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Abstract 

Chronic low-grade systemic inflammation represents a mechanism common to many diseases 

linked to atherosclerosis-related pathways. There is a growing body of evidence indicating that the 

combination of food quantity and quality along with genetic susceptibility are able to induce the 

aberrant activation of innate immune signalling, which initially contributes to chronic low-grade 

inflammation. Liver represents the central player to inflammatory response. Dietary/metabolic 

factors contribute to the pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD), the main 

causes of liver disease in the Western world. Enlargement of the spleen, central organ in regulating 

the inflammation-related immune response, is commonly seen in patients with of NAFLD, 

depicting the so called “liver-spleen axis.” The aim of this review was to provide an at-a-glance 

overview of the possible bi-directional mechanisms linking nutrition and inflammation, 

particularly pinpointing the inflammatory effects stemmed by nutrition on “liver-spleen axis.” In 

particular, the role of unhealthy diet, healthy dietary patterns, such as the Mediterranean diet style, 

dietary vitamins and micronutrients, such as vitamin D or Magnesium, and Glucagon-Like 

Peptide-1, a well-known incretin released in response to meal intake, will be discussed. The highly 
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variability of the inflammatory response highlights the role of expert nutritionists in refining 

methodologies apt to assess nutritional epidemiology and to apply appropriate dietary intervention 

to counteract diet-induced inflammation mechanisms. 

Keywords 

Nutrition; Inflammation; Liver-spleen Axis; Diet; Nutritionist. 
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1. Introduction 

Extensive research over the last several decades has focused on the role of chronic low-grade 

systemic inflammation as a mechanism common to various chronic non-transmissible diseases 

linked to atherosclerosis-related diseases, including obesity, Type-2 Diabetes Mellitus (T2DM) 

and cardiovascular disease (Wong et al., 2012). Of interest, chronic low-grade systemic 

inflammation can be also caused and modified by diet as well (Minihane et al.,2015; Shivappa et 

al.,2016). There is a growing body of evidence indicating that the combination of food quantity 

and quality, mainly dietary patterns with high calorie intake or low in micronutrients, and genetic 

susceptibility are able to influence the chronic inflammatory state (Neustadt 2006). Consequently, 

the recognition of the emerging role of diet-induced inflammatory process in disease development 

has been accompanied by efforts to identify dietary factors and dietary patterns that may promote 

or inhibit the inflammatory process, thereby affecting disease risk and severity. 

Previous studies evidenced that among environmental factors, specific nutrients have 

consistently been associated with both increased or reduced levels of inflammation (Nasef et 

al.,2017). However, diet is a complex combination of foods from various groups and nutrients, and 

some nutrients are highly correlated (Minihane et al.,2015; Jacobs et al.,2013). Additionally, 

nutrients that may regulated inflammation are also strictly associated with obesity and obesity per 

se is associated to chronic low-grade systemic inflammation (Minihane et al.,2015; Neale et 

al.,2016). Thus, the inflammatory response is highly variable, and it might be challenging to 

separate the effect of single nutrients or food groups from that of others in free-living populations 

and those obesity-related ones. 
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Liver is a pivotal player for immunologic and inflammatory responses (Baeck et al.,2014). 

Metabolic factors, innate immune alterations, including inflammation caused by Non-esterified 

Fatty Acids (NEFA), Bacterial Lipopolysaccharide (LPS), chemokines, cytokines, and adipokines, 

contribute to the pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD), the main causes of 

liver disease in the Western world (Cobbina et al.,2017). Spleen is central organ in regulating the 

inflammation-related immune response (Bronte et al.,2013). More recently, spleen enlargement is 

commonly seen in patients with NAFLD or, generally speaking, Hepatic Steatosis (HS), depicting 

the so called “liver-spleen axis” (Tsushima et al.,2000). In light of the highly variability of the 

diet-induced inflammatory response, and besides the great body of evidence linking diet, 

inflammation and NAFLD, the aim of this review was to provide an at-a-glance overview of the 

possible bi-directional mechanisms linking nutrition and inflammation, particularly highlighting 

the inflammatory effects stemmed by nutrition on “liver-spleen axis.” 

2. Nutrition and Inflammation 

The innate immune system is the first-line defense mechanism against invading pathogens. 

However, the same system also serves as the first-line initiator of chronic low-grade inflammation 

in the absence of any systemic or local infection, also called sterile inflammation, metabolic 

inflammation or metainflammation (Hotamisligil et al.,2006; Chawla et al.,2011). There is a 

considerable agreement in the current literature that unhealthy nutritional patterns are associated 

with the aberrant activation of innate immune signalling, which triggers the chronic low-grade 

systemic inflammation (Galland 2010). Chronic low-grade systemic inflammation directly drives 

atherogenesis by playing a critical role in the initiation, progression, and rupture of atherosclerotic 

plaque (Aravindhan et al.,2016, 2016). Thus, chronic low-grade systemic inflammation has been 
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proposed as the link between Insulin Resistance (IR), T2DM, obesity, and cardiovascular disease 

(Shah et al.,2016). 

Excess calorie intake (overnutrition) or undernutrition (diet that is poor in micronutrients) per 

se stimulate inflammatory cytokines, leading to IR and associated disorders. Healthy and 

unhealthy dietary patterns and food components have been shown to induce chronic low-grade 

systemic inflammation, through both direct and indirect effects, the latter mediated by accrual of 

dysfunctional adipocyte (Neale et al.,2016; Galland 2010; Paniagua et al.,2016). Among 

pro-inflammatory dietary factors, high complex carbohydrates intake, or foods with a high 

Glycemic Index (GI) scale, as such as foods low in fiber and rich in refined carbohydrate, and 

High-Fat (HF) diets, common to nutritional patterns collectively termed the “Western diet” 

(Cordain et al.,2005), have been extensively evaluated (Esposito et al.,2002; Steckhan et 

al.,2016; Feliciano Pereira et al.,2014). Fructose, which is often consumed in diets also rich in 

glucose and lipids, is more harmful than glucose and its effects are amplified when it is associated 

with glucose and lipids (Jegatheesan et al.,2017). High calorie diets have been reported to be 

associated with exaggerated postprandial spikes in glucose and lipids that stimulate chronic 

low-grade systemic inflammation (Galland 2010; Esposito et al.,2006; Diamanti-Kandarakis 

et al.,2017). 

2.1 Carbohydrates and Inflammation 

Postprandial hyperglycemia is responsible for oxidative stress, an accumulation of several 

transition metals as well as increased generation of Reactive Oxygen Species (ROS) by 

polymorphonuclear and mononuclear leukocytes, accompanied by enhanced expression of 

Nicotinamide Adenine Dinucleotide Phosphate Oxidase (NADPH) and reduced expression of 
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antioxidative enzymes (Mohanty et al.,2000). Of interest, chronic consumption of fructose 

promotes generates 100 times more ROS than glucose through different mechanisms, such as 

hepatic phosphate deficiency, leading to AMP accumulation and increased uric acid synthesis, via 

the activation of transforming growth factor and NADPH oxidase 4, which in turn stimulates the 

production of ROS (Jegatheesan et al.,2017). In addition, fructose has been shown to promote the 

synthesis of Saturated Fatty Acids (SFA), such as palmitate (Sun et al.,2012). ROS act as a 

potential activator of a class of proteins involved in innate immunity, known as Toll-like Receptors 

(TLRs), thereby mediating the activation and expression of Nuclear Factor Kappa B (NF-κB), a 

family of transcription factors controlling apoptosis and pro-inflammatory cytokine expression, 

with increased release of pro-inflammatory cytokines into the bloodstream, such as Interleukins 

(IL)-1β and IL-6, Tumour Necrosis Factor (TNF)-α, Monocyte Chemotactic Protein-1 (MCP-1) 

and Plasminogen Activator Inhibitor-1 (PAI-1) (Buyken et al.,2014). In addition, other 

pro-inflammatory transcription factors are activated, including Activator Protein (AP)-1, 

Forkhead Box P3 (FOXP3), Interferon Regulatory Factor (IRF), and Signal Transducer and 

Activator of Transcription (STAT) families (Pahwa et al.,2016). 

