### OBSERVATIONS OF CHANGES IN ACOUSTIC EMISSION WAVEFORM FOR VARYING SEEDED DEFECT SIZES IN A ROLLING ELEMENT BEARING

Saad Al-Dossary<sup>1</sup>, R.I. Raja Hamzah<sup>2</sup>, D. Mba<sup>2</sup> <sup>1</sup>Consulting services, Saudi Aramco, Dhahran, Saudi Arabia <sup>2</sup>School of Mechanical Engineering, Cranfield University, Cranfield, Beds. MK43 0AL. <u>d.mba@cranfield.ac.uk</u>, Fax: +44 (0) 1234 754681

### Abstract

The investigation reported in this paper was centered on the application of the Acoustic Emissions (AE) technology for characterising the defect sizes on a radially loaded bearing. An experimental test-rig was designed such that defects of varying sizes could be seeded onto the outer and inner races of a test bearing. The aim of this investigation was to correlate defect size with specific AE parameters and to ascertain the relationship between the duration of AE transient bursts associated with seeded defects to the actual geometric size of the defect. In addition, the use of AE to detect inner race defects was explored particularly as this known to be fraught with difficulty. It is concluded that the geometric defect size of outer race defects can be determined from the AE waveform.

**Keywords:** Acoustic emissions, bearing defect size, bearing fault diagnosis, condition monitoring.

### 1. Introduction

Acoustic emissions (AE) are defined as the range of phenomena that results in structure-borne propagating waves being generated by the rapid release of energy from localised sources within and/or, on the surface of a material. In this particular

investigation, AE's are defined as the transient elastic waves generated by the interaction of two surfaces in relative motion. The interaction of surface asperities and impingement of the bearing rollers over a seeded defect will generate AE's. Due to the high frequency content of the AE signatures typical mechanical noise (less than 20 kHz) is eliminated. A comprehensive review of the application of the AE technology for bearing monitoring was presented by Mba et al [1] where it was shown that the AE technology offered earlier fault identification than vibration analysis, particularly for outer race defects; this was not mirrored for inner race defect identification.

Shiroishi et al [2] noted difficulties in identifying inner race defects with AE stating that emissions from inner race defects were not of sufficient strength/energy to be detectable above the operational background noise. Shiroishi postulated reasons for this stating that AE signals generated by an inner race defect had to travel further and through more interfaces than those for any other type of defect (e.g., the outer race). Also, it was commented that the signal strength may diminish if the transmission path for the AE wave was not direct to the sensor; implying that the transmission path will be influenced by the position of the defect, the roller, and the sensor. This observation was also recently presented by Tan [3] et al where the viability of the AE technology for gear defect detection by making observations from non-rotating components (bearing casings) of a machine was called into question. Several other authors have shown the advantages of applying AE to monitoring of rolling element bearings [4 – 17].

The aim of this paper is to ascertain the applicability of AE for detecting the presence of inner and outer race defects, particularly as the former has been reported to be fraught with difficulty. Furthermore, the paper builds on the investigation of Al-Ghamdi [18, 19] by exploring further the relationship between time-domain AE waveform characteristics with seeded defect geometric dimensions of the inner and outer race.

### 2. Experimental apparatus and data acquisition

The test bearing was fitted on a rig which consisted of a shaft that was driven by a motor. The shaft was supported by two large slave bearings, see figure 1. The test bearing was a split Cooper cylindrical roller type 01B40MEX, with a bore diameter of 40 mm, external diameter of 84mm, pitch circle diameter of 68mm, roller diameter of 12mm, and 10 rollers in total. This bearing was selected due to its split design which would facilitate the assembling and disassembling of the bearing on the shaft after each test.

The AE acquisition system consisted of a piezoelectric type sensor (Physical Acoustic Corporation type WD) fitted onto the top half of the bearing housing. The transducer had an operating frequency of 100 to 1000 kHz. The signal from the transducer was amplified at 40dB and sampled at 8MHz for outer race experiments, and, 4 MHz and 8MHz for the inner race experiments at 1500rpm and 3000rpm respectively.



Figure 1 Layout of experimental test-rig

### **3** Experimental Procedure

Four split Cooper bearings were used for the experiment in order to seed a variety of defects on each bearing. The defects on the bearing elements were made by using an electric engraver with a carbide tip. In an attempt to understand how the defect size influenced AE waveform an incremental procedure for simulating increasing defect sizes was established. This involved starting a sequence on a bearing with a point defect (D1) and increasing the length along the circumferential direction to a maximum value for a fixed width across the race. Once this maximum length was achieved the width of the defect was then expanded. A breakdown on the incremental

defect procedure is detailed in tables 1(a) to 1(d). In all tests the smallest defect seeded had a diameter of 0.5mm which was labelled 'D1'. The defect sizes were measured by its Length (mm) and Width (mm), where the length was measured circumferentially in the direction of the rollers and the width is defined as the distance across the bearing race.

| Bearing 1 (L X W) mm |                  |  |  |  |  |
|----------------------|------------------|--|--|--|--|
| D1                   | Circle $D=0.5mm$ |  |  |  |  |
| D2                   | 0.9x2.5 mm       |  |  |  |  |
| D3                   | 0.9x4            |  |  |  |  |
| D4                   | 0.9x8            |  |  |  |  |
| D5                   | 0.9x12           |  |  |  |  |
| D6                   | <i>3x12</i>      |  |  |  |  |
| D7                   | 5x12             |  |  |  |  |
| D8                   | 7x12             |  |  |  |  |
| D9                   | 9x12             |  |  |  |  |

| Table (1a) | <b>Bearing-1 incremental</b> |
|------------|------------------------------|
|            | defect sizes (outer race)    |

| Table (1b) | <b>Bearing-2 incremental</b> |
|------------|------------------------------|
|            | defect sizes (outer race)    |

| Bearing 2 (L X W) mm |      |  |  |  |  |  |
|----------------------|------|--|--|--|--|--|
| D10                  | 1x2  |  |  |  |  |  |
| D11                  | 2x2  |  |  |  |  |  |
| D12                  | 4x2  |  |  |  |  |  |
| D13                  | 8x2  |  |  |  |  |  |
| D14                  | 12x2 |  |  |  |  |  |
| D15                  | 12x6 |  |  |  |  |  |
| D16                  | 12x9 |  |  |  |  |  |

