corresponds to the domain 
dimension) equations (in the form of Eq. (15)) where a linear or quadratic 
approximation might be considered. High order terms may also be included by using 
the relations in appendix A. Therefore, if r points of a 3-dimensional m-domain are 
mapped into the a-domain, this would require solving r sets of 3 equations.  
By adopting this approach, the edges of the m-domain can be mapped to the a-
domain in an efficient way, thus allowing a permissible region of the a-domain to be 
determined.  
The foregoing mapping procedure (which forms step 2 of the overall process listed 
in subsection 2.2.2) can be summarized as follows: 

1. Map the mid-point of the m-domain ( *ν ) to a point in the a-domain a  by 
solving a set of non-linear equations in terms of the statistical expectations of 
the random variable. These equations will each have the form of those shown 
in Eq. (13). 

2. Calculate the cumulants  2
,s jc *a  and  3

, ,s j kc *a  (Eq. (16) and Eq. (17)). 

3. Compute the edges of a-domain by considering a set of points on each edge 
of the m-domain. At each point a set of n (where n corresponds to the domain 
dimension) equations in the form of Eq. (15) is used to map the m-
coordinates to the a-coordinates.  
 

The steps for generating the family of Maximum Entropy distributions (subsection 
2.2.2), including the treatment of bounds just described, are illustrated via a 
numerical example in the following subsection. The family of pdfs generated in the 
next subsection will then be used in a number of numerical applications in section 3.   
 
2.2.4 Generating the family of Maximum Entropy distributions: example  
 
Let us consider an elastic spring x  with the following available information:  
(i)    the variable is positive  
(ii) the vertices of a convex region of the statistical expectations  E x  and 

 E ln x    are known, as specified in Table 1 and shown in Figure 4.   

 
Vertices of the m-domain Coordinates (N/m; - ) 

1   518.0 10 ,14.273  

5   522.0 10 ,14.518  

9   522.0 10 ,14.498  

13   518.0 10 ,14.243  

 

Table 1: Statistical expectation domain (m-domain) vertex coordinates 



F

Thi

E 

E l
pro
 
Ste
The
dis
 
 

 
wh

app

 

 

 
wh

The
bas

 

Figure 4: St
along the m

is m-domai

 ln x   with

 *
ln 14.3x  

ocedure desc

ep 1: Expres
e pdf of x
tribution: 

here 2a  and

plying the n

here     is

e moments 
sic variables

 

tatistical exp
m-domain, w

in displays 

h respect to

383 .The fam

cribed in su

ss the pdf of
x   is writte

p

d 3a  are th

normalisatio

s the gamm

of the gamm
s: 

pectation do
while the “x

a maximum

o the corre

mily of Max

ubsection 2.2

f a vaguely 
en in the s

  exp x a

he two unkn

on condition

1 lna  

ma function. 

ma function

E

  lnE x

12 

 
omain (m-d
x” indicates 

 
m variation

esponding m

ximum Entr

2.2: 

known vari
same form 

 1 2xp a a x

known basic

n (for Re a

   3 1
2

aa  

 

n can be exp

 
2

1 a
E x

a




 31 a 

domain). Th
the middle 

n of 10%  o

mid-points

ropy pdfs ar

iable in the 
of Equatio

 3 lnx a x

c variables,

 2 0;Re

  31 ,a

pressed in c

3a

  3 2ln a

 

e circles ind
point of the

on  E x  and
*E 20.x   

re generated

form of Eq
on (6), that

,

while 1a  

3 1a  ) as:

losed-form 

dicate point
e m-domain

d of 0.95%
50 10 N/m 

d following

q. (6). 
t is a Gam

(

is obtained

:  

(

in terms of

(

(

ts 
n 

 on 

and 

the 

mma 

(18) 

d by 

(19) 

f the 

(20) 

(21) 



13 

where     is the digamma function.  Therefore Eq. (20) and Eq. (21) can be used 

to compute the a-domain exactly. These equations will be used in what follows to 
verify the approximate mapping strategy proposed. 
  