Pro-inflammatory cytokines signal the liver to produce a variety of proteins known as acute 

phase reactants, including C-Reactive Protein (CRP). CRP is involved in endothelial dysfunction 

and atherosclerotic process and serves not only as the most promising indicator for vascular 

inflammation, but also as major predictor of cardiovascular diseases risk (Soeki et al.,2016). IL-6 

plays a key role in the synthesis of CRP by the liver and the regulation of TNF-α. Increased levels 

of IL-6 are correlated to greater occurrence of cardiac events (Teeman et al.,2016). TNF-α 

induces the expression of adhesion molecules, such as vascular cell adhesion protein 1 and 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

ap
ol

i F
ed

er
ic

o 
II

] 
at

 0
2:

48
 0

7 
N

ov
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 8 

intercellular adhesion molecule-1 (Güray et al.,2004), shown to have implications in the 

development of atherosclerosis, and to enhance the production of other inflammatory cytokines 

(Teeman et al.,2016). Esposito et al. reported that hyperglycemic spikes more than continuous 

hyperglycemia were able to affect the cytokine concentrations, at least in the short term, 

suggesting that an oxidative mechanism could mediate the effect of hyperglycemia (Esposito K et 

al.,2002). In the Harvard Women’s Health Study, blood levels of CRP increased progressively in 

across quintiles of dietary GI (Levitan et al.,2008). In addition, levels of NF-κB were three times 

higher among lean subjects consuming high-GI meals (Buyken et al.,2010). On the other hand, 

fiber consumption was associated with significantly greater reductions in CRP levels (North et 

al.,2009), likely related to its beneficial effect on glycemia (Bo et al.,2008). Contrarily, in the 

Women’s Health Initiative Observational Study, IL-6 and TNF-α were inversely associated with a 

relatively high consumption of both soluble and insoluble fiber (24 g/day), but there was no 

significant association between intake of dietary fiber and CRP (Ma et al.,2008). The complex 

anti-oxidant/anti-inflammatory effects of several bioactive compounds contained in cereals have 

been extensively investigated by Fardet A. (Fardet 2010); additionally, a recent exhaustive 

meta-analysis including 14 RCTs showed that intervention with dietary fiber or fiber-rich food, 

compared with control, produced a slight, but significant reduction of 0.37 mg/L (95% CI 0.74, 0) 

in circulating CRP levels in overweight/obese adults, but only when the total fiber intake was 8 g/d 

higher in the intervention group than in the control group (Jiao et al.,2015). 

2.2 Lipids and Inflammation 

Fatty acids (FA) are a heterogeneous group of macronutrients that can be divided into SFA, 

Monounsaturated Fatty Acids (MUFA) and Polyunsaturated Fatty Acids (PUFA). In fasting state, 
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NEFA, compartmentalized in lipid droplets, are the vehicle by which Triacylglycerol (TG) stored 

in adipose tissue is transported to its sites of utilization (Karpe et al.,2011). In fed state, 

circulating dietary TG represents an additional source of NEFA and reflects the composition of the 

meal fat. Dietary FA intake influences in relative FA composition of the cell membranes, thus 

influencing membrane fluidity and membrane functions, especially at the mitochondrial 

membrane level (Halliwell et al.,1999). Dietary fat are mostly accommodated in the constitutively 

secreted chylomicrons that entry into the circulation leading to the generation of NEFA, 

subsequently taken up by the liver. NEFA generated from fat digestion and metabolism either are 

esterified into TG or enter mitochondria for β-oxidation (Redgrave et al.,2004). NEFA derived 

also from adipose tissue depots, but mobilization of NEFA from adipose tissue is normally 

suppressed by insulin. Thus, IR further increasing lipolysis, potentially leads to a vicious cycle. HF 

diet increases mitochondrial β-oxidation of NEFA, with activation of NADPH oxidase system, 

lipid peroxidation of the unsaturated lipids of fat deposits. Lipid peroxidation triggers 

pro-inflammatory signalling pathways and endoplasmic reticulum stress (lipotoxicity), either 

alone or in combination with other lipid metabolites, with the expression of NF-κB-dependent 

pro-inflammatory agents namely, inducible nitric oxide synthase, TNF-α, and Interferon (IFN)-γ 

(Hauck et al.,2016; Petta et al.,2016; Kennedy et al.,2009). In particular the activation of the 

TLR4/inducible nitric oxide synthase/NF-κB pathway induces oxidative stress in hepatocytes via 

the production of pro-inflammatory cytokines, such as TNF-α by Kupffer cells (KCs). 

Additionally, regulatory T cell (Tregs) populations, specialized lineage of suppressive CD4-T+ 

cells that act as critical negative regulators of inflammation in various biological contexts (van der 

Veeken et al.,2016). Non-lymphoid Tregs, such as adipose tissue derived Tregs, are distinct from 
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their counterparts in lymphoid organs based on immune functions (Cipolletta et al.,2014). 

Normal mouse adipose tissue, mainly Visceral Adipose Tissue (VAT), is particularly enriched 

with Tregs, and a protective role for adipose tissue-resident Tregs “Fat Tregs” against 

obesity-associated inflammation and obesity-driven insulin resistance has been described 

(Cipolletta et al.,2014). Of interest, VAT-associated Tregs are significantly reduced in 

insulin-resistant animal models of obesity (Zeng et al.,2015). This protective role of adipose 

tissue-resident Tregs on metabolic syndromes is also confirmed by studies on human subjects, 

thereby highlighting a potential therapeutic value of modulating Tregs to improve 

obesity-associated metabolic disorders (Cipolletta et al.,2014). Metabolic status and multiple 

nutrient metabolites influence Treg homeostasis, and changes in Tregs may in turn trigger 

metabolic disorders and associated inflammation as well as impairment in immune regulatory 

parameters, as reported in experimental models of diet-induced obesity (Maioli et al.,2016). Thus, 

also the consumption of a fatty meal results in the secretion of pro-inflammatory cytokines into the 

circulation (de Vries et al.,2014). The controversial relation of SFA to chronic low-grade 

inflammation and cardiovascular disease has been extensively discussed by a recent review, 

indicating that dietary SFA is only one of unfavorable lifestyle factors, not necessarily the most 

important, influencing dyslipidemia in Western societies (Ruiz-Núñez et al.,2016). The current 

pathophysiological hypothesis is that the prolonged elevation of TG and TG-rich lipoproteins in 

the blood stream up to fourfold, known as postprandial lipemia, promotes the formation of small, 

dense low-density lipoproteins, inflammatory cell recruitment, proliferation and migration of 

smooth muscle cells of vessel walls, as well as oxidative stress, inflammation, and endothelial 

dysfunction (Chan et al.,2013). Although not consistently, it has been reported that even a single 
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HF meal is associated to a transient increase in the concentrations of pro-inflammatory cytokines, 

soluble adhesion molecules and in pro-oxidant activity (Burdge et al.,2005). The plasma TG 

response to the test meal induced significantly increased in IL-6 (Lundman et al.,2007). An 

updated study by Herieka et al. indicated that CRP increased in the immediate hours following a 

HF meal after acute increases in IL-6 and TNF-α have already occurred in the inflammatory 

cascade (Herieka et al.,2014). High dietary intake of SFA may contribute to greater serum levels 

of inflammatory mediators either via TLRs or cyclooxygenase-2, the rate-limiting enzyme of 

prostaglandin and thromboxane biosynthesis (Lee et al.,2001). Additionally, SFA palmitate and 

stearate acids can trigger IL-1β secretion through mechanisms involving inflammasome sensor 

NLRP3 (L'homme et al.,2013). Consumption of trans isomers of unsaturated fatty acids, 

so-called trans-fatty acids, mainly present in solid fats produced by part hydrogenation of oils and 

high-fat diet, are commonly found in Western diet. The intake of trans-fatty acids has been 

consistently associated with chronic low-grade systemic inflammation (Harvey et al.,2008) and 

autoimmune diseases (Manzel et al.,2014). In particular, dietary trans-fatty acids incorporated in 

the phospholipids of endothelial cells enhance the cell surface expression of adhesion molecules 

and MCP-1 cytokine production (Harvey et al.,2008). 

Omega-6 (n−6 PUFA) and omega-3 PUFA (n−3 PUFA) are essential unsaturated fatty acids 

that must be derived from the diet. Western diet contain excessive levels of n-6 PUFA but very low 

levels of n-3 PUFA, leading to an unhealthy n-6/n-3 ratio of 20:1, instead of the ideal ratio 1:1 that 

existed for millions of years during the long evolutionary history of the genus Homo (Simopoulos 

2016; Kromhout et al.,2014). A significant role for both n-3 and n-6 PUFA has been previously 

reported, especially in the pathological inflammatory responses associated with metabolic diseases 
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(Calder 2015), or with systemic immune-inflammatory disease, such as arthritis (Oliviero et al., 

2015) and psoriasis (Barrea et al.,2015; Barrea et al.,2016). 