## Table ( 1c )Bearing-3 incremental<br/>defect sizes (inner race)

| Bearing 3 (L X W) mm |                  |  |  |  |  |  |
|----------------------|------------------|--|--|--|--|--|
| D17                  | Circle $D=0.5mm$ |  |  |  |  |  |
| D18                  | 3x1              |  |  |  |  |  |
| D19                  | 6x1              |  |  |  |  |  |
| D20                  | 12x1             |  |  |  |  |  |
| D21                  | 12x3             |  |  |  |  |  |
| D22                  | 12x6             |  |  |  |  |  |

## Table (1d)Bearing-4 incremental<br/>defect sizes (inner race)

| Bearing 4 (L X W) mm |             |  |  |  |  |
|----------------------|-------------|--|--|--|--|
| D23                  | 1x3         |  |  |  |  |
| D24                  | 1x6         |  |  |  |  |
| D25                  | 1x12        |  |  |  |  |
| D26                  | <i>3x12</i> |  |  |  |  |
| D27                  | 6 x12       |  |  |  |  |



### Figure 2 A sample of an inner race defect

Experimental tests were performed by first making the defects in the appropriate size and geometrical shape, see figure 2, on the bearing element after which the bearing was installed and positioned such that the defect was at the top-dead-centre where the load was applied. After installing the bearing, the test rig was run at the first speed of 1500 rpm for at least fifteen minutes to bring it up to thermal equilibrium. Next, forces of 2.7, 5.3, and 8kN were applied in sequence and AE data was acquired for each load condition. The rig was shutdown and the motor changed to provide a speed of 3000rpm. The procedure for loading and AE data acquisition was repeated again. The bearing was then dismantled and the next incremental defect was seeded onto the bearing element. The test sequence described above was again undertaken. A total of 162 tests were performed for this investigation.

### 4. Analysis

For each test performed (162 in total), 42 AE data files were acquired. The averaged energy and maximum amplitude values for all 42 data files associated with each defect condition are presented as a function of speed, load and defect size.

### 4.1 **Observations of Energy values for the outer race (Bearings 1 and 2)**

The energy values were compared for increasing outer race defect sizes at varying speed and load conditions. It was noted that energy values increased with increasing speed and load. For tests involving Bearing's -1 and -2, incrementally increasing the

defect size resulted in an increase in energy values at both speed conditions, see figures 3 and 4.



Figure 3 AE Energy for varying defect and load conditions; Outer race, 1500rpm



# Figure 4 AE Energy for varying defect and load conditions; Outer race, 3000rpm

### 4.2 Observations of Maximum Amplitude values for the Outer Race (Bearings 1 and 2)

As with the energy values, the maximum amplitude values showed a general increase with defect size at both rotational speeds (1500 and 3000rpm). However, it was noted that maximum amplitude values presented in figures 5 and 6 reached a maximum and then decreased, for instance, observations of bearing-1 in figure 6 showed amplitude values increased from D1 to D5. By further increasing the width of defect size incrementally (D6 to D9), it was noted that maximum amplitude values decreased. This trend was also noted for bearing-1, where the procedure of increasing defect sizes was reverse to Bearing-2; indicating that this observation was independent of the direction in which the defect grew and rotational speed.



Figure 5 AE maximum amplitude for varying defect and load conditions; outer race, 1500rpm



Figure 6 AE maximum amplitude for varying defect and load conditions; outer race, 3000rpm

### 4.3 Observations of Energy values for Inner race defects (Bearings 3 and 4)

The AE energy values measured for inner race defects showed a general trend of increasing energy values with increasing defect size, see figures 7 and 8.



Figure 7 AE Energy for varying defect and load conditions; inner race,

1500rpm



Figure 8 AE Energy for varying defect and load conditions; Inner race, 3000rpm

### 4.4 Observations of maximum amplitude values for the inner race experiment (Bearings 3 and 4)

The AE maximum amplitude values associated with inner race seeded defects showed random characteristics. The AE maximum amplitude values did not show any pattern when they were plotted against the defect size for both Bearing-3 and -4 under two speed conditions, see figures 9 and 10. The values showed a random increase and decrease as the defect size increased in length or width.



Figure 9 AE maximum amplitude for varying defect and load conditions; inner race, 1500rpm



Figure 10 AE maximum amplitude for varying defect and load conditions; inner race, 3000rpm

### 4.5 Observations of burst duration for Outer and Inner race defects

This part of the experiment involved relating the duration of AE transient bursts with the size of defect. If the defects simulated were to produce AE transient bursts, as each rolling element passed the defect, it was envisaged that the AE bursts would be detected at a rate equivalent to the outer race and inner race defect frequencies (4.1times and 5.8-times rotational speed respectively). This periodicity in AE transient was noted for both the outer and inner race defects; see figure 11. At 3000rpm the number of revolutions captured over 32msec (time window for data acquisition, as shown in figure 11) was 1.6; implying that there should be approximately '6' and '9' AE transient bursts associated with the outer and inner race defect frequencies in figure 11. At the lower speed of 1500rpm, the data acquisition time window allowed for 0.8 and 1.6 revolutions of the shaft for the outer and inner race defect simulations respectively; implying approximately '4' and '9' AE transient bursts for each acquisition window. Appendix A highlights sample AE waveforms for varying speed, load and defect conditions. However, whilst the anticipated number of anticipated AE transients bursts associated with outer race defects was consistently captured in the data acquisition time window (see top plot in figure 11) the same did not always apply for the inner race defects. In the latter instance there was a variation in the measured number of AE transients. This is discussed in greater detail under section 7.



Figure 11 AE transient bursts associated with outer and inner race defects (3000rpm)

The AE transient burst duration associated with specific defects was obtained by calculating the duration from the point at which the AE response was higher than the underlying background noise level to the point at which it returned to the underlying noise level. This simply implied defining the start and end of each burst and determining the duration, as shown in figure 12. The duration value presented for each defect condition was an average value taken from over twenty AE bursts per defect size taken at random. A complete breakdown of average burst duration for bearings 1 and 3 at 1500 and 3000rpm, with AE waveform plots, is presented in appendix A. The waveform plots in appendix A present a good qualitative observation of the influence of changing defect size on AE waveform.