Step 2: Convert the statistical moments domain (m-domain) into a basic variable 
domain (so-called a-domain). 
Although the m-domain is characterized by linear surfaces, the corresponding a-
domain is not; therefore, three points for every two vertices (at 1/4, 1/2 and 3/4 from 
one of the vertices) of the m-domain are considered. These points are shown in 
Figure 4.  
The proposed mapping strategy (described in section 2.2.4) would consider a Taylor 
series expansion over the whole domain, taking the mid-point of the domain as the 
reference point for the expansion. For the present example the value of 

 * *
2 3,a a a  corresponding to the mid-point is found by solving the equations: 

 

 
 

     

* * * * 5
1 2 3

* * * *
1 2 3

exp ln d E 19.999 10

ln exp ln d E ln 14.383

x a a x a x x x

x a a x a x x x

           


         




 (22) 

 
indicated with an “x” in Figure 4. The solution of Eq. (22) leads to 

 520.696 10 , 3.139   a . This has been calculated using the Matlab function 

“fsolve” [41] which finds the roots of a system of non-linear equations by applying 
the trust-region dogleg algorithm [41], and it has been verified using Eq. (20) and 
Eq. (21). Each of the 16 points labelled in the m-domain in Figure 4 is then mapped 
onto the a-domain by solving a set of two quadratic equations expressed as in 
Equation (15). Each point in the a-domain has been verified by exploiting the direct 
relation between statistical moments and basic variables (Eq. (20) and Eq. (21)) 
showing a good agreement (a perfect agreement can only be reached if the moments 
are a quadratic function of the basic variables). The a-domain so obtained is shown 
in Figure 5.  
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Figure 6: Points sampled within the a-domain (a). 40 pdfs obtained from 40 random 
points taken within the a-domain (b)  

 
The set of 430 pdfs generated is used in the next sections to investigate the 
performance of engineering systems.    
 
The Maximum Entropy distribution, which is the gamma pdf with the largest 
entropy that satisfies the statistical moment conditions, can be computed by 
calculating the entropy (measured in nats) associated with each gamma distribution:  
 

 
   3

3 3 3
2

 1
ln 1 1e

a
h a a a

a
        

 
 (23) 

 
and then searching in the a-domain (or equivalently in the m-domain by using Eq. 
(20) and Eq. (21)), the combination of basic variables which maximise Eq. (23). For 
the case under investigation, the pdf with the largest entropy is the one with basic 
variables corresponding to point 10 of the a-domain.  
 

3 Performance analysis of engineering systems 
 
The feasibility of the proposed uncertainty model is shown in this section through its 
application to three engineering problems: (i) fatigue failure analysis of a structural 
joint; (ii) evaluation of the probability that a response variable of an engineering 
system exceeds a critical level, and (iii) random vibration.  
 
3.1 Fatigue failure of a structural joint  
 
Fatigue failures of structural joints are caused by excessive accumulated damage 
produced by fluctuating stresses due to time-varying loadings (for example ocean 
wave loads acting on an offshore structure). These stresses are usually random and 
difficult to be fully characterised, given the random nature of the loadings acting on 
the structures, the uncertainty in the dynamical properties of the structures itself and 
the inherent variability in the fabrication of structural joints. The average damage 
caused at a joint of a structure in a time T by a random stress S ,   E D T , is 

proportional to the average of the inverse of the number of stress level at amplitude 
S ,  N S , which are required to produce a failure [42-43]: 

 

     
 0

E d
p S

D T S
N S


   (24) 

 
where  p S  is the distribution of peak stress amplitude, and  N S  is obtained 

from the characteristic S-N curve of the joint [41,42]. In particular,  N S  is usually 

expressed in the form [42,43] 
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   mN S CS   (25) 

 
where C  and m  are fatigue coefficients which can be derived experimentally or can 
be obtained from the classified S-N curves [42,43]. Equation (24) can be therefore 
rewritten as 
 

     
0

E dmD T S p S S


   (26) 

 
Let us now assume that the pdf of the stress level in the joint is imprecisely known 
and is expressed as    p S p xa a . The average damage can now be expressed 

as: 
 

     
0

E dmD T S p S S


 a a  (27) 

A fatigue failure function can be then introduced:   
 

    
0

d t 0mF S p S S


  a a  (28) 

 
where t  is a fixed threshold, specified according to the problem on hand, that if 
exceeded leads to a fatigue damage “failure”.   
The aim of the analysis is then to predict the maximum and minimum values of the 
fatigue failure function: 
 
    min max

R R
F F F

 
 

a a
a a  (29) 

 
Moreover, if a large number of pdfs is producing fatigue failures, then two options 
can be explored: (i) gain more information in order to reduce, if possible, the basic 
variable domain; (ii) investigate the behaviour of a different structural joint.  
 