Eicosanoid products derived from n-6 PUFA, such as Prostaglandin E2 (PGE2), leukotriene B4 

(LTB4) and thromboxane A2 synthesized from arachidonic acid by lipid-oxidizing enzyme 

lipoxygenase-5 and cyclooxygenase-2, are potent mediators of thrombosis and inflammation, 

while n−3 PUFA have well documented anti-inflammatory properties by increasing the production 

of PGE3 and LTB5 and by affecting lymphocyte and monocyte functions, crucially involved in 

adaptive and innate immunity via the TLR4-induced signalling pathways (Lee et al.,2001; Yates 

et al.,2014; Siriwardhana et al.,2013). In addition, unsaturated fatty acids prevented activation of 

NLRP3 inflammasome in human monocytes/macrophages (L'homme et al.,2013). In particular, 

Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA), the main n-3 PUFAs in marine 

oil, are associated with reduction of inflammation, increase in anti-inflammatory adipokines, and 

decrease in pro-inflammatory cytokines (Lee et al.,2001). Oleic acid is the main MUFA found in 

human diet, which naturally occurs in vegetal oils, such as extra-virgin olive oil and sunflower oil. 

Oleic acid also exerts beneficial anti-inflammatory effects through different mechanisms, 

including the activation of AMP-activated protein kinase and Peroxisome Proliferator-Activated 

Receptor  (PPR-), as well as suppression of TLRs and NF-κB pathways (Siriwardhana et 

al.,2013). Of interest, postprandial lipemia after the SFA intake was more pronounced than the 

lipemia due to MUFA and PUFA, which can lead to a higher pro-inflammatory state associated 

with SFA consumption (Rocha et al.,2017). Animal studies, human trials and epidemiological 

studies have shown the potential preventive effects of replacing SFA with n−3 PUFA in reducing 

inflammation (Saremi et al.,2009; Yashodhara et al.,2009; Nagakura et al.,2000). 
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2.3 Vitamin D and Inflammation 

Among nutrients, the importance of vitamin D beyond its traditional role in bone metabolism 

has gathered increasing consensus (Trummer et al.,2016). Currently, although a causative 

association between vitamin D, obesity and inflammation appears to be complex (Savastano et 

al.,2017), it is now recognized that vitamin D represents a key modulator of immune and 

inflammation mechanisms and that vitamin D deficiency can result in chronic inflammatory 

diseases (Savastano et al.,2017; Gonçalves de Carvalho et al.,2016). There are a large number 

of studies indicating that vitamin D suppresses the production of cytokines in a seasonal manner, 

with a higher suppression in the summer, and modulates the expression of TLR2 and TLR4 

(Khoo, Joosten et al.,2011; Khoo et al.,2011), NF-κB inflammatory signalling pathway, T and B 

lymphocytes homeostasis, and immunoglobulin production (Savastano et al.,2017). 

2.4 Diet, Microbiota, and Inflammation 

There is a consolidate evidence that there are elevated concentration of adipose tissue-derived 

cytokines in obese humans, suggesting the concept that inflammation may be derived from the 

accumulation of activated macrophages surrounding enlarged adipocytes in obese subjects 

(Greenberg et al.,2006; Margioris et al.,2009). Moreover, gastrointestinal tract might represent 

a potential source of inflammation associated with excess calorie intake (Cani et al.,2007; Cani et 

al.,2008). In particular, high calorie diet is associated with changes in gut microbiota, with 

reduction in gram-positive bifidobacteria and increase in gram-negative bacteria. These changes 

are associated with the impairment of the intestinal membrane integrity, followed by increasing 

plasma LPS, which triggers systemic inflammation via the stimulation of TLR4 on immune cells 

(de Jong et al., 2016). As an alternative mechanism, gut microbiota on a high-fat diet may reduce 
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the dietary choline bioavailability, an essential nutrient that is necessary for the secretion of 

very-low-density lipoprotein, thus promoting HS, IR and lipid peroxidation and inflammation 

(Dumas et al.,2006). In details, specific microbes contribute to the split of the nutrient choline into 

trimethylamine and acetaldehyde in the human gut, thereby reducing the bioavailability of dietary 

choline (Romano et al.,2015). Taken together, these studies suggest that inflammation can 

possibly occur after every high calorie meal, also independently of obesity-induced inflammation 

(Laugerette et al.,2011). On the other side, the use of dietary fibers has been reported to 

favourable modulate the intestinal microbiota population (Cuervo et al.,2014). 

2.5 Nutrition, Epigenetic Change, and Inflammation 

Currently, the possible impact of nutrients on epigenetic signature and induced susceptibility 

to disease has drawn significant interest. Most studies done in environmental epigenetic 

demonstrates that nutrients exert profound effects on the regulation of genes by DNA methylation 

and covalent histone modifications (Park et al.,2017). According to the developmental 

programming of health and disease hypothesis, unfavourable environmental conditions can affect 

physiology and structure of the developing foetus, which can also predispose to different 

pathological conditions later in life (Eriksson et al.,2016). Exposure to unhealthy diet, 

particularly during sensitive developmental periods, such as pregnancy can induce detrimental 

effects in key organs responsible for nutrient regulation, including liver, adipose tissue, muscle 

and pancreas, to provide short-term survival benefit aimed to maintain the energy-dependent basal 

metabolic functions in vital organs, primarily the heart and brain (Kim et al.,2016). The 

persistence of these adaptive mechanisms might result in permanent adjustments in different 

homeostatic systems, which influence energy uptake and utilization beyond metabolic capability, 
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unhealthy feeding behaviour, adipocyte and β-cell dysfunction, imbalance between inflammatory 

and anti-inflammatory networks, thereby promoting phenotypes more susceptible to metabolic 

syndrome-like characteristics in adult life and reproductive dysregulation in the offspring (Szarc 

vel Szic et al.,2015; Vaiserman et al.,2017). 

Nutrition-driven epigenetic changes might be triggered across the entire life span of 

organisms, from the periconceptional period until old age, with a relevant role for the epigenetic 

transgenerational inheritance in the obesity epidemic (Niculescu et al.,2011; Kanherkar et 

al.,2014). 

Experimental data indicates that genotoxic effects of oxidative stress might be proposed 

among the potential mediators of the nutrition-driven epigenetic change leading to increased risk 

for obesity, IR, cardiovascular disease (Diamanti-Kandarakis et al.,2017). 

Dietary components, such as those containing folate, selenium, vitamin B6, vitamin B12, 

betaine, choline, methionine, and serine, are linked to epigenetic regulation by altering the transfer 

of methyl groups from S-adenosyl methionine to DNA and histone (Niculescu et al.,2011; Wang 

et al.,2012). Animal studies have shown that a diet with too little methyl-donating folate or choline 

before or just after birth causes certain regions of the genome to be under-methylated for life. The 

effects of intrauterine inflammation due to high calorie diet during pregnancy on the offspring 

predisposition to adult chronic non-communicable diseases has been analyzed by Hemalatha R 

(Hemalatha 2013). In particular, inflammation due to over-nutrition during pregnancy, coupled 

with undernutrition and micronutrient malnutrition, has been shown to impair fetal skeletal muscle 

development (Wang et al.,2015), while promoting adipogenesis (Berg et al.,2004), thereby 

contributing to start the cascade of low grade systemic inflammation, IR, and chronic diseases 
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linked to atherosclerosis-related pathways later in life. For adults too, a methyl-deficient diet leads 

to a decrease in DNA methylation, but the changes are reversible when methyl is added back to 

diet (Niculescu et al.,2011). Methyl-deficient diet, as those with low methionine and without 

choline and folic acid, have been proven to induce epigenetic alterations and pathomorphological 

changes in an animal model of NAFLD (Pogribny et al.,2009). Importantly, a number of 

pro-inflammatory transcription factors, along with the inflammatory genes, are regulated by 

epigenetic mechanisms, including DNA methylation, histone methylation or acetylation, and RNA 

associated silencing by small non-coding RNAs (Samanta et al.,2017). In particular, epigenetic 

modifications have been reported to play an important role in the regulation of TNF-α and thereby 

in TNF-α-associated inflammation pathways (Sullivan et al.,2007). On the other side, a number of 

dietary antioxidants, including catechins, curcumin, quercetin and resveratrol, modulate the Tregs 

functions and decrease cytokine production and NF-κB expression (Park et al.,2017). 