Figure 12 Example procedures for determining the AE transient burst duration

It is important to note that defect D1 was a point defect, D2 to D5 had fixed length with increasing width and D6 to D9 had a fixed width with increasing length, as described in table 1(a). For bearings-1 and -3 no AE transient bursts associated with defect D1 were evident above the operational background noise levels, see appendix A. For defects D2 to D5 the AE burst duration associated with the defect condition remained relatively constant irrespective of the speed and load condition (see figures 13 and 14), however, the duration of the AE burst associated with defects D6 to D9 increased with increasing defect size along the circumferential direction of the roller (length), see figures 13 and 14.



Figure 13 Burst Duration at 1500rpm; outer race defect



Figure 14 Burst Duration at 3000rpm; outer race defect

The theoretical time duration of the roller passing over the defect was also calculated based on the rotational speed of the shaft and the relative velocities of the elements within the bearing. The objective was to correlate the theoretically determined time duration over which the roller passed the defect to the duration of AE transient burst associated with the specified defect assuming no cage slip. Comparative results of theoretical and experimental values are presented in figures 13 and 14. All experimental values of AE burst duration for both speed conditions were larger than the calculated theoretical values by as much as 60% for specific defects associated with increasing width (D1 to D5) and in the order of 22% and 37% (for 1500 rpm and 3000 rpm respectively) for defects of increasing length; see tables 2 and 3. This suggested that the measured experimental burst duration was more representative of the defect size for conditions were the discrimination of the start and end of the defect were more evident (D6-D9). A reason for the difference between theoretical and experimental time durations is attributed to the decay characteristics of the AE transient bursts. The selected end position of the AE transient is not actually the instant in time when the generation of AE ceased as there is an exponential decay associated with AE transient bursts. The selected end position of the AE burst associated with the defect includes this decay time. To reduce the difference between the theoretical and experimental results will require employing much higher sampling rates to aid discrimination. A couple of other factors will have contributed to this difference include the tolerance of the geometric defect size and the slight variation in rotational speed of the motor. Observations of figures 13 and 14 also revealed that load had relatively no influence on the AE burst duration associated with the defect.

Table 2Experimental and theoretical AE burst duration at 1500rpm(Outer race)

| Defect Theory | Theory | Burst Duration |        |      | % Difference |        |      |
|---------------|--------|----------------|--------|------|--------------|--------|------|
|               | Theory | 2.7 kN         | 5.3 kN | 8 kN | 2.7 kN       | 5.3 kN | 8 kN |

| D1 | 1.93E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 |       |       |       |
|----|----------|----------|----------|----------|-------|-------|-------|
| D2 | 3.48E-04 | 7.06E-04 | 7.27E-04 | 8.44E-04 | 50.7% | 50.7% | 52.2% |
| D3 | 3.48E-04 | 8.07E-04 | 8.00E-04 | 7.78E-04 | 56.9% | 56.9% | 56.5% |
| D4 | 3.48E-04 | 9.24E-04 | 8.22E-04 | 8.58E-04 | 62.4% | 62.4% | 57.7% |
| D5 | 3.48E-04 | 9.60E-04 | 8.00E-04 | 7.27E-04 | 63.8% | 63.8% | 56.6% |
| D6 | 1.16E-03 | 1.37E-03 | 1.35E-03 | 1.39E-03 | 15.3% | 15.3% | 14.4% |
| D7 | 1.93E-03 | 2.60E-03 | 2.29E-03 | 2.04E-03 | 25.7% | 25.7% | 15.8% |
| D8 | 2.70E-03 | 3.66E-03 | 3.47E-03 | 2.96E-03 | 26.1% | 26.1% | 22.1% |
| D9 | 3.48E-03 | 4.51E-03 | 3.99E-03 | 4.04E-03 | 22.9% | 22.9% | 12.8% |

### Table 3Experimental and theoretical AE burst duration at 3000rpm

|        |          | Burst Duration |          |          | % Difference |        |       |
|--------|----------|----------------|----------|----------|--------------|--------|-------|
| Defect | Theory   | 2.7 kN         | 5.3 kN   | 8 kN     | 2.7 kN       | 5.3 kN | 8 kN  |
| D1     | 9.65E-05 | 0.00E+00       | 0.00E+00 | 0.00E+00 |              |        |       |
| D2     | 1.74E-04 | 4.00E-04       | 6.04E-04 | 4.65E-04 | 56.6%        | 71.2%  | 62.7% |
| D3     | 1.74E-04 | 3.89E-04       | 5.46E-04 | 3.42E-04 | 55.3%        | 68.1%  | 49.2% |
| D4     | 1.74E-04 | 5.09E-04       | 5.45E-04 | 4.44E-04 | 65.9%        | 68.1%  | 60.8% |
| D5     | 1.74E-04 | 5.53E-04       | 5.38E-04 | 4.66E-04 | 68.6%        | 67.7%  | 62.7% |
| D6     | 5.79E-04 | 1.79E-03       | 1.21E-03 | 1.08E-03 | 67.6%        | 52.0%  | 46.2% |
| D7     | 9.65E-04 | 1.83E-03       | 1.60E-03 | 1.43E-03 | 47.3%        | 39.7%  | 32.6% |
| D8     | 1.35E-03 | 2.15E-03       | 2.11E-03 | 2.12E-03 | 37.0%        | 35.9%  | 36.1% |
| D9     | 1.74E-03 | 2.39E-03       | 3.00E-03 | 2.53E-03 | 27.2%        | 42.2%  | 31.4% |

### (Outer race)

The observations of AE burst duration associated with the inner race highlighted variations from theoretical estimates of up to 80% (see tables 4 and 5) for defects with increasing length and in excess of 350% for defects with increasing width. However, it was noted that as the length of the inner race defect increased D18 to D19, and, D19 to D20, the percentage error between theoretical and experimentally measured durations increased significantly. This was not observed for outer race defects (D6 to

D9) where errors remained, on average, at 22%. The reduced error for increasing lengths was also noted for the outer race defect. Also as noted for the outer race there was no influence of load on the AE burst duration, see figures 15 and 16. Whilst the results detailed on AE burst duration are specific to bearings -1 and -3, the same observations were noted for bearings -2 and -4.

