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Cardiac xenotransplantation (CXTx) is a promising solution to the chronic shortage of donor hearts. Recent advancements in
immune suppression have greatly improved the survival of heterotopic CXTx, now extended beyond 2 years, and life-supporting
kidney XTx. Advances in donor genetic modification (B4GALNT2 and CMAH mutations) with proven Gal-deficient donors
expressing human complement regulatory protein(s) have also accelerated, reducing donor pig organ antigenicity. These
advances can now be combined and tested in life-supporting orthotopic preclinical studies in nonhuman primates and
immunologically appropriate models confirming their efficacy and safety for a clinical CXTx program. Preclinical studies should
also allow for organ rejection to develop xenospecific assays and therapies to reverse rejection. The complexity of future clinical
CXTx presents a substantial and unique set of regulatory challenges which must be addressed to avoid delay; however,
dependent on these prospective life-supporting preclinical studies in NHPs, it appears that the scientific path forward is well
defined and the era of clinical CXTx is approaching.

1. Introduction

About 5.7 million Americans have heart failure, half of whom
will die within 5 years [1]. Organ transplantation is currently
the preferred solution for treatment of end-stage heart failure
but less than 3000 heart transplants have been performed
annually in the US in recent years. Circulatory assist devices
and total artificial hearts have been approved to support
patients in chronic heart failure [2, 3]. Thesemechanical solu-
tions are effective, at least in the short term,buthave significant
morbidity from thromboembolism, infection, gastrointestinal
bleeding, andreducedqualityof life [4].Regenerative solutions
for heart failure remain a nascent experimental technology.
Cardiac xenotransplantation (CXTx) is a promising viable
near-term solution to the shortage of hearts for clinical trans-
plantation. In recent years, there has been a remarkable
improvement in survival of heterotopic pig-to-nonhuman
primate (NHP) CXTx [5–8], encouraging early success in
orthotopic CXTx (oCXTx) [9–11] and advances in life-
supporting renal xenotransplantation (RXTx) [12, 13]. These

results validate the physiological compatibility of porcine
organs, at least in NHPs, and suggest that clinical CXTx may
soon be applicable if oCXTx can attain similar improvements
in survival as RXTx. In this review, we examine developments
in immune suppression, porcine donor genetics, preclinical
transplants, and infectious disease issues and discuss require-
ments for clinical CXTx.

To justify a clinical xenotransplantation (XTx) program, it
is necessary to demonstrate transplant efficacy in clinically
relevant animal models. The International Society of Heart
Lung Transplantation (ISHLT) has suggested that a prospec-
tively defined series of life-supporting cardiac xenotrans-
plants in NHPs, using predefined immune suppression, with
“60% survival at 3 months with a minimum of 10 animals
surviving for this period,” would be sufficient to consider
a clinical trial [14]. The recent survival achieved after
heterotopic CXTx (hCXTx), in excess of 2 years and
with a median survival of 298 days [8], suggests that this
goal may be attainable. While the ISHLT recommenda-
tion has become a de facto guideline for researchers in
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the field, the FDA, responsible for regulating XTx, has
not officially endorsed these specific criteria, making
early interactions with regulators essential to advance a
clinical study.

The most prominent variables which contribute to XTx
efficacy are likely to be immune suppression and donor
genetics, but recipient species [15], viral status [16–18], the
level of preexisting anti-pig antibody [13], prophylactic
antiviral and antibacterial therapy [19, 20], and postopera-
tive care [21] also significantly contribute to graft survival.
The relative contribution of immune suppression and donor
genetics is incompletely understood in a field undergoing
rapidly evolving experimental changes in both components.
Past reviews of the state-of-the art in XTx [22–24] and
recent publications [8, 25] are useful for gaining an appre-
ciation for the breadth of changes in XTx organ survival
over the last 20 years. Table 1, showing the longest reported
(and median) graft survival for various donor genetics
under four broadly defined immune suppression regimens,
summarizes these advances for CXTx. Not surprisingly, all
combinations of donor genetics and immune suppression
have not been reported, as perceived advances in donor
genetics were seldom tested with reduced or previous
immune suppression techniques.

