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Abstract. We give computationally efficient zero-knowledge proofs of
knowledge for arithmetic circuit satisfiability over a large field. For a cir-
cuit with N addition and multiplication gates, the prover only uses O(N)
multiplications and the verifier only uses O(N) additions in the field. If
the commitments we use are statistically binding, our zero-knowledge
proofs have unconditional soundness, while if the commitments are sta-
tistically hiding we get computational soundness. Our zero-knowledge
proofs also have sub-linear communication if the commitment scheme is
compact.
Our construction proceeds in three steps. First, we give a zero-knowledge
proof for arithmetic circuit satisfiability in an ideal linear commitment
model where the prover may commit to secret vectors of field elements,
and the verifier can receive certified linear combinations of those vec-
tors. Second, we show that the ideal linear commitment proof can be
instantiated using error-correcting codes and non-interactive commit-
ments. Finally, by choosing efficient instantiations of the primitives we
obtain linear-time zero-knowledge proofs.

Keywords. Zero-knowledge, arithmetic circuit, ideal linear commit-
ments.

1 Introduction

A zero-knowledge proof [GMR85] is a protocol between two parties: a prover and
a verifier. The prover wants to convince the verifier that an instance u belongs
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to a specific language LR in NP. She has a witness w such that (u,w) belongs
to the NP relation R defining the language, but wants to convince the verifier
that the statement u ∈ LR is true without revealing the witness or any other
confidential information.

Zero-knowledge proofs are widely used in cryptography since it is often useful
to verify that a party is following a protocol without requiring her to divulge
secret keys or other private information. Applications range from digital signa-
tures and public-key encryption to secure multi-party computation and verifiable
cloud computing.

Efficiency is crucial for large and complex statements such as those that
may arise in the latter applications. Important efficiency parameters include the
time complexity of the prover, the time complexity of the verifier, the amount
of communication measured in bits, and the number of rounds the prover and
verifier need to interact. Three decades of research on zero-knowledge proofs
have gone into optimizing these efficiency parameters and many insights have
been learned.

For zero-knowledge proofs with unconditional soundness where it impossible
for any cheating prover to convince the verifier of a false statement, it is possible
to reduce communication to the witness size [IKOS09, KR08, GGI+14]. For zero-
knowledge arguments where it is just computationally intractable for the prover
to cheat the verifier we can do even better and get sub-linear communication
complexity [Kil92].

There are many constant-round zero-knowledge proofs and arguments, for
instance Bellare, Jakobsson and Yung [BJY97] construct four round arguments
based on one-way functions. In the common reference string model, it is even
possible to give non-interactive proofs where the prover computes a convincing
zero-knowledge proof directly without receiving any messages from the veri-
fier [BFM88].

The verifier computation is in general at least proportional to the instance
size because the verifier must read the entire instance in order to verify it. How-
ever, the verifier computation can be sub-linear in the time it takes for the re-
lation to verify a witness for the statement being true [GKR08], which is useful
in both zero-knowledge proofs and verifiable computation.

Having reduced the cost of many other efficiency parameters, today the major
bottleneck is the prover’s computation. Classical number-theoretic constructions
for circuit satisfiability such as [CD98] require a linear number of exponentia-
tions, i.e., the cost is O(λN) group multiplications where N is the number of
gates and λ is a security parameter. Relying on different techniques and under-
lying cryptography [DIK10] has reduced the computational overhead further to
being O(log(λ)). This leaves a tantalizing open question of whether we can come
all the way down to constant overhead O(1), i.e., make the prover’s cost within
a constant factor of the time it takes to verify (u,w) ∈ R directly.
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1.1 Our Contributions

We construct zero-knowledge proofs of knowledge for the satisfiability of arith-
metic circuits. An instance is an arithmetic circuits with N fan-in 2 addition
and multiplication gates over a finite field F and a specification of the values of
some of the wires. A witness consists of the remaining wires such that the values
are consistent with the gates and the wire values specified in the instance.

Our zero-knowledge proofs are highly efficient asymptotically:

– Prover time is O(N) field additions and multiplications.
– Verifier time is O(N) field additions.

This is optimal up to a constant factor for both the prover and verifier. The
prover only incurs a constant overhead compared to the time needed to evaluate
the circuit from scratch given an instance and a witness, and for instances of size
equivalent to Ω(N) field elements the verifier only incurs a constant overhead
compared to the time it takes to read the instance. The constants are large,
so we do not recommend implementing the zero-knowledge proof as it is, but
from a theoretical perspective we consider it a big step forward to get constant
overhead for both prover and verifier.

Our zero-knowledge proofs have perfect completeness, i.e., when the prover
knows a satisfactory witness she is always able to convince the verifier. Our con-
structions are proofs of knowledge, that is, not only does the prover demonstrate
the statement is true but also that she knows a witness. The proofs have special
honest-verifier zero-knowledge, which means that given a set of verifier chal-
lenges it is possible to simulate a proof answering the challenges without know-
ing a witness. The flavour of knowledge soundness and special honest-verifier
zero-knowledge depends on the underlying commitment scheme we use. When
instantiated with statistically binding commitment schemes, we obtain proofs
(statistically knowledge sound) with computational zero-knowledge. When we
use statistically hiding commitments we obtain arguments of knowledge with
statistical special honest verifier zero-knowledge. The communication complex-
ity of our proofs with unconditional soundness is only O(N) field elements, while
our arguments with computational soundness have sub-linear communication of
poly(λ)

√
N field elements when the commitments are compact. Round com-

plexity is also low, when we optimize for computational efficiency for prover and
verifier we only use O(log logN) rounds.

1.2 Construction and Techniques

Our construction is modular and consists of three steps. First, we construct
a proof in a communication model we call the Ideal Linear Commitment (ILC)
channel. In the ILC model, the prover can commit vectors of secret field elements
to the channel. The verifier may later query openings to linear combinations of
the committed vectors, which the channel will answer directly. We show that
idealizing the techniques by Groth et al. [Gro09, BCC+16] gives us efficient
proofs in the ideal linear commitment model. By optimizing primarily for prover
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computation and secondarily for round efficiency, we get a round complexity
of O(log logN) rounds, which is better than the O(logN) rounds of Bootle et
al. [BCC+16] that optimized for communication complexity.

Next, we compile proofs in the ILC model into proof and argument systems
using non-interactive commitment schemes; however, unlike previous works we
do not commit directly to the vectors. Instead, we encode the vectors as ran-
domized codewords using a linear error-correcting code. We now consider the
codewords as rows of a matrix and commit to the columns of that matrix. When
the verifier asks for a linear combination of the vectors, the prover simply tells
the verifier what the linear combination is. However, the verifier does not have to
have blind confidence in the prover because she can ask for openings of some of
the committed columns and use them to spot check that the resulting codeword
is correct.

Finally, we instantiate the scheme with concrete error-correcting codes and
non-interactive commitment schemes. We use the error-correcting codes of Druk
and Ishai [DI14], which allow the encoding of k field elements using O(k) addi-
tions in the field. Statistically hiding commitment schemes can be constructed
from collision-resistant hash functions, and using the recent hash functions of
Applebaum et al. [AHI+17] we can hash t field elements at a cost equivalent
to O(t) field additions. Statistically binding commitment schemes on the other
hand can be built from pseudorandom number generators. Using the linear-
time computable pseudorandom number generators of Ishai et al. [IKOS08] we
get linear-time computable statistically binding commitments. Plugging either
of the commitment schemes into our construction yields zero-knowledge proofs
with linear-time computation for both prover and verifier.

1.3 Related Work

There is a rich body of research on zero-knowledge proofs. Early practical zero-
knowledge proofs such as Schnorr [Sch91] and Guillou-Quisquater [GQ88] used
number-theoretic assumptions. There have been several works extending these
results to prove more general statements [CDS94, CD98, Gro09, BCC+16] with
the latter giving discrete-logarithm based arguments for arithmetic circuit sat-
isfiability with logarithmic communication complexity and a linear number of
exponentiations for the prover, i.e., a computation cost of O(λN) group multi-
plications for λ-bit exponents and a circuit with N multiplication gates.

Ishai et al. [IKOS09] showed how to use secure multi-party computation
(MPC) protocols to construct zero-knowledge proofs. The intuition behind this
generic construction is that the prover first executes in her head an MPC pro-
tocol for computing a circuit verifying some relation R and then commits to the
views of all the virtual parties. The verifier asks the prover to open a subset of
those views and then verifies their correctness and consistency with each other.
Soundness and zero-knowledge follow from robustness and privacy of the MPC
protocol. Applying this framework to efficient MPCs gives asymptotically effi-
cient zero-knowledge proofs. For example, the perfectly secure MPC of [DI06] is
used in [IKOS09] to obtain zero-knowledge proofs for the satisfiability of Boolean
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circuits with communication linear in the circuit size, O(N), and a computa-
tional cost of Ω(λN), for circuits of size N and security parameter λ. Damg̊ard
et al. [DIK10] used the MPC framework to construct zero-knowledge proofs for
the satisfiability of arithmetic circuits. Their construction has more balanced
efficiency and achieves O(polylog(λ)N) complexity for both computation and
communication.

Jawurek et al. [JKO13] gave a very different approach to building zero-
knowledge proofs based on garbled circuits. Their approach proved [FNO15,
CGM16] to be very efficient in practice for constructing proofs for languages
represented as Boolean circuits. These techniques are appealing for proving
small statements as they require only a constant number of symmetric-key op-
erations per gate, while the main bottleneck is in their communication com-
plexity. Asymptotically, this approach yields computational and communication
complexity of O(λN) bit operations and bits, respectively, when λ is the cost
of a single symmetric-key operation. Recently, these techniques found applica-
tions in zero-knowledge proofs for checking the execution of RAM programs
[HMR15, MRS17]. For instances that can be represented as RAM programs ter-
minating in T steps and using memory of size M , these zero-knowledge proofs
yield communication and computation with polylog(M) overhead compared to
the running time T of the RAM program.

Cramer et al. [CDP12] introduce zero-knowledge proofs for verifying multi-
plicative relations of committed values using techniques related to ours. When
applied to zero-knowledge proofs for the satisfiability of Boolean circuits, the
asymptotic communication and computation complexities of [CDP12] are close
to [IKOS09], although the constants are smaller. Unlike [CDP12], we do not
require any homomorphic property from the commitment scheme, and instead
of relying on linear secret sharing schemes with product reconstruction, we use
linear error-correcting codes.

In past years, a lot of attention has been dedicated to the study of succinct
non-interactive arguments of knowledge (SNARKs) [Gro10, BCCT12, GGPR13,
BCCT13, PHGR13, BCG+13, Gro16]. These are very compact arguments of-
fering very efficient verification time. In the most efficient cases, the arguments
consist of only a constant number of group elements and verification consists of
a constant number of pairings and a number of group exponentiations that is
linear in the instance size but independent of the witness size. The main bot-
tleneck of these arguments is the computational complexity of the prover which
requires O(N) group exponentiations.

Recently, Ben-Sasson, Chiesa and Spooner [BSCS16] proposed the notion of
interactive oracle proofs (IOPs), which are interactive protocols where the prover
may send a probabilisticaly checkable proof (PCP) in each round. Ben-Sasson
et al. [BSCG+16] construct a 3-round public-coin IOP (with soundness error
1/2) for Boolean circuit satisfiability with linear proof length and quasi-linear
running times for both the prover and the verifier. Moreover, the constructed
IOP has constant query complexity (the number of opening queries requested by
the verifier), while prior PCP constructions require sub-linear query complexity.
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Another follow-up work by Ben-Sasson et al. [BSCGV16] gives 2-round zero-
knowledge IOPs (duplex PCPs) for any language in NTIME(T (n)) with quasi-
linear prover computation in n+ T (n).

Efficiency Comparison. All the proofs we list above have super-linear cost for
the prover. This means our zero-knowledge proofs are the most efficient zero-
knowledge proofs for arithmetic circuits for the prover. We also know that our
verification time is optimal for an instance of size Ω(N) field elements since the
verification time is comparable to the time it takes just to read the instance.

Another well-studied class of languages is Boolean circuit satisfiability but
here our techniques do not fare as well since there would be an overhead in
representing bits as field elements. We therefore want to make clear that our
claim of high efficiency and a significant performance improvement over the state
of the art relates only to arithmetic circuits. Nevertheless, we find the linear cost
for arithmetic circuits a significant result in itself. This is the first time for any
general class of NP-complete language that true linear cost is achieved for the
prover when compared to the time it takes to evaluate the statement directly
given the prover’s witness.

2 Preliminaries

2.1 Notation and Computational Model

We write y ← A(x) for an algorithm outputting y on input x. When the al-
gorithm is randomized, and we wish to explicitly refer to a particular choice
of random coins r chosen by the algorithm, we write y ← A(x; r). We write
PPT/DPT for algorithms running in probabilistic polynomial time and deter-
ministic polynomial time in the size of their inputs. Typically, the size of inputs
and output will be polynomial in a security parameter λ, with the intention
that larger λ means better security. For functions f, g : N → [0, 1], we write
f(λ) ≈ g(λ) if |f(λ) − g(λ)| = 1

λω(1) . We say a function f is overwhelming if
f(λ) ≈ 1 and f is negligible if f(λ) ≈ 0.

Throughout the paper, we will be working over a finite field F. To get negli-
gible risk of an adversary breaking our zero-knowledge proofs, we need the field
to be large enough such that log |F| = ω(λ). When considering efficiency of our
zero-knowledge proofs, we will assume the prover and verifier are RAM machines
where operations on W -bit words have unit cost. We assume a field element is

represented by O( log |F|
W ) words and that additions in F carry a cost of O

(
log |F|
W

)
machine operations. We expect multiplications to be efficiently computable as

well but at a higher cost of ω
(

log |F|
W

)
machine operations.

For a positive integer n, [n] denotes the set {1, . . . , n}. We use bold letters
such as v for row vectors. For v ∈ Fn and a set J = {j1, . . . , jk} ⊂ [n] with
j1 < · · · < jk we define the vector v|J to be (vj1 , . . . ,vjk). Similarly, for a
matrix V ∈ Fm×n we let V |J ∈ Fm×k be the submatrix of V restricted to the
columns indicated in J .
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2.2 Proofs of Knowledge

A proof system is defined by a triple of stateful PPT algorithms (K,P,V), which
we call the setup generator, the prover and verifier, respectively. The setup gen-
erator K creates public parameters pp that will be used by the prover and the
verifier. We think of pp as being honestly generated, however, in the proofs we
construct it consists of parts that are either publicly verifiable or could be gener-
ated by the verifier, so we use the public parameter model purely for simplicity
and efficiency of our proofs, not for security.

The prover and verifier communicate with each other through a commu-

nication channel
chan←→. When P and V interact on inputs s and t through a

communication channel
chan←→ we let viewV ← 〈P(s)

chan←→ V(t)〉 be the view of the
verifier in the execution, i.e., all inputs he gets including random coins and let

transP ← 〈P(s)
chan←→ V(t)〉 denote the transcript of the communication between

prover and channel. This overloads the notation ← 〈P(s)
chan←→ V(t)〉 but it will

always be clear from the variable name if we get the verifier’s view or the prover’s
transcript. At the end of the interaction the verifier accepts or rejects. We write

〈P(s)
chan←→ V(t)〉 = b depending on whether the verifier rejects (b = 0) or accepts

(b = 1).