### Table 4Experimental and theoretical AE burst duration at 1500rpm

| Defect | Theorem  | Burst Duration |          |          | % Difference |        |        |
|--------|----------|----------------|----------|----------|--------------|--------|--------|
|        | Theory   | 2.7 kN         | 5.3 kN   | 8 kN     | 2.7 kN       | 5.3 kN | 8 kN   |
| D17    | 2.71E-04 | 0.00E+00       | 0.00E+00 | 0.00E+00 |              |        |        |
| D18    | 1.62E-03 | 1.27E-03       | 1.51E-03 | 1.38E-03 | 28.3%        | 7.5%   | 17.7%  |
| D19    | 3.25E-03 | 1.71E-03       | 1.73E-03 | 1.86E-03 | 89.4%        | 87.6%  | 74.4%  |
| D20    | 6.49E-03 | 1.82E-03       | 1.98E-03 | 2.27E-03 | 257.2%       | 228.7% | 186.1% |
| D21    | 6.49E-03 | 1.80E-03       | 1.65E-03 | 1.75E-03 | 261.5%       | 293.7% | 271.6% |
| D22    | 6.49E-03 | 1.55E-03       | 1.60E-03 | 1.86E-03 | 318.6%       | 305.7% | 248.9% |

(Inner race)

### Table 5Experimental and theoretical AE burst duration at 3000rpm

### (Inner race)

| Defect Theo | Theory   | <b>Burst Duration</b> |          |          | % Difference |        |       |
|-------------|----------|-----------------------|----------|----------|--------------|--------|-------|
|             | Theory   | 2.7 kN                | 5.3 kN   | 8 kN     | 2.7 kN       | 5.3 kN | 8 kN  |
| D17         | 1.36E-04 | 0.00E+00              | 0.00E+00 | 0.00E+00 |              |        |       |
| D18         | 8.13E-04 | 8.98E-04              | 1.04E-03 | 1.05E-03 | 9.4%         | 21.6%  | 22.8% |
| D19         | 1.63E-03 | 1.16E-03              | 1.06E-03 | 1.18E-03 | 40.3%        | 53.3%  | 38.4% |

| D20 | 3.25E-03 | 7.18E-04 | 8.65E-04 | 8.74E-04 | 352.9% | 276.0% | 272.4% |
|-----|----------|----------|----------|----------|--------|--------|--------|
| D21 | 3.25E-03 | 1.21E-03 | 9.55E-04 | 9.89E-04 | 168.0% | 240.7% | 229.1% |
| D22 | 3.25E-03 | 1.14E-03 | 7.10E-04 | 9.80E-04 | 184.6% | 358.2% | 232.1% |



Figure 15 Burst Duration at 1500rpm; inner race defect



Figure 16 Burst Duration at 3000rpm; inner race defect

Another observation made during this experiment was that in several instances the AE burst associated with a defect condition had, in some instances, two large AE 'spikes'; one at the instant in time when the roller entered or made contact with the defect and the second as the roller exited the defect, see figure 17. It is postulated that this observation can be correlated to the method of artificially seeding the fault onto the rolling elements, see figure 18. This technique of seeding the defect introduced large protrusion at the edge of the defect. It is postulated that these protrusions were responsible for the peaks at the start and end of the burst.



Figure 17 AE transient bursts from a defect condition showing two large AE spikes which are postulated to be from the roller's entry and exit from the defect





# Figure 18 Schematic, and pictorial view, showing entry and exit surface condition on seeded defect

### 4.6 Observations of AE burst to noise ratio (D1-D9)

The ratio of maximum AE burst amplitude to the underlying operational noise levels was determined and correlated to the seeded defect width. Observations of the AE transient burst to noise ratio for outer race defects showed an increase with increasing defect width (D1 to D5), however, it was also noted that an increase in defect length, for a constant defect width (D6-D9), did not change the burst to noise ratio, see figures 19, 20 and table 6. For the inner race defects the trend in burst-to-noise ratio noted on the outer race was not replicated, see figures 21, 22 and table 7; the pattern noted for the inner was random. It was again noted that load had a relatively insignificant influence on this ratio for outer race defect conditions only.

| 1500rpm |        | 3000 rpm |      |  |        |        |        |      |  |  |  |
|---------|--------|----------|------|--|--------|--------|--------|------|--|--|--|
| Defect  | 2.7 kN | 5.3 kN   | 8 kN |  | Defect | 2.7 kN | 5.3 kN | 8 kN |  |  |  |
| D1      | 0.00   | 0.00     | 0.00 |  | D1     | 0.00   | 0.00   | 0.00 |  |  |  |
| D2      | 4.66   | 4.38     | 5.10 |  | D2     | 4.37   | 3.28   | 2.90 |  |  |  |
| D3      | 4.22   | 3.90     | 4.88 |  | D3     | 4.17   | 4.28   | 4.18 |  |  |  |
| D4      | 4.83   | 4.84     | 5.21 |  | D4     | 5.51   | 5.04   | 5.23 |  |  |  |
| D4      | 7.37   | 7.48     | 6.73 |  | D4     | 6.75   | 9.16   | 6.87 |  |  |  |
| D6      | 6.86   | 7.58     | 7.24 |  | D6     | 7.73   | 7.26   | 7.30 |  |  |  |
| D7      | 4.88   | 5.19     | 6.28 |  | D7     | 5.89   | 6.81   | 5.78 |  |  |  |
| D8      | 4.05   | 5.77     | 5.85 |  | D8     | 6.01   | 7.60   | 5.73 |  |  |  |
| D9      | 7.61   | 5.73     | 5.32 |  | D9     | 10.56  | 7.42   | 5.72 |  |  |  |

 Table 6
 AE burst-to-noise ratios for outer race defects



Figure 19 AE burst to noise ratio at 1500rpm (outer race defect)



Figure 20 AE burst to noise ratio at 3000rpm (Outer race defect)

| 1500rpm |        |        |       | 3000 rpm |        |        |       |
|---------|--------|--------|-------|----------|--------|--------|-------|
| Defect  | 2.7 kN | 5.3 kN | 8 kN  | Defect   | 2.7 kN | 5.3 kN | 8 kN  |
| D17     | 0.00   | 0.00   | 0.00  | D17      | 0.00   | 0.00   | 0.00  |
| D18     | 10.19  | 13.03  | 11.55 | D18      | 6.12   | 13.60  | 7.03  |
| D19     | 5.66   | 8.28   | 11.22 | D19      | 43.08  | 5.99   | 7.47  |
| D20     | 9.40   | 4.51   | 10.69 | D20      | 3.53   | 10.30  | 8.26  |
| D21     | 5.75   | 6.58   | 7.73  | D21      | 34.69  | 6.06   | 5.38  |
| D22     | 5.58   | 4.91   | 1.20  | D22      | 22.83  | 25.87  | 12.03 |