2. Earlier Immune Suppression

Early hCXTx studies using Gal-positive (WT) donor hearts
focused on preventing hyperacute rejection and often used
immune suppression based largely on cyclophosphamide,
cyclosporine, and steroids (CCS) [26]. Maximal hCXTx
survival of 32 days was achieved in pig-to-cynomolgus
monkey transplants using soluble CR1 to block systemic
complement activation [27]. Comparable results were also
reported after pig-to-baboon hCXTx using cobra venom
factor (CVF) to consume complement [28]. CCS immune
suppression was also used in early hCXTx studies using
transgenic donors expressing human complement regula-
tory proteins (hCRPs). The longest reported survival was
99 days (median 26 days) using hDAF transgenic hearts
[29]. These results demonstrated that expression of hCRPs

was sufficient to abrogate the need for systemic comple-
ment inhibition, but was not sufficient to prevent an
induced antibody response and antibody-mediated rejec-
tion (AMR). When anti-Gal antibody was blocked
in vivo using a Gal polymer, more consistent graft sur-
vival, median 35 days, was reported in pig-to-cynomolgus
monkey hCXTx [30]. This study appears to be the first
to detect an induced non-Gal antibody associated with
xenograft rejection. These early CCS regimens were often
poorly tolerated due to the narrow therapeutic index
for cyclophosphamide.

An alternative immune suppression strategy based on
induction with ATG and Rituximab and using tacrolimus
and sirolimus maintenance immune suppression was used
in WT;hCRP, GGTA-1 α-galactosyltransferase-deficient pigs
(GTKO), and GTKO;hCRP transplants. The studies with
WT;hCRP donors involved the largest series of transplants
(n = 63) using a Gal polymer to test the effects of systemic
anticoagulation and immune suppression on graft survival
[31]. At moderate tacrolimus and sirolimus maintenance
levels, hCXTx graft survival of up to 109 days (median sur-
vival 20 days) was achieved, similar to earlier results using
CCS immune suppression. At higher levels of maintenance
immune suppression [32, 33],maximal survivalwas improved
(139 days) with more consistent and prolonged median
survival of 96 days. This was the first instance of median
cardiac xenograft survival in excess of 3 months. In these
WT;hCRP studies, anti-Gal-mediated rejection was mini-
mized and graft rejection was associated with non-Gal
antibody. Moreover, testing three distinct, tightly con-
trolled clinical anticoagulation therapies did not improve
graft survival or affect the histology of graft rejection, indi-
cating no strict requirement for, or benefit from, systemic
anticoagulation. Using GTKO or GTKO;hCRP donors with
moderate tacrolimus and sirolimus, immune suppression
achieved comparable survival to earlier WT;hCRP trans-
plants using Gal polymers, indicating that the adoption of
GTKO donors obviated the need for specific therapy to
control anti-Gal antibody and suggested that graft survival
was limited by the effects of non-Gal antibody [34]. Also,
the three-month median survival achieved in these hCXTx

Table 1: The longest (median) reported heterotopic cardiac xenograft survival as a function of donor genetics and immune suppression.

Donor
Earlier immune suppression Costimulation blockade

CsA/CyP/steroid ATG/CD20/tacrolimus/sirolimus
ATG/LoCD2b/CVF/
anti-CD154/MMF

ATG/anti-CD40,
CD20/CVF/MMF

WT
32§ (21 d) [27]
25‡ (12 d) [28]

n.r. n.r. n.r.

WT;hCRP
99Δ (26 d) [29]
78∗Δ (35 d) [30]

109∗#† (20 d) [31]
137∗#† (96 d) [32]

139∗ (27 d) [36] n.r.

GTKO n.r. 128† (22 d) [34] 179 (78 d) [37] n.r.

GTKO;hCRP n.r. 52∇† (28 d) [34] 8¶ (8 d) 236†¶ (71 d) [5] 149¶ (84 d) [25]

GTKO;hCRP;TBM n.r. n.r. n.r. 945¶ (298 d) [8]

n.r.: none reported. §Soluble CR1 to block complement activation. ‡Cobra venom factor at 0.25–0.5 mg/kg prior to surgery and 0.1–0.5 mg/kg every 1–4 days
thereafter. ∗Included use of alpha-Gal polymer GAS914 [127] or Nex1285 [128]. †Immune suppression included anti-CD20 (Rituximab) B-cell depletion.
ΔhDAF (human CD55) minigene [129]. ∇A murine H-2Kb regulated human CD55 transgene [77]. #hCD46 transgene based on 60 kb human genomic
CD46 DNA [130]. ¶hCD46 transgene based on a human CD46 minigene [131].
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studies made the conversion to oCXTx the appropriate
model of choice moving forward.

