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ABSTRACT

Objectives: Identifying all published reports of randomized controlled trials (RCTs) is an important aim, but it requires

extensive manual effort to separate RCTs from non-RCTs, even using current machine learning (ML) approaches. We

aimed to make this process more efficient via a hybrid approach using both crowdsourcing and ML.

Methods: We trained a classifier to discriminate between citations that describe RCTs and those that do not. We

then adopted a simple strategy of automatically excluding citations deemed very unlikely to be RCTs by the

classifier and deferring to crowdworkers otherwise.

Results: Combining ML and crowdsourcing provides a highly sensitive RCT identification strategy (our esti-

mates suggest 95%–99% recall) with substantially less effort (we observed a reduction of around 60%–80%)

than relying on manual screening alone.

Conclusions: Hybrid crowd-ML strategies warrant further exploration for biomedical curation/annotation tasks.
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BACKGROUND AND SIGNIFICANCE

Randomized controlled trials (RCTs) remain the best tool for assessing

the efficacy of treatments. Systematic reviews are rigorous syntheses of

all RCTs addressing a particular clinical question, and are considered

the most reliable form of evidence.1 However, finding RCTs remains

surprisingly difficult. Controlled vocabularies of major research data-

bases often lack the concept “RCT” or apply it inconsistently.2–4 Con-

sequently, those who undertake systematic reviews often manually

read (“screen”) thousands of irrelevant records to find a small set of

relevant RCTs. This is partly why systematic reviews are time-

consuming and expensive to conduct, a problem exacerbated by the

rapid growth of the published evidence base.5

To increase the efficiency of reviewing, Cochrane (a global network

of health science researchers) has invested effort into systematically

identify RCTs and is compiling a comprehensive database of controlled

trials. Part of this effort is the Embase screening project, now part of

“Cochrane Crowd” (http://crowd.cochrane.org/). This project enlists

“citizen scientists” to screen records identified from a high recall search

of Embase for reports of randomized or quasi-randomized trials. To

date, this volunteer crowd has identified >30 000 trial reports; these

have in turn been indexed in Cochrane’s database.
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Cochrane crowd volunteers undergo mandatory training, which

involves screening 20 practice records (feedback is provided). In

practice, an agreement protocol ensures that all records are assessed

multiple times. These safeguards increase the already substantial

manual effort required of crowd workers. The prospect of automat-

ing the process of RCT screening via machine learning (ML) is there-

fore appealing. ML has been used extensively to reduce the

workload in screening for individual systematic reviews,6,7 but hy-

brid crowd-ML screening systems have not been explored in depth.

It is currently unclear whether ML systems can achieve sufficient re-

call to be used as a sole means of RCT identification. Cohen et al.2 re-

port high areas under the curve for this task, but given the low

prevalence of RCTs, any particular threshold used for classification

could still yield a substantial number of missed trials or produce an

abundance of false positives. An alternative strategy is to use ML to re-

duce workload by screening out “obvious” non-RCTs and deferring to

humans for the rest. In this brief communication, we describe a simple

hybrid ML-crowdsourcing approach to facilitate exhaustive RCT iden-

tification. We report results from both retrospective (simulated) and

prospective experiments: this system is currently in place. Our results

show that considerable workload reduction can be achieved via semi-

automation without substantially sacrificing recall.

EXPERIMENTAL SETUP

Retrospective simulation
Data

Three categories of workers have contributed to the Embase screen-

ing project: novices, experts (individuals who screened>1000 ab-

stracts and realized at least 95% recall and specificity with respect

to a reference standard), and resolvers. Individuals in these catego-

ries are associated with different costs and screening accuracies (the

latter 2 types being more experienced and thus pricier, but more ac-

curate). We define 1 unit of cost as a single screening decision pro-

vided by a novice screener (we assume experts and resolvers are

twice and 4 times as expensive, respectively).

We used a dataset comprising 61 365 citations. Each of these

came attached with multiple screening decisions collected as part of

the Embase screening project in 2014–2015. In total, we had

131 070 individual assessments (�2.1 decisions per citation, on av-

erage). Most of these (97 512) were from expert screeners; 29 383

labels were from novices, and the remainder (4175) were from re-

solvers. We note that these data were collected toward the beginning

of the project and hence contained a higher proportion of “expert”

screeners than is currently the case.

To induce a “ground truth” label for each citation in the dataset,

we followed the conservative strategy validated by Cochrane, which

proceeds as follows. If only novices are involved, 3 consecutive con-

sistent judgments are required. If at least 1 screener is an expert,

then only 2 consecutive agreements are required. Any designation as

unsure sends an abstract to a resolver, as do any disagreements. In

these cases, the resolver’s label is taken as ground truth. After aggre-

gation, we had 2531 RCTs (positive instances) and 58 834 non-

RCTs (negative instances).