3. Non-Alcoholic Fatty Liver Disease (NAFLD) 

Besides its multiple role in intermediary metabolism, bile secretion, serum homeostasis, and 

xenobiotic detoxification, the liver may be also viewed as a further immunological organ (Baeck 

et al.,2014). The liver is enriched in various resident innate immune cells, including natural killer 

T cells and KCs, inflammatory macrophages resident in the liver and accounting for 80-- 90% of 

the total population of fixed tissue macrophages in the body (Samanta et al.,2017). By receiving 

blood coming from the gastrointestinal tract through the portal vein, immune cells in the liver have 

the potential to initiate innate and adaptive immune responses in the case of infections, e.g. in 

response to antigens and microbiological components coming from the intestine. The aberrant 

activation of innate immune signalling, such as that due to diet/metabolic factors, may trigger the 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

ap
ol

i F
ed

er
ic

o 
II

] 
at

 0
2:

48
 0

7 
N

ov
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 17 

rapid recruitment to the liver of other innate immune cells (Sullivan et al.,2007). NAFLD is now 

the most common chronic liver disease (Gao et al.,2008). NAFLD is histologically categorized 

into simple HS also known as ‘fatty liver’, and Non-Alcoholic Steatohepatitis (NASH). The latter 

represents the stage when the fatty liver starts to show inflammatory change associated with KCs 

dysfunction, which contributes to its pathogenesis (Ganz et al.,2013). The progression of NASH 

to cirrhosis or hepatocellular carcinoma is responsible for the liver-specific morbidity and 

mortality of NAFLD. By definition, to have NAFLD, >5% of the liver weight must be due to 

accumulation of fat in the form of triglycerides in the absence of significant alcohol intake [<10 g 

and <20 g of alcohol per day for women and men, respectively (Ratziu et al.,2017). It is 

well-known that the liver is directly exposed to various types of lipids (NEFA, cholesterol and TG) 

from both diet and visceral adipose tissue depots, and that an excessive NEFA flux into the liver 

via the hepatic portal vein contributes to HS (Rinella et al.,2015). NAFLD is strongly associated 

with obesity, IR and metabolic diseases, such as T2DM (Singh et al.,2015; Juárez-Hernández et 

al.,2016). IR is well known to play a key role in increasing levels of NEFA, but, in turn, HS can 

contribute to worsen IR leading to a vicious cycle, with progression to more severe forms of liver 

damage by one side, and T2DM by the other side. NAFLD has also been linked to increased 

cardiovascular risk, largely mediated through IR and components of the metabolic syndrome 

(Buzzetti et al.,2016; Valenti et al.,2016). IR results in increased hepatic de novo lipogenesis and 

impaired inhibition of adipose tissue lipolysis, with consequent increased flux of NEFA to the 

liver, followed by the enhancement of NEFA for the triglycerides synthesis, intrahepatic fat 

accumulation, and decreases in very-low-density lipoprotein secretion (Mikolasevic et al.,2016). 

IR also promotes adipose tissue dysfunction and macrophage accumulation, with consequent 
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altered production and secretion of adipokines and inflammatory cytokines that are associated 

with marked hepatic inflammation in obese humans (Bellentani et al.,2017). IR and obesity, 

accompanied by HF feeding, lead to hepatic inflammation, via activation of the NF-κB pathway 

and downstream cytokine production, including IL-1β, IL-6 and TNF- in the liver (Koo et 

al.,2013). Pro-inflammatory cytokines and NEFA, produced by hepatocytes in response to HS and 

released from visceral adipose tissue, activate the production of pro-inflammatory cytokines by 

liver KCs, which further activate KCs in a positive-feedback mechanism (Cancello et al.,2006). 

In the past years, the “two-hit theory” in the development of NASH has gained sufficient 

support from both clinical and experimental evidence, where the first “hit” refers to the 

accumulation of intrahepatic fat favoured to sedentary lifestyle, high fat diet, obesity and IR, and 

the second “hit” to the activation of the inflammatory cascades and fibrogenesis (Cai et al.,2005). 

Nevertheless, according to the “Multiple Hit Hypothesis”, NAFLD stemmed from the synergistic 

effects of multiple parallel factors, including dietary habits and environmental factors in 

genetically predisposed individuals (Huang et al.,2010). 

The accumulation of intrahepatic fat happens contemporarily with increased lipotoxicity from 

high levels of NEFA, free cholesterol and other lipid metabolites causing increased lipid 

peroxidation, activation of endoplasmic reticulum and mitochondrial dysfunction, with oxidative 

stress and production of ROS. In addition, changes in the intestinal microbiota leads to further 

production of FA in the bowel, increased small bowel permeability and thus increased fatty acid 

absorption and contribute to the pro-inflammatory state (Buzzetti et al.,2016). However, the 

“one-hit theory” suggests that NASH might occur by liver fat directly causing chronic 

inflammation (Seydel et al.,2011), with the activation of the TLR4 and NF-κB inflammatory 
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pathway (Pahwa et al.,2016). In animal models it has been shown that increased NF-κB signalling 

in the liver is induced by high-fat diets, with resultant as chronic low-grade inflammation, IR and 

HS (Ratziu 2017). Additionally, NF-κB signalling also leads to activation of KCs and 

macrophages within liver tissue, which cause further damage to liver tissue (Rinella 2015). 

4. Nutrition and Liver-spleen Axis 

A further mechanism linking NAFLD to inflammation could be represented by the so called 

“liver-spleen- axis” (Tsushima et al.,2000). Spleen, the largest peripheral lymphoid organ in the 

human body with a close anatomical relationship with the liver, is strictly involved in the 

modulation of both nonspecific and specific immune response, also known as innate and acquired 

immune response (Tarantino et al.,2011). The primary function of the spleen is mainly the 

maintenance of peripheral tolerance via the clearance of circulating apoptotic cells, which allows a 

fine tuning of the immune system (Bronte et al.,2013). In particular, the spleen contains in the 

white pulp high levels of specialized T-cells and B-cells, committed to the production of new 

immune cells and antibodies, respectively (Cobbina et al.,2017; Mebius et al.,2005), and it 

serves as a reservoir to circulating monocytes for their rapid recruitment to various inflammatory 

sites (Swirski et al.,2009; Chen et al.,2014). By isolation of spleen lymph, Semaeva E et al 

(Semaeva et al.,2010) demonstrated that the permeable microvasculature of the spleen ensured 

the local production of inflammatory as well as anti-inflammatory cytokines, including TNF- and 

IL-6 from one side, and IL-10 from the other side, which provide a determinant contribution to the 

systemic circulation and modulate the ensuing immune-inflammatory response. Of interest, 

pro-inflammatory cytokines released from the spleen flow directly into the liver, through the 
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splenic and portal veins, thus enhancing natural killer cytotoxicity in the liver (Inoue et al.,2012). 

On the other side, a clinical study showed that obesity is associated with reduced levels of the 

anti-inflammatory cytokine IL-10 (Esposito et al.,2003). Experimental data confirmed the 

diet-induced obesity in mice impaired the spleen ability to synthesize this cytokine (Gotoh et 

al.,2012), thereby directly contributing to increase the levels of pro-inflammatory cytokines, 

which in turn play a role in the development of inflammation-driven ectopic fat accumulation. Of 

interest, in knockout mice for IL-10 spleen weight were are heavier than those of wild-type 

controls, as manifestation of spleen lymphoproliferation (Gotoh et al.,2012). In addition, in an 

experimental model of double knockout mice for mast cell and IL10 showed splenomegaly and 

elevated serum cytokines levels, indicating exaggerated systemic inflammation (Zhang et 

al.,2013). 

Since the spleen is located in the upper left abdomen, between the diaphragm and the fundus 

of the stomach, it has narrow anatomical and functional relationships with the liver, through the 

splenic vein, which confluences with the superior mesenteric vein to form the hepatic portal vein. 

Consequently, spleen volume is increased in advanced cases of liver diseases, such as cirrhosis, in 

association with increased portal pressure gradient and portal hypertension (Berzigotti et 

al.,2013). A positive correlation between splenic iron levels with the severity of NASH 

manifestations in experimental models of mice spontaneously developing obesity and T2DM has 

recently reported, further confirming the relevance of the anatomical and functional relationships 

between spleen and liver (Murotomi et al.,2016). Besides the common presence of splenomegaly 

in patients with cirrhosis, a positive correlation between the spleen volume and the degree of fatty 

infiltration was demonstrated also in patients with NAFLD (Tsushima et al.,2000), where the lack 
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of the re-arrangement of hepatic tissue, at least in the early and intermediate stages, is not likely to 

support any role of portal hypertension in spleen modification in these patients. Therefore, 

different mechanisms could be proposed to account for the finding of spleen enlargement among 

NAFLD patients. The possible spleen involvement in obesity-driven low-grade chronic 

inflammation is evidenced in a recent study, in which using isolated spleen-derived immune cells 

together with cultured adipocytes, a crosstalk between adipocytes and immune cells, followed by 

an increase in the secretion of IL-6 over what was secreted by individual cultures has been found, 

clearly evidencing the reinforcing role of spleen (Nitta et al.,2013). In this context, the link 

between adipose tissue and spleen might lead to immunologic activation, with consequent 

expansion of the white pulp, which eventually is the cause of the spleen enlargement. Increased 

spleen longitudinal diameter along with increased serological inflammatory markers, such as IL-6, 

were found in patients with NASH compared with patients with HS (Tarantino et al.,2009). Thus, 

large spleen longitudinal diameters coupled with high IL-6 levels were suggestive of severe HS 