3. Costimulation Blockade
Immune Suppression

The more recent form of immune suppression utilized in
hCXTx is costimulation blockade, primarily directed at the
CD154 (CD40 ligand) and CD40 secondary signaling path-
way, to block Th2 cell help for B cell activation. Antibody
to CD154, originally shown to suppress allograft rejection
[35], has been used extensively in pig-to-NHP hCXTx with
donor organs ranging from WT;hCRP to GTKO;hCRP
donors (Table 1). This immune suppression regimen was
complex, including lymphocyte depletion with ATG and
LoCD2b antibody, complement inhibition with CVF and ste-
roids, and chronic postoperative immune suppression with
mycophenolate mofetil and anti-CD154 antibody (5c8), and
usually supplemented with a range of anticoagulant thera-
pies. Early versions of this protocol also included pretrans-
plant thymic irradiation [36] and used Gal polymers. With
WT;hCRP donor hearts, maximal hCXTx organ survival
was 139 days with a median of 23 days. More consistent
organ survival was achieved (median 78 days) by transplan-
tation of GTKO donor hearts into recipient baboons with
little or no detected preformed non-Gal antibody [37]. In
both instances, there was no apparent induction of circulat-
ing Gal or non-Gal antibody although the histology of the
graft at explant, showing vascular antibody and complement
deposition, was consistent with AMR. Importantly, anti-
CD154 costimulation blocking regimens often reported
complications with thrombocytopenia, consumptive coagu-
lopathy (CC), and systemic inflammation which contributed
to recipient loss [38, 39]. With GTKO;CD46 donor hearts,
236-day maximal graft survival (median survival 71 days)
was achieved using a modified anti-CD154 protocol which
included Rituximab induction to deplete B-cells [5]. Inten-
sive postoperative monitoring in this study also likely
contributed to prolonging graft survival. Explanted grafts
showed evidence of ongoing humoral rejection; however,
the authors indicated that survival was largely limited by
nonimmune model-related issues for managing the recipient
animals and recurrent thrombocytopenia, ascribed to the
use of anti-CD154. The continued use of CVF, even with
GTKO;CD46 donor organs, also contributes to systemic
coagulation perturbations [40], precluding its clinical use.

Systemic thrombocytopenia and CC associated with anti-
CD154 binding to activated platelets are well known, and
significant efforts have been made in XTx models to find an
effective substitute costimulation blockade regimen [41, 42].
Recent studies demonstrate that chronic administration of
an anti-CD40 blocking antibody (2C10R4), substituting for
anti-CD154, leads to prolonged hCXTx survival [25]. In the
initial report, anti-CD40 (2C10R4), administered for just 60
days posttransplant, achieved maximal GTKO;hCRP hCXTx
survival of 149 days and median survival of 84 days [25].
Graft survival appeared to be limited by the dosage and dura-
tion of immune suppression as withdrawal of anti-CD40
therapy resulted in a marked rise in antibody titer and

xenograft rejection. Importantly, substituting anti-CD40
antibody for anti-CD154 moderated complications of throm-
bocytopenia and consumptive coagulopathy, which may also
have contributed to improved graft survival. Using a higher
dosage of anti-CD40 (2C10R4), administered for longer,
resulted in longer survival of GTKO;hCRP donor hearts
expressing human thrombomodulin (TBM) with maximal
survival of 945 days (median survival 298 days) [8]. These
outcomes likely underestimate survival as anti-CD40 therapy
was reduced in 2 of 5 recipients after 100 days and was
reduced for two other recipients after 1 year. In these latter
recipients, anti-CD40 therapy was eventually withdrawn at
560 and 861 days posttransplant. In each case, reduction/ces-
sation of anti-CD40 therapy resulted in induction of non-Gal
IgM and IgG antibody with eventual graft rejection. Despite
persistent vascular expression of human TBM, the histology
of explanted rejected hearts exhibited features typical of
xenograft rejection including thrombotic microangiopathy,
vasculitis, intravascular thrombosis, and myocardial necro-
sis with little evidence of lymphocytic infiltration suggest-
ing limited impact of the TBM addition. Recipients also
received CVF, heparin, and aspirin.