 Table 7
 AE burst-to-noise ratios for inner race defects



Figure 21 AE burst to noise ratio at 1500rpm (Inner race defect)



Figure 22 AE burst to noise ratio at 3000rpm (Inner race defect)

### 5 Discussion and conclusions

An increase in defect size resulted in an increase in levels of AE energy for outer and inner race seeded defects. This was also noted for AE maximum amplitude values for outer race defects, however, this was not the case for inner race defects. The reason is attributed to the variation in transmission path from the AE source (inner race) to the AE sensor on the bearing casing. This partly supports the findings of other researchers [2, 3] and highlights that monitoring inner race defects by observations of AE maximum amplitude from a sensor located on the bearing housing can fraught with difficulty. This is further highlighted by observations of figure 23 where three data files for the same defect, speed and load condition showed quite distinct characteristics; the figure shows AE transient bursts associated with the inner race defect however the rate at which the bursts occurred was not always equivalent to the inner race defect frequency, moreover the rates varied for the same test condition as shown in figure 23. This is attributed to the attenuation of the AE signatures as a direct consequence of the variation in the transmission with circumferential position of the rolling elements within the bearing. From this investigation it would appear that the AE energy values determined over a period equivalent to approximately 1.6 shaft revolutions can offer an indication of increasing inner race defect severity provided an adequate number of samples are taken; in this instance 42 data files equivalent to just over 67 revolution was employed for each test condition..



Figure 23 AE waveforms associated with an inner race defect (3000 rpm)

It was also noted, for both defect conditions, that the time duration between successive AE transients were not always identical. For instance, figure 24 shows an outer race defect condition at 3000 rpm with a difference in time interval between some of the successive AE bursts. This variation is attributed to slip of the cage assembly. This observation was also noted for inner race defects, see figure 25, where the top plot shows a variation in the time duration between successive AE transients while the bottom plot of figure 25 shows the near constant time intervals between successive AE bursts attributed to the inner race defect. These observations also offer an explanation why the number of AE transients did not match the theoretical defect frequency. For example, the lower plot of figure 25 shows approximately 8.5 AE

transient burst over 32mseconds; the theoretical estimate was calculated at 9.3; this would suggest a slip factor of 0.9.



Figure 24Evidence of cage slip due to the variation in time interval between<br/>successive AE bursts (Outer race defect, 3000 rpm)



Figure 25 Evidence of cage slip due to the variation in time interval between successive AE bursts (Inner race defect, 3000 rpm)

An increase in the outer race defect length resulted in an increase in AE transient burst duration associated with the particular defect. An increase in the width of the outer race defect resulted in an increase in ratio between the maximum amplitude of the AE transient burst for the defect to the underlying operational noise levels. This observation was noted for bearings -1 and -2. Appendix A details a summary of some of the results and presents AE waveforms, giving the reader an appreciation of the changes of the AE waveform with defect size. A relationship between AE burst duration nor maximum amplitude to noise ratio for inner race defects was not established and this was attributed to the variation in transmission path with angular position of the shaft and bearing elements. For any future investigation it is advised that a trigger mechanism be employed to ensure that the acquired AE can be related to the inner race defect within the load zone, ensuring a much improved transmission path to the receiving AE sensor. However, this highlights a limitation in actual operational conditions where the position of inner race defects will be unknown.

In conclusion, the measurement of AE energy over a duration equivalent to just over one rotation of the shaft has been shown to offer an indication of increasing defect severity for outer and inner race defects. A correlation between the geometric size of outer race defects and the AE bursts associated with such defects has been shown however, this does not apply to inner race defects. The relationship between defect size and AE burst duration is a significant finding which in the longer term, and with further research, offers opportunities for prognosis.

### 6. References

- D. Mba & Raj B.K.N. Rao, Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines; Bearings, Pumps, Gearboxes, Engines and Rotating Structures. *The Shock and Vibration digest*, 38/1, Jan 2006, 3-16.
- J. Shiroishi, Y. Li, S. Liang, T. Kurfess and S, Danyluk, Bearing condition diagnostics via vibration and acoustic emission measurements, *Mechanical Systems and Signal Processing*, V 11, N 5, 1997, p. 697-705.
- Chee Keong Tan and David Mba, Limitation of Acoustic Emission for identifying seeded defects in gearboxes. Journal of Nondestructive Evaluation, Vol. 24, No. 1, March 2005, p 11 - 28. ISSN: 0195-9298.

- Balerston, H. L., The detection of incipient failure in bearings, Materials Evaluation, Vol 27, 121-128, 1969.
- Rogers, L. M., The application of vibration analysis and acoustic emission source location to on-line condition monitoring of anti-friction bearings. *Tribology International*, 1979; 51-59.
- 6. Yoshioka T, Fujiwara T. New acoustic emission source locating system for the study of rolling contact fatigue, *Wear*, 81(1), 183-186.
- Yoshioka T, Fujiwara T. Application of acoustic emission technique to detection of rolling bearing failure, *American Society of Mechanical Engineers*, Production Engineering Division publication PED, 1984, 14, 55-76.
- Hawman, M. W., Galinaitis, W. S, Acoustic Emission monitoring of rolling element bearings, *Proceedings of the IEEE*, *Ultrasonics* symposium, 1988, 885-889
- Holroyd, T.J. and Randall, N., (1993), Use of Acoustic Emission for Machine Condition Monitoring, *British Journal of Non-Destructive Testing*, 1993, 35(2), 75-78.
- Holroyd, T. Condition monitoring of very slowly rotating machinery using AE techniques. *14th International congress on Condition monitoring and Diagnostic engineering management (COMADEM'2001),* Manchester, UK, 4-6 September 2001, 29, ISBN 0080440363
- 11. Bagnoli, S., Capitani, R. and Citti, P. Comparison of accelerometer and acoustic emission signals as diagnostic tools in assessing bearing. *Proceedings of 2nd International Conference on Condition Monitoring*, London, UK, May 1988, 117-125.