(Tarantino et al.,2009), and spleen enlargement evaluated by computed tomography images has 

been proposed as a marker of early-stage NASH (Suzuki et al.,2010). Accordingly, increased 

spleen volume and elevated concentrations of CRP have been found in young adult obese subjects 

with HS (Tarantino, Colicchio et al.,2009). Additionally, an association has been described 

between spleen enlargement, HS and low insulin-like growth factor-I axis, an endocrine axis 

frequently altered in patients with HS, as a consequence of the underlying chronic inflammation 

status (Savastano et al.,2011). In that, the common inflammatory milieu linking IR, obesity and 

NAFLD might provide a further explanation for spleen enlargements in obese individuals with 

HS. A hallmark of the low-grade chronic inflammation in obesity is the expansion of inflammatory 
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macrophages in the visceral adipose tissue, along with the decrease in anti-inflammatory Tregs 

(Weisberg et al.,2003). In murine models of obesity, chronically inflamed visceral adipose tissue 

has proved to stimulate the bone marrow hematopoietic progenitor cells to proliferate, expand, and 

increase the production of myeloid cells (Nagareddy et al.,2014). 

Similarly, the expansion of visceral adipose tissue macrophages is associated with a 

pro-inflammatory activation profile of macrophages in a wide variety of tissues that include the 

liver thereby contributing to the hepatic inflammation in obese humans (Bellentani 2017). Thus, it 

is tempting to speculate that inflamed the visceral adipose tissue could as well as stimulate 

myelopoiesis not only in the liver, but also in the spleen, the main sites of extramedullary 

myelopoiesis (Kim 2010). Taking in mind the close circulatory link of the spleen with the liver 

and its key role in modulating the immuno-inflammatory response, the spleen enlargement in 

obese individuals might represent an index of the aberrant activation of the immuno-inflammation 

response associated to NAFLD and obesity, in the so-called “liver-spleen axis” (Tsushima et 

al.,2000; Tarantino et al.,2013). On the other hand, Inoue M et al (Inoue et al.,2012) reported 

that in diet-induced obese rats the HS and inflammation were accelerated by the splenectomy, thus 

favouring the progression to NASH. Although, based on these interesting data the Authors 

suggested that in obese subjects preservation of the spleen function may be an important factor 

regulating the progression of HS, no mechanisms by which the asplenic state modulated immune 

cell function and the metabolic system in various compartments of the body have provided. 

4.1 Diet and Liver-spleen Axis 

There is a clear imbalance between the great body of evidence linking diet, inflammation and 

NAFLD (de Vries et al.,2014; Ferolla et al.,2015) and the data exploring the effects of diet on 
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spleen, despite its key role in immune function and signalling. The effects of nutrition on liver 

function has been dealt with more extensively elsewhere (Watts 2010; Haghighatdoost et 

al.,2016). Rusu et al assembled a meta-analytic dataset on the role of nutritional interventions in 

NAFLD (Rusu et al.,2015) concluding that, although there was no univocal consensus on the best 

diet or lifestyle approach for NAFLD patients (Finelli et al.,2012), these patients may benefit from 

a moderate- to low-carbohydrate (40%--45% of total calories) diet, coupled with increased dietary 

MUFA and n-3 PUFAs, reduced SFA. A recent meta-analysis on the effects of low carbohydrate 

diets in subjects with NAFLD evidenced a significant reduction in intrahepatic lipid content also 

without significant changes in liver enzymes (Ferolla et al.,2015). However, the quality and 

combination of macronutrients have been found to be more important than their isolated amounts 

in nutritional and clinical treatment of patients with NAFLD (Juárez-Hernández et al.,2016). 

Currently, fructose is considered the most potent lipogenic carbohydrate contributing to the 

development of HS (Jegatheesan et al.,2017). Both acute fructose load and chronic fructose 

consumption lead to the saturation of the glycolytic pathway, with an accumulation of glycolysis 

intermediates which can be converted to glycerol-3-phosphate used in triglyceride (TG) synthesis. 

In turn, the activation of the lipogenic pathway promotes oxidative stress, either via mitochondrial 

dysfunction and endoplasmic reticulum (ER) stress due to the fructosylation of the ER membrane 

proteins or the lipid accumulation into ER paving the way for inflammation, oxidative stress, and 

apoptosis and contributing to the progression of HS and of IR (Mahli H et al.,2011). 

A low consumption of MUFA, a well-known mechanism contributing to the pathogenesis of 

NAFLD in the general population (Ryan et al.,2013), has been proposed as a possible adjunctive 

mechanism in increasing the inflammation milieu of psoriatic patients (Barrea et al.,2015), a 
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common chronic inflammatory skin disease associated with obesity (Barrea et al.,2015; Barrea 

et al.,2016) and HS (van der Voort et al.,2014). Besides diet and unhealthy lifestyles, the 

possible adjunctive effects of gut microbiota and genetic background are believed to be important 

in the development and progression of NAFLD (Buzzetti et al.,2016; Yu et al.,2016). 

Going back to the spleen, Gotoh K et al (Gotoh et al.,2012) evaluated the splenic and serum 

levels of pro- and anti-inflammatory cytokines in knockout mice for IL-10 and wild type mice fed 

with a HF diet (60% fat, 20% carbohydrate, 20% protein; HF). The Authors found that while the 

expression of the anti-inflammatory cytokine IL-10 was significantly lower in both spleen and 

serum in the HF group compared with the control group, the expression of the inflammatory 

cytokines, including TNF-a, IL-1, MCP-1 was reduced only in spleen. This finding suggested 

that splenic cytokine expression was down-regulated by HF feeding, but this effect was more 

evident on the secretion of the anti-inflammatory IL-10, which is mainly derived from the spleen, 

whereas the secretion of the inflammatory cytokines was probably maintained by other organs, 

such as the adipose tissue and the liver. Similarly, Kim MS et al (Kim et al.,2011) reported in 

diet-induced obese mice that, after LPS stimulation, splenocytes from the HF group produced 

significantly higher levels of IL-6 and IL-1β than in control, thus further supporting the 

involvement of diet-induced obesity in increased inflammatory response of immune cells. 

Recently, Soni NK et al. investigated the effects of EPA and DHA on spleen metabolism (Soni et 

al.,2017). In this study, the Authors reported that the supplementation with menhaden fish oil, a 

mix of fatty acids and other lipophilic compounds, including EPA and DHA, down-regulated the 

immune system in mouse spleen tissue by affecting the mechanisms involved in activation of 

NF-κB transcription factor. In addition, EPA and DHA down-regulated the arachidonic acid 
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pathway, thus reducing the production of inflammatory mediators, such as prostaglandins and 

leukotrienes, and the mitogen-activated protein kinase 2, a protein encoded by a gene member of 

the serine/threonine protein kinase family expressed in human lymphoid follicles tricky involved 

in immunity and inflammation (Svahn et al.,2016). Of interest, again the specific fatty acid diet 

composition, rather than the increase in fat amount, seems to be the main triggering factor for the 

changes in expression of spleen transcriptome, as dietary PUFA markedly suppressed the 

expression of immune stimulating genes in the spleen, while dietary SFA have only negligible 

effects (Svahn et al.,2016). 

4.2 Vitamin D and Liver-spleen Axis 

Vitamin D deficiency is closely associated with many hepatic diseases, including NAFLD 

(Roth et al.,2012). A bidirectional association between low vitamin D levels and NAFLD is 

increasingly recognized, with an inverse association with the histologic severity of NAFLD 

(Elangovan et al.,2017). In particular, a recent meta-analysis reported that low vitamin D status 

were 26% more common in NAFLD patients than in healthy individuals (Eliades et al.,2013). As 

above mentioned, the activation of the TLR4-mediated inflammatory pathways in hepatocytes 

plays an important role in the early stages of NAFLD (Seydel et al.,2011). Of interest, an 

increased expression of TLR4, NF-κB, and downstream inflammatory factors in association with 

low vitamin D levels has been reported in an in vitro animal model of primary hepatocytes, which 

is reversed by vitamin D supplementation through the down-regulation of components of the 

TLR4-mediated inflammation pathways (Wang et al.,2015). However, although a line of 

evidence indicates the existence of an independent association between the low vitamin D status 

and NAFLD, this association could be a consequence of shared risk factors for NAFLD and 
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obesity, such as a sedentary lifestyle or unhealthy dietary pattern (Savastano et al.,2017). Studies 

included in a very comprehensive review exploring spleen functions have shown that vitamin D 

supplementation reduced CD4+ T lymphocyte and splenocyte counts and induced splenocyte 

apoptosis down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL (Tarantino et al.,2011) 

also in the clinical setting of chronic inflammatory diseases, including psoriasis (Barrea et 

al.,2017). 