The new anti-CD40-based costimulation blocking regi-
men appears to have achieved a level of humoral and cellular
immune suppression which, for the duration that it is
provided, blocks non-Gal AMR, with graft survival now
measured in years. This appears to surmount a major obsta-
cle to clinical XTx. While the current anti-CD40 (2C10R4) is
a mouse/rhesus chimeric IgG4 antibody which would not be
suitable for use in humans, it is reportedly being humanized
[6]. There are also several other humanized anti-CD40 block-
ing antibodies under various levels of development (Table 2),
suggesting there may soon be a clear path forward for
immune suppression, using only approved therapies, to
support clinical CXTx.

4. Donor Genetics

Genetic engineering of the donor pig is a cornerstone of XTx
as it enhances organ survival and function, while reducing
the need for systemic therapies in the recipient. The pace of
genetic manipulation of the pig genome has significantly
increased with the introduction of somatic cell nuclear trans-
fer and sequence-directed nucleases [43, 44]. This prolifera-
tion currently outstrips the pace of analysis in pig-to-NHP
transplants. There are now dozens of reported gene additions
or deletions [45, 46] with suggestions that donor animals
with 5 or more genetic alterations affecting complement reg-
ulation, antigen reduction, haemostatic incompatibilities,
coagulation dysfunction, suppression of inflammation, adap-
tive T-cell immunity, and endogenous retrovirus infectious
risks may be required for clinical XTx [47]. In the search
for an “ideal” donor, the simultaneous introduction of
multiple genetic modifications, without appropriately con-
trolled experiments, may obfuscate their function, as well as
introduce unnecessary complications. A consistent strategic
approach to developing and testing new donor genetics
would accelerate the application of clinical CXTx. Moreover,
the accumulation of multiple gene modifications complicates
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donor breeding programs to the point that somatic cell clon-
ing may be required to maintain the genetic profile. This will
increase cost and may limit the production of donor animals
for preclinical studies, the results of which have already been
frequently compromised by small group sizes.

Donor genetic modifications have focused on four main
categories, antigen reduction [48], thromboregulation [49],
immune suppression, and infectious disease [50]. Two
additional non-Gal glycan antigens have been identified,
N-glycolylneuraminic acid- (Neu5Gc-)modified oligosaccha-
rides [51, 52] and the glycan product synthesized by porcine
beta 1,4-N-acetylgalactosamine transferase-2 (B4GALNT2)
[53]. Humans do not synthesize Neu5Gc due to a mutation
in the CMP-N-acetylneuraminic acid hydroxylase gene
(CMAH), but they do produce an array of antibodies which
show Neu5Gc-dependent reactivity to sialylated oligosaccha-
rides. These anti-Neu5Gc antibodies are noted for their role
in serum sickness in patients treated with animal sera [54].
The B4GALNT2 gene catalyses the terminal addition of
N-acetylgalactosamine (GalNAc) to a sialic acid-modified
lactosamine acceptor producing GalNAcβ4[Neu5Acα2,3]-
Gal β4GlcNAcβ3Gal, the SDa blood group antigen. This is
an immunogenic glycan in pig-to-NHP CXTx [55]. Humans
are known to produce low levels of IgM which bind the poly-
agglutinable human SDa blood group [56–59]. Targeted
mutations affecting the porcine CMAH and B4GALNT2
genes have been made and combined with the GTKO muta-
tion [48, 60–62]. These three mutations together minimized
human IgM and IgG binding to porcine cells in over 90%
of human serum samples [48] and reduced both IgM and
IgG reactivity to background levels in 30% of allosensitized
wait-listed renal transplant candidates [60]. Pig-to-NHP
CXTx using organs with these mutations has not yet been
reported. Minimizing tissue immunogenicity would appear
to have obvious clinical benefit but demonstrating this in pre-
clinical transplants will be difficult as NHPs do not produce
anti-Neu5Gc antibody. Additionally, induction therapy with
ATG, part of the current costimulation blocking immune
suppression, may induce an anti-Neu5Gc antibody response
in humans [63], which is not apparent in NHPs. This
induced response could sensitize recipients and compromise
Neu5Gc-positive donor organs in clinical CXTx. This

suggests that new large animal transplant models, using
CMAH-deficient recipients, may be required to test the
pathogenicity of anti-Neu5Gc antibody and optimize the
use of biological agents for immune suppression. Despite
these issues, genetic engineering directed at reducing the
antigenicity of porcine tissue is likely to significantly
impact clinical CXTx.