3.1.1  Numerical application on fatigue failure 
 
Consider a stress level in the joint with a pdf as the one described in subsection 
2.2.4. The fatigue coefficient m  is set to 3.5 and a threshold of 22t 2.8 10   is 
specified. By using Equation (28) it is found that 179 pdfs, out of the 430 pdfs 
generated, lead to a fatigue failure. Each pdf is fully identified by specifying 
 2 3, aa , therefore each pdf leading to a fatigue failure can be identified by a point 

in the a-domain.  This type of description is used in Figure 7, where each pdf 
leading to fatigue failure is indicated in with a black marker. The maximum and 
minimum values of the fatigue failure function (obtained from Equation (29) and 
specified in Figure 7 with the labels “max” and “min” and grey circles) are, 
respectively, 223.3134 10  and 222.8015 10 .  



If t
wit
stre
dis
fun

Fig
in
an

 
3.2

The
unc
pro
the
pro

 

 

 
tha
a cr

by 

If t
unc

the MaxEnt
th the label
ess amplitu
tribution w

nction. 

gure 7: Fati
ndicated in t
nd maximum

grey

2 Failure
 
e performa
certainties i
operties of t
e probability
obability, fP

at is the prob
ritical level

propagating

the input pd
certainties i

t distribution
l “MaxEnt”
ude in Equ
would there

igue failure 
the a-domai
m failure fun
y circle. The

e probabi

ance of an
n the loadin
he system. 
y that the 

fP , can be us

P

bability that
l 0w , where

g the uncert

dfs are vagu
in the pdf o

n (correspo
” in Figure 
uation (28)
efore under

analysis res
in by cross m
nctions are i
e maximum

ility estim

n engineerin
ng, boundar
Therefore, t
design targ
sed: 

ProbfP 

t the respon
e  p w  is t

tainty in the

uely known,
of the respo

17 

onding to po
7) is used

, it would
restimate th

sults. The p
markers. Th
indicated w

m entropy pd
 
 
 

mation 

ng system 
ry condition
the perform
gets will b

0w w 

nse variable 
the distribut

e input varia

, the uncert
onse variab

oint 10 of th
d to represe
d yield 3.1
he maximu

pdfs which y
he pdfs that 

with min and
df is indicate

is general
ns and in the
mance is usu

e met [1]. 

 
0

d
w

p w w




w  of an en
tion of the r

ables  p y

tainty in the
ble. Therefo

he a-domain
ent the distr

22460 10 . 
um value o

yield to fatig
produce to 

d max, respe
ed with Max

lly uncertai
e material an
ually expres

Equivalent

w

ngineering s
response var

.  

e pdf assign
ore, the failu

n and indica
ribution of 
 The Max
of the fati

 
gue failure 
the minimu

ectively, an
axEnt  

in due to 
and geometr
ssed in term
tly, the fail

(

system exce
ariable obtai

nment produ
ure probabi

ated 
the 

xEnt 
igue 

are 
um 

nd a 

the 
rical 

ms of 
lure 

(30) 

eeds 
ined 

uces 
ility 



esti
pro
dom

can
var
 

 

 
Fin
 

 

 
The
fail
be 
 
3.2
 
Let
tha
lev

(da
min
5) 
(co
5) i
 

imate is it
obability de
main p y a

n be establis
riable is esti

nally, the up

ese bounds 
lure probab
expected w

2.1 Nume

t us conside
at the failur
vel 0 4x  
ashed line, 
nimum (dot
failure pro

ontinuous bl
is shown.  