4.3 Magnesium and Liver-spleen Axis 

Magnesium (Mg) deficiency is commonly found in metabolic disorders, such as obesity, 

T2DM, and IR (Nielsen 2010). Mg is an essential mineral found abundantly in whole grains, leafy 

green vegetables, legumes and nuts, acting as cofactor of numerous enzymes involved in hundreds 

of body physiologies. Inadequate dietary Mg intake depletes extracellular Mg ion and 

consequently causes activation of macrophages and influx of calcium ions into cells with increased 

secretion of pro-inflammatory cytokines (Nielsen 2010). There is a close relation between Mg, the 

second-most abundant cation in cellular systems, and the immune-inflammatory response 

(Chacko et al.,2010; Gommers et al.,2016; Liu et al.,2016). In particular, a comprehensive 

meta-analysis including a large number of participants evidenced an inverse association between 

Mg intake and serum CRP levels (Dibaba et al.,2014). Mg deficiencies, such as on gluten-free 

diets, have been proposed as risk factor of atherosclerosis (Vici et al.,2016). Different effects of 

Mg deprivation was reported by Tam et al (Tam et al.,2003), including an increased number of 

macrophages and reduced the proportion of CD8+ cytotoxic T lymphocytesin spleen 

homogenates, increased levels of pro-inflammatory cytokines and clinical signs of inflammation, 

splenomegaly and leukocytosis (Tam et al.,2003). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 N

ap
ol

i F
ed

er
ic

o 
II

] 
at

 0
2:

48
 0

7 
N

ov
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 27 

Mg antioxidant effect has been well documented through different mechanisms, including the 

increase of the rate of production of the free-radical quenching enzyme superoxide dismutase and 

the regulation of the mitochondrial formation of ROS (Golshani-Hebroni 2016). Observational 

studies have demonstrated that Mg deficiency is associated with a higher risk of several 

cardiovascular and metabolic diseases, including IR and diabetes (Veronese et al.,2016). In 

particular, Mg is significantly involved in the insulin secretion from pancreatic β-cells and in the 

insulin signal transduction (Chaudhary et al.,2010). Given the relationship between Mg 

deficiency and IR and between IR and NAFLD, a role for Mg deficiency as a potential risk factor 

for NAFLD has been postulated (Patrick 2002). 

4.4 Endocrine-Disruptors Chemicals and Liver-spleen Axis 

Diet is also common source of a number of chemical compounds acting as 

Endocrine-Disruptors Chemicals (EDC) (Nappi et al.,2016; Barrea, Savastano et al.,2016). In 

particular, bisphenol A is the most common chemical used in in polycarbonate plastics and epoxy 

resins used in food packaging (Polyzos et al.,2012; Deceuninck et al.,2015). EDC have been 

considered responsible for the alterations similar to those encountered in NAFLD, either directly 

through a hepatotoxic effect and/or indirectly by triggering IR (Polyzos et al.,2012). Of interest, 

an association has been described between serum bisphenol A levels, HS and markers of chronic 

low-grade inflammation, in particular with spleen size in patients with polycystic ovary syndrome 

(Tarantino et al.,2013), a condition in which the chronic low-grade inflammation can be part of 

the underlying mechanisms involved in the pathogenesis of this syndrome (Duleba et al.,2012). 
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5. Mediterranean Diet and Liver-spleen Axis 

The Mediterranean diet (MD) is the healthy dietary pattern prevailing in the Mediterranean 

basin before the mid-1960s, which is high in fruits, vegetables, olive oil, whole grains, and fish, 

and low in red meat and butter, with moderate red wine consumption and olive oil intake 

(Bach-Faig et al.,2011; Trichopoulou et al.,2014; Barrea, Muscogiuri, et al.,2017). Recently, 

the US Dietary Guidelines Advisory Committee identified healthy cuisine-based dietary patterns, 

such as the MD, to be associated with reduced risk of chronic disease (Dietary guidelines 2015). 

Specific nutrients commonly found in MD have consistently been associated with with 

anti-inflammatory properties, including complex carbohydrates and fiber (Ma et al.,2006; 

Kitabchi et al.,2013), Mg (King et al.,2005), and polyphenols (Schwingshackl et al.,2014; 

Zhang et al.,2015). In particular, polyphenols, natural compounds generally considered 

non-nutritive agents, which are largely present in fruits, vegetables, cereals, virgin olive oil and red 

wine, are able to reduce the ROS generation by human leukocytes (Mena et al.,2009; Marzulli et 

al.,2014) and to shift the M1 macrophage response to the anti-inflammatory M2 type response 

with production of IL-10 (Casas et al.,2014; Aharoni et al.,2015). Very recently Magrone T et al. 

investigated the anti-inflammatory effect of polyphenols isolated from seeds of red grape on 

cytokines release on peripheral blood mononuclear cells, showing that an increased release of 

IL-10 by these cells contributed to a condition of immune homeostasis among the various T cell 

subsets in obese individuals (Magrone et al.,2017; Martínez-González et al.,2016). The 

anti-inflammatory and anti-oxidant effects of the MD has been investigated in a recent 

meta-analysis of randomized clinical trials, showing that CRP and other inflammatory biomarkers 

were significantly more decreased with MD than with different control diets (Schwingshackl et 
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al.,2014). As there are many different “MD” among different countries and populations of the 

Mediterranean basin, a number of different dietary score have been built to evaluate the role of the 

MD in influencing the risk of developing cardiovascular disease (D'Alessandro et al.,2015; 

Calder et al.,2002), including the PREDIMED score used in the PREvention with MEDiterranean 

Diet trial (Martínez-González et al.,2016; Jaudszus et al.,2013). Substudies from the 

PREvention with MEDiterranean Diet trial have reported a strong anti-inflammatory effect from 

MD supplemented with extra-virgin olive oil or nuts compared with the control group on a low-fat 

diet (Mena et al.,2009; Marzulli et al.,2014; Casas et al.,2014; Aharoni et al.,2015; Magrone 

et al.,2017; Martínez-González et al.,2016). Specific fatty acid diet composition of MD can 

modulate immune functions through the membrane composition and their interaction with 

membrane-bound enzymes and receptors of lymphocyte and monocyte (Calder et al.,2002; 

Jaudszus et al.,2013). A role for the MD in managing NAFLD is supported in attenuating the 

progression of the disease (Abenavoli et al.,2014; Velasco et al.,2014). In particular, 

observational studies showed that higher MD scores were inversely related to alanine 

aminotransferase levels, IR, and NAFLD severity (Kontogianni et al.,2014). The MD pattern has 

been also recommended as the diet of choice for the treatment of NAFLD by the 

EASL-EASD-EASO Clinical Practice Guidelines (Marchesini et al.,2016). The main clinical 

trials investigating the beneficial effects of the MD as a whole and each of its components on 

NAFLD are summarized in a recent review (Zelber-Sagi et al.,2017), while the Table 1 details 

clinical interventional and observational studies carried out in humans over the last five years 

(Misciagna et al.,2017; Papamiltiadous et al.,2016; Trovato et al.,2016; Abenavoli et 
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al.,2015; Aller et al.,2015; Georgoulis et al.2015; Chan et al.2015; Trovato et al.2015; Ryan 

et al.2013; Bozzetto et al.2012). 

Coming back to the “liver-spleen axis”, besides the great body of evidence linking MD and 

NAFLD or MD and immune system, up to now no studies have specifically addressed the effects 

of MD on spleen immune function. Very recently, the spleen longitudinal diameter has emerged as 

a further indicator of systemic inflammation in patients with psoriasis. In this study, a clear link 

between psoriasis, HS and the spleen was evidenced (Balato et al.2015). Therefore, considering 

the well-established beneficial effects of MD as adjuvant therapy of a number of systemic immune 

diseases associated with metabolic derangement and NAFLD, including psoriasis (Barrea et 

al.2015), a role of MD also in modulation of spleen immune function is highly conceivable. 

6. Glucagon-Like Peptide-1 and Liver-spleen Axis 

Meal macronutrients are well-known physiologic stimulants of Glucagon-Like Peptide-1 

(GLP-1), an incretin hormone involved in postprandial glucose homeostasis (Ripken et al.,2016). 

GLP-1 stimulates glucose-related insulin secretion, and stimulates β-cell proliferation and 

differentiation, while inhibiting β-cell apoptosis and glucagon secretion (Baggio et al.,2007). 