Interest in transgenic augmentation of thromboregulation
stems primarily from recognition of molecular incompatibili-
ties between porcine and human TBM [64]. Secondarily,
immune-independent recipient and donor cell-to-cell inter-
actions have been described in vitro which are proposed to
contribute to donor endothelial cell activation [65, 66],
systemic haemostatic dysfunction, and CC [67–69]. Several
groups have reported production of human TBM transgenic
pigs [70–72], and in vitro analysis of porcine endothelial cells
expressing human TBM shows that it alleviates the molecular
incompatibility with efficient production of activated human
protein C [64, 73]. A limited number of pig-to-NHP CXTx
studies with human TBM expressing donor organs have been
reported [8, 74]. The impact of human TBM expression can-
not be determined from these studies as their designs lacked
controls without TBM, included chronic systemic heparin
administration, and had no direct measure of human TBM
function. Transgenic expression of other key components
which affect haemostasis, CD39, CD47, TFPI, and EPCR,
has also been reported [12, 75].

The common donor modifications, transgenic expression
of hCRPs, and the GTKO mutation have been thoroughly
analysed and validated. Physiological or supraphysiological
vascular expression of one or more human complement reg-
ulatory genes, CD59, CD55, or CD46, establishes an intrinsic
barrier which regulates the complement cascade [76–78],
reduces the incidence of hyperacute rejection, and limits
complement-mediated injury [15]. Likewise, the significance
of anti-Gal antibody and benefit of targeted mutation of the
porcine α-galactosyltransferase locus [79–81] have been
extensively documented in in vitro [82] and in vivo studies
in both pig-to-NHP [83–86] and GTKO mouse models
[87–91]. The combination of hCRP and GTKO donor
modifications has also been specifically examined and
demonstrated to be beneficial, preventing rare hyperacute

Table 2: Anti-CD40 antibodies in clinical development.

Antibody Company Status Trial ID

SGN-40 Seattle Genetics Inc.
Phase 1 multiple myeloma
Phase 2 B-cell lymphoma

Phase 1/2 chronic lymphocytic leukemia

NCT00079716
NCT00435916
NCT00283101

ASKP 1240 Astellas
Phase 2 renal Tx phase 2 plaque

Psoriasis
NCT01780844
NCT01585233

HCD122 Novartis

Phase 1, chronic lymphocytic leukemia
Phase 2 multiple myeloma
Phase 2 follicular lymphoma

Phase 1/2 Hodgkin’s and non-Hodgkin’s lymphoma

NCT00108108
NCT00231166
NCT01275209
NCT00670592

Chi Lob 7/4 Cancer Res UK Phase 1 cancer malignancies NCT01561911

BG9588 NIDDK Phase 2 renal Tx NCT00001857

NIAMS Phase 2 lupus nephritis NCT00001789
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GTKO hCXTx rejection and early immune injury [34, 92].
This basic genetic background, GTKO;hCRP, represents,
in our judgement, the current, proven starting base for
any clinical study. Additional CMAH- and B4GALNT2-
directed antigen reduction would appear to be a beneficial
clinical priority.

5. Orthotopic CXTx and Perioperative
Graft Function

The vast bulk of CXTx studies have to date utilized an
abdominal non-life-supporting heterotopic transplant model
where the graft is contractile but does not support the recip-
ient’s circulation. In comparison, there have been a limited
number of oCXTx studies [9–11, 93–99]. These studies,
predominantly using WT;hCRP donors, report healthy
recipient survival up to 57 days [46]. In this difficult model,
recipient death is often due to postoperative management
limitations, with explanted hearts often showing little histo-
logic evidence of significant rejection. These studies, which
could not yet utilize the most recent highly successful
costimulation blockade immune suppression, clearly indicate
that porcine hearts can provide life-sustaining and adequate
circulation to NHPs and suggest that the efficacy of oCXTx
is not intrinsically limited by cardiac function but by immune
rejection and postoperative management. To demonstrate
life-supporting oCXTx in a preclinical NHP model, consis-
tent with the ISHLT guidelines, will require not only effec-
tive immune suppression and appropriate donor genetics
but also substantial clinical level resources, expertise, and
postoperative management.