In the standard channel ←→, all messages are forwarded between prover and

verifier. We also consider an ideal linear commitment channel,
ILC←→, or simply

ILC, described in Figure 1. When using the ILC channel, the prover can submit a
commit command to commit to vectors of field elements of some fixed length k,
specified in ppILC. The vectors remain secretly stored in the channel, and will not
be forwarded to the verifier. Instead, the verifier only learns how many vectors
the prover has committed to. The verifier can submit a send command to the
ILC to send field elements to the prover. In addition, the verifier can also submit
open queries to the ILC for obtaining the opening of any linear combinations of
the vectors sent by the prover. We stress that the verifier can request several
linear combinations within a single open query, as depicted in Figure 1.

In a proof system over the ILC channel, sequences of commit, send and open

queries could alternate in an arbitrary order. We call a proof system over the ILC
channel non-adaptive if the verifier only makes one open query to the ILC channel
before terminating his interaction with the channel, otherwise we call it adaptive.
Although adaptive proof systems are allowed by the model, in this paper we will
only consider non-adaptive ILC proof systems to simplify the exposition.

We remark that ILC proof systems are different from linear interactive proofs
considered in [BCI+13]. In linear interactive proofs both the prover and verifier
send vectors of field elements, but the prover can only send linear (or affine)
transformations of the verifier’s previously sent vectors. However, for our con-
structions it is important that the prover can compute on field elements received
by the verifier and for instance evaluate polynomials.

We say a proof system is public coin if the verifier’s messages to the com-
munication channel are chosen uniformly at random and independently of the
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PILC VILC

Fig. 1: Description of the ILC channel.

actions of the prover, i.e., the verifier’s messages to the prover correspond to the
verifier’s randomness ρ.

We will consider relations R consisting of tuples (pp, u, w), and define LR =
{(pp, u)|∃w : (pp, u, w) ∈ R}. We refer to u as the instance and w as the witness
that (pp, u) ∈ LR. The public parameter pp will specify the security parameter
λ, perhaps implicitly through its length, and may also contain other parameters
used for specifying the specific relation, e.g. a description of a field. Typically,
pp will also contain parameters that do not influence membership of R but may
aid the prover and verifier, for instance, a description of an encoding function
that they will use.

We will construct SHVZK proofs of knowledge for the relation RAC, where
the instances are arithmetic circuits over a field F specified by pp. An instance
consists of many fan-in 2 addition and multiplication gates over F, a description
of how wires in the circuit connect to the gates, and values assigned to some of
the input wires. Witnesses w are the remaining inputs such that the output of the
circuit is 0. For an exact definition of how we represent an arithmetic circuit, see
Section 3. We would like to stress the fact that the wiring of the circuit is part of
the instance and we allow a fully adaptive choice of the arithmetic circuit. This
stands in contrast to pairing-based SNARKs that usually only consider circuits
with fixed wires, i.e., the arithmetic circuit is partially non-adaptive, and getting
full adaptivity through a universal circuit incurs an extra efficiency overhead.

The protocol (K,P,V) is called a proof of knowledge over communication

channel
chan←→ for relation R if it has perfect completeness and computational

knowledge soundness as defined below.
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Definition 1 (Perfect Completeness). The proof is perfectly complete if for
all PPT adversaries A

Pr

[
pp← K(1λ); (u,w)← A(pp) :

(pp, u, w) /∈ R ∨ 〈P(pp, u, w)
chan←→ V(pp, u)〉 = 1

]
= 1.

Definition 2 (Knowledge soundness). A public-coin proof system has com-
putational (strong black-box) knowledge soundness if for all DPT P∗ there exists
an expected PPT extractor E such that for all PPT adversaries A

Pr

[
pp← K(1λ); (u, s)← A(pp);w ← E〈P∗(s)

chan←→V(pp,u)〉(pp, u) :
b = 1 ∧ (pp, u, w) /∈ R

]
≈ 0.

Here the oracle 〈P∗(s) chan←→ V(pp, u)〉 runs a full protocol execution and if the
proof is successful it returns a transcript of the prover’s communication with the
channel. The extractor E can ask the oracle to rewind the proof to any point in
a previous transcript and execute the proof again from this point on with fresh
public-coin challenges from the verifier. We define b ∈ {0, 1} to be the verifier’s
output in the first oracle execution, i.e., whether it accepts or not, and we think
of s as the state of the prover. The definition can then be paraphrased as saying
that if the prover in state s makes a convincing proof, then we can extract a
witness.

If the definition holds also for unbounded P∗ and A we say the proof has
statistical knowledge soundness.

If the definition of knowledge soundness holds for a non-rewinding extractor,
i.e., a single transcript of the prover’s communication with the communication
channel suffices, we say the proof system has knowledge soundness with straight-
line extraction.

We will construct public-coin proofs that have special honest-verifier zero-knowledge.
This means that if the verifier’s challenges are known, or even adversarially cho-
sen, then it is possible to simulate the verifier’s view without the witness. In
other words, the simulator works for verifiers who may use adversarial coins in
choosing their challenges but they follow the specification of the protocol as an
honest verifier would.

Definition 3 (Special Honest-Verifier Zero-Knowledge). The proof of knowl-
edge is computationally special honest-verifier zero-knowledge (SHVZK) if there
exists a PPT simulator S such that for all stateful interactive PPT adversaries
A that output (u,w) such that (pp, u, w) ∈ R and randomness ρ for the verifier

Pr

[
pp← K(1λ); (u,w, ρ)← A(pp);

viewV ← 〈P(pp, u, w)
chan←→ V(pp, u; ρ)〉 : A(viewV) = 1

]
≈ Pr

[
pp← K(1λ); (u,w, ρ)← A(pp); viewV ← S(pp, u, ρ) : A(viewV) = 1

]
.

We say the proof is statistically SHVZK if the definition holds also against
unbounded adversaries, and we say the proof is perfect SHVZK if the probabilities
are exactly equal.
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From Honest-Verifier to General Zero-Knowledge. Honest-verifier zero-
knowledge only guarantees the simulator works for verifiers following the proof
system specifications. It might be desirable to consider general zero-knowledge
where the simulator works for arbitrary malicious verifiers that may deviate
from the specification of the proof. However, honest-verifier zero-knowledge is
a first natural stepping stone to get efficient zero-knowledge proofs. We recall
that our proofs are public coin, which means that the verifier’s messages are
chosen uniformly at random and independently from the messages received from
the verifier. Below we recall few options to obtain general zero-knowledge proofs
from a public-coin SHVZK proof. All these transformations are very efficient in
terms of computation and communication such that the efficiency properties of
our special honest-verifier zero-knowledge protocols are preserved.

In the Fiat-Shamir transform [FS86] the verifier’s challenges are computed
using a cryptographic hash function applied to the transcript up to the challenge.
The Fiat-Shamir transform is more generally used to turn a public-coin proof
into a non-interactive one. Since interaction with the verifier is no longer needed,
general zero-knowledge is immediately achieved. If the hash function can be
computed in linear time in the input size, then the Fiat-Shamir transform only
incurs an additive linear overhead in computation for the prover and verifier.
The drawback of the Fiat-Shamir transform is that security is usually proved in
the random oracle model [BR93] where the hash function is modelled as an ideal
random function.

Assuming a common reference string and relying on trapdoor commitments,
Damg̊ard [Dam00] gave a transformation yielding concurrently secure protocols
for Σ-Protocols. The transformation can be optimized [Gro04] using the idea
that for each public-coin challenge x, the prover first commits to a value x′,
then the verifier sends a value x′′, after which the prover opens the commitment
and uses the challenge x = x′ + x′′. The coin-flipping can be interleaved with
the rest of the proof, which means the transformation preserves the number of
rounds and only incurs a very small efficiency cost to do the coin-flipping for the
challenges.

If one does not wish to rely on a common reference string for security, one
can use a private-coin transformation where the verifier does not reveal the ran-
dom coins used to generate the challenges sent to the prover (hence the final
protocol is no longer public coin). One example is the Micciancio and Petrank
[MP03] transformation (yielding concurrently secure protocols) while incurring
a small overhead of ω(log λ) with respect to the number of rounds as well as the
computational and communication cost in each round. The transformation pre-
serves the soundness and completeness errors of the original protocol; however,
it does not preserve statistical zero-knowledge as the obtained protocol only has
computational zero-knowledge.

There are other public-coin transformations to general zero-knowledge e.g. Gol-
dreich et al. [GSV98]. The transformation relies on a random-selection protocol
between the prover and verifier to specify a set of messages and restricting the
verifier to choose challenges from this set. This means to get negligible sound-
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ness error these transformations require ω(1) sequential repetitions so the round
complexity goes up.

2.3 Linear-Time Linear Error-Correcting Codes

A code over an alphabet Σ is a subset C ⊆ Σn. A code C is associated with an
encoding function EC : Σk → Σn mapping messages of length k into codewords
of length n. We assume there is a setup algorithm GenEC which takes as input a
finite field F and the parameter k ∈ N, and outputs an encoding function EC .

In what follows, we restrict our attention to F-linear codes for which the
alphabet is a finite field F, the code C is a k-dimensional linear subspace of Fn,
and EC is an F-linear map. The rate of the code is defined to be k

n . The Hamming
distance between two vectors x,y ∈ Fn is denoted by hd(x,y) and corresponds
to the number of coordinates in which x,y differ. The (minimum) distance of
a code is defined to be the minimum Hamming distance hdmin between distinct
codewords in C. We denote by [n, k, hdmin]F a linear code over F with length n,
dimension k and minimum distance hdmin. The Hamming weight of a vector x
is wt(x) = |{i ∈ [n] : xi 6= 0}|.

In the next sections, we will use families of linear codes achieving asymp-
totically good parameters. More precisely, we require codes with linear length,
n = Θ(k), and linear distance, hdmin = Θ(k), in the dimension k of the code. We
recall that random linear codes achieve with high probability the best trade-off
between distance and rate. However, in this work we are particularly concerned
with computational efficiency of the encoding procedure and random codes are
not known to be very efficient.

To obtain zero-knowledge proofs and arguments with linear cost for prover
and verifier, we need to use codes that can be encoded in linear time. Starting
from the seminal work of Spielman [Spi95], there has been a rich stream of
research [GI01, GI02, GI03, GI05, DI14, CDD+16] regarding linear codes with
linear-time encoding. Our construction can be instantiated, for example, with
one of the families of codes presented by Druk and Ishai [DI14]. These are defined
over a generic finite field F and meets all the above requirements.

Theorem 1 ([DI14]). There exist constants c1 > 1 and c2 > 0 such that for
every finite field F there exists a family of [dc1ke, k, bc2kc]F linear codes, which
can be encoded by a uniform family of linear-size arithmetic circuit of addition
gates.

2.4 Commitment Schemes

A non-interactive commitment scheme allows a sender to commit to a secret
message and later reveal the message in a verifiable way. Here we are interested
in commitment schemes that take as input an arbitrary length message so the
message space is {0, 1}∗. A commitment scheme is defined by a pair of PPT
algorithms (Setup,Commit).

Setup(1λ)→ ck: Given a security parameter, this returns a commitment key ck.
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Commitck(m)→ c: Given a messagem, this picks a randomness r ← {0, 1}poly(λ)

and computes a commitment c = Commitck(m; r).

A commitment scheme must be binding and hiding. The binding property means
that it is infeasible to open a commitment to two different messages, whereas
the hiding property means that the commitment does not reveal anything about
the committed message.

Definition 4 (Binding). A commitment scheme is computationally binding if
for all PPT adversaries A

Pr

[
ck ← Setup(1λ); (m0, r0,m1, r1)← A(ck) :

m0 6= m1 ∧ Commitck(m0; r0) = Commitck(m1; r1)

]
≈ 0.

If this holds also for unbounded adversaries, we say the commitment scheme is
statistically binding.

Definition 5 (Hiding). A commitment scheme is computationally hiding if
for all PPT stateful adversaries A

Pr

[
ck ← Setup(1λ); (m0,m1)← A(ck); b← {0, 1};

c← Commitck(mb) : A(c) = b

]
≈ 1

2
,

where A outputs messages of equal length |m0| = |m1|. If the definition holds
also for unbounded adversaries, we say the commitment scheme is statistically
hiding.

We will be interested in using highly efficient commitment schemes. We say
a commitment scheme is linear-time if the time to compute Commitck(m) is
poly(λ) + O(|m|) bit operations, which we assume corresponds to poly(λ) +

O( |m|W ) machine operations on our W -bit RAM machine. We will also be in-
terested in having small size commitments. We say a commitment scheme is
compact if there is a polynomial `(λ) such that commitments have size at most
`(λ) regardless of how long the message is. We say a commitment scheme is pub-
lic coin if there is a polynomial `(λ) such that Setup(1λ) picks the commitment
key uniformly at random as ck ← {0, 1}`(λ). We will now discuss some candidate
linear-time commitment schemes. Applebaum et al. [AHI+17] gave constructions
of low-complexity families of collision-resistant hash functions, where it is pos-
sible to evaluate the hash function in linear time in the message size. Their
construction is based on the binary shortest vector problem assumption, which
is related to finding non-trivial low-weight vectors in the null space of a ma-
trix over F2. To get down to linear-time complexity, they conjecture the binary
shortest vector problem is hard when the matrix is sparse, e.g., an LDPC parity
check matrix [Gal62]. Halevi and Micali [HM96] show that a collision-resistant
hash function gives rise to a compact statistically hiding commitment scheme.
Their transformation is very efficient, so starting with a linear-time hash func-
tion, one obtains a linear-time statistically hiding compact commitment scheme.
Moreover, if we instantiate the hash function with the one by Applebaum et
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al. [AHI+17], which is public coin, we obtain a linear-time public-coin statis-
tically hiding commitment scheme. Ishai et al. [IKOS08] propose linear-time
computable pseudorandom generators. If we have statistically binding commit-
ment scheme this means we can commit to an arbitrary length message m by
picking a seed s for the pseudorandom generator, stretch it to t = PRG(s) of
length |m| and let (Commitck(s), t ⊕ m) be the commitment to m. Assuming
the commitment scheme is statistically binding, this gives us a linear-time sta-
tistically binding commitment scheme for arbitrary length messages. It can also
easily be seen that commitments have the same length as the messages plus an
additive polynomial overhead that depends only on the security parameter. The
construction also preserves the public-coin property of the seed commitment
scheme.

3 Zero-Knowledge Proofs for Arithmetic Circuit
Satisfiability in the Ideal Linear Commitment Model

In this section, we construct a SHVZK proof of knowledge for arithmetic cir-
cuit satisfiability relations RAC in the ILC model. Our proof can be seen as an
abstraction of the zero-knowledge argument of Groth [Gro09] in an idealized
vector commitment setting. In the ILC model, the prover can commit to vec-
tors in Fk by sending them to the channel. The ILC channel stores the received
vectors and communicates to verifier the number of vectors it received. The ver-
ifier can send messages to the prover via the ILC channel, which in the case of
Groth’s and our proof system consist of field elements in F. Finally, the verifier
can query the channel to open arbitrary linear combinations of the committed
vectors sent by the prover. The field F and the vector length k is specified by the
public parameter ppILC. It will later emerge that to get the best communication
and computation complexity for arithmetic circuits with N gates, k should be
approximately

√
N .

Consider a circuit with a total of N fan-in 2 gates, which can be either
addition gates or multiplication gates over a field F. Each gate has two inputs
(left and right) and one output wire, and each output wire can potentially be
attached as input to several other gates. In total, we have 3N inputs and outputs
to gates. Informally, the description of an arithmetic circuit consists of a set
of gates, the connection of wires between gates and known values assigned to
some of the inputs and outputs. A circuit is said to be satisfiable if there exists
an assignment complying with all the gates, the wiring, and the known values
specified in the instance.