Figure 8: S
(vertical 

tself subjec
scription, a
a . For fixe

shed, and c
imated as: 

fP a

pper and low

provide an
bility estima
which would

rical appl

er again the 
e condition

610  N/m  (

correspond
tted line, co
obabilities 
lack line, co

Set of proba
continuous 

ct to uncert
a family of i
ed basic var

onsequently

 Prob wa

wer bounds 

min f
R

P
a

a

n indication 
ate, and allo
d be of more

lication o

spring stiff
n is reached
(overstress 

ing to poin
orrespondin

are shown
orrespondin

ability densi
line). Dash

18 

tainty. By 
input pdfs i
riables, the 

y the failure

0w w a

on the failu

 mfP


 
a

n of the effe
ow establish
e interest fro

n failure 

fness describ
d when the 
failure). Th

nt 9 of the 
ng to point 1
n in Figur
ng to point 1

ity function
hed line: pdf

employing
is construct
pdf of the r

e probabilit


0w

p w


  a

ure probabil

  ax .f
R

P


a

ects of the u
hing the hig
om an engin

probabili

bed in subs
spring stiff
he pdfs wh

a-domain d
1 of the a-d
re 8, wher
10 of the a-d

ns (pdfs) com
f that yield t

 the propo
ed over the
esponse var

y condition

dwa

ity can be e

uncertain in
ghest failure
neering poin

ity  

ection 2.2.4
fness x  exc
hich yield 

depicted in 
domain depi
re also the
domain dep

 

mpared to a
the maximu

osed imprec
e basic varia
riable p w

nal on the b

(

evaluated as

(

nput pdf on 
e probability
nt of view. 

4. It is assum
ceeds the li
the maxim

Figure 5) 
icted in Fig

e MaxEnt 
picted in Fig

a limit level 
um failure 

cise 
able 

w a  

asic 

(31) 

s: 

(32) 

the 
y to 

med 
imit 

mum 

and 
gure 
pdf 

gure 



pro

It h

con
bet
inc
pro
und
 
 
3.3
In 
ran
wh
The
wit
stru
wit
The
of 
dam

of t

  

 
The
 

 

 

obability. D

has been fou

nsidering th
tween the 
cluding the 
obability e
derestimatin

3 Random
the design

ndomness in
hile the para
e random v
th simplifie
uctural com
th respect to
e random v
a Single De
mper c , sub

the mass y

e governing

Dotted line: 

und that 0.0

he MaxEnt p
upper and 
imprecise 

stimates. A
ng the upper

m vibratio
n of aircraf
n the excit
ameters of t
vibration an
ed techniqu
mponent, or
o the structu
vibration ana
egree of Fre
bject to a ra

 t , as show

Figu

g equation o

y

pdf that yie
black line: 

0227 0fP 
pdf is 0.050
lower bou
probability

Also for t
r bounds of

on analysi
ft structural
ation (of m
the structur

nalysis of ai
ues, such as

a seconda
ural respons
alysis of air
eedom (SD
andom exter

wn in Figur

ure 9: Damp

of the proble

  2 ny t 

19 

eld the mini
maximum 

 
0.0522 whi

09. A differ
unds of th
y descriptio
this case, 
f the engine

is  
l componen

mechanical 
ral compone
ircraft struc
s Miles’ E

ary structure
se.  
rcraft structu

DOF), consis
rnal force F

re 9.  

 
ped SDoF su

em can be w

 n ny t y

mum failur
entropy pdf

ile, the failu

rence of ab
e failure p
ons signific

the MaxE
ering metric

nts is often
and acoust

ents are ass
ctural compo
quation [44
e, has a do

ural compo
sting of a m
 F t which

ubject to a f

written as: 

  F t
y t

m


e probabilit
f  

ure probabili

bout 56% ca
probability, 
cantly affec
Ent pdf w
c of interest

n assumed 
tic nature) 
umed to be
onents is of
4], which a
ominant natu

nents reduc
mass m , a s
h produces a

force 

t

ty. Continuo

ity obtained

an be obser
meaning 

cts the fail
would lead 
t.  

that only 
is of conc

e determinis
ften perform
assumes tha
tural freque

ces to the st
spring k  an
a displacem

(

ous 

d by 

rved 
that 
lure 

to 

the 
ern, 
stic. 
med 
at a 

ency 

tudy 
nd a 
ment 

(33) 



20 

being  2  c k m   the damping ratio, and / 2n nk m f    the SDOF 

natural frequency corresponding to the dominant natural frequency of the structural 
component. 
 
If the input is a broadband random loading with a constant spectral density over the 

frequency range of interest,   0FFS f S  (with units of  2N Hzkg ), being f  

the frequency expressed in Hz, the solution of the  SDoF governing equation yields 
the Miles’ Equation [44]:   
 

 
 0
3 332

n
y rms

n

QS f
y

f



   (34) 

 
This equation expresses the root mean square (rms) of the mass displacement, y   

as a function of the natural frequency of the SDoF, nf , of the quality factor 

   1 2  Q k m c   and of the value of the excitation force spectral density at 

the natural frequency  0 nS f .  