Orthotopic CXTx studies also unmasked a potential
impediment to clinical CXTx which was not apparent in
hCXTx studies. Every research group that has performed
oCXTx has reported variable perioperative mortality ranging
from 40 to 60% within the first 48 hours. Xenograft failure in
this time period was not due to hyperacute rejection as the
explanted hearts show vascular antibody deposition but
otherwise normal myocardial histology [100]. Instead, early
graft failure was associated with primary organ dysfunction.
We have called this phenomenon perioperative cardiac
xenograft dysfunction (PCXD) which at this high frequency
currently represents a significant barrier to clinical CXTx.
Our ongoing studies suggest that PCXD is similar to ischemia
reperfusion injury or cardiac stunning. We find that PCXD
can be modulated with a preconditioning regimen to reduce
circulating antibody, B-cells, and plasma cells prior to trans-
plant, coupled with improved organ preservation [101]. In
recipients which survive beyond 48 hours, PCXD is less
evident and echocardiographic analysis indicates that PCXD
is completely reversible showing that the normal cardiac
reparative processes function across the XTx barrier [11].
Intrathoracic heterotopic cardiac transplantation, where
both the donor and recipient hearts contribute to the circula-
tion, was successfully used in early allotransplantation when
techniques for donor organ preservation were being opti-
mized. Preclinical intrathoracic heterotopic cardiac xeno-
transplantation studies, although complex, potentially offer
a unique opportunity to study the aetiology and recovery

from PCXD [102, 103]. Genetic engineering approaches
may also have the potential to mitigate PCXD, for example,
by providing high levels of CD39 expression [75] or reducing
sodium hydrogen ion exchange activity [104].

6. Diagnosis and Treatment of Rejection

The ability to diagnose and treat rejection is a key compo-
nent of clinical transplantation. The ISHLT has developed
pathologic grades (pAMR1–3) of immunopathologic fea-
tures of endomyocardial biopsies which along with graft dys-
function and levels of donor-specific antibody are used for
the diagnosis AMR in cardiac allotransplantation [105].
The most severe pathology (pAMR3), associated with signif-
icant graft dysfunction and poor clinical outcomes, can be
treated with a combination of increased and optimized
immune suppression, depletion of circulating antibody,
and IVIg. More aggressive salvage therapies may also
include B-cell and plasma cell depletion and complement
inhibition [105, 106]. In CXTx, there are few studies which
have attempted to diagnose and treat presumptive rejection
episodes, most of these after hCXTx [9, 25, 33, 107–109].
Putative rejection episodeswere diagnosed based onbiochem-
ical markers (troponin T, AST), graft contractility, telemetric
measures of cardiac performance, and echocardiography.
Serial biopsies after oCXTxwill likely be applicable for diagno-
sis of rejection [109–111], but the difficulty of obtaining
endomyocardial biopsies in NHPs has limited their explora-
tion in animal models. When presumptive rejection episodes
were treated using steroids, or steroids and ATG, there was
no evidence for reversal of rejection, and, unsurprisingly, in
some instances, excessive antirejection therapy increased the
frequency of infectious complications [9, 25]. Effective thera-
pies to reverse AMR in XTx remain to be fully explored.

Based on the high frequency of AMR, the wide diversity
of potential polymorphic porcine peptides and the chronic
detection of vascular antibody deposition in GTKO donor
hearts, it is necessary to establish methods for early diagnosis
and effective treatment. It appears that anti-CD40-based
immune suppression, which is likely to be used in clinical
CXTx, relies heavily on effective costimulation blockade,
as withdrawal of anti-CD40 therapy has resulted in the
induction of non-Gal IgM and IgG [8]. This has at least
two potential consequences. Firstly, costimulation blockade
complicates the use of plasmapheresis, commonly used to
treat AMR, as it would remove both therapeutic and patho-
genic antibodies. Secondly, chronic dosing with biological
therapeutics risks the development of anti-antibody immune
responses [112, 113]. While the frequency of this response is
difficult to estimate and cannot be safely extrapolated from
the results reported for other antibody-based therapeutics,
in the context of clinical CXTx, an anti-anti-CD40 response
would be potentially serious. Few clinical methods can
reverse antibody-mediated heart rejection so it will be impor-
tant, prior to clinical CXTx, to develop and test, to as great a
degree as possible, xenospecific therapies for detecting and
treating AMR using a pig-to-NHP transplant model. This
may include alternative versions of anti-CD40 (Table 2),
alternative costimulation strategies [13], total lymphoid
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radiation [114], or current antibody reduction therapies
[105, 106]. Ideally, such a study would be performed using
CXTx, but life-supporting kidney XTx, with well-known
physiological markers for organ function, maybe a more
pragmatic solution as ongoing kidney rejection will not
result in rapid recipient death. What is clear to investiga-
tors with experience in oCXTx is that the NHP model
plays a critical role in progressing to clinical application,
but has intrinsic limitations with particular regard to
recipient management.