At a high level, the idea of the proof is for the prover to commit to the 3N
inputs and outputs of all the gates in the circuit, and then prove that these
assignments are consistent with the circuit description. This amounts to per-
forming the following tasks:

– Prove for each value specified in the instance that this is indeed the value
the prover has committed to.



14

– Prove for each addition gate that the committed output is the sum of the
committed inputs.

– Prove for each multiplication gate that the committed output is the product
of the committed inputs.

– Prove for each wire that all committed values corresponding to this wire are
the same.

To facilitate these proofs, we arrange the committed values into row vectors
vi ∈ Fk similarly to [Gro09]. Without loss of generality we assume both the
number of addition gates and the number of multiplication gates are divisible by
k, which can always be satisfied by adding few dummy gates to the circuit. We
can then number addition gates from (1, 1) to (mA, k) and multiplication gates
(mA + 1, 1) to (mA +mM , k). We insert assignments to left inputs, right inputs
and outputs of addition gates into entries of three matrices A,B,C ∈ FmA×k,
respectively. We sort entries to the matrices so that wires attached to the same
gate correspond to the same entry of the three matrices, as shown in Figure 2. A
valid assignment to the wires then satisfies A+B = C. We proceed in a similar
way for themM ·k multiplication gates to obtain three matricesD,E, F ∈ FmM×k
such that D ◦ E = F , where ◦ denotes the Hadamard (i.e. entry-wise) product
of matrices. All the committed wires then constitute a matrix

V =


A
B
C
D
E
F

 ∈ F(3mA+3mM )×k

Without loss of generality, we also assume the gates to be sorted so that the
wire values specified in the instance correspond to full rows in V . Again, this is
without loss of generality because we can always add a few dummy gates to the
circuit and to the instance to complete a row.

With these transformations in mind, let us write the arithmetic circuit rela-
tion as follows

RAC =



(pp, u, w) =
(

(F, k, ∗) , (mA,mM , π, {vi}i∈S) , ({vi}i∈S̄)
)
:

m = 3mA + 3mM ∧ π ∈ Σ[m]×[k]

∧ S ⊆ [m] ∧ S̄ = [m] \ S
∧ A = (vi)

mA
i=1 ∧ D = (vi)

3mA+mM
i=3mA+1

∧ B = (vi)
2mA
i=mA+1 ∧ E = (vi)

3mA+2mM
i=3mA+mM+1

∧ C = (vi)
3mA
i=2mA+1 ∧ F = (vi)

3mA+3mM
i=3mA+2mM+1

∧ A+B = C ∧ D ◦ E = F
∧ V = (vi)

m
i=1 ∧ Vi,j = Vπ(i,j) ∀ (i, j) ∈ [m]× [k]


The role of the permutation π is to specify the wiring of the arithmetic circuit.

For each wire, we can write a cycle ((i1, j1), . . . , (it, jt)) that lists the location of
the committed values corresponding to this wire. Then we let π ∈ Σ[m]×[k] be the
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Fig. 2: Representation of an arithmetic circuit and arrangements of the wires
into 6 matrices.

product of all these cycles, which unambiguously defines the wiring of the circuit.
To give an example using the circuit in Figure 2, the output wire of the first
addition gate also appears as input of the first multiplication gate and the second
addition gate. Therefore, if they appear as entries (5, 1), (9, 1), (1, 2) in the matrix
V defined by the rows vi, then we would have the cycle ((5, 1), (9, 1), (1, 2))
indicating entries that must to be identical. The output of the second addition
gate feeds into the third addition gate, so this might give us a cycle ((5, 2), (4, 1))
of entries that should have the same value. The permutation π is the product of
all these cycles that define which entries should have the same value.

In the proof for arithmetic circuit satisfiability, the prover starts by com-
mitting to all values {vi}mi=1. She will then call suitable sub-proofs to handle
the four constraints these committed values should specify. We describe all the
sub-proofs after the main proof given in Figure 3 and refer to Appendix A for
the detailed constructions.

Here we use the convention that when vectors or matrices are written in
square brackets, i.e., when we write [A] in the instance, it means that these
are values that have already been committed to the ILC channel. The prover
knows these values, but the verifier may not know them. The first sub-proof〈
Peq

(
ppILC,

(
{vi}i∈S , [U ]

)) ILC←→ Veq

(
ppILC,

(
{ui}i∈S , [U ]

))〉
allows the verifier

to check that values included in the instance are contained in the corresponding
commitments the prover previously sent to the ILC channel. The second sub-

proof
〈
Psum

(
ppILC,

(
[A], [B], [C]

)) ILC←→ Vsum

(
ppILC,

(
[A], [B], [C]

))〉
is used to

prove the committed matrices A,B and C satisfy A + B = C. The sub-proof〈
Pprod

(
ppILC,

(
[D], [E], [F ]

)) ILC←→ Vprod

(
ppILC,

(
[D], [E], [F ]

))〉
is used to prove

that the committed matrices D,E and F satisfy D ◦E = F . The last sub-proof〈
Pperm

(
ppILC,

(
π, [A], [B]

)) ILC←→ Vperm

(
ppILC,

(
π, [A], [B]

))〉
is used to prove that

A has the same entries as B except they have been permuted according to the
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PILC(ppILC, u, w)

– Parse u = (mA,mM , π, {vi}i∈S)
– Parse w = ({vi}i∈S̄)
– Send (commit, {vi}mi=1) to the ILC channel
– The vectors define V ∈ Fm×k and sub-

matrices A,B,C,D,E, F as described earlier
– Let U = (vi)i∈S
– Run Peq(ppILC, ({vi}i∈S , [U ]))
– Run Psum(ppILC, ([A], [B], [C]))
– Run Pprod(ppILC, ([D], [E], [F ]))
– Run Pperm(ppILC, (π, [V ], [V ]))

VILC(ppILC, u)

– Parse u = (mA,mM , π, {ui}i∈S)
– Run Veq(ppILC, ({ui}i∈S , [U ]))
– Run Vsum(ppILC, ([A], [B], [C]))
– Run Vprod(ppILC, ([D], [E], [F ]))
– Run Vperm(ppILC, (π, [V ], [V ]))
– Return 1 if all the sub-proofs are

accepted and 0 otherwise

Fig. 3: Arithmetic circuit satisfiability proof in the ILC model.

permutation π. Note that when we call the permutation sub-proof with B = A,
then the statement is that A remains unchanged when we permute the entries
according to π. This in turn means that all committed values that lie on the
same cycle in the permutation must be identical, i.e., the matrix A respects the
wiring of the circuit.

Theorem 2. (KILC,PILC,VILC) is a proof system for RAC in the ILC model with
perfect completeness, statistical knowledge soundness with straight-line extrac-
tion, and perfect special honest-verifier zero-knowledge.

Proof. Perfect completeness follows from the perfect completeness of the sub-
proofs.

Perfect SHVZK follows from the perfect SHVZK of the sub-proofs. A sim-
ulated transcript is obtained by combining the outputs of the simulators of all
the sub-proofs.

Also statistical knowledge soundness follows from the knowledge soundness
of the sub-proofs. The statistical knowledge soundness of the equality sub-proof
guarantees that commitments to values included in the instance indeed contain
the publicly known values. The correctness of the addition gates and multipli-
cation gates follows from the statistical knowledge soundness of the respective
sub-proofs. Finally, as we have argued above, the permutation sub-proof guar-
antees the committed values respect the wiring of the circuit.

Since all sub-proofs have knowledge soundness with straight line extraction,
so does the main proof. ut

The efficiency of our arithmetic circuit satisfiability proof in the ILC model is
given in Figure 4. A detailed breakdown of the costs of each sub-protocol can be
found in Appendix A. The asymptotic results displayed below are obtained when
the parameter k specified by ppILC is approximately

√
N . The query complexity
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qc is the number of linear combinations the verifier queries from the ILC channel
in the opening query. The verifier communication CILC is the number of messages
sent from the verifier to the prover via the ILC channel and in our proof system
it is proportional to the number of rounds. Let µ be the number of rounds in
the ILC proof and t1, . . . , tµ be the numbers of vectors that the prover sends to
the ILC channel in each round, and let t =

∑µ
i=1 ti.

Prover computation TPILC
= O(N) multiplications in F

Verifier computation TVILC = O(N) additions in F
Query complexity qc = 20
Verifier communication CILC = O(log log(N)) field elements
Round complexity µ = O(log log(N))

Total number of committed vectors t = O
(√

N
)

vectors in Fk

Fig. 4: Efficiency of our arithmetic circuit satisfiability proof in the ILC model
(KILC,PILC,VILC) for (pp, u, w) ∈ RAC.

4 Compiling Ideal Linear Commitment Proofs into
Standard Proofs

In this section, we show how to compile a proof of knowledge with straight-line
extraction for relation R over the communication channel ILC into a proof of
knowledge without straight-line extraction for the same relation over the stan-
dard channel. Recall that the ILC channel allows the prover to submit vectors of
length k to the channel and the verifier can then query linear combinations of
those vectors.

The idea behind the compilation of an ILC proof is that instead of committing
to vectors vτ using the channel ILC, the prover encodes each vector vτ as EC(vτ )
using a linear error-correcting code EC . In any given round, we can think of the
codewords as rows EC(vτ ) in a matrix EC(V ). However, instead of committing
to the rows of the matrix, the prover commits to the columns of the matrix.
When the verifier wants to open a linear combination of the original vectors, he
sends the coefficients q = (q1, . . . , qt) of the linear combination to the prover,
and the prover responds with the linear combination v(q) ← qV . Notice that
we will use the notation v(q), and later on v(γ), to denote vectors that depend
on q and γ: the q and γ are not indices. Now, to spot check that the prover
is not giving a wrong v(q), the verifier may request the jth element of each
committed codeword eτ . This corresponds to revealing the jth column of error-
corrected matrix EC(V ). Since the code EC is linear, the revealed elements should
satisfy EC(v(q))j =

∑t
τ=1 qτEC(vτ )j = q(EC(V )|j). The verifier will spot check

on multiple columns, so that if the code has sufficiently large minimum distance
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and the prover gives a wrong v(q), then with overwhelming probability, the
verifier will open at least one column j where the above equality does not hold.

Revealing entries in a codeword may leak information about the encoded
vector. To get SHVZK, instead of using EC , we use a randomized encoding ẼC
defined by ẼC(v; r) = (EC(v) + r, r). This doubles the code-length to 2n but
ensures that when you reveal entry j, but not entry j + n, then the verifier
only learns a random field element. The spot checking technique using ẼC is
illustrated in Fig. 5. In the following, we use the notation eτ = (EC(vτ )+rτ , rτ )
and E = (EC(V ) +R,R). We also add a check, where the verifier sends an extra

 v0

...
vt

 ẼC−→

 EC(v0) + r0 r0

...
...

EC(vt) + rt rt


q ↓ q ↓j1 . . . q ↓jλ q ↓jλ+1

. . . q ↓j2λ(
v(q)

) ẼC−→
(

EC(v(q)) + r(q) r(q)

)
Fig. 5: Vectors vτ organized in matrix V are encoded row-wise as matrix
E = ẼC(V ;R). The vertical line in the right matrix and vector denotes con-
catenation of matrices respectively vectors. The prover commits to each col-
umn of E. When the prover given q wants to reveal the linear combination
v(q) = qV she also reveals r(q) = qR. The verifier now asks for openings
of 2λ columns J = {j1, . . . , j2λ} in E and verifies for these columns that
qE|J = ẼC(v(q); r(q))|J . To avoid revealing any information about EC(V ), we
must ensure that ∀j ∈ [n] : j ∈ J ⇒ j + n /∈ J . If the spot checks pass, the
verifier believes that v(q) = qV .

random linear combination γ ∈ Ft to ensure that if a malicious prover commits
to values of eτ that are far from being codewords, the verifier will most likely
reject. The reason the challenges q from the ILC proof are not enough to ensure
this is that they are not chosen uniformly at random. One could, for instance,
imagine that there was a vector vτ that was never queried in a non-trivial way,
and hence the prover could choose it to be far from a codeword. To make sure
this extra challenge γ does not reveal information to the verifier, the prover picks
a random blinding vector v0, which is added as the first row of V and will be
added to the linear combination of the challenge γ.

4.1 Construction

Let (KILC,PILC,VILC) be a non-adaptive µ-round SHVZK proof of knowledge with
straight-line extraction over ILC for a relation R. Here, non-adaptive means that
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the verifier waits until the last round before querying linear combinations of
vectors and they are queried all at once instead of the queries depending on
each other.4 Let GenEC be a generator that given field F and length parameter k
outputs a constant rate linear code EC that is linear-time computable given its
description and has linear minumum distance. Define the ẼC with code length
2n as above: ẼC(v; r) = (EC(v) + r, r). Finally, let (Setup,Commit) be a non-
interactive commitment scheme.

We now define a proof of knowledge (K,P,V) in Fig. 6, where we use the fol-
lowing notation: given matrices V1, . . . , Vµ, R1, . . . , Rµ and E1, . . . , Eµ we define

V =

V1

...
Vµ

 R =

R1

...
Rµ

 E =

E1

...
Eµ

 .

The matrices V1, . . . , Vµ are formed by the row vectors PILC commits to, and
we let t1, . . . , tµ be the numbers of vectors in each round, i.e., for all i we have
Vi ∈ Fti×k.

We say that a set J ⊂ [2n] is allowed if |J ∩ [n]| = λ and |J \ [n]| = λ and
there is no j ∈ J such that j + n ∈ J . In the following we will always assume
codewords have length n ≥ 2λ. We use ẼC(V ;R) to denote the function that
applies ẼC row-wise. In the protocol for V, we are using that ẼC(v; r)|J can be
computed from just v and r|{j∈[n]:j∈J∨j+n∈J}. We use Commit(E; s) to denote
the function that applies Commit column-wise on E and returns a vector c of 2n
commitments. We group all VILC’s queries in one matrix Q ∈ Fqc×t , where t is
the total number of vectors committed to by P and qc is the query complexity
of VILC, i.e., the total number of linear combinations q that VILC requests to be
opened.

4.2 Security Analysis

Theorem 3 (Completeness). If (KILC,PILC,VILC) is complete for relation R
over ILC, then (K,P,V) in Fig. 6 is complete for relation R.

Proof. All the commitment openings are correct, so they will be accepted by
the verifier. In the execution of 〈P(pp, u, w) ←→ V(pp, u)〉, the fact that EC
is linear implies ẼC is linear and hence all the linear checks will be true. If

(pp, u, w) ∈ R then (ppILC, u, w) ∈ R and being complete 〈PILC(ppILC, u, w)
ILC←→

VILC(ppILC, stm)〉 = 1 so V’s internal copy of VILC will accept. Thus, in this case,
〈P(pp, u, w)←→ V(pp, u)〉 = 1, which proves completeness. ut

Theorem 4 (Knowledge Soundness). If (KILC,PILC,VILC) is statistically knowl-
edge sound with a straight-line extractor for relation R over ILC and (Setup,Commit)
is computationally (statistically) binding, then (K,P,V) as constructed above is
computationally (statistically) knowledge sound for relation R.