 
In aircraft design it is important to verify that the structure is be able to withstand a 
certain stress levels, such as the yield stress. We can now define the failure 
probability of the structural component, as the probability that the displacement 

( )y t  exceeds a given level b  with a velocity ( )y t  in a certain period of time  . It is 
well known that by assuming that each crossing of the barrier is independent from 
each other and randomly distributed along the time axis, the failure probability fP  

can be expressed as [42-44]: 
 

1 expf bP                    (35) 

 

Being b   the average number of positive crossing per unit of time of a barrier b, 
which is given by [42-44] 

2
1

exp
2 2

y
b

y y

b


 


  
   

   


        (36) 

Here y   is the mean square of the velocity which is given by [41-43]: 

 

 
0

8 2y
n

S
f


 

               (37) 

 
Nonetheless, the dominant frequency of the system may be uncertain because of 
manufacturing variability, and because of variation in joints and connections of 
structural components. This conventional approach is extended here in two ways: (i) 
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firstly, the system parameters are taken to be uncertain rather than known, (ii) 
secondly, the uncertainty is modelled with an imprecise probability description, 
rather than with conventional pdfs (which usually are not known, due to a lack of 
empirical information).  
 
When the system parameters are modelled with a probability density function, the 
problem concern with an ensemble of SDoFs. Each element of the ensemble has a 
specified value of the natural frequency, and when subject to the random loading, it 
is characterised by a random displacement response. 
 
If we assume nf  is described by a probability distribution  np f , we can then 

apply two different methods: 
 
Method A – unconditional failure probability 

 
Method A enables the evaluation of the unconditional failure probability across an 
ensemble of SDoFs. This achieved by solving the unbounded integral:  
 

   df f n n nP P f p f f                (38) 

 
where  f nP f  is the failure probability of a member of the ensemble (for fixed nf ) 

which is computed using Eq. (35). This type of integral can be evaluated 
numerically by considering a grid of integration points (direct integration) or by 
employing Monte Carlo Simulations [1]. 
 
 
Method B – probability of failure probability exceeding a target level 
 
Method B yields the probability that the failure probability exceeds a specified target 
level   across the ensemble of SDoFs. This is expressed as a bounded integral:  

 

   d
f

f n n
P

P P p f f





               (39) 

 
In most cases the analytical solution of this integral is not known and its 
approximate solution can be obtained by using numerical integration methods or 
Monte Carlo Simulations [1].  
 
Method A addresses the problem of estimating the probability that a deterministic 
limit value of the SDoF displacement response is exceeded by the response variable 
across the ensemble of SDoFs; Method B addresses a different type of problem: by 
specifying a critical value of the failure probability, it yields the probability that the 
failure probability itself exceeds this critical value. Therefore, these approaches 
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yield two probability estimates which can be very useful from the engineering point 
of view.  
 
By introducing uncertainty in the probabilistic assignment of the system parameters, 
using the form  nnp f a , Method A and Method B can be generalised to yield 

bounded quantities.  
 
Generalisation of Method A  
For fixed basic variables  f nP f a  can be established, then Equation (38) can be 

generalised to yield the unconditional failure probability for fixed basic variables: 
 

     df f n n nP P f p f f a a a        (40) 

 
As a result we can then evaluate the upper and lower bounds on the failure 
probability as: 
 

                   min maxf f f
R R

P P P
 

 
a a

a a  (41) 

 
These bounds provide an indication of the effects of the uncertainty in the natural 
frequency pdf to the system reliability. As a result, the designer can decided to (i) 
gain more information on the vaguely known pdf in order to reduce, if possible, the 
basic variable domain; (ii) investigate a different design solution to reduce the 
maximum failure probability, if this is not acceptable.  
 