GLP-1 is produced by the cleavage of the proglucagon gene product and mainly secreted upon 

nutrient interaction with G-protein coupled receptors by from the enteroendocrine L cells in the 

distal intestine (Marathe et al.,2013). Consequently, GLP-1 has also been considered a satiety 

signal, possibly involved in meal termination and causing delay of gastric emptying, as part of the 

“ileal brake” mechanism (Holst 2007; D'Alessio 2008). Although GLP-1 action was primarily 

localized to pancreatic β-cells, the expression of the GLP-1 Receptor (GLP-1R) has been found in 

different cell types and organs, including human hepatocytes and spleen (Bullock et al.,1996). 
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GLP-1R mRNA is widely expressed in several immune subpopulations and the activation of the 

GLP-1R signalling contributes to the regulation of both thymocyte and peripheral T cell 

proliferation, including Tregs cells from spleen and other lymphoid organs (Hadjiyanni et 

al.,2010). 

In experimental models CD4+CD25+FOXP3+ Tregs can negatively regulate splenic 

extramedullary myelopoiesis (Lee et al.,2009), while Tregs ablation increases in the numbers of B 

cells, macrophages, granulocytes, and natural killer cells in both spleen and lymph nodes (Kim et 

al.,2007). Of interest, GLP-1r transcripts are demonstrated in Tregs isolated from the spleen 

(Hadjiyanni et al.,2010); although GLP-1R activation do not increase proliferation of 

splenocytes, it increase cAMP accumulation, a mechanism by which Tregs induce 

immunosuppression (Hadjiyanni et al.,2010). 

The expression of GLP-1R unravels the presence of additional beneficial effects of GLP-1 

beyond its glucose-lowering properties, such as direct anti-inflammatory actions (Lee et al.,2016). 

Consequently, the role of GLP-1R agonists implicating GLP-1R-dependent signalling pathways in 

immune-regulatory processes (Hadjiyanni et al.,2010) and in NAFLD pathogenesis (Lund et 

al.,2011) generated much interest. Recent studies have found that GLP-1R agonists have a direct 

role in the decrease of HS in vitro (Gupta et al.,2010). The possible proposed mechanisms by 

which GLP-1 reduced the intrahepatic lipids are the following: the activation of PPR- on the 

hepatic cell surface, a lipid sensor which modifies the gene expression of proteins regulating fatty 

acid metabolism in liver cells; delayed gastric emptying; enhanced insulin sensitivity and 

secretion, which reduces lipid metabolism indirectly (Wang et al.,2014). In addition, GLP-1R 

agonists have been proven to protect hepatocytes from fatty acid-induced lipotoxicity, either by 
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reducing the oxidative stress and by promoting both macro-autophagy and chaperone-mediated 

autophagy (Wang et al.,2014). In that, GLP-1R agonists might have a role in stopping the 

progression of HS to more aggressive lesions in patients with NAFLD. A meta-analysis included 

12 trials that studied the effects of with liraglutide in patients with T2DM showed that alanine 

aminotransferase were reduced after at least 20 week of treatment thereby improving liver function 

in patients with NAFLD and T2DM (Ohki et al.,2012). Long-term exenatide treatment in patients 

with T2DM resulted in improvements in lipid profile with significant reduction in triglycerides 

(12%), total cholesterol (5%), low density lipoprotein-cholesterol (6%), and increase in high 

density lipoprotein-cholesterol (24%) (Klonoff et al.,2008). In addition, in line with the data 

previously reported, treatment with GLP-1R agonists increased the number of splenic Tregs (Xue 

et al.,2008). Of interest, very recently it has been demonstrated that mice fed with a HF diet, in 

spite of the early increase in basal GLP-1 secretion, exhibited an impaired production of many 

genes required for the normal function of enteroendocrine cells in response to their secretagogues, 

including the reduced amplification of GLP-1 secretion by nutrients (Richards et al.,2016). Thus, 

on the one side GPL-1 is likely to exert a critical for the molecular basis of the emergence of IR at 

the hepatocyte level up regulating key elements of the hepatocyte insulin signaling pathway on the 

other side it could finely tune Tregs-induced immunosuppression at the spleen level. In that, 

besides the vicious cycle of over-eating resulting from the reduced ability of GLP-1 to signal 

post-prandial satiety, it is tempting to speculated that reduced post-prandial elevation of GLP-1 

associated with a diet rich in fat and sugar and low in fiber, such as those commonly consumed by 

humans in the Western world, might contribute to deeply affect the liver-spleen axis by promoting 

NAFLD progression and by enhancing spleen myelopoiesis through the reduction of Tregs 
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activity. However, further investigations are warranted to establish the extent of the physiological 

involvement of GLP-1 and pharmacological stimulation in the wider landscape of the bidirectional 

relationships between nutrition, inflammation and live-spleen axis. 

7. Conclusions 

Animal experimental data, human epidemiological studies and large clinical trials have 

identified a number of potential diet derived anti- and pro-inflammatory components, some of 

which have been discussed in this review. A possible pathway involving the “liver-spleen axis” in 

diet-induced immuno-inflammatory process is depicted in Figure 1. However, it is evident that the 

inflammatory response is highly variable, and a full understanding of the source of heterogeneity is 

distinctly lacking. There is a need to adopt a more holistic approach and to consider the impact of 

combinations of foods components and dietary patterns, such as the MD, on diet-induced 

inflammation. NAFLD acts as both target and critical regulator of the inflammatory-related 

immune responses, and the “liver-spleen axis” might represent a common pathway for different 

diet-induced inflammatory mechanisms. The recognition of a robust diet--inflammation--health 

association makes the adoption of healthy nutritional approaches a key future preventive and 

therapeutic target thereby affecting disease risk and severity. Considering the substantial role of 

chronic low-grade inflammation in the pathogenesis of numerous chronic diseases, the need of 

implementing innovative technologies in nutritional epidemiology and appropriate 

anti-inflammatory dietary interventions depict a role of expert nutritionists in the prevention of 

diet-induced inflammation. 
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ABBREVIATIONS 

T2DM Type-2 Diabetes Mellitus 

NEFA Nonesterified Fatty Acids 

LPS Bacterial Lipopolysaccharide 

NAFLD Non-Alcoholic Fatty Liver Disease 

HS Hepatic Steatosis 

IR Insulin Resistance 

GI Glycemic Index 

HF High-Fat 

ROS Reactive Oxygen Species 

NADPH Nicotinamide Adenine Dinucleotide Phosphate Oxidase 

SFA Saturated Fatty Acids 

TLRs Toll-like Receptors 

NF-kB Nuclear Factor-kappa B 
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IL Interleukins 

TNF- Tumour Necrosis Factor- 

MCP-1 Monocyte Chemotactic Protein-1 

PAI-1 Plasminogen Activator Inhibitor-1 

AP-1 Activator Protein 

FOXP3 Forkhead Box P3 

IRF  Interferon Regulatory Factor 

STAT Signal Transducer and Activator of Transcription 

CRP C-Reactive Protein 

FA Fatty Acids 

MUFA Monounsaturated Fatty Acids 

PUFA Polyunsaturated Fatty Acids 

TG Triacylglycerol 

IFN Interferon 
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KCs Kupffer Cells 

Tregs Regulatory T Cells 

n−6 PUFA Omega-6 Polyunsaturated Fatty Acids 

n−3 PUFA Omega-3 Polyunsaturated Fatty Acids 

PGE2 Prostaglandin E2 

LTB4 Leukotriene B4 

EPA Eicosapentaenoic Acid 

DHA Docosahexaenoic Acid 

PPR- Peroxisome Proliferator-Activated Receptor  

NASH Non-Alcoholic Steatohepatitis 

Mg Magnesium 

EDC Endocrine-Disruptors Chemicals 

MD Mediterranean Diet 

GLP-1 Glucagon-Like Peptide-1 
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GLP-1R  GLP-1 Receptor. 
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Table 1: Clinical interventional and observational studies carried out in humans evaluating 

the association between the MD pattern and NAFLD over the last five years. 