4The construction can be easily modified to an adaptive ILC proof. For each round
of queries in the ILC proof, there will one extra round in the compiled proof.
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P(pp, u, w)

– Parse input:
• Parse pp = (ppILC,EC , ck)
• Parse ppILC = (F, k)
• Get n from EC

– Round 1:
• v0 ← Fk
• e0 ← ẼC(v0; r0)
• (commit, V1)← PILC(ppILC, u, w)
• E1 ← ẼC(V1;R1)

• Let E01 =

(
e0

E1

)
• c1 = Commit(E01; s1)
• Send (c1, t1) to V

– Rounds 2 ≤ i ≤ µ:
• Get challenge xi−1 from V
• (commit, Vi)← PILC(xi−1)
• Ei ← ẼC(Vi;Ri)
• ci = Commit(Ei; si)
• Send (ci, ti) to V

– Round µ+ 1:

• Get (γ, Q) from V
• v(γ) ← v0 + γV
• r(γ) ← r0 + γR
• V(Q) ← QV
• R(Q) ← QR
• Send (v(γ), r(γ), V(Q), R(Q)) to V

– Round µ+ 2:

• Get J ⊂ [2n] from V
• Send (E01|J , s1|J , . . . , Eµ, sµ|J) to V

K(1λ)

– ppILC ← KILC(1λ)
– Parse ppILC = (F, k)
– EC ← GenEC (F, k)
– ck ← Setup(1λ)
– Return pp = (ppILC,EC , ck)

V(pp, u)

– Parse input
• Parse pp = (ppILC,EC , ck)
• Parse ppILC = (F, k)
• Get n from EC
• Give input (ppILC, u) to VILC

– Rounds 1 ≤ i < µ:
• Receive (ci, ti)
• (send, xi)← VILC(ti)
• Send xi to P

– Round µ:
• Receive (cµ, tµ)

• γ ← F
∑µ
i=1 ti

• (open, Q)← VILC(tµ)
• Send (γ, Q) to P

– Round µ+ 1:
• Receive (v(γ), r(γ), V(Q), R(Q))
• Choose random allowed J ⊂ [2n]
• Send J to P

– Round µ+ 2:
• Receive (E01|J , s1|J , . . . , Eµ, sµ|J)
• Check c1|J = Commit(E01|J ; s1|J),
. . . , cµ|J = Commit(Eµ|J ; sµ|J)

• Check ẼC(v(γ), r(γ))|J = e0|J + γE|J
• Check ẼC(V(Q), R(Q))|J = QE|J
• If all checks pass, return decision of
VILC(V(Q)), else return 0

Fig. 6: Construction of (K,P,V) from (KILC,PILC,VILC), commitment scheme
(Setup,Commit) and error-correcting code C.

Proof. We prove the computational case. The statistical case is similar.

In order to argue that (K,P,V) is computationally knowledge sound, we will
first show that for every DPT P∗ there exists a deterministic (but not necessarily
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efficient) P∗ILC such that for all PPT A we have

Pr

 pp← K(1λ); (ppILC, ·) = pp; (u, s)← A(pp) :
〈P∗(s)←→ V(pp, u; (ρILC, ρ))〉 = 1

∧ 〈P∗ILC(s, pp, u)
ILC←→ VILC(ppILC, u; ρILC)〉 = 0

 ≈ 0. (1)

Note that the randomness ρILC in V which comes from the internal VILC in line
two is the same as the randomness used by VILC in line three.

Our constructed P∗ILC will run an internal copy of P∗. When the internal
P∗ in round i sends a message (ci, ti), P∗ILC will simulate P∗ on every possible
continuation of the transcript, and for each j = 1, . . . , 2n find the most frequently
occurring correct opening ((Ei)j , (si)j) of (ci)j . P∗ILC will then use this to get
matrices E∗i . For each row e∗τ of these matrices, P∗ILC finds a vector vτ and

randomness rτ such that hd(ẼC(vτ , rτ ), e∗τ ) < hdmin

3 if such a vector exists. If for
some τ no such vector vτ exists, then P∗ILC aborts. Otherwise we let Vi and Ri
denote the matrices formed by the row vectors vτ and rτ in round i and P∗ILC
sends Vi to the ILC. Notice that since the minimum distance of ẼC is at least
hdmin, there is at most one such vector vτ for each e∗τ .

The internal copy of P∗ will expect to get two extra rounds, where in the
first it should receive γ and Q and should respond with v∗(γ), r

∗
(γ), V(Q) and R(Q),

and in the second it should receive J and send E01|J , s1|J , . . . , Eµ, sµ|J . Since
P∗ILC does not send and receive corresponding messages, P∗ILC does not have to
run this part of P∗. Of course, for each commitment sent by P∗, these rounds
are internally simulated many times to get the most frequent opening. Notice
that a VILC communicating over ILC with our constructed P∗ILC will, on challenge
Q receive V(Q) = QV from the ILC.

The verifier V accepts only if its internal copy of VILC accepts. Hence, the only

three ways 〈P∗(s)←→ V(pp, u; (ρILC, ρ))〉 can accept without 〈P∗ILC(s, pp, u)
ILC←→

VILC(ppILC, u; ρILC)〉 being accepting are

1. if P∗ makes an opening of a commitment that is not its most frequent opening
of that commitment, or

2. if P∗ILC has an error because for some τ no vτ , rτ with hd(ẼC(vτ , rτ ), e∗τ ) <
hdmin

3 exists, or
3. if P∗ sends some V ∗(Q) 6= V(Q) .

We will now argue that for each of these three cases, the probability that they
happen and V accepts is negligible.

Since P∗ runs in polynomial time and the commitment scheme is computa-
tionally binding, there is only negligible probability that P∗ sends a valid opening
that is not the most frequent. Since V will reject any opening that is not valid,
the probability of V accepting in case 1 is negligible.

Next, we consider the second case. To do so, define the event Err that E∗

is such that for some γ∗ ∈ Ft we have hd(C̃,γ∗E∗) ≥ hdmin

3 . Here C̃ denotes the

image of ẼC , i.e. C̃ = {(c+ r, r) : c ∈ C, r ∈ Fn}. Clearly, if P∗ILC returns an error

because no vi, ri with hd(ẼC(vi, ri), e
∗
i ) <

hdmin

3 exist then we have Err.
The proof of the following claim can be found in Appendix B.
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Claim. Let e∗0, . . . , e
∗
t ∈ F2n. If Err occurs, then for uniformly chosen γ ∈ Ft ,

there is probability at most 1
|F| that hd(C̃, e∗0 + γE∗) < hdmin

6 .

Thus, if Err then with probability at least 1 − 1
|F| the vector γ is going

to be such that hd(C̃, e∗0 + γE∗) ≥ hdmin

6 . If this happens, then for the vectors

(v∗(γ), r
∗
(γ)) sent by P∗, we must have hd(ẼC(v

∗
(γ), r

∗
(γ)), e

∗
0 +γE∗) ≥ hdmin

6 . This

means that either in the first half of the codeword ẼC(v
∗
(γ), r

∗
(γ)) or in the second

half, there will be at least hdmin

12 values of j where it differs from e∗0 + γE∗. It is
easy to see that the λ values of j in one half of [2n] are chosen uniformly and
independently at random conditioned on being different.

For each of these j, there is a probability at most 1− hdmin

12n that ẼC(v(γ), r(γ))j =
e∗0,j + γE∗|j , and since the j’s are chosen uniformly under the condition that
they are distinct, given that this holds for the first i values, the probability is
even smaller for the i + 1’th. Hence, the probability that it holds for all j in
this half is negligible. This shows that the probability that Err happens and V
accepts is negligible.

Now we turn to case 3, where Err does not happen but P∗ sends a V ∗(Q) 6=
V(Q). In this case, for all γ∗ ∈ Ft , we have hd(C̃,

∑t
τ=1 γ

∗
τe
∗
τ ) < hdmin

3 . In partic-
ular, this holds for the vector γ given by γτ = 1 and γτ ′ = 0 for τ ′ 6= τ , so the
vτ ’s are well-defined.

For two matrices A and B of the same dimensions, we define their Hamming
distance hd2(A,B) to be the number of j’s such that the jth column of A and jth
column of B are different. This agrees with the standard definition of Hamming
distance, if we consider each matrix to be a string of column vectors. The proof
of the following claim can be found in Appendix B.

Claim. Assume ¬Err and let V and R be defined as above. Then for any q ∈ Ft
there exists an r(q) with hd(ẼC(qV, r(q)), qE

∗) < hdmin

3 .
In particular, for any V ∗(Q) 6= QV , and any R∗(Q) we have

hd2

(
ẼC
(
V ∗(Q), R

∗
(Q)

)
, QE∗

)
≥ 2

hdmin

3
.

This means that if ¬Err occurs and P∗ attempts to open a V ∗(Q) 6= V(Q) = QV
then

hd2

(
ẼC
(
V ∗(Q), R

∗
(Q)

)
, QE∗

)
≥ 2

hdmin

3
.

As argued above, if the distance between two strings of length 2n is at least hdmin

3 ,
the probability that J will not contain a j such that the two strings differ in

position j is negligible. Hence, the probability that ẼC
(
V ∗(Q), R

∗
(Q)

)
|J = QE∗|J

is negligible. Thus, the probability that ¬Err and V accepts while VILC does not
is negligible. This proves (1).

Next, we want to define a transcript extractor T that given rewindable ac-

cess to 〈P∗(s)←→ V(pp, u)〉 outputs ˜transPILC
, which we would like to corre-

spond to all messages sent between P∗ILC and the channel in 〈P∗ILC(s, pp, u)
ILC←→
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VILC(ppILC, u; ρILC)〉. Here ρILC is the randomness used by the VILC inside V in the
first execution of T ’s oracle 〈P∗(s)←→ V(pp, u)〉. However, we allow T to fail
if V does not accept in this first transcript and further to fail with negligible
probability. Formally, we want T to run in expected PPT such that for all PPT
A:

Pr


pp← K(1λ); (ppILC, ·) = pp; (u, s)← A(pp);

˜transPILC
← T 〈P∗(s)←→V(pp,u)〉(pp, u);

transPILC
← 〈P∗ILC(s, pp, u)

ILC←→ VILC(ppILC, u; ρILC)〉 :

b = 1 ∧ transPILC
6= ˜transPILC

 ≈ 0. (2)

Here b is the value output by V the first time T ’s oracle runs 〈P∗(s) ←→
V(pp, u)〉, and the randomness ρILC used by VILC in the third line is identical
to the random value used by the VILC inside V in the first transcript. On input
(pp, u), the transcript extractor T will first use its oracle to get a transcript
of 〈P∗(s) ←→ V(pp, u; (ρILC, ρ))〉. If V rejects, T will just abort. If V accepts,
T will rewind the last message of P∗ to get a transcript for a new random
challenge J . T continues this way, until it has an accepting transcript for 2n
independently chosen sets J . Notice that if there is only one choice of J that
results in V accepting, P∗ will likely have received each allowed challenge around
2n times and T will get the exact same transcript 2n times before it is done
rewinding. Still, T runs in expected polynomial time: if a fraction p of all allowed
set J results in accept, the expected number of rewindings given that the first
transcripts accepts is 2n−1

p . However, the probability that the first run accepts
is p, and if it does not accept, T does not do any rewindings. In total, that gives
(2n−1)p

p = 2n− 1 rewindings in expectation.
We let J1, . . . , J2n denote the set of challenges J in the accepting transcripts

obtained by T . If
⋃2n
i=1 Ji has less than 2n − hdmin

3 elements, T terminates.
Otherwise, T is defined similarly to P∗ILC: it uses the values of the openings to
get at least 2n − hdmin

3 columns of each Ei. For each of the row vectors, eτ , it

computes vτ and rτ such that ẼC(vτ , rτ ) agrees with eτ in all entries (eτ )j for
which the j’th column have been revealed, if such v exists. Since T will not
correct any errors, finding such vτ and rτ corresponds to solving a linear set of
equations. Notice that since the minimum distance is more than 2 hdmin

3 there is
at most one such vτ for each τ ∈ [t]. If for some τ there is no such vτ , then T
aborts, otherwise T use the resulting vectors vτ as the prover messages to define
˜transPILC

.
If |
⋃κ
i=1 Ji| < 2n− hdmin

3 , there are at least hdmin

6 numbers in [n] \
⋃κ
i=1 Ji or

in {n + 1, . . . , 2n} \
⋃κ
i=1 Ji. In either case, a random allowed J has negligible

probability of being contained in
⋃κ
i=1 Ji. Since T runs in expected polynomial

time, this implies by induction that there is only negligible probability that
|
⋃κ
i=1 Ji| < min(κ, 2n− hdmin

3 ) and therefore |
⋃2n
i=1 Ji| < 2n− hdmin

3 .
Finally, we need to show

Claim. The probability that for some τ there are no vτ and rτ such that
ẼC(vτ , rτ ) agrees with eτ on the opened j ∈

⋃2n
i=1 Ji and b = 1 is negligible.
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In particular, the probability that b = 1 but T does not extract the transcript
of P∗ILC is negligible.

Proof. Since we can ignore events that happen with negligible probability, and
the expected number of rewindings is polynomial, we can assume that in all the
rewindings, P∗ only makes openings to the most common openings. We showed
that the probability that b = 1 but P∗ sends a V ∗(Q) 6= V is negligible and by the
same argument the probability that b = 1 but P∗ sends v∗(γ) 6= v(γ) is negligible.
Therefore, in the following, we will assume v∗(γ) = v(γ).

Now suppose that there is some eτ such that the opened values are incon-
sistent with being ẼC(vτ , rτ ) for any rτ . That is, there is some j such that

j, n + j ∈
⋃2n
i=1 Ji and (eτ )j − (eτ )n+j 6= EC(v)j . For uniformly chosen γτ ∈ F,

we get that γτ ((eτ )j − (eτ )n+j − EC(v)j) is uniformly distributed in F. Hence
for a random γ ∈ Ft, we have that γ · ((e)j − (e)n+j − EC(v)j) is uniformly
distributed. When V sends γ, P∗ will respond with v∗(γ) = v(γ) and some r∗(γ).

V will only accept on a challenge J if for all j ∈ J we have (e0 + γe)j =

ẼC(v(γ), r
∗
(γ))j . Since j, n+j ∈

⋃2n
i=1 Ji we have (e0 +γe)j = ẼC(v(γ), r

∗
(γ))j and

(e0 + γe)n+j = ẼC(v(γ), r
∗
(γ))n+j so

(e0)j − (e0)n+j + γej − γen+j =ẼC(v(γ), r
∗
(γ))j − ẼC(v(γ), r

∗
(γ))n+j

=EC(v(γ))j

=(EC(v0) + γEC(v))j

that is,
γej − γen+j − γEC(v)j = EC(v0)j − (e0)j + (e0)n+j

For random γ the left-hand side is uniform and the right-hand side is fixed, hence
equality only happens with negligible probability. That proves the claim. ut

Since E〈P
∗
ILC(s,pp,u)

ILC←→VILC(ppILC,u)〉
ILC (pp, u) is a straight-line extractor, we can

simply assume that it gets the transcript as an input, and can be written as
EILC(ppILC, u, transPILC

). For any PPT A consider the following experiment.
pp← K(1λ); (ppILC, ·) = pp; (u, s)← A(pp);

˜transPILC
← T 〈P∗(s)←→V(pp,u〉(pp, u);

transPILC
← 〈P∗ILC(s, pp, u)

ILC←→ VILC(ppILC, u; ρILC)〉 = bILC;
w ← EILC(ppILC, u, transPILC

);

w̃ ← EILC(ppILC, u, ˜transPILC
);

 (3)

We have shown that when doing this experiment, the probability that b =

1 ∧ bILC = 0 and the probability that b = 1 ∧ transPILC
6= ˜transPILC

are both
negligible. By knowledge soundness of (KILC,PILC,VILC), the probability that

bILC = 1 ∧ (pp, u, w) /∈ R is also negligible. Finally, if transPILC
= ˜transPILC

then clearly w = w̃. Taken together this implies that the probability of b =
1 ∧ (pp, u, w̃) /∈ R is negligible. We now define E〈P∗(s)←→V(pp,u)〉(pp, u) to com-
pute EILC(ppILC, u, T 〈P

∗(s)←→V(pp,u)〉(pp, u)). The above experiment shows that
(K,P,V) is knowledge sound with E as extractor. ut
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Theorem 5 (SHVZK). If (KILC,PILC,VILC) is perfect SHVZK and (Setup,Commit)
is computationally (statistically) hiding then (K,P,V) is computationally (sta-
tistically) SHVZK.