 
Generalisation of Method B 
  
Equation (39) can be also generalised to yield the probability that the failure 
probability exceed a certain threshold   for fixed basic variables a : 

 

    d
f

f n n
P

P P p f f





  a a              (42) 

to yield the following bounds:     

             min maxf f fR R
P P P P P P  

 
            a a

a a   (43) 

 
These bounds provide an indication on the confidence on having reached a 
reliability target level (probability of exceedance of a limit failure probability value) 
given the uncertainty in the pdf. The narrow they are, the more confident the 
designer can be about the reliability target level.  
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3.3.1 Numerical application  
 
Consider a structural panel of a spacecraft with fundamental frequency of nf =250 
Hz, damping ratio 0.05   (quality factor 10Q  ), subject to a white noise Power 

Spectral Density function  2
0 100 N HzS kg . A displacement threshold level 

7 0.0018 mmyb    ( y  being computed with Eq. (34)) during a time interval 

3   hours is specified.  
Using the standard approach (Eq. (35)), the resulting failure probability is: 

56.1 10fP   . 

Now, let us consider that the fundamental frequency of the panel is imprecisely 
known, and it is defined in terms of the spring stiffness described in subsection 2.4, 
so that the pdf of the natural frequency conditional on the basic variables,  np f a , 

is given by (see appendix B for its derivation):  
 

    2 2
1 2 32 exp ln ,n n n np f f a a f a f      a  (44) 

 

where 24 m   with 0.81m   kg, and 1a  is obtained by applying the 

normalisation condition (for    2 3Re 0;Re 0a a  ) as: 
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2 2
1

3
ln .

1

aaa a
a

a
   

    
 (45) 

  
If we consider a single distribution at point 5, shown as a continuous black line in 
Figure 10, this would yield a failure probability of: 

point 5
0.2159fP   (obtained 

solving Eq. (38) using direct integration). Alternatively, by choosing the maximum 
entropy distribution (shown with a dashed line in Figure 10), this would yield a 
failure probability of: 

point 10
0.2935fP  . 
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13, respectively); therefore the MaxEnt pdf (
point 10

0.2935fP  ) would 

underestimate the upper bound.  
Similarly, by using the 430 distribution constructed in section 2.2.4, the probability 
that the failure probability target is exceeded can vary from 

  0.3876 0.001 0.5918fP P      (obtained at points 7 and 13, respectively); 

also in this case the MaxEnt pdf would underestimate the response upper bound (

 
point 10

0.4605fP P     ). 

 
It can be concluded that employing the proposed uncertainty model enable an 
enhanced description of structural panel performance yielding the maximum and 
minimum values that the engineering metric of interest (eg the failure probability) 
might take based on the available information, rather than yielding a single value 
which might significantly underestimate or overestimate the engineering metric of 
interest. 
 

4 Conclusions 
 
A generalization of Maximum Entropy distribution under uncertain statistical 
information has been presented in this paper. When the available information has 
uncertainty such that the statistical moments are known only to lie in a certain 
domain, Maximum Entropy would yield a single distribution (the MaxEnt pdf) with 
the largest entropy. As a results, MaxEnt would use the information at only a single 
point in the domain and would discard the other information. The proposed 
approach instead uses this information to construct a family of Maximum Entropy 
distributions, leading to an uncertain probability density function. Therefore, instead 
of investigating the effects of the MaxEnt pdf on the response variable, the proposed 
approach yields the pdf which maximizes (or equivalently minimizes) an 
engineering metric, and quantifies the effect of the uncertain pdf on the response.  
 
A strategy for efficiently treating bounds on the statistical moments to yield the 
bounds on the parameters of the uncertain pdf has been presented and applied to a 
vaguely known spring stiffness distribution. The proposed uncertainty model was 
then applied to: (i) fatigue failure analysis of a structural joint; (ii) evaluation of the 
probability that a response variable of an engineering system exceeds a critical level, 
and (iii) random vibration analysis of a panel. 
 
It has been also shown that: 

(i) the single value response obtained by using the MaxEnt pdf, often used to 
deal with uncertain variables, can be significantly lower than the upper 
response bounds obtained with the set of pdfs;  

(ii) the upper and lower bounds on the engineering metric can be largely 
different. As a result of this analysis, the designer can decided to (a) gain 
more information on the vaguely known pdf in order to reduce, if possible, 
the basic variable domain; and/or (b) investigate a different design solution 
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which can be more robust with respect to the design constraints under 
uncertainties in the models parameters.   

(iii) The uncertainty model proposed can be applied to a broad range of 
mechanics problems, including static and random vibration analysis.  
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Appendix A 
 

This section describes the relationships between the derivatives of 1a  (which is a 

coefficient dependent on the basic variables ja , with 2,...,j n ) and: (i) the expected 

values of the functions of the random variables; (ii) the cumulants of the functions of 

the random variables. 