- 12. Tandon, N. and Nakra, B.C, Defect Detection of Rolling Element Bearings by Acoustic Emission Method, *Journal of Acoustic Emission*, 1990; 9(1) 25-28.
- Choundhury, A. and Tandon, N., Application of acoustic emission technique for the detection of defects in rolling element bearings, *Tribology International*, 2000; 33, 39-45
- 14. Tan, C.C. Application of acoustic emission to the detection of bearing failures. The Institution of Engineers Australia, *Tribology conference*, Brisbane, 3-5 December 1990, 110-114.
- 15. Huguet, S, Godin, N, Gaertner, R, Salmon, L, Villard, D. Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. *Composites Science and Technology*, 2002, 62, 1433-1444.
- 16. Yoshioka, T., korenaga, A., Mano, H. and Yamamoto, T. Diagnosis of rolling bearing by measuring time interval of Acoustic Emission generation. Journal of Tribology, Transactions of ASME, Vol. 121, July 1999, 468-472.
- 17. Morhain, A, Mba, D, Bearing defect diagnosis and acoustic emission, Journal of Engineering Tribology, I Mech E, Vol 217, No. 4, Part J, p 257-272, 2003. ISSN 1350-6501.
- Abdullah M. Al-Ghamdi, P. Cole, Rafael Such, D. Mba, Estimation of bearing defect size with Acoustic Emission, INSIGHT, Vol. 46, no. 12, 758-761, Dec 2004.
- 19. Abdullah M. Al-Ghamdi and D. Mba. A comparative experimental study on the use of Acoustic Emission and vibration analysis for bearing defect identification and estimation of defect size. *Mechanical Systems and Signal Processing*, Accepted MSSP04-98R2. 2005.

|        | Table A1 : Outer Race Defect; 1500rpm Load 2.7kN |                |               |          |        |           |        |  |  |  |  |
|--------|--------------------------------------------------|----------------|---------------|----------|--------|-----------|--------|--|--|--|--|
| Defect | Dimension (mm)                                   | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise  | P-N Ratio | Signal |  |  |  |  |
| DISILI | Circle D=0.5                                     | 1.93E-04       |               |          |        |           |        |  |  |  |  |
| D2S1L1 | 0.9X2.5                                          | 3.48E-04       | 7.06E-04      | 0.01865  | 0.004  | 4.66      |        |  |  |  |  |
| D381L1 | 0.9X4                                            | 3.48E-04       | 8.07E-04      | 0.02109  | 0.005  | 4.22      |        |  |  |  |  |
| D4S1L1 | 0.9X8                                            | 3.48E-04       | 9.24E-04      | 0.0362   | 0.0075 | 4.83      |        |  |  |  |  |
| D5S1L1 | 0.9X12                                           | 3.48E-04       | 9.60E-04      | 0.0553   | 0.0075 | 7.37      |        |  |  |  |  |
| D681L1 | 3X12                                             | 1.16E-03       | 1.37E-03      | 0.0686   | 0.01   | 6.86      |        |  |  |  |  |
| D781L1 | 5X12                                             | 1.93E-03       | 2.60E-03      | 0.0488   | 0.01   | 4.88      |        |  |  |  |  |
| D881L1 | 7X12                                             | 2.70E-03       | 3.66E-03      | 0.0304   | 0.0075 | 4.05      |        |  |  |  |  |
| D981L1 | 9X12                                             | 3.48E-03       | 4.51E-03      | 0.0571   | 0.0075 | 7.61      |        |  |  |  |  |

|        | Table A2 : Outer Race Defect; 1500rpm Load 5.3kN |                 |                |          |        |           |        |  |  |  |  |  |
|--------|--------------------------------------------------|-----------------|----------------|----------|--------|-----------|--------|--|--|--|--|--|
| Defect | Dimension (mm)                                   | Cal. Burst Dur. | Avg Burst Dur. | Avg Peak | Noise  | P-N Ratio | Signal |  |  |  |  |  |
| D1S1L2 | Circle D=0.5                                     | 1.93E-04        |                |          |        |           |        |  |  |  |  |  |
| D2S1L2 | 0.9X2.5                                          | 3.48E-04        | 7.27E-04       | 0.0219   | 0.005  | 4.38      |        |  |  |  |  |  |
| D3S1L2 | 0.9X4                                            | 3.48E-04        | 8.00E-04       | 0.0234   | 0.006  | 3.90      |        |  |  |  |  |  |
| D4S1L2 | 0.9X8                                            | 3.48E-04        | 8.22E-04       | 0.0363   | 0.0075 | 4.84      |        |  |  |  |  |  |
| D5S1L2 | 0.9X12                                           | 3.48E-04        | 8.00E-04       | 0.0561   | 0.0075 | 7.48      |        |  |  |  |  |  |
| D6S1L2 | 3X12                                             | 1.16E-03        | 1.35E-03       | 0.0758   | 0.01   | 7.58      |        |  |  |  |  |  |
| D7S1L2 | 5X12                                             | 1.93E-03        | 2.29E-03       | 0.0519   | 0.01   | 5.19      |        |  |  |  |  |  |
| D8S1L2 | 7X12                                             | 2.70E-03        | 3.47E-03       | 0.0433   | 0.0075 | 5.77      |        |  |  |  |  |  |
| D9S1L2 | 9X12                                             | 3.48E-03        | 3.99E-03       | 0.0573   | 0.01   | 5.73      |        |  |  |  |  |  |

| Table A3 : Outer Race Defect; 1500rpm Load 8.0kN |                |                |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|--------------------------------------------------|----------------|----------------|---------------|----------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Defect                                           | Dimension (mm) | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise  | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| D151L3                                           | Circle D=0.5   | 1.93E-04       |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D2S1L3                                           | 0.9X2.5        | 3.48E-04       | 8.44E-04      | 0.0255   | 0.005  | 5.10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D3S1L3                                           | 0.9X4          | 3.48E-04       | 7.78E-04      | 0.0244   | 0.005  | 4.88      | 0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 |  |  |  |  |
| D4S1L3                                           | 0.9X8          | 3.48E-04       | 8.58E-04      | 0.0391   | 0.0075 | 5.21      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D581L3                                           | 0.9X12         | 3.48E-04       | 7.27E-04      | 0.0673   | 0.01   | 6.73      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D6S1L3                                           | 3X12           | 1.16E-03       | 1.39E-03      | 0.0905   | 0.0125 | 7.24      | 0.1<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D7S1L3                                           | 5X12           | 1.93E-03       | 2.04E-03      | 0.0628   | 0.01   | 6.28      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D8S1L3                                           | 7X12           | 2.70E-03       | 2.96E-03      | 0.0585   | 0.01   | 5.85      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D981L3                                           | 9X12           | 3.48E-03       | 4.04E-03      | 0.0665   | 0.0125 | 5.32      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