Proof. To prove we have SHVZK we describe how the simulator S(pp, u, ρ)
should simulate the view of V. Along the way, we will argue why, the variables
output by S have the correct joint distribution. To keep the proof readable,
instead of saying that “the joint distribution of [random variable] and all previ-
ously defined random variables is identical to the distribution in the real view
of V in 〈P(pp, u, w) ←→ V(pp, u)〉” we will simply say that “[random variable]
has the correct distribution”.

Using the randomness ρ the simulator learns the queries ρILC = (x1, . . . , xµ−1, Q)
the internal VILC run by the honest V will send. S can therefore run SILC(ppILC, u, ρILC)
to simulate the view of the internal VILC. This gives it (t1, . . . , tµ, V(Q)). By the
SHVZK property of (KILC,PILC,VILC) these random variables will all have the
correct joint distribution.

Then S reads the rest of ρ to learn also the challenges γ and J that V will
send. The simulator picks uniformly at random v(γ) ← Fk. Since in a real proof
v0 is chosen at random, we see that the simulated v(γ) has the correct distribu-
tion. Now S picks E01|J , . . . , Eµ|J uniformly at random. Recall that we defined

ẼC(v; r) = (EC(v) + r, r) and by definition of J being allowed, we have for all
j ∈ J that j + n /∈ J . This means for any choice of v0 ∈ Fk and V ∈ Ft×k
that when we choose random r0 ← Fn and R ← Ft×n we get uniformly ran-
dom ẼC(v0; r0)|J and ẼC(V ;R). Consequently, E01|J , . . . , Eµ|J have the correct
distribution.

Next, the simulator picks r(γ) ∈ Fn and R(Q) ∈ Ft×n one entry and column
at a time. For all j such that j /∈ J and j + n /∈ J the simulator picks random
(r(γ))j ← F and random Rj ← Ft. For all j such that j ∈ J or j + n ∈ J , the
simulator then computes the unique (r(γ))j ∈ F and Rj ∈ Ft such that we get

ẼC(v(γ); r(γ)) = e0|J + γE|J and ẼC(V(Q);R(Q)) = QE|J .

Finally, S defines E01|J̄ , . . . , Eµ|J̄ to be 0 matrices. It then picks s1, . . . , sµ
at random and makes the commitments c1, . . . , cµ as in the protocol. For j ∈ J
we see that all the ci|j commitments are computed as in the real execution from
values that have the same distribution as in a real proof. Hence, they will have
the correct distribution. The ci|js for j /∈ J are commitments to different values
than in a real proof. However, by the computational (statistical) hiding property
of the commitment scheme, they have a distribution that is computationally
(statistically) indistinguishable from the correct distribution. ut

4.3 Efficiency

We will now estimate the efficiency of a compiled proof of knowledge (K,P,V)
for (pp, u, w) ∈ R. Let µ be the number of rounds, t =

∑µ
i=1 ti, k, n given in EC ,

and qc the query complexity, i.e., Q ∈ Fqc×t. Let TPILC
be the running time of

PILC(ppILC, u, w), TẼC(k) be the encoding time for a vector in Fk, TCommit(ti) be
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the time to commit to ti field elements, TMmul(qc, t, b) be the time it takes to mul-
tiply matrices in Fqc×t and Ft×b, and TVILC is the running time of VILC(ppILC, u).
Let furthermore CILC be the communication from the verifier to the prover in

〈PILC
ILC←→ VILC〉, CCommit(ti) be the combined size of commitment and random-

ness for a message consisting of ti field elements. We give the dominant factors of
efficiency of the compiled proof in Fig. 7. The estimates presume TCommit(t1 + 1)
is not too far from TCommit(t1).

Measure Cost
Prover Computation TPILC

+ t · TẼC(k) + 2n ·
∑µ
i=1 TCommit(ti) + TMmul(qc + 1, t, k + n)

Verifier Computation TVILC + (qc + 1) · TẼC(k) + 2λ ·
∑µ
i=1 TCommit(ti) + TMmul(qc + 1, t, 2λ)

Communication CILC + 2n ·
∑µ
i=1 CCommit(ti) + (qc + 1) · (k + n) + (qc + 1) · t+ 2λ · t

Round Complexity µ+ 2

Fig. 7: Efficiency of a compiled proof of knowledge (K,P,V) for (pp, u, w) ∈ R.
Communication is measured in field elements and computation in field opera-
tions.

5 Instantiations and Conclusion

Putting together the sequence of proofs and sub-proofs in the ILC model, com-
piling into the standard model using an error-correcting code and a commitment
scheme, and finally instantiating the commitment scheme yields special honest-
verifier zero-knowledge proofs for arithmetic circuit satisfiability.

Let us now analyze the efficiency of the compilation we get from Fig. 7.
If the error-correcting code is linear-time computable, we get TẼC (k) = O(k)
operations in F, and with the code from Druk and Ishai [DI14] is will actually
be O(k) additions in F.

Let us now plug in the efficiency of our ILC proof given in Fig. 4 into
the efficiency formulas in Fig. 7. We use k ≈

√
N , n = O(k), t = O(

√
N),

µ = O(log logN), qc = 20 = O(1) and assume k � λ. We then get prover
computation TP = O(N) multiplications + 2n ·

∑µ
i=1 TCommit(ti), verifier compu-

tation TV = O(N) additions + 2λ ·
∑µ
i=1 TCommit(ti), communication C = 2n ·∑µ

i=1 CCommit(ti)+O(λ
√
N) field elements, and round complexity µ = O(log logN).

Instantiating with the commitment scheme from Applebaum et al. [AHI+17]
we get computational knowledge soundness and statistical SHVZK. The com-
mitments are compact, a commitment has size CCommit(ti) = poly(λ) regardless
of the message size, giving us sub-linear communication. The commitments can
be computed in linear time at a cost of TCommit(ti) = poly(λ) +O(ti) additions.,
giving us linear time computation for prover and verifier.

Instantiating with the commitment from Ishai et al. [IKOS08] we get statis-
tical knowledge soundness and computational SHVZK. The commitments have
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linear size CCommit(ti) = polyλ + ti giving us linear communication overall.
The commitments can be computed in linear time at a cost of TCommit(ti) =
poly(λ) + O(ti) additions, again giving us linear time computation for prover
and verifier.

We summarize the costs in Table 8 below and conclude that we now have
SHVZK proof systems for arithmetic circuit satisfiability where the prover com-
putation only has constant overhead compared to direct computation of the
arithmetic circuit given the witness. Moreover, the verifier computation is a lin-
ear number of additions, which is proportional to the time it takes simply to
read the instance.

Measure\Instantiation Using [AHI+17] Using [IKOS08]
Prover Computation O(N) multiplications in F O(N) multiplications in F
Verifier Computation O(N) additions in F O(N) additions in F

Communication poly(λ)
√
N field elements O(N) field elements

Round Complexity O(log logN) O(log logN)
Completeness Perfect Perfect

Knowledge Soundness Computational Statistical
SHVZK Statistical Computational

Fig. 8: Efficiency of two instantiations of our SHVZK proofs.
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A Sub-proofs in the ILC Model

We will now give full descriptions of all the sub-proofs used in Section 3. Some of
the sub-proofs require additional sub-proofs, the full structure of the arithmetic
circuit satisfiability proof in the ILC model is given in Fig. 9.

Fig. 9: ILC proof for arithmetic circuit satisfiability decomposed into sub-proofs.

Many of the sub-proofs are presented as stand-alone proofs, but when run as
part of a larger arithmetic circuit protocol, it may be that certain vectors will
already have been committed to the ILC channel. This is emphasized by putting
square brackets around committed values. As most of the proofs involves rela-
tions over previously committed vectors, we introduce a new notation for them.
A relation R consists of pairs (pp, u) for which instances u can contain com-
mitted vectors, denoted by the presence of square brackets around the vectors.
Whenever the prover P gets as input a pair (pp, u), we use the bracket notation
to indicate that she knows the content of committed elements in u. Differently,
we use the bracket notation to denote that the verifier V does not learn what is
inside the commitments, apart that these are already stored in the ILC channel
and how many vectors there are.

In the proof of knowledge soundness of each sub-protocol, we assume that
the knowledge extractor for the sub-protocols will have access to any values that
the prover has committed to as part of the larger arithmetic circuit protocol.

A.1 Proof for the Correct Opening of Committed Vectors

Next, we give a proof for checking consistency of committed vectors with values
in the statement. In this proof the prover Peq simply commits to a set of vectors
by sending (commit,u1, . . . ,ut) to the ILC. As we use this sub-proof as a building
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block for more complex proofs, the vectors will be already stored in the ILC at
earlier stages of the proof, thus the prover is not required any further action.
Let U = (ui)

t
i=1, we denote with [U ] the commitments stored in the ILC. The

description of the verifier Veq is given in Figure 10. The verifier asks for a random
linear combination of the corresponding vectors and checks it against the values
in the statement. The corresponding relation is

Req =

{
(ppILC, u) = ((F, k), (u1, . . . ,ut, [U ])) :
u1, . . . ,ut ∈ Fk ∧ U = (ui)

t
i=1

}
.

Peq((F, k), (u1, . . . ,ut), [U ])

– Do nothing

Veq((F, k), (u1, . . . ,ut), [U ])

– Pick random x← F
– Set X = (x1, . . . , xm)
– Query ILC on (open, X) and

get response v
– Return 1 if v =

∑m
j=1 x

juj ,
Return 0 otherwise

Psum((F, k), ([A], [B], [C]))

– Do nothing

Vsum((F, k), ([A], [B], [C]))

– Pick x← F and set
X = (x1, . . . , xm, x1, . . . , xm,−x1, . . . ,−xm)

– Query ILC on (open, X) and get response v
– Return 1 if v = 0,

Return 0 otherwise

Fig. 10: Left hand side has equality check; right hand side has sum check.

Theorem 6. (KILC,Peq,Veq) is a proof system for the relation Req in the ILC
model with perfect completeness, statistical knowledge soundness with straight-
line extraction and perfect special honest verifier zero-knowledge.

Proof. The proof is perfectly complete, as it follows by inspection.
The proof has statistical knowledge soundness with straight-line extraction.

This is because the knowledge extractor already has access to the committed
vectors of [U ], having seen all messages sent between the prover Peq and the
ILC. By the Schwartz-Zippel Lemma we have that if the committed vectors are
not equal to the uj , then they pass the consistency check with probability at
most m

|F| , which is negligible.

The proof is perfect zero-knowledge as the verifier knows the values in the
statement and can compute the response directly. ut

Efficiency. Since the prover is inactive, the efficiency is easy to analyze. There is
no communication between prover and verifier, so the round complexity is µ = 0.
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The verifier makes a single query to the ILC channel, so the query complexity is
qc = 1. The prover has computation time TPeq

= 0 and commits to t = 0 vectors
during the proof (we do not count the already committed vectors that are part
of the instance).

The computational cost of the verifier would be around mk multiplications
in F if the verifier checks everything. Perhaps surprisingly, one can reduce the
cost of this check to a linear number of additions O(mk) in F. The verifier can
achieve this by encoding both the response v and the vectors uj using a linear
error correcting code as the one in Theorem 1. Then, instead of checking the
entire encoded vectors, he can perform the check only on a subset of positions of
the codewords. This is made possible since the code has linear minimum distance.

TPeq TVeq qc #rounds t
0 O(mk) additions in F 1 0 0

A.2 Proof for the Sum of Committed Matrices

In this section, we introduce a proof of knowledge of matrices A,B,C ∈ Fm×k
such that A+B = C. As for the previous sub-proof, we assume that the matrices
have already been stored in the ILC, in which case the prover Psum is not required
to do any further action. We let [A], [B], [C] be the commitments to the rows of
the matrices A,B,C, respectively. Moreover, we assume the prover committed
the rows of the matrices in order, starting with all the rows of A, B and then C.
The verifier picks a challenge x and queries the ILC on linear combinations the
vectors, weighted on powers of the challenge. The idea is that entries in A,B,C
are associated with the same power of x but the ones in C have opposite sign.
Therefore, we expect them to sum up to zero if A + B − C = 0 holds. The
description of Vsum is given in Figure 10 and the corresponding relation is

Rsum =

{
(ppILC, u) = ((F, k) , ([A], [B], [C])) :
A,B,C ∈ Fm×k ∧ A+B = C

}
.

Theorem 7. (KILC,Psum,Vsum) is a proof system for the relation Rsum in the
ILC model with perfect completeness, statistical knowledge soundness with straight-
line extraction, and perfect special honest verifier zero-knowledge.

Proof. The proof is perfectly complete, as it follows by inspection.
The proof has statistical knowledge soundness with straight-line extraction.

This is because the knowledge extractor already has access to the committed
vectors committed as [A], [B] and [C], having seen all messages sent between
the prover and the ILC. By the Schwartz-Zippel Lemma, the probability that
committed vectors not satisfying the addition gates pass the sum check is at
most m

|F| , which is negligible.

The proof is perfect zero-knowledge as the verifier only sees the zero vector,
which can be trivially simulated. ut
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Efficiency. The efficiency is easy to analyze and given in the table below. The
verifier’s computation is dominated by m−1 multiplications required to compute
the query.

TPsum TVsum qc #rounds t
0 m− 1 multiplications in F 1 0 0

A.3 Proof for the Hadamard Product of Committed Matrices

We now describe a proof of knowledge of matrices A,B,C ∈ Fmn×k such that
A ◦B = C, where A ◦B is the Hadamard (entry-wise) product of the matrices.
We assume that the prover has already committed to A,B,C which we will write
with square brackets in the instance ([A], [B], [C]). The corresponding relation
is

Rprod =

{
(ppILC, u) = ((F, k) , ([A], [B], [C])) :
A,B ∈ Fnm×k ∧ A ◦B = C

}
.

First, parse matrix A as a collection of mn row vectors ai,j ∈ Fk for 0 ≤
i ≤ m − 1, 1 ≤ j ≤ n, and similarly obtain bi,j and ci,j . If A ◦ B = C, then
ai,j ◦ bi,j = ci,j for 0 ≤ i ≤ m− 1, 1 ≤ j ≤ n.

Without loss of generality we assume m = 2µ for some integer µ. We will
use µ challenges X0, . . . , Xµ−1 to compress 2mn vectors ai,j , bi,j of length k,
corresponding to left and right inputs of multiplication gates, into 2m vectors
ȧj , ḃj of the same length. The compressed vectors are computed by inserting
vectors ai,j (resp. bi,j) into distinct coefficients of n multivariate polynomials
in X0, . . . Xµ−1. More precisely, vector ai,j is positioned in the jth polynomial

as coefficient of Xi0
0 · · ·X

iµ−1

µ−1 , where iµ−1iµ−2 . . . i0 are the digits of the binary
expansion of i. The 2n vectors of length k are then obtained by evaluating the
multivariate polynomials into challenges (x0, x1 . . . , xµ−1), as shown in what
follows.