RCT classifiers

For our ML model (which classifies abstracts as reports of RCTs or

not), we used a linear kernel support vector machine induced over n-

gram representations of abstracts.8 We trained this model on a data-

set external to Embase; the model and dataset are described at

length elsewhere2 (we used the model variant that depends on cita-

tion information only, ie, no Medical Subject Heading terms). Note

that this model was trained on records published between 1987 and

2012, whereas the Embase dataset comprises records published be-

tween 2015 and 2016. Thus there can be no overlap between train-

ing and testing data here. This simplifies analysis, avoiding

evaluation of the model using the same data on which it was trained.

However, it may degrade classifier performance if the population of

studies in Embase differs from that in the original training set.

Simulation strategy

We aimed to evaluate the effects of a hybrid crowd-ML approach to

abstract screening on accuracy and annotator effort. We adopted a sim-

ple strategy concerning when to rely on the model and when to defer to

human expertise. We first predicted the probability of all abstracts be-

ing RCTs using the pretrained RCT classifier described above. Where

the model predicted with sufficiently high confidence that an abstract

was not an RCT (defined here as a predicted probability�0.1), we ex-

cluded it without manual review. The remaining articles (probabil-

ity>0.1) received a definitive classification via crowd manual review.

We then tallied the simulated number of crowd labels required (a

proxy for effort) using the usual process compared to the hybrid

crowd-ML approach. We calculated the effective labor reduction

and the resultant precision/recall using this hybrid approach, as

compared to the “ground truth” assessments currently in place. We

also explored varying the confidence threshold parameter.

We used number of labeling decisions as a proxy for cost, and

we treated a single novice label as a “unit” of cost. We assumed that

expert labels are twice as expensive (thus 1 expert label incurs 2 cost

units) and that resolver labels are 4 times as expensive.

Prospective evaluation
The strategy reported above is now being used prospectively for

RCT identification. We therefore provide a preliminary evaluation

of its performance in practice, by quantifying the labor savings and

estimating recall.

RESULTS

We first report the empirical performance of a simple and conserva-

tive heuristic strategy in which we simply trusted classifier exclusion

decisions for records that received a probability�0.1 of being an

RCT, and sending the remainder to the crowd for standard assess-

ment. To evaluate this, we used a set of approximately 158 000

Embase records screened by Cochrane Crowd. We held back 30%

of records and trained the classifier on the remaining approximately

111 000 records, subsequently scoring the other approximately

47 000 records with the induced classifier. The receiver operating

characteristic curve achieved on the held-out examples is shown in

the left-hand subplot in Figure 1. Note that this model is (1) trained

directly on the population of documents being screened by Cochrane

crowdworkers and (2) independent from the pretrained RCT classi-

fier used in our simulation experiments below.

Table 1 shows that 77.4% (36 709/47 445) of the records

screened by the crowd had a predicted probability of being an RCT

of<0.1. If we accept the classifier assessment in such cases (taking

no further action with these records), we would lose a small number

of RCTs while drastically reducing workload.
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Retrospective simulation results
The right-hand subplot in Figure 1 shows the receiver operating charac-

teristic curve of the pretrained classifier2 on the entire Embase set.

The cost incurred in practice using the manual approach was

241 100 units; under simulation, using the hybrid approach, it was

35 860 (a reduction of nearly 7-fold). We provide the total label

count breakdowns for the respective strategies in Table 2, together

with precision and recall.

The approach above used a single fixed confidence threshold,

t¼0.1, to decide when to trust the model to automatically exclude

abstracts and when to defer to humans. Adjusting t will trade recall

against labor. We simulated adjusting t, and report the results in

Figure 2. This shows the recall achieved vs the simulated total effort

expended using values of t ranging from 0.0 (completely manual,

since this means we never trust the model) to 0.5.

Prospective results
We conclude by providing a prospective assessment of the simple

hybrid strategy explored retrospectively above (ie, deferring to the

classifier when sufficiently confident). Starting from April 2016, we

began to withhold from screening citations that received a predicted

probability of being an RCT of�0.1. In total, 17 495 such citations

were identified and held aside (ie, not assigned to crowd workers).

Out of the remaining 4920 citations that received a predicted proba-

bility of>0.1, the crowd-labeling process described above identified

1563 as being reports of RCTs. Holding aside low-probability cita-

tions reduced the crowd workload by 78%.

To assess the performance of this hybrid strategy in practice, do-

main experts at Cochrane manually assessed the 17 495 citations

not routed to the crowd to identify any false negatives. In total, 32

of the 17 495 citations were deemed RCTs (false negatives), which

gives a specificity of 99.8% and an overall recall of 98%. Many of

these do not explicitly state that the trial was randomized, so this is

a conservative estimate.

In sum, when deployed prospectively, integrating ML into the

crowd workflow was found to prospectively reduce workload by

78%, while still identifying 98% of all RCTs.