7. Infectious Disease Issues

Complete knowledge and risk-free application of clinical
CXTx, as with most major advances in medicine, retains
elements of uncertainty. The potential for disease transmis-
sion has been a significant concern for clinical XTx [115].
Concern has been expressed about the potential of porcine
endogenous retroviruses (PERV) to emerge in XTx recipi-
ents, infect patient tissues, and adapt to humans [116]. Since
this potential was identified, molecular and immunologic
assays to monitor PERV infection have been developed
[117], and significant advances have been made in mapping
PERV proviral sites [118, 119] and understanding the basic
biology of PERV infection [120]. Several clinical studies of
patients exposed to porcine tissues [121–124] or in NHP
XTx recipients [125] have also failed to detect PERV infec-
tion. The generation of high titer human-trophic PERV
requires the recombination of relatively rare PERV-C pro-
viral sequences with more common PERV-A. Selective
breeding can be used to eliminate PERV-C from donor
pigs [126]. Alternatively, nuclease-directed mutation of
the PERV pol gene has been shown to induce widespread
PERV proviral deletions [50], but this may be unnecessary
if PERV-C is eliminated by selective breeding. While dili-
gent monitoring of PERV infection in XTx recipients is
prudent, the apparent risk presented by PERV appears to
be small and is unlikely to delay clinical CXTx. Aside
from endogenous retrovirus, specific pathogen-free (SPF)
donor pig facilities have been produced and populated
with caesarean-derived piglets. Some of these sites have
been operational and breeding pigs for many years dem-
onstrating the feasibility to routinely produce donor pigs
with exceptionally high health standards.

8. Conclusion

It is clear that cardiac and renal XTx can benefit patients in
need of organ replacement. If continued studies as outlined
above are performed, we are optimistic that this technology
will soon be ready for clinical testing. These remaining key
preclinical studies are required to ensure the efficacy and
safety of clinical CXTx. Principally a life-supporting preclin-
ical oCXTx study in NHPs must be performed to demon-
strate acceptable perioperative and postoperative recipient
survival. This study should optimize organ preservation
and utilize immune suppression based on anti-CD40 costi-
mulation blockade. To meet ISHLT suggested standards
[14], this study, involving at least 16 CXTx recipients, will

require significant financial resources, an infrastructure to
simultaneously maintain multiple CXTx postoperative recip-
ients and a dedicated team of clinicians, veterinarians, scien-
tists, and animal technologists. Donor organs should
minimally contain GTKO;hCRP genetics, likely with addi-
tional antigen reduction of CMAH-KO and B4GALNT2-
KO. Clinical use of additional genetic modifications should
be founded on further rigorous preclinical testing in NHPs
to demonstrate their utility, which, in the case of CMAH, will
likely require testing in an immunologically appropriate
CMAH-KO large animal transplant model. As well as achiev-
ing adequate perioperative and postoperative recipient
survival, such a preclinical study should allow for organ
rejection. This rejection study, while unlikely to fully predict
the clinical immune response, will suggest essential xenospe-
cific assays and therapies to reverse rejection which can be
further refined during clinical CXTx.

Genetic engineering has significantly improved CXTx
organ survival but ongoing creation of new genetics, in
pursuit of the perfect donor, has the potential to delay clinical
studies. We believe the initial clinical studies will rely primar-
ily on known systemic immune suppression and genetics and
that further optimization of donor genetics is best pursued
in response to identified, researched clinical immune and
physiological requirements.

Dependent on the results of these prospective preclinical
oCXTx studies in NHPs, it appears to us that the era of
clinical CXTx is approaching. The scientific path forward is
demanding but well defined; however, the complexity of
any clinical XTx program, including the heart, presents a
substantial and unique set of regulatory challenges which
need to be addressed expeditiously to avoid delaying the
realization of clinical use.
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