ȧj(x0, . . . , xµ−1) =

m−1∑
i=0

ai,jy
ixi00 x

i1
1 . . . x

iµ−1

µ−1

ḃj(x0, . . . , xµ−1) =

m−1∑
i=0

bi,jx
−i0
0 x−i11 . . . x

−iµ−1

µ−1

for 1 ≤ j ≤ n and (i0, i1, . . . , iµ−1) ∈ {0, 1}µ such that i =
∑µ−1
t=0 2it . These

expressions can be efficiently evaluated. More details are given in the efficiency
analysis following the protocol.
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Following a similar process as above, we then embed the above 2n vectors
into the coefficients of two polynomials in X of degree n.

ȧ(X,x0, . . . , xµ−1) =

n∑
j=1

ȧj(x0, . . . , xµ−1)yjmXj

ḃ(X,x0, . . . , xµ−1) =

n∑
j=1

ḃj(x0, . . . , xµ−1)X−j

Note that when we take the Hadamard product of the two vectors of poly-
nomials, the Hadamard products ȧj ◦ ḃj end up in the constant coefficient, i.e.,

X0. Similarly, all other waste products ȧj ◦ ḃj′ , for j 6= j′, end up in coefficients
of other powers of X. The verifier will check the following polynomial expression
evaluated in a random challenge x, connecting the Hadamard products of the
ai,j and bi,j with the ci,j .

ȧ ◦ ḃ =
∑m−1,n
i=0,j=1 ci,jy

i+jm +
∑µ−1
t=0

(
d+
t xt + d−t x

−1
t

)
+
∑n−1
r=1−n,r 6=0 erx

r

In this expression, the vectors d+
j ,d

−
j are compression factors to make up for

the lossy compression, and the er are coefficients containing waste Hadamard
products. Observe that different Hadamard products are separated by different
powers of y.

Finally, note that the polynomials chosen above leak information about the
wire values, so we must also incorporate some random blinders into the real
protocol to achieve zero-knowledge.

The argument is presented as a stand-alone protocol, but when run as part
of a larger arithmetic circuit argument, the vectors ai,j , bi,j and ci,j will already
have been sent to ILC. This is emphasized by putting square brackets around
committed values.

Formal Description. Next, we provide a formal description of the proof of
knowledge of committed matrices satisfying Hadamard product relation Rprod.

Proof:

Instance: The prover has already sent [ai,j , bi,j , ci,j ]
m−1,n
i=0,j=1 to the ILC channel.

Pprod → ILC: The prover picks ȧ0, ḃ0 ← Fk.

The prover computes ċ0 = ȧ0 ◦ ḃ0.

The prover sends ȧ0, ḃ0, ċ0 to ILC.

ILC← Vprod : Verifier sends y ← F× to ILC
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Pprod → ILC: The prover computes polynomials with vector coefficients in the
variables X0, . . . , Xµ−1, where m = 2µ. Here, i0, . . . , iµ−1 represent the digits
of the binary expansion of i.

ȧj(X0, . . . , Xµ−1) =

m−1∑
i=0

ai,jy
iXi0

0 X
i1
1 . . . X

iµ−1

µ−1

ḃj(X0, . . . , Xµ−1) =

m−1∑
i=0

bi,jX
−i0
0 X−i11 . . . X

−iµ−1

µ−1

for 1 ≤ j ≤ n.
The prover computes the following polynomials with vector coefficients in
the variable X.

ȧ(X,X0, . . . , Xµ−1) = ȧ0 +

n∑
j=1

ȧj(X0, . . . , Xµ−1)yjmXj

ḃ(X,X0, . . . , Xµ−1) = ḃ0 +

n∑
j=1

ḃj(X0, . . . , Xµ−1)X−j

The prover writes the Hadamard product of the above vectors of polynomials

ȧ(X,X0, . . . , Xµ−1) ◦ ḃ(X,X0, . . . , Xµ−1) = ȧ0 ◦ ḃ0

+

m−1,n∑
i=0,j=1

ai,j ◦ bi,jyi+jm

+ d+
0 X0 + d−0 X

−1
0

+ d+
1 (X0)X1 + d−1 (X0)X−1

1

...

+ d+
µ−1(X0, . . . , Xµ−2)Xµ−1

+ d−µ−1(X0, . . . , Xµ−2)X−1
µ−1

+

n∑
r=−n,r 6=0

er(X0, . . . , Xµ−1)Xr

The prover sends d+
0 ,d

−
0 to ILC.

ILC← Vprod : The verifier sends x0 ← F× to ILC

Pprod → ILC: The prover sends d+
1 = d+

1 (x0),d−1 = d−1 (x0) to ILC.

For t = 1 to µ− 2:
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– ILC← Vprod : The verifier sends xt ← F× to ILC

– Pprod → ILC: The prover sends d+
t+1 = d+

t+1(x0, . . . , xt) and d−t+1 =

d−t+1(x0, . . . , xt) to ILC.

ILC← Vprod : The verifier sends xµ−1 ← F× to ILC

Pprod → ILC: The prover computes er = er(x0, . . . , xµ−1) for −n ≤ r ≤ n, r 6=
0.
The prover sends {er}nr=−n,r 6=0 to ILC.

Verification:
ILC← Vprod : The verifier selects x ← F× uniformly at random. The verifier

queries the ILC channel to get

ȧ = ȧ0 +

m−1,n∑
i=0,j=1

ai,jy
i+jmxi00 x

i1
1 . . . x

iµ−1

µ−1 x
j

ḃ = ḃ0 +

m−1,n∑
i=0,j=1

bi,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
−j

ċ = ċ0 +

m−1,n∑
i=0,j=1

ci,jy
i+jm +

µ−1∑
t=0

(
d+
t xt + d−t x

−1
t

)
+

n∑
r=−n,r 6=0

erx
r

The verifier then checks whether the following equation holds and in that
case accepts.

ȧ ◦ ḃ ?
= ċ

Security Analysis. Before analysing the security of the above protocol, we
prove a variation of the Schwarz-Zippel Lemma. This will be used when analysing
the knowledge soundness of both the Hadamard product proof and the double-
shift proof described in the next section.

Lemma 1. Let F be a field. Let P be a function of the following form, where p0,i0

are constant values, and p1,i1(Z0), . . . , pu,iu(Z0, . . . , Zu−1) are arbitrary func-
tions and not necessarily polynomials.

P (Z0, . . . , Zu) =

d0∑
i0=−d0

p0,i0Z
i0
0 +

d1∑
i1=−d1,i1 6=0

p1,i1(Z0)Zi11

+ . . .+

du∑
iu=−du,iu 6=0

pu,iu(Z0, . . . , Zu−1)Ziuu
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Let S be a finite subset of F×. Let z0, . . . , zu be selected at random independently
and uniformly from S. Let F be the event that at least one value among p0,i0 or
ps,is(z0, . . . , zs−1) is not zero.

Then

Pr [{P (z0, . . . , zu) = 0} ∧ F ] ≤
∑u
t=0(2dt + 1)

|S|

Proof. We prove the lemma by induction on u. The case u = 0 follows from the
fact that a Laurent polynomial of degree (2d0 + 1) has at most (2d0 + 1) roots.

Assume that the result holds for u− 1. We prove the lemma for u. Write

P (Z0, . . . , Zu) = Q(Z0, . . . , Zu−1) +

du∑
iu=−du,iu 6=0

pu,iu(Z0, . . . , Zu−1)Ziuu

For fixed values of z0, . . . , zu−1, this is a polynomial of degree du in Zu. Let G
be the event that P is the zero polynomial in Zu. Let FP and FQ be the event
F interpreted in the obvious way for P and Q.

Pr [{P (z0, . . . , zu) = 0} ∧ FP ] = Pr [{P (z0, . . . , zu) = 0} ∧ FP ∧G]

+ Pr [{P (z0, . . . , zu) = 0} ∧ FP ∧ ¬G]

If G holds, then P is the zero polynomial in Zu, so since Q is the constant term,
then Q is necessarily zero. On the other hand, if G and FP hold simultaneously,
then each value pu,iu(z0, . . . , zu−1) must be zero, so the non-zero value must
occur among p0,i0 or ps,is(z0, . . . , zs−1) for s < u. Therefore, FQ holds. We use
these facts to bound the first probability. We bound the second probability by
simply removing the event FP .

Pr [{P (z0, . . . , zu) = 0} ∧ F ] ≤ Pr [{Q(z0, . . . , zu−1) = 0} ∧ FQ]

+ Pr [{P (z0, . . . , zu) = 0} ∧ ¬G]

Apply the induction hypothesis to bound the first probability. To bound the
second probability, observe that for any values of z0, . . . , zu−1 such that ¬G
holds, P is a non-zero Laurent polynomial of degree at most (2du + 1) in Zu,
and has at most (2du + 1) roots zu. The result follows. ut

Theorem 8. (KILC,Pprod,Vprod) is a proof of knowledge for the relation Rprod

in the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by careful inspection of the polynomial ex-
pressions computed by the prover in the above protocol.

Next, we show that the proof has statistical knowledge soundness with straight-
line extraction. This is because the knowledge extractor already has access to
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the vectors committed as [A], [B] and [C], having seen all messages sent between
the prover and the ILC. It remains to show that for any deterministic malicious
prover P∗prod, if the committed vectors are not a valid witness for Rprod, then
there is negligible probability of accept. Recall that verifier queries the following
values.

ȧ = ȧ0 +

m−1,n∑
i=0,j=1

ai,jy
i+jmxi00 x

i1
1 . . . x

iµ−1

µ−1 x
j

ḃ = ḃ0 +

m−1,n∑
i=0,j=1

bi,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
−j

ċ = ċ0 +

m−1,n∑
i=0,j=1

ci,jy
i+jm +

µ−1∑
t=0

(
d+
t xt + d−t x

−1
t

)
+

n∑
r=−n,r 6=0

erx
r

Now, substitute the expressions for ȧ and ḃ into the left-hand side of the third
equality. The verifier only accepts if the equation holds. By assumption P∗prod

is deterministic, and we know when it made it’s commitments. Hence, ȧ0, ḃ0

and ċ0 are constants, d+
0 ,d

−
0 are functions of y, d+

1 ,d
−
1 are functions of y and

x0, . . . , xµ−1 and the er are functions of y, x0, . . . , xµ−1. We can now apply
Lemma 1. The coefficient of yi+jm on the right-hand side is ci,j while on the
left-hand side it is ai,j ◦bi,j . If there exist i and j such that ai,j ◦bi,j 6= ci,j , that
means we have F . Verifier can only accept if we have equality, so this shows that
the probability that the committed values does not satisfy the product relation
but verifier accepts is negligible, which proves statistical knowledge soundness.

For honest-verifier zero-knowledge, we describe how to simulate the verifier’s
view efficiently. Since ȧ0, ḃ0 ← Fk, and these are added to ȧ and ḃ respectively
in an honest transcript, we see that ȧ and ḃ are also uniformly distributed. This
is trivial to simulate. In an accepting transcript the answer to the last query is
always ȧ ◦ ḃ which can be computed from ȧ and ḃ, so we have special honest
verifier zero knowledge. ut

Efficiency. The verifier sends µ + 1 field elements to the prover through the
ILC channel and has a computational cost dominated by mn multiplications in F
to compute the queries to the channel. The query complexity is qc = 3 and the
prover’s communication consists of commitments to 2µ+ 2n + 3 vectors in Fk.

In the protocol as written, the prover has computed on multivariate poly-
nomials with vector coefficients. However, the prover only needs to commit to
elements of Fk. Therefore, the prover can save considerable computational effort
by computing mostly on vectors, and using challenges y, x0, . . . , xµ−1 as they be-
come available to partially evaluate expressions and ‘collapse’ multiple vectors
into fewer vectors. We analyse the prover’s computation from the final round to
the first round. Details follow.



40

After receiving xµ−1, and computing ȧj , ḃj , the prover must compute the

values er. This is done by expressing ȧ, ḃ as polynomials in X of degree n,
with vector coefficients ȧj , ḃj . Then, the er are the coefficients of the Hadamard
product polynomial. Using FFT techniques for each vector component, the cost
is O(kn log n).

Now we explain how the prover computes the values d+
j ,d

−
j by computing

the values of ȧj , ḃj and ȧj ◦ ḃj recursively. Consider the following expressions,
assuming that the prover has already evaluated in all challenges preceding Xµ−1.

ȧj(x0, . . . , xµ−2, Xµ−1) =

m−1∑
i=0

ai,jy
ixi00 x

i1
1 . . . x

iµ−2

µ−2X
iµ−1

µ−1 = A0,j +A1,jXµ−1

ḃj(x0, . . . , xµ−2, Xµ−1) =

m−1∑
i=0

bi,jx
−i0
0 x−i11 . . . x

−iµ−2

µ−2 X
−iµ−1

µ−1 = B0,j +B1,jX
−1
µ−1

By assumption, A0,j ,A1,j ,B0,j ,B1,j have already been computed at this

stage. The cost of evaluating ȧj , ḃj and ȧj ◦ ḃj and its Xµ−1 coefficients is then
5k multiplications to compute the necessary Hadamard products and multiply
by xµ−1 and its inverse, giving 5nk multiplications, since we do the computation
for 1 ≤ j ≤ n. Now, d+

µ−1 =
∑n
j=1A1,j ◦ B0,j , and d−µ−1 can be computed

using a similar expression, which costs only (n − 1)k additions, given that the
Hadamard products, such as A1,j ◦B0,j , were already computed in evaluating

ȧj and ḃj .

Clearly A0,j ,A1,j ,B0,j ,B1,j have the same structure as ȧj , ḃj , but with-
out the variable Xµ−1. Splitting into coefficients of Xµ−2 in a similar way
as with Xµ−1, and assuming that we already have evaluations with respect
to X0, . . . , Xµ−3, we can use the same techniques as above twice to obtain
A0,j ,A1,j ,B0,j ,B1,j , associated Hadamard products A0,j ◦ B0,j ,A1,j ◦ B1,j ,
and d+

µ−2,d
−
µ−2 using 2 · 5nk multiplications.

By repeatedly splitting and applying this procedure µ times, we can use the
same techniques 4, then 8, up to 2µ−1 times. Summing up, the overall cost is
dominated by 5kn(2µ − 1) multiplications, which is O(knm) multiplications.

Altogether, the computational costs for the prover are O(kn log n + knm)
multiplications in F.

TPprod
TVprod qc #rounds t

O(kn log n + kmn) mult. O(mn + k) mult. 3 logm + 2 2µ+ 2n + 3
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A.4 Proof for the Double-Shift of Committed Matrices

The following double-shift argument is used in the construction of an argument
to show that the product of all entries in one matrix is equal to the product of
all entries in another matrix.

Consider the matrices A and B, which have mn rows, given respectively by
vectors ai,j ,bi,j ∈ Fk, with 0 ≤ i ≤ m−1, 1 ≤ j ≤ n. The top-right element of A
is a 1. Columns 2 up to k of A are equal to columns 1 up to k− 1 of B. Further,
we can obtain the final column of B from the first column of A by deleting the
first entry and appending c. In this case, A is said to be the shift of B.

a0,1

a1,1

...
am−1,n


1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

...
...

. . .
...

amn,1 amn,2 · · · amn,k


b0,1

b1,1

...
bm−1,n


a1,2 a1,3 · · · a1,k a2,1

a2,2 a2,3 · · · a2,k a3,1

...
...