The joint probability density function of a vector of random variables x  can be 

written as 
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2

S exp .
n

j j
j

p a a f


 
   

 
x a x                     (A.1) 

 

The relationships between the statistical expectations of  jf x  and the derivatives 

of 1a  are obtained starting from the normalisation condition 
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  x a x                   (A.2) 

 

The derivative of Eq. (A2) with respect to ja  gives 
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which yields  
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where   E jf x a  is the expected value of  jf x  conditional on a . 
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The second derivative of Eq. (A.2) with respect to ja  and ka  gives 
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1 1 1... d 0j k
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Substituting Eq. (A.4) into Eq. (A.5), the second derivative of 1a  is found as 
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which can be rewritten in the form  
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x x a x x a       (A.7) 

 

Eq. (A.4) and Eq. (A.7) provide a connection between the derivatives of 1a  and the 

expected values of the functions of the random variables x ,  kf x . In order to 

avoid complicating the expressions, the expected value of  kf x  conditional on a , 

  E kf x a , will be indicated with   E kf x  in what follows. 

The derivatives of 1a  are also linked to the cumulants of  f x . This relationship 

can be obtained by considering an analogy with the well-known relationship 

between the cumulants of random variables y ,  1 2...n nk y y y , and the log-

characteristic function [42], which is reviewed in what follows. 

The characteristic function of several jointly distributed random variables y  with 

pdf  p y  is a complex function of the real set of parameters θ  and is given by the 

Fourier transform of the pdf [42] 
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The derivatives of the characteristic function are related to the joint moments of y  

via [42] 
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Taking the log of the characteristic function and expanding it by using a Taylor 

series lead to the definition of the joint cumulants as the coefficients in the 

expression: 
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so that 

 

    
1 2

1 2
1 2

1 2 ... 0

ln , ,...,
...

...
n

n
n n

n n
n

M
i k y y y

  

  
  

   

 
    

        (A.11) 

 

Now Eq. (A.2) can be rewritten in a form similar to Eq. (A.8) 
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The derivatives of  Q a  with respect to the basic variables are given by 
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which can be rewritten as 
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Considering Eq. (A.9) and Eq. (A.14),  Q a  can be considered to be analogous to 

 M θ . Therefore, by analogy to Eq. (A.10), we can consider a log-characteristic 

function associated with  Q a ,     1ln Q a a , and expand it by using the 

Taylor series, so that 

 

  
2

1 1
1

2 2 2

1
ln ...

2

n n n

j j k
j j kj j k

a a
Q a a a a

a a a  

 
     

   a          (A.15) 

Comparing Eq. (A.15) to Eq. (A.10) the cumulants of the n th order of the functions 

of the random variables, 
1 2 3, , ,..., n

n
j j j jc , are given by 
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The relationships obtained (Eq. (A.4) and Eq. (A.7)), which are special cases of Eq. 

(A.16), have been used to convert the bounds on the statistical expectations of a 

function of a random variable into bounds on the basic variables (subsection 2.2.3).  
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Appendix B 
 

This section describes the evaluation of the probability density function of the 

natural frequency of a SDoF starting from a stiffness pdf described as Eq. (18).  

Given a random variable z  with known pdf  p z  and a transformation  y g z , 

the pdf of y  is obtained from:  

   

 1

dy
dz

i

i

z

z g y

p z
p y



              (B.1) 

being iz  the roots of the equation  y g z . 

The natural frequency (in Hz) is given by:  

1
2n

k
f

m
             (B.2) 

If z k  , ny f  are the two random variables, and 
1 1

2 m



  is a constant factor, 

then Eq. (B.2) can be rewritten as:  
y z             (B.3) 

By applying Eq (B.1), the pdf of y is obtained as: 
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           (B.4) 

Now, by substituting Eq. (B.3) in Eq. (B.4),  p y a  is obtained as: 
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Finally, indicating  24 m  , the  np f a  can be expressed as: 
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where 2a  and 3a  are the two basic variables whose value can be obtained from the 

m-domain, while 1a  is obtained by applying the normalisation condition (for 

   2 3Re 0;Re 0a a  ) as: 
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