Figure 1. Left: Receiver operating characteristic curve showing the performance of our RCT classifier, trained on a subset of the Embase dataset. Right: Receiver

operating characteristic curve showing the performance of our pretrained RCT classifier2 on the entire Embase dataset.

Table 1. Distribution of “ground truth” RCTs and non-RCTs within

ranges of classifier confidence (N gives the number of abstracts

that fall into each range)

Probability RCT Non-RCT N Cumulative

recall

Percent

“screened”

0.9 to 1.0 1511 210 1721 0.633 3.6

0.8 to< 0.9 269 242 511 0.746 4.7

0.7 to< 0.8 150 270 420 0.809 5.6

0.6 to< 0.7 110 323 433 0.855 6.5

0.5 to< 0.6 92 396 488 0.893 7.5

0.4 to< 0.5 71 573 644 0.923 8.9

0.3 to< 0.4 63 912 975 0.950 10.9

0.2 to< 0.3 55 1635 1690 0.972 14.5

0.1 to< 0.2 47 3807 3854 0.992 22.6

<0.1 19 36 690 36 709 1 100

Table 2. First 3 columns: number of labels acquired from each type

of labeler using the manual, hybrid, and totally automated

approaches (with 2 different thresholds shown). Second 2 col-

umns: precision and recall with respect to identifying RCTs. The

manual measures have asterisks; we assume these are “ground

truth” by construction (see text for discussion)

Novice Expert Resolver Precision Recall

Manual 29,376 97,512 1,895 1.0* 1.0*

Hybrid 3,884 12,218 4,175 0.99 0.96

Classifier-only

(threshold¼ 0.5)

0 0 0 0.99 0.71

Classifier only

(threshold¼ 0.1)

0 0 0 0.27 0.96

Figure 2. A scatterplot of recall vs (simulated) total expended effort for vary-

ing values of the confidence threshold t. As noted in the text, effort is mod-

eled as unit costs, where 1 novice screening decision¼ 1 unit, 1 expert

decision¼2 units, and 1 resolver decision¼4 units.
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DISCUSSION AND LIMITATIONS

Our results support the use of a hybrid ML-crowd approach for the

task of identifying reports of RCTs, and perhaps for supporting bio-

medical annotation tasks more generally. The simple hybrid strategy

we propose is currently in use by Cochrane and has resulted in a

more efficient workflow. Our prospective results suggest that this ef-

ficiency comes at a modest cost in recall.

Setting a confidence threshold t that codifies when to trust the

machine and when to defer to human expertise is an important prac-

tical consideration for our approach. From Figure 2, one can ob-

serve that thresholds greater than 0 substantially reduce labor, but

aggressive thresholding severely degrades recall.

The reported results are pessimistic with respect to the perfor-

mance of the hybrid strategy, because it is possible that the few

“false negatives” the hybrid strategy produced were in fact not false

negatives (and conversely, apparent “false positives” may have been

true positives). Even with this imperfect evaluation, we observe that

the hybrid approach achieved nearly perfect precision and above

95% recall. This is promising, considering the accompanying reduc-

tion in effort/cost. Relying on the classifier alone with thresh-

old¼0.1 resulted in a high recall (0.96) but low precision (0.27),

while setting the threshold to 0.5 increased precision but dramati-

cally reduced recall.

We note several limitations. First, considered against the likely

number of RCTs remaining to be located, even a 1%–2% drop in re-

call might still represent an unacceptably large loss, eg, assuming we

need to find another 500 000 RCTs, this level of recall might still

miss 500–1000 trials. However, it seems unlikely that the manual

process is infallible. Furthermore, database searching is not the only

way that reviewers identify studies for inclusion, and the time saved

in not needing to search major databases could be invested in other

tasks, eg, checking bibliographies and trial registries.

An additional limitation is that the hybrid strategy relies on sig-

nificantly more “resolvers” than does the current approach. How-

ever, our results suggest that this is worthwhile even when factoring

in the higher cost of resolver time. Recruiting additional resolvers

would be feasible, given the size of the Cochrane network. Finally,

the hybrid strategy we used here is naı̈ve; it entails simply trusting

the classifier when it is very confident that a given abstract is not an

RCT. More sophisticated strategies for assigning abstracts to work-

ers9,10 may bring further benefits, but may complicate deployment.

CONCLUSIONS

We have presented a simple, effective hybrid machine learning and

crowdsourcing approach to identifying reports of RCTs, in which

we defer to crowdworkers when the classifier is not sufficiently cer-

tain. We deployed this approach in practice and found that using

our hybrid approach reduced the number of manual screening deci-

sions needed by 78% while maintaining an estimated recall of 98%.

This work thus demonstrates the potential of hybrid crowd–

machine learning systems for scaling biomedical annotation tasks.
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