. . .
...

...
amn,2 amn,3 · · · amn,k c


Here, we give an argument which allows a prover to convince a verifier in

zero-knowledge that for committed matrices A,B,C and D, we have A the shift
of B, C the shift of D, and B and D have the same bottom-right-most entry
bmn,k = dmn,k. This is referred to as the double-shift condition. The corresponding
relation is

Rshift =

{
(ppILC, u) = ((F, k) , ([A], [B], [C], [D])) :

A,B,C,D satisfy the double-shift condition

}
.

Parsing each matrix as a collection of row vectors as above, we now describe
a proof of knowledge of vectors satisfying the stated shift condition.

The double-shift condition can be encoded as many linear consistency con-
straints between the entries of A, B, C and D. For example, for the double shift
condition to hold, it is necessary that (a0,1)2 − (b0,1)1 = 0. We will use a ran-
dom challenge y to embed all linear consistency constraints into one, with each
individual constraint embedded with a different power of y.

Similarly to the Hadamard product proof, we use challenges X0, . . . , Xµ−1,
where m = 2µ, for compression, and reduce the number of vectors from 4mn to
4n. Vectors are compressed as follows

âj(x0, . . . , xµ−1) =

m−1∑
i=0

ai,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1

with similar expressions when a is replaced by b, c and d.
We then embed the compressed vectors into polynomials in X, again with

similar expressions for a replaced by b, c and d.

â(X,x0, . . . , xµ−1) =

n∑
j=1

âj(x0, . . . , xµ−1)Xj
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We embed all linear consistency constraints into vectors ŵa, ŵb, ŵc and ŵd

as follows. Set y = (1, y, . . . , yk−1). Set

ŵa(y,X, x0, . . . , xµ) = y

m−1,n∑
i=0,j=1

yk(i+(j−1)m)x−i00 . . . x
−iµ−1

µ−1 X−j

ŵb(y,X, x0, . . . , xµ) = −y ŵa(y,X, x0, . . . , xµ)

ŵc(y,X, x0, . . . , xµ) = −y2N ŵa(y−1, X, x0, . . . , xµ)

ŵd(y,X, x0, . . . , xµ) = y2N−1ŵa(y−1, X, x0, . . . , xµ)

To explain our choice of linear consistency constraint vectors, consider com-
puting the scalar product of â(y,X, x0, . . . , xµ) and ŵa(y,X, x0, . . . , xµ). Fo-
cussing on the constant term in X,x0, . . . , xµ, we see that the only contributions

come from perfect cancellation of a monomial xi00 x
i1
1 . . . x

iµ−1

µ−1X
j in â with a cor-

responding monomial x−i00 . . . x
−iµ−1

µ−1 X−j in ŵa. In addition, each monomial in

ŵa is multiplied by a unique power of yk. Since ŵa also contains y as a factor,
the constant term of the expression is a sum of all elements of the matrix A,
each separated by a unique power of y. Substituting y−1 for y produces the el-
ements in the opposite order, and we can also multiply by powers of y to move
all elements of the matrix to different powers of y. It is then straightforward to
see that we can encode the double shift condition for A, B, C and D by using
these two tricks.

Careful calculation shows that

â · ŵa(y,X, x0, . . . , xµ−1) + b̂ · ŵb(y,X, x0, . . . , xµ−1)

+ĉ · ŵc(y,X, x0, . . . , xµ−1) + d̂ · ŵd(y,X, x0, . . . , xµ−1)

has constant term in X,x0, . . . , xµ equal to 1 − y2N if and only if A,B,C and
D satisfy the double-shift condition. This happens because when we take the
scalar products of the vectors of polynomials, all of the the linear consistency
constraints end up in the constant term in X, separated by different powers of
y. All other waste terms end up in other coefficients.

The verifier will check the following polynomial expression evaluated in x.

â · ŵa(X,x0, . . . , xµ−1)

+b̂ · ŵb(X,x0, . . . , xµ−1)

+ĉ · ŵc(X,x0, . . . , xµ−1)

+d̂ · ŵd(X,x0, . . . , xµ−1) = 1− y2N +

µ−1∑
t=0

(f+
t xt + f−t x

−1
t ) +

n−1∑
r=1−n,r 6=0

grX
r
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In this expression, the values f+
j , f

−
j can be seen as compression factors to

make up for the lossy compression, and the gr are coefficients containing waste
values.

As part of this protocol, the prover is required to send single values to ILC
rather than vectors, but this is easily incorporated into the model by padding,
and has no impact on the asymptotic efficiency.

Note that the polynomials chosen above leak information about the wire
values, so we must also incorporate some random blinders â0, b̂0, ĉ0 and d̂0 into
the real protocol to achieve zero-knowledge.

Formal Description. Next, we provide a formal description of the proof of
knowledge of committed matrices satisfying the double-shift relation Rshift.

Proof:

Instance: The prover has already sent [ai,j , bi,j , ci,j ,di,j ]
m−1,n
i=0,j=1 to the ILC chan-

nel.

Pshift → ILC: The prover randomly selects â0, b̂0, ĉ0, d̂0 ← Fk.

The prover sends â0, b̂0, ĉ0 and d̂0 to ILC.

ILC← Vshift : Verifier sends y ← F× to ILC.

Pshift → ILC: The prover computes the following polynomial with vector coeffi-
cients in the variables X0, . . . , Xµ−1, where m = 2µ, and similar polynomials
with a replaced by b, c and d. Here, i0, . . . , iµ−1 represent the digits of the
binary expansion of i.

âj(X0, . . . , Xµ−1) =

m−1∑
i=0

ai,jX
i0
0 X

i1
1 . . . X

iµ−1

µ−1

The prover computes the following polynomials with vector coefficients in
the variable X, and similarly for b, c and d.

â(X,X0, . . . , Xµ−1) = â0 +

n∑
j=1

âj(X0, . . . , Xµ−1)Xj

ŵa(y,X, x0, . . . , xµ) = y

m−1,n∑
i=0,j=1

yk(i+(j−1)m)x−i00 . . . x
−iµ−1

µ−1 X−j
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The prover finally takes the scalar product of the previous vectors of poly-
nomials

â(X,X0, . . . , Xµ−1) · ŵa(X,X0, . . . , Xµ−1)

+b̂(X,X0, . . . , Xµ−1) · ŵb(X,X0, . . . , Xµ−1)

+ĉ(X,X0, . . . , Xµ−1) · ŵc(X,X0, . . . , Xµ−1)

+d̂(X,X0, . . . , Xµ−1) · ŵd(X,X0, . . . , Xµ−1) = 1− y2N + f+
0 X0 + f−0 X

−1
0

+ f+
1 (X0)X1 + f−1 (X0)X−1

1

...

+ f+
µ−1(X0, . . . , Xµ−2)Xµ−1

+ f−µ−1(X0, . . . , Xµ−2)X−1
µ−1

+

n−1∑
r=−n,r 6=0

gr(X0, . . . , Xµ−1)Xr

The prover sends f+
0 , f

−
0 to ILC.

ILC← Vshift : The verifier sends x0 ← F× to ILC.

Pshift → ILC: The prover sends f+
1 = f+

1 (x0), f−1 = f−1 (x0) to ILC.

For t = 1 to µ− 2:

– ILC← Vshift : The verifier sends xt ← F× to ILC

– Pshift→ ILC: The prover sends f+
t+1 = f+

t+1(x0, . . . , xt), f
−
t+1 = f−t+1(x0, . . . , xt)

to ILC.

ILC← Vshift : The verifier sends xµ−1 ← F× to ILC.

Pshift → ILC: The prover computes gr = gr(x0, . . . , xµ−1) for −n ≤ r ≤ n −
1, r 6= 0.
The prover sends {gr}n−1

r=−n,r 6=0 to ILC.

Verification: The verifier selects x ← F× uniformly at random. The verifier
queries the ILC channel to get

â = â0 +

m−1,n∑
i=0,j=1

ai,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
j

and similarly for b, c and d. The verifier also queries the ILC channel to get

ê =

µ−1∑
t=0

(
f+
t xt + f−t x

−1
t

)
+

n−1∑
r=−n,r 6=0

grx
r
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The verifier then checks whether the following equation holds and in that
case accepts.

â · ŵa(x, x0, . . . , xµ−1)

+b̂ · ŵb(x, x0, . . . , xµ−1)

+ĉ · ŵc(x, x0, . . . , xµ−1)

+d̂ · ŵd(x, x0, . . . , xµ−1)
?
= 1− y2N + ê

Security Analysis.

Theorem 9. (KILC,Pshift,Vshift) is a proof system for the relation Rshift in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by careful inspection of the protocol and
considering the various polynomial expressions computed by the prover.

Next, we show that the proof has statistical knowledge soundness with straight-
line extraction. This is because the knowledge extractor already has access to the
committed matrices [A], [B], [C] and [D], having seen all messages sent between
the prover and the ILC. It remains to show that for any deterministic malicious
prover P∗shift, if the committed vectors are not a valid witness for Rshift, then
there is negligible probability of accept. Recall that verifier queries to get the
right-hand side of the following equations.

â = â0 +

m−1,n∑
i=0,j=1

ai,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
j

b̂ = b̂0 +

m−1,n∑
i=0,j=1

bi,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
j

ĉ = ĉ0 +

m−1,n∑
i=0,j=1

ci,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
j

d̂ = d̂0 +

m−1,n∑
i=0,j=1

di,jx
i0
0 x

i1
1 . . . x

iµ−1

µ−1 x
j



46

â · ŵa(x, x0, . . . , xµ−1)

+b̂ · ŵb(x, x0, . . . , xµ−1)

+ĉ · ŵc(x, x0, . . . , xµ−1)

+d̂ · ŵd(x, x0, . . . , xµ−1) = 1− y2N +

µ−1∑
t=1

(
f+
t xt + f−t x

−1
t

)
+

n−1∑
r=−n,r 6=0

grx
r.

Now, substitute in the expressions for â, b̂, ĉ and d̂ into the left-hand side of the
final equality. The verifier only accepts if the last equation holds. By assumption,
P∗shift is deterministic, and we know when it made its commitments. Hence,

â0, . . . d̂0 are constants, f+
0 , f

−
0 are functions of y, and f+

1 , f
−
1 are functions of

y and x0, . . . , , xµ−1, and the gr are functions of y, x0, . . . , xµ−1. We can now
apply Lemma 1. Let A denote the concatenation of all the a vectors, indexed
from 0 so that Al−1+k(i+(j−1)m) = (ai,j)l, and similarly for b, c and d. Suppose
the committed vectors ai,j , bi,j , ci,j ,di,j do not satisfy the double-shift relation.
This can happen in five ways:

1. A0 6= 1
2. Ai 6= Bi−1 for some i ∈ [N − 1]
3. BN−1 6= DN−1

4. Ci 6= Di−1 for some i ∈ [N − 1]
5. C0 6= 1

Consider the coefficients of the powers of y in the equation obtained when sub-
stituting the expressions for â, b̂, ĉ and d̂ into the left-hand side of the above
equation. The constant is A0 on the left hand side and 1 on the right-hand side.
Hence, in the first of the five cases, the constant term would be different and
we have the event F . For i from 1 to N − 1, we see that the coefficient of yi is
Ai −Bi−1 on the left-hand side and 0 on the right-hand side, so in the second
case, we will also have event F . The coefficient of yN is DN−1 −BN−1 on the
left-hand side and 0 on the right-hand side, so the third case also implies F .
The coefficients of yN+1, yN+2, . . . , y2N show that the fourth and fifth cases also
imply F . So if the input does not satisfy the double-shift relation, we have event
F . Now Lemma 1 implies that there is negligible probability that the equation
will be satisfied, and hence negligible probability that verifier will accept.

Finally, we show that the proof is honest-verifier zero-knowledge. We describe
how to simulate the verifier’s view efficiently, given values y, x0, . . . , xµ−1, x ←
F× for the random challenges used in the protocol. In an honest transcript, â0 is
chosen uniformly at random and added to something independent of â0 to obtain
â. Hence â is uniformly distributed and can easily be simulated. Similarly for
b, c and d. The final value to simulate is ê, but for an accepting transcript this
is uniquely determined and easy to compute given â, b̂, ĉ and d̂. Therefore, we
can simulate the transcript and the proof system has special honest verifier zero
knowledge. ut
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Efficiency. The verifier has a query complexity of 5 and sends µ + 1 field
elements to the prover. The prover commits to a total of 2µ+ 2n + 3 vectors in
Fk.

Most of the terms in this proof have a similar structure to those in the
Hadamard product proof. The prover must on compute more compressed vec-
tors than before as part of the double-shift proof, but this does not change the
asymptotic costs of the protocol. The major differences are that scalar products
are computed instead of Hadamard products, and that both prover and verifier
must compute ŵa(y, x, x0, . . . , xµ−1), and similarly for b, c and d, in terms of the
random challenges. We have that y = (1, y, . . . , yk−1) and

ŵa(y, x, x0, . . . , xµ) = y

m−1,n∑
i=0,j=1

yk(i+(j−1)m)x−i00 . . . x
−iµ−1

µ−1 x−j

This can be done using O(mn + k) multiplications in F, since y requires O(k)
multiplications to compute, and the sum requires O(mn). Aside from that, the
dominant costs of the other parts of the protocol are the same, resulting in a
cost of O(kn log n + kmn) multiplications in F for the prover, and O(mn + k)
multiplications in F for the verifier.

TPshift
TVshift qc #rounds t

O(kn log n + kmn) mult. O(mn + k) mult. 5 logm + 2 2µ+ 2n + 3

A.5 Proof for the Same-Product of Matrices

Now that we have an argument for the double-shift condition, and a Hadamard-
product argument, it is easy to construct an argument which shows that the
product of all entries in a matrix A is the same of the product of all entries of a
matrix B. The corresponding relation is

Rsame-prod =


(ppILC, u) = ((F, k) , ([A], [B])) :

A,B ∈ Fm×k ∧ A = (ai,j) ∧ B = (bi,j)
∧

∏
i,j ai,j =

∏
i,j bi,j

 .

This is achieved by computing the partial products of entries of the matrix
A, beginning with 1, and storing them in a matrix A1 with the same dimensions
as A. The partial products, ending with the product of all elements of A, are
stored in another matrix A2, and similarly for B,B1, B2. Now, A2 = A◦A1, and
B2 = B ◦ B1 by design. Note that the product of all entries in A is the same
as the product of the entries in B if and only if A1, A2, B1 and B2 satisfy the
double shift condition. This gives rise to the Same-Product argument shown in
Fig. 11. An example follows.
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A =

(
a1,1 a1,2

a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
,

A1 =

(
1 a1,1

a1,1a1,2 a1,1a1,2a2,1

)
, B1 =

(
1 b1,1

b1,1b1,2 b1,1b1,2b2,1

)
,

A2 =

(
a1,1 a1,1a1,2

a1,1a1,2a2,1 a1,1a1,2a2,1a2,2

)
, B2 =

(
b1,1 b1,1b1,2

b1,1b1,2b2,1 b1,1b1,2b2,1b2,2

)
,

Psame-prod(ppILC, ([A], [B]))

– Commit to matrices A1, A2, B1, B2,
i.e. the partial products of A,B

– Run Pprod(ppILC, ([A], [A1], [A2]))
– Run Pprod(ppILC, ([B], [B1], [B2]))
– Run Pshift(ppILC, ([A1], [A2], [B1], [B2])

Vsame-prod(ppILC, ([A], [B]))

– Run Vprod(ppILC, ([A], [A1], [A2])
– Run Vprod(ppILC, ([B], [B1], [B2])
– Run Vshift(ppILC, ([A1], [A2], [B1], [B2])
– Return 1 if all arguments accept,

Return 0 otherwise

Fig. 11: Same-Product Argument for two committed matrices.