|        | Table A4 : Outer Race Defect; 3000rpm Load 2.7kN |                  |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|--------|--------------------------------------------------|------------------|---------------|----------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Defect | Dimension (mm)                                   | Cal. Burst Dur   | Avg Burst Dur | Avg Peak | Noise  | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| D182L1 | Circle D=0.5                                     | 9.65E-05         |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D2S2L1 | 0.9X2.5                                          | 1.74E-04         | 4.00E-04      | 0.0546   | 0.0125 | 4.37      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D382L1 | 0.9X4                                            | 1.74E-04         | 3.89E-04      | 0.0626   | 0.015  | 4.17      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D4S2L1 | 0.9X8                                            | 1.74E-04         | 5.09E-04      | 0.0826   | 0.015  | 5.51      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D582L1 | 0.9X12                                           | 1.74E-04         | 5.53E-04      | 0.1688   | 0.025  | 6.75      | 0.25<br>0.25<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35<br>0.35 |  |  |  |  |  |
| D6S2L1 | 3X12                                             | 5.79 <b>E-04</b> | 1.79E-03      | 0.2318   | 0.03   | 7.73      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D782L1 | 5X12                                             | 9.65E-04         | 1.83E-03      | 0.1767   | 0.03   | 5.89      | 0.29<br>0.15<br>0.3<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| D8S2L1 | 7X12                                             | 1.35E-03         | 2.15E-03      | 0.0902   | 0.015  | 6.01      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D982L1 | 9X12                                             | 1.74E-03         | 2.39E-03      | 0.2113   | 0.02   | 10.56     | 0.2<br>0.3<br>0.3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

|        | Table A5 : Outer Race Defect; 3000rpm Load 5.3kN |                |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------|--------------------------------------------------|----------------|---------------|----------|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Defect | Dimension (mm)                                   | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| D182L2 | Circle D=0.5                                     | 9.65E-05       |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D282L2 | 0.9X2.5                                          | 1.74E-04       | 6.04E-04      | 0.0656   | 0.02  | 3.28      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D382L2 | 0.9X4                                            | 1.74E-04       | 5.46E-04      | 0.0856   | 0.02  | 4.28      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D482L2 | 0.9X8                                            | 1.74E-04       | 5.45E-04      | 0.1008   | 0.02  | 5.04      | 0.2<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0 |  |  |  |  |
| D582L2 | 0.9X12                                           | 1.74E-04       | 5.38E-04      | 0.1832   | 0.02  | 9.16      | 02<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| D6S2L2 | 3X12                                             | 5.79E-04       | 1.21E-03      | 0.2178   | 0.03  | 7.26      | 0.15<br>0.15<br>0.16<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| D782L2 | 5X12                                             | 9.65E-04       | 1.60E-03      | 0.2042   | 0.03  | 6.81      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D8S2L2 | 7X12                                             | 1.35E-03       | 2.11E-03      | 0.1520   | 0.02  | 7.60      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| D9S2L2 | 9X12                                             | 1.74E-03       | 3.00E-03      | 0.2225   | 0.03  | 7.42      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |

|        | Table A6 : Outer Race Defect; 3000rpm Load 8.0kN |                |               |          |       |           |                                                                                              |  |  |  |  |  |
|--------|--------------------------------------------------|----------------|---------------|----------|-------|-----------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Defect | Dimension (mm)                                   | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise | P-N Ratio | Signal                                                                                       |  |  |  |  |  |
| D182L3 | Circle D=0.5                                     | 9.65E-05       |               |          |       |           |                                                                                              |  |  |  |  |  |
| D2S2L3 | 0.9X2.5                                          | 1.74E-04       | 4.65E-04      | 0.0580   | 0.02  | 2.90      |                                                                                              |  |  |  |  |  |
| D3S2L3 | 0.9X4                                            | 1.74E-04       | 3.42E-04      | 0.0835   | 0.02  | 4.18      |                                                                                              |  |  |  |  |  |
| D4S2L3 | 0.9X8                                            | 1.74E-04       | 4.44E-04      | 0.1045   | 0.02  | 5.23      |                                                                                              |  |  |  |  |  |
| D5S2L3 | 0.9X12                                           | 1.74E-04       | 4.66E-04      | 0.2060   | 0.03  | 6.87      | 0.2<br>0.15<br>0.16<br>0.05<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |  |  |  |  |  |
| D6S2L3 | 3X12                                             | 5.79E-04       | 1.08E-03      | 0.2920   | 0.04  | 7.30      |                                                                                              |  |  |  |  |  |
| D7S2L3 | 5X12                                             | 9.65E-04       | 1.43E-03      | 0.2310   | 0.04  | 5.78      |                                                                                              |  |  |  |  |  |
| D8S2L3 | 7X12                                             | 1.35E-03       | 2.12E-03      | 0.1720   | 0.03  | 5.73      |                                                                                              |  |  |  |  |  |
| D982L3 | 9X12                                             | 1.74E-03       | 2.53E-03      | 0.1715   | 0.03  | 5.72      |                                                                                              |  |  |  |  |  |

|         |                | Tal            | ole A7: Inner | Race Defec | t; 1500rpm l | Load 2.7kN |                                                                                                                                                                                              |
|---------|----------------|----------------|---------------|------------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defect  | Dimension (mm) | Cal. Burst Dur | Avg Burst Dur | Avg Peak   | Noise        | P-N Ratio  | Signal                                                                                                                                                                                       |
| D17S1L1 | Circle D=0.5   | 2.71E-04       |               |            |              |            |                                                                                                                                                                                              |
| D1881L1 | 3X1            | 1.62E-03       | 1.27E-03      | 0.03       | 0.0025       | 10.19      |                                                                                                                                                                                              |
| D1981L1 | 6X1            | 3.25E-03       | 1.71E-03      | 0.01       | 0.0025       | 5.66       |                                                                                                                                                                                              |
| D20S1L1 | 12X1           | 6.49E-03       | 1.82E-03      | 0.05       | 0.005        | 9.40       | 0.05<br>0.05<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.04<br>0.05<br>0.09<br>0.09 |
| D21S1L1 | 12X3           | 6.49E-03       | 1.80E-03      | 0.02       | 0.003        | 5.75       |                                                                                                                                                                                              |
| D22S1L1 | 12X6           | 6.49E-03       | 1.55E-03      | 0.03       | 0.005        | 5.58       |                                                                                                                                                                                              |