Study Study Design Study location Cases-Subjects Intervention 

(duration, type)/ 

Diet evaluated 

Adherence to 

MD score 

Outcomes Confounders 

controlled 

Results 

(Misciagna et al.,2017)  Parallel-group 

randomized controlled 

clinical trial 

Putignano 

(Southern Italy) 

98 

moderate/severe 

NAFLD pts 

6 months LGIMD 

vs control diet 

INRAN 

guidelines 

MAI  NAFLD score (US) Generalized 

Estimating 

Equation 

Negative correlation between 

LGIMD and NAFLD score 

(Papamiltiadous et al.,2016) Multi-centre, parallel, 

randomized controlled 

trial 

Hospital-based-co

ntol study 

94 NAFLD pts 

with IR  

12 months, MD 

vs low-fat diet 

PREDIMED   HoMA-IR intrahepatic 

lipid content (by MR-S), 

ALT, lipid profile, liver 

stiffness (Fibroscan®), 

inflammatory cytokine 

markers, quality of life 

anthropometry and body 

composition, dietary intake 

and blood pressure 

/ ↓NALFD  

 insulin sensitivity independent 

of weight loss 

(Trovato et al.,2016) Cross-sectional controlled 

study  

Catania (Southern 

Italy) 

532 NAFLD pts 

and 667 

non-NAFLD 

subjects  

MD vs Western 

diet 

AMDS NAFLD (US) BMI  BMI and MD score independent 

predictors of NAFLD severity 
BMI  HoMA-IR 

HoMA -IR  

Physical activity 

Sun exposure 

Sleep hours 
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(Abenavoli et al.,2015) Controlled Randomized 

trial 

Catanzaro 

(Southern Italy) 

30 NAFLD pts 6 months MD vs 

MD+ silybin 

phytosome 

complex and 

vitamin E vs 

control 

--- NAFLD score (US)  / MD alone, or additionated 

FLI  NAFLD score  

HoMA-IR 

 HoMA-IR 

BMI 

WC  BMI 

Lipid profile  WC 

 Lipid profile 

(Aller et al.,2015) Cross-sectional study Valladolid (Spain) 82 NAFLD pts MD PREDIMED  Liver biopsy age, BMI, 

WC, blood pressure, fasting 

basal glucose, 

transaminases, HoMA-IR, 

lipid profile, adiponectin 

and leptin 

/ MD was associated with lower 

likelihood of high grade of HS 

and NASH 

(Georgoulis et al.,2015) Cross-sectional study Athens (Greece) 73 NAFLD pts MD MedDietScore NAFLD (elevated liver 

enzyme levels,and US) 

Age, sex, 

daily energy 

intake and 

sedentary 

activities 

MD was associated with lower 

odds of MetS 

Liver biopsies (34/73 pts) 

MetS 

(Chan et al.,2015) Cross-sectional study  Hong Kong 

(China) 

797 pts (NAFLD 

vs No-NAFLD) 

MD MDS NAFLD (1 H-MRS)  MDS and DQI-I were negatively 

correlated with intrahepatic lipid 

content 

DQI-I 

(Trovato et al.,2014) Single arm clinical trial Catania (Southern 

Italy) 

90 NAFLD 

overweightnon- 

diabetic pts  

6 months  MDS NAFLD (US)  ↓NAFLD  

MD  ↓ HOMA-IR 

 HoMA-IR No change in Liver enzymes 

Physical activity  

(Kontogianni et al.,2014) Case-control study Athens (Greece) 73 NAFLD pts vs MD  MedDietScore NAFLD liver stiffness 

Fibroscan® liver biopsies 

Age, sex, MD was negatively associated 

with HOMA- 
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MD, Mediterranean Diet; NAFLD, Non-Alcoholic Fatty Liver Disease; LGIMD, Low 

Glycemic Index Mediterranean Diet; INRAN, National Institute of Research on Food and 

Nutrition; MAI, Mediterranean Adequacy Index; US, Ultrasound Score; IR, Insulin Resistance; 

PREDIMED, PREvention with MEDiterranean Diet; HOMA-IR; Hoeostasis Model 

58 controls  smoking, 

abdominal fat 

level and 

serum 

adiponectin 

levels 

IR and ALT, and positively with 

adiponectin  

HoMA-IR 

Abdominal fat by by BIA 

Plasma cytokines (TNF-a, 

IL-6, IL-8, VEGF, TGF-β1) 

adiponectin Dietary & 

physical activity 

assessment 

(Ryan et al.,2013) Randomized, cross-over 

clinical trial 

Melbourne, 

(Australia) 

12 NAFLD 

non-diabetic pts  

6-weeks MD vs 

standard low-fat- 

high-CHO Diet 

MD NAFLD (liver biopsy and 

MR-S) 

Alcohol 

intake 

MD  NAFLD and HOMA-IR  

independent of weight loss. No 

differences in plasma GGT and 

ALT 

Hyperinsulinemic--euglyce

mic clamp 

(Bozzetto et al.,2012) Parallel-group 

randomized controlled 

clinical trial 

Naples (Southern 

Italy) 

45 T2DM pts 8 weeks 

Isocaloric 

high-CHO/fiber 

diet vs isocaloric 

high MUFA diet 

+/- physical 

activity program 

INRAN NAFLD (MR-S) BMI, age, 

sex, and 

diabetes 

therapy 

 liver fat in the MUFA group 

independent of exercise and 

body weight 

 

HOMA-IR 
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Assessment-Insulin Resistance; MR-S, Magnetic Resonance-Spectroscopy; ALT; Alanine 

Aminotransferase, AMDS; Adherence to Mediterranean Diet Score; BMI, Body Mass Index; FLI; 

Fatty Liver Index; WC, Waist Circumference; HS, Hepatic Steatosis; NASH, Non-Alcoholic 

Steatohepatitis; MedDietScore, Mediterranean Diet Score; MetS, Metabolic Syndrome; MDS, 

Mediterranean Diet Score; DQI-I, Dietary Quality Index-International; 
1
H-MRS, Proton Magnetic 

Resonance Spectroscopy; BIA, Bioelectrical Impedance Analysis; TNF-, Tumour Necrosis 

Factor-; IL, Interleukins; VEGF, Vascular Endothelial Growth Factor; TGF-β, Transforming 

Growth Factor Beta; CHO, Carbohydrate; GGT, Gamma-Glutamyl Transferase; T2DM, Type-2 

Diabetes Mellitus; MUFA, Monounsaturated Fatty Acids. 
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Figure 1: Main mechanisms likely operating in diet-induced chronic low-grade inflammation 

and reported in the text. There is a clear line of evidence connecting unhealthy diet, adipose 

tissue dysfunction (Paniagua et al.,2016) and hepatic steatosis (Liu et al.,2016), known 

conditions associated with the development of chronic low-grade systemic inflammation 

arising from aberrant activation of the innate inflammatory response (Diamanti-Kandarakis 

et al.,2017). Pro-inflammatory cytokines signal the liver to produce a variety of proteins 

known as acute phase reactants, including CRP. Chronic low-grade systemic inflammation 

paves the way to insulin resistance and atherosclerosis-related diseases (Wong et al.,2012), in 

close linking with environmental EDC exposure (Nappi et al.,2016; Barrea et al.,2016) and 

changes in epigenetic pathways linked to oxidative stress in the offspring 

(Diamanti-Kandarakis et al.,2017). Additionally, many high-carbohydrate and high fat 

foods common to Western diets promote postprandial spikes in glucose and lipids (Mohanty 
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et al.,2000), resulting per se in the development of chronic low-grade systemic inflammation. 

Deficiencies in Mg, the second-most abundant cation in cellular systems, and vitamin D, a key 

modulator of immune and inflammation mechanisms, are associated to unhealthy diet, obesity 

and NAFLD and can participate to promote chronic low-grade systemic inflammation 

(Nielsen 2010; Savastano et al.,2017; Gonçalves de Carvalho et al.,2016). Diet-induced 

changes in microbiota phyla are associated with impairment of the intestinal membrane 

integrity, followed by increasing plasma LPS, which triggers systemic inflammation via the 

stimulation of TLR-4 on immune cells (de Jong et al.,2016). GLP-1 secreted from intestinal 

L-cells in response to meal-ingestion contributes to the immune-inflammatory response with 

direct anti-inflammatory actions (Lee et al.,2016) and protection of hepatocytes from fatty 

acid-induced lipotoxicity (Wang et al.,2014). Despite its key role in immune function and 

signalling, up to now limited evidence is available on the relationships between diet, 

inflammation and spleen function. In this complex scenario, spleen enlargement in obesity 

and hepatic steatosis might represent an index of chronic inflammation and activation of the 

immune system, in the so-called “liver-spleen axis” (Tsushima et al.,2000; Tarantino et 

al.,2013). Black arrows indicate evidence-based mechanisms, while red arrows indicate 

hypothetical mechanisms. Modified figure from Nappi et al (Nappi et al.,2016). CRP, 

C-Reactive Protein; EDC, Endocrine-Disruptors Chemicals; Mg, Magnesium; NAFLD, 

Non-Alcoholic Fatty Liver Disease; LPS, Bacterial Lipopolysaccharide; TLR-4, Toll-Like 

Receptor-4; GLP-1, Glucagon-like Peptide-1. 
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