Theorem 10. (KILC,Psame-prod,Vsame-prod) is a proof system for the relation
Rsame-prod in the ILC model with perfect completeness, statistical knowledge sound-
ness with straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.
For statistical knowledge soundness with straight-line extraction, let matrices

A and B be given. If there exists A1, A2, B1, B2 such that ((F, k), (A,A1, A2)) ∈
Rprod, ((F, k), (B,B1, B2)) ∈ Rprod and ((F, k), (A1, A2, B1, B2)) ∈ Rshift then
((F, k), (A,B)) ∈ Rsame-prod. So by the soundness property of the underlying
protocols, if ((F, k), (A,B)) 6∈ Rsame-prod, one of the sub-protocol will have neg-
ligible probability of accept. Since the extractor can read the committed values,
we have statistical knowledge soundness with straight-line extractions.

To see we have perfect special honest verifier zero-knowledge, simulate that
the verifier receives commitments to two matrices in Fm×k, commit to random
matrices A1, A2, B1 and B2 in in Fm×k and run the perfect special honest verifier
zero-knowledge simulators on the product and double-shift arguments. ut

Efficiency. The same-product argument involves running two product argu-
ments and one double-shift argument. Asymptotically, these two sub-protocols
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have the same communication costs. Therefore, the cost of the same-product
argument is asymptotically the same.

The verifier has query complexity qc = 11 and the total number of committed
vectors is O(mn).

The protocol has computational costs of O(kn log n + kmn) multiplications
in F for the prover, and O(mn + k) multiplications in F for the verifier.

TPsame-prod
TVsame-prod

qc #rounds t
O(kn log n + kmn) mult. O(mn + k) mult. 11 logm + 2 O(mn)

A.6 Proof for Known Permutation of Matrices

We will now give a known permutation proof for matrices. We deviate from
[Gro09] here, since Groth’s known permutation argument relies on computing
powers of a challenge, which would cause the verifier to use a linear number of
multiplications, where we get a verifier that uses a linear number of additions.
Suppose the prover has committed to the rows of two matrices A,B ∈ Fm×k,
which we will write with square brackets and let the instance contain a permu-
tation π ∈ Σ[m]×[k], i.e. u = (π, [A], [B]). Then the claim is that the committed
matrices satisfy B = Aπ, where the notation Aπ means the matrix with entries
aπi,j = aπ(i,j). The corresponding relation is

Rperm =

{
(ppILC, u) = ((F, k) , (π, [A], [B])) :

A,B ∈ Fm×k ∧ π ∈ Σ[m]×[k] and A = Bπ

}
.

Given a permutation π ∈ Σ[m]×[k], implicitly using an equivalence (i, j) ↔
(i− 1)m+ j, we define matrices

V =


1 2 · · · k

k + 1 k + 2 · · · 2k
. . .

· · · mk

 V π =


π(1) π(2) · · · π(k)

π(k + 1) π(k + 2) · · · π(2k)
. . .

· · · π(mk)


Assuming integers in [mk] are mapped injectively into F we can think of these
matrices as belonging to Fm×k. Let us also define J ∈ Fm×k to be the matrix

that has 1 in all entries, i.e., J =

1 1
. . .

1 1

 .

We give the permutation argument for Rperm in Fig. 12. The idea behind the
construction is to let the verifier pick random challenges x, y and let the prover
commit to A+yV −xJ and B+yV π−xJ . Notice that if B = Aπ then B+yV π

contains a permutation of the entries in A+ yV , however, if B 6= Aπ then with
overwhelming probability over y there will be entries in B + yV π that do not
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appear anywhere in A+ yV . The prover will now convince the verifier that the
product of the entries in A + yV − xJ is equal to the product of the entries in
B + yV π − xJ . What happens if the prover is trying to cheat and B 6= Aπ?
Writing out the products of entries, we then get that to cheat the prover must
have ∏

i,j

(ai,j + yvi,j − x) =
∏
i,j

(bi,j + yπ(vi,j)− x).

By the Schwartz-Zippel lemma this is unlikely to hold over the random choice
of x unless indeed B + yV π contains a permutation of the entries in A+ yV .

Pperm(ppILC, (π, [A], [B])

– Get challenges x, y ∈ F from ILC
– Let U = yV − xJ and Uπ = yV π − xJ
– Let A′ = A+ yV − xJ and
B′ = B + yV π − xJ

– Commit to the rows in U,Uπ, A′, B′

– Run Peq(ppILC, (U, [U ]))
– Run Peq(ppILC, (U

π, [Uπ]))
– Run Psum(ppILC, ([A], [U ], [A′]))
– Run Psum(ppILC, ([B], [Uπ], [B′]))
– Run Psame-prod(ppILC, ([A

′], [B′]))

VILC(ppILC, (π, [A], [B]))

– Pick x, y ← F and send them to Pperm

– Compute U = yV − xJ and
Uπ = yV π − xJ

– Run Veq(ppILC, (U, [U ]))
– Run Veq(ppILC, (U

π, [Uπ]))
– Run Vsum(ppILC, ([A], [U ], [A′])
– Run Vsum(ppILC, ([B], [Uπ], [B′])
– Run Vsame-prod(ppILC, ([A

′], [B′]))
– Return 1 if all arguments accept,

Return 0 otherwise

Fig. 12: Known permutation argument for two committed matrices.

Theorem 11. (KILC,Pperm,Vperm) is a proof system for the relation Rperm in
the ILC model with perfect completeness, statistical knowledge soundness with
straight-line extraction, and perfect special honest verifier zero-knowledge.

Proof. Perfect completeness follows by inspection.
For statistical soundness, note that by the knowledge soundness of the equal-

ity and sum arguments we know the prover has indeed committed correctly to
A+ yV −xJ and B+ yV π−xJ and can extract these committed values. By the
knowledge soundness of the same product argument, we get

∏
i,j(ai,j + yvi,j −

x) =
∏
i,j(bi,j+yπ(vi,j)−x). The Schwartz-Zippel Lemma tells us that if A+yV

and B+ yV π have different entries, then the probability over the random choice
of x ← F of this equality to hold is at most mk

|F| , which is negligible. If B is not

equal to Aπ then we have with probability mk
|F| over the choice of y ← F that one

of the entries in B + yV π does not appear as an entry in A+ yV . Finally, note
that each sub-protocol has straight-line extraction.

To see we have perfect special honest verifier zero-knowledge, simulate that
the verifier receives commitments to four matrices in Fm×k and run the perfect
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special honest verifier zero-knowledge simulators on the equality, sum and same
product arguments. ut

Efficiency. The efficiency of the proof system is given in the table below, where
m, n are chosen to get good performance in the sub-proofs on the condition m =
mn. The computational cost for the verifier includes O(mn + k) multiplications
for the verifier, but for sufficiently large parameters this is dwarfed by O(kmn) =
O(mk) additions used in the equivalence sub-proofs.

TPperm TVperm qc #rounds t
O(kn log n + kmn) mult. O(kmn) add. 15 logm + 2 O(mn)

A.7 Efficiency of the Proof for Arithmetic Circuit Satisfiability

PILC(ppILC, u, w)

– Parse u = (mA,mM , π, {vi}i∈S)
– Parse w = ({vi}i∈S̄)
– Send (commit, {vi}mi=1) to the ILC
– The vectors define V ∈ Fm×k and sub-

matrices A,B,C,D,E, F as described earlier
– Let U = (vi)i∈S
– Run Peq(ppILC, ({vi}i∈S , [U ]))
– Run Psum(ppILC, ([A], [B], [C]))
– Run Pprod(ppILC, ([D], [E], [F ]))
– Run Pperm(ppILC, (π, [V ], [V ]))

VILC(ppILC, u)

– Parse u = (mA,mM , π, {ui}i∈S)
– Run Veq(ppILC, ({ui}i∈S , [U ]))
– Run Vsum(ppILC, ([A], [B], [C]))
– Run Vprod(ppILC, ([D], [E], [F ]))
– Run Vperm(ppILC, (π, [V ], [V ]))
– Return 1 if all the proofs accept

Return 0 otherwise

Fig. 3: Arithmetic circuit satisfiability proof in the ILC model.

By observing the efficiency of all sub-protocols used in the main protocol,
shown in Figure 3 and repeated above for convenience, we get the efficiency
table below. The computational cost is dominated by the permutation argument,
where the matrices have higher dimensions, so we choose m, n such that m =
3mA+3mM = mn. The total number of gates is N = kmn

3 . Setting m = O(logN)

and k ≈
√
N we get the asymptotic complexities indicated in the table.

A.8 Amortized Sub-linear Verification Time

We have given proof systems for arbitrary adaptively chosen arithmetic circuits
with N gates, where the verifier’s cost is O(N) additions. Field additions can
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TPILC
TVILC qc #rounds t

O(kn log n + kmn) mult. O(kmn) add. 20 logm + 2 O(mn)

O(N) multiplications O(N) additions 20 O(log logN) O(
√
N)

be implemented in O( log |F|
W ) operations on a RAM machine with W -bit words,

so the computational cost is proportional to the word-length of the circuit de-
scription. The verifier complexity is therefore optimal up to a constant factor,

since it will take Ω(N log |F|
W ) operations just to read the entire instance unless it

is represented in more compact form.
However, if we consider a non-adaptive setting where the same circuit wiring

is used many times, then it is possible to amortize the verifier’s computational
cost. The place where the verifier’s pays a linear computational cost is when
encoding the wiring of the circuit into matrices V and V π in the known per-
mutation argument, and when testing the correct constants {vi}i∈S have been
committed to using an equality argument. But if the wiring is fixed, we do not
have to re-compute the encoding, and if the instance is small, i.e., |S| is small,
then these costs diminish. In this special setting, which is commonly used in the
SNARK world, we get verifier computation that is sub-linear in the size of the
arithmetic circuit.
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B Proof of Claims in Section 4

Claim. Let e∗0, . . . e
∗
t ∈ Fν . If Err occurs, then for uniformly chosen γ ∈ Ft ,

there is probability at most 1
|F| that hd(C̃, e∗0 + γE∗) < hdmin

6 .

Proof. Assume Err, that is, there exist γ∗ ∈ Ft with hd
(
C̃,γ∗E∗

)
≥ hdmin

3 . We

will show that for any r ∈ F× we have

hd
(
C̃, e∗0 + γE∗

)
+ hd

(
C̃, e∗0 + (γ + rγ∗)E∗

)
≥ hd

(
C̃,γ∗E∗

)
≥ hdmin

3
. (4)

This implies that at most one of e∗0 +γE∗ and e∗0 +(γ+rγ∗)E∗ can have distance
less than hdmin

6 to C̃. That is, for at most one γ ∈ Ft in each equivalence class

in Ft/γ∗F can e∗0 + γE∗ have distance less than hdmin

6 to C̃. Since each such
equivalence class contains |F| elements, there is probability at most 1

|F| that a

random γ ∈ Ft satisfies hd
(
C̃, e∗0 + γE∗

)
< hdmin

6 .

To finish the proof, we need to prove (4). Write e∗0 +γE∗ = c1 + v1 and e∗0 +

(γ + rγ∗)E∗ = c2 + v2 with c1, c2 ∈ C̃ and wt(v1) = hd
(
C̃, e∗0 + γE∗

)
,wt(v2) =

hd
(
C̃, e∗0 + (γ + rγ∗)E∗

)
. Now

γ∗E∗ =(e∗0 + (γ + rγ∗)E∗ − (e∗0 + γE∗))r−1

=(c2 + v2 − c1 − v1)r−1

=(c2 − c1)r−1 + (v2 − v1)r−1

Here (c2 − c1)r−1 ∈ C̃ and (v2 − v1)r−1 has at most

wt(v1) + wt(v2) = hd
(
C̃, e∗0 + γE∗

)
+ hd

(
C̃, e∗0 + (γ + rγ∗)E∗

)
non-zero elements. This proves inequality (4), and hence the claim. ut

Claim. Assume that ¬Err and let V and R be defined as above. Then for any
q ∈ Ft there exists a r(q) with hd(ẼC(qV, r(q)), qE

∗) < hdmin

3 .
In particular, for any V ∗(Q) 6= QV , and any R′∗ we have

hd2

(
ẼC
(
V ∗(Q), R

∗
(Q)

)
, QE∗

)
≥ 2

hdmin

3
.

Proof. Assume that ¬Err, that is for all q ∈ Ft we have hd(C̃, qE∗) < hdmin

3 .

Informally, we need to strengthen this by showing that the elements in C̃ that
are close to each qE∗, are themselves linear in q.

We have chosen vτ ’s and rτ ’s such that hd(ẼC(vτ , rτ ), e∗τ ) < hdmin

3 , and V
is the matrix where the τth row is vτ . We will show by induction on number of
non-zero elements wt(q) in q that there exists r(q) with hd(ẼC(qV, r(q)), qE

∗) <
hdmin

3 .
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This is trivially true for wt(q) = 0. For wt(q) = 1 it follows from our choice of
vτ . Assume for induction that it is true for all q with wt(q) ≤ κ and consider a q
with wt(q) ≤ 2κ. We can now write q = q′+q′′ where wt(q′),wt(q′′) ≤ κ. By the
induction hypothesis, there exists rq such that hd(ẼC(q

′V, r(q′)), q
′E∗) < hdmin

3
and similar for q′′. Since q = q′ + q′′ this implies

hd
(
ẼC
(
qV, r(q′) + r(q′′)

)
, qE∗

)
= hd

(
ẼC
(
(q′ + q′′)V, r(q′) + r(q′′)

)
, (q′ + q′′)E∗

)
≤ hd

(
ẼC
(
q′V, r(q′)

)
, q′E∗

)
+ hd

(
ẼC
(
q′′V, r(q′′)

)
, q′′E∗

)
< 2

hdmin

3
.

Since we assume ¬Err, we know that there exist some v(q) and r(q) such that

hd(ẼC(v(q), r(q)), qE
∗) < hdmin

3 . Now, by the triangle inequality for Hamming
distance, this implies

hd
(
ẼC
(
v(q), r(q)

)
, ẼC

(
qV, r(q′) + r(q′′)

))
≤ hd

(
ẼC
(
v(q), r(q)

)
, qE∗

)
+ hd

(
qE∗, ẼC

(
qV, r(q′) + r(q′′)

))
<

hdmin

3
+ 2

hdmin

3
= hdmin

Since hdmin is the minimum distance of ẼC , we must have v(q) = qV , and hence

hd(ẼC(qV, r(q)), qE
∗) < hdmin

3 . This finishes the induction argument.
The triangle inequality for Hamming distance shows that for any (v∗(q), r

∗
(q))

with v∗(q) 6= qV we have hd(ẼC(v
∗
(q), r

∗
(q)), qE

∗) ≥ 2 hdmin

3 . Now for any V ∗(Q) 6=
QV there is a row τ where the two matrices differ. Let q be the τth row of Q.
Then hd(ẼC(v

∗
(q), r

∗
(q)), qE

∗) ≥ 2 hdmin

3 tells us that the τth row of ẼC(V
∗
(Q), R

∗
(Q))

and τth row ofQE∗ differs in at least 2 hdmin

3 positions. In particular, hd2

(
ẼC
(
V ∗(Q), R

∗
(Q)

)
, QE∗

)
≥

2 hdmin

3 . ut