|         | Table A8: Inner Race Defect; 1500rpm Load 5.3kN |                |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|---------|-------------------------------------------------|----------------|---------------|----------|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Defect  | Dimension (mm)                                  | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise  | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| D17S1L2 | Circle D=0.5                                    | 2.71E-04       |               |          |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| D18S1L2 | 3X1                                             | 1.62E-03       | 1.51E-03      | 0.05     | 0.0040 | 13.03     | 0.3<br>0.00<br>0.44<br>0.42<br>0.02<br>0.04<br>0.42<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0 |  |  |  |  |  |
| D1981L2 | 6X1                                             | 3.25E-03       | 1.73E-03      | 0.02     | 0.003  | 8.28      | 0.03<br>0.02<br>0.01<br>4.01<br>4.02<br>4.02<br>4.02<br>4.03<br>4.02<br>6.01<br>6.02<br>0.01<br>6.00<br>0.02<br>0.01<br>6.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| D20S1L2 | 12X1                                            | 6.49E-03       | 1.98E-03      | 0.04     | 0.008  | 4.51      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| D2181L2 | 12X3                                            | 6.49E-03       | 1.65E-03      | 0.03     | 0.005  | 6.58      | 0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05     |  |  |  |  |  |
| D22S1L2 | 12X6                                            | 6.49E-03       | 1.60E-03      | 0.03     | 0.01   | 4.91      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |

|         | Table A9: Inner Race Defect; 1500rpm Load 8.0kN |                |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|---------|-------------------------------------------------|----------------|---------------|----------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Defect  | Dimension (mm)                                  | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| D17S1L3 | Circle D=0.5                                    | 2.71E-04       |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D1881L3 | 3X1                                             | 1.62E-03       | 1.38E-03      | 0.07     | 0.006 | 11.55     | 0.0<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| D1981L3 | 6X1                                             | 3.25E-03       | 1.86E-03      | 0.07     | 0.006 | 11.22     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| D2081L3 | 12X1                                            | 6.49E-03       | 2.27E-03      | 0.14     | 0.013 | 10.69     | 0.<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| D2181L3 | 12X3                                            | 6.49E-03       | 1.75E-03      | 0.05     | 0.01  | 7.73      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |  |  |  |  |  |
| D2281L3 | 12X6                                            | 6.49E-03       | 1.86E-03      | 0.09     | 0.08  | 1.20      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

|         |                | Tab            | le A10: Inne  | r Race Defe | ct; 3000rpm | Load 2.7kN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|----------------|----------------|---------------|-------------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defect  | Dimension (mm) | Cal. Burst Dur | Avg Burst Dur | Avg Peak    | Noise       | P-N Ratio  | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D1782L1 | Circle D=0.5   | 1.36E-04       |               |             |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D18S2L1 | 3X1            | 8.13E-04       | 8.98E-04      | 0.04        | 0.006       | 6.12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D1982L1 | 6X1            | 1.63E-03       | 1.16E-03      | 0.26        | 0.006       | 43.08      | 0.0<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0 |
| D20S2L1 | 12X1           | 3.25E-03       | 7.18E-04      | 0.04        | 0.01        | 3.53       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D21S2L1 | 12X3           | 3.25E-03       | 1.21E-03      | 0.45        | 0.01        | 34.69      | 0.4<br>0.2<br>0.2<br>0.4<br>0.6<br>0.005 0.01 0.015 0.02 0.025 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D22S2L1 | 12X6           | 3.25E-03       | 1.14E-03      | 0.16        | 0.007       | 22.83      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Table A11: Inner Race Defect; 3000rpm Load 5.3kN |                |                |                  |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|--------------------------------------------------|----------------|----------------|------------------|----------|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Defect                                           | Dimension (mm) | Cal. Burst Dur | Avg Burst Dur    | Avg Peak | Noise | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| D1782L2                                          | Circle D=0.5   | 1.36E-04       |                  |          |       |           | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |  |  |  |
| D18S2L2                                          | 3X1            | 8.13E-04       | 1.04E-03         | 0.12     | 0.01  | 13.60     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| D1982L2                                          | 6X1            | 1.63E-03       | 1.06E-03         | 0.09     | 0.015 | 5.99      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| D20S2L2                                          | 12X1           | 3.25E-03       | 8.65E-04         | 0.21     | 0.02  | 10.30     | 0.1<br>0.00<br>0.02<br>0.02<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| D2182L2                                          | 12X3           | 3.25E-03       | 9.55E-04         | 0.10     | 0.017 | 6.06      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| D2282L2                                          | 12X6           | 3.25E-03       | 7. <b>10E-04</b> | 0.39     | 0.015 | 25.87     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

| Table A12: Inner Race Defect; 3000rpm Load 8.0kN |                |                |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------------------------------------|----------------|----------------|---------------|----------|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Defect                                           | Dimension (mm) | Cal. Burst Dur | Avg Burst Dur | Avg Peak | Noise | P-N Ratio | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| D17S2L3                                          | Circle D=0.5   | 1.36E-04       |               |          |       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D18S2L3                                          | 3X1            | 8.13E-04       | 1.05E-03      | 0.11     | 0.02  | 7.03      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D1982L3                                          | 6X1            | 1.63E-03       | 1.18E-03      | 0.19     | 0.03  | 7.47      | 0.1<br>0.1<br>0.1<br>0.1<br>0.005<br>0.01<br>0.005<br>0.01<br>0.015<br>0.02<br>0.005<br>0.01<br>0.015<br>0.02<br>0.005<br>0.01<br>0.015<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.0 |  |  |  |
| D20S2L3                                          | 12X1           | 3.25E-03       | 8.74E-04      | 0.21     | 0.025 | 8.26      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D2182L3                                          | 12X3           | 3.25E-03       | 9.89E-04      | 0.11     | 0.02  | 5.38      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| D2282L3                                          | 12X6           | 3.25E-03       | 9.80E-04      | 0.24     | 0.02  | 12.03     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |