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A B S T R A C T

Background: Machine learning techniques such as support vector machine (SVM) have been applied recently in
order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based
on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identifi-
cation of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a
sparse machine learning method that allows the identification of the most relevant sources for the classifi-
cation. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL
(ROI-MKL).
Methods: We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance
of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy
controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and
Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18F-FDG-PET and
regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early
AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance
to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating
decreased or increased regional activity (for 18F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD pa-
tients.
Results: Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas)
for classification using 18F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when
using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination,
high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial
parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased
voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% de-
pending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical
nuclei.
Conclusion: The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of
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known relevance to AD, the selection of which contributes to increased classification accuracy when applied to
18F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild
stages of AD also contribute substantially in the individual discrimination of AD patients from controls.

1. Introduction

Many neuroimaging studies to date have investigated brain ab-
normalities associated with the diagnosis of Alzheimer's disease (AD),
most often using magnetic resonance imaging (MRI), 18F-fluorodeox-
yglucose-positron emission tomography (18F-FDG-PET) to measure re-
gional brain metabolism, and single photon emission computed tomo-
graphy (SPECT) to measure regional cerebral blood flow (rCBF SPECT)
(Johnson et al., 2012; Matsuda, 2007; Nordberg et al., 2010; Vemuri
et al., 2010). These studies have typically carried out comparisons of
mean imaging indices between samples of AD patients and healthy el-
derly controls across separate brain regions using either regions of in-
terest (ROIs) (Kinkingnéhun et al., 2008; Lehmann et al., 2011;
Nadkarni et al., 2012; Ortiz et al., 2014) or voxel-based techniques,
applying mass univariate approaches for statistical inference
(Kinkingnéhun et al., 2008; Lehmann et al., 2011; Matsuda, 2013).
These imaging studies have identified abnormalities in several brain
regions in association with the diagnosis of AD from early stages of the
disease onwards (Mosconi et al., 2009; Ruan et al., 2016; Thompson
et al., 2004). When such traditional mass-univariate approach is used,
the detection of the relevance of different brain regions to characterize
AD is straightforward; since each ROI or voxel is treated independently,
thresholds based on statistical significance and spatial extent can be
applied to the statistical parametric results in order to select clusters of
voxels with greatest relevance to distinguish AD patients from controls
(Ashburner and Friston, 2000; Busatto et al., 2008; Guo et al., 2010;
Hirata et al., 2005; Karas et al., 2003).

More recently, a number of neuroimaging investigations of AD have
applied machine learning (ML) techniques that allow detection of
spatially complex and often subtle neuroimaging patterns of brain ab-
normalities in individual subjects, building high-dimensional classifiers
based on multivariate methods that simultaneously assess multiple
voxels within the brain space (Davatzikos et al., 2008; Duara et al.,
2013; Klöppel et al., 2008; Ritter et al., 2015; Zhang et al., 2011).
Rather than determining statistical group differences, this approach
allows classification of images of each subject, providing individual
predictions which might ultimately be used in the clinical context
(Ferreira and Busatto, 2011; Mcevoy et al., 2009; Petersen et al., 2010;
Ruan et al., 2016; Zhang et al., 2011). In contrast with the above mass-
univariate strategies, the determination of the most relevant voxels that
characterize the difference between groups is not as easily achieved in
ML-based approaches, as the weight of each voxel to classify groups
depends on all the other voxels, in a multivariate model. In order to
address this problem, strategies aiming to select the most relevant
voxels to be used as input to the models may be sought to facilitate the
interpretation of the weight maps.

In recent years, Multiple Kernel Learning (MKL) approaches have
been proposed to combine multiple sources of data in ML algorithms.
Up to the present date, the MKL approach has been applied to neuroi-
maging data predominantly to combine different representations
(usually two or more imaging modalities) (Hinrichs et al., 2009; Liu
et al., 2014). However, some recent pilot investigations have proposed
models in which subsets of features are used as sources of data (Castro
et al., 2014; Xia et al., 2014). If these subsets of features are extracted
according to some neuroanatomical criterion, it is possible to obtain
predictions based on anatomical localization (Mourão-Miranda et al.,
2012) and to help to determine which are the most relevant brain re-
gions that contribute to group classification.

In the present study, we aimed to investigate the predictive power of
MKL models using ROIs (MKL-ROI) to classify patients with mild AD

versus age- and gender-matched healthy controls, using a multimodal
neuroimaging approach comprising morphological MRI, 18F-FDG-PET
and rCBF-SPECT data. In contrast with the vast majority of ML-based
studies of AD using multimodal imaging designs, we examined exactly
the same subjects using the three neuroimaging modalities, with short
time intervals between the scanning sessions. We aimed to rank the
brain regions affording the greatest degree of discrimination between
AD patients and controls according to their contributing weights in
each imaging modality, and to establish whether the contribution of
each brain region was due to predominantly increased or decreased
voxel values in AD patients compared to controls. In addition, diag-
nostic accuracy indices obtained with the MKL-ROI approach were
compared to the indices obtained with Support Vector Machine (SVM)
based on the whole-brain. Finally, since recent investigations have
suggested that the choice of brain atlas for feature extraction may exert
a significant influence on the accuracy of MRI or PET-FDG data in SVM
studies of elderly populations (Ota et al., 2014), we compared MKL-ROI
results obtained with two different atlases to delineate ROIs, in order to
verify the robustness of the accuracies and ranking of weights for each
selected brain region.

2. Material and Methods

2.1. Subjects

Thirty-eight individuals were enrolled in this study (20 patients
with mild AD and 18 healthy elderly volunteers). The investigation was
approved by the ethical committee of the involved institutions and all
participants provided informed consent. For both groups, the exclusion
criteria were as follows: less than four years of education, age below 60
or above 90 years, use of psychotropic drugs, diabetes mellitus, pre-
sence of systemic disorders associated with cognitive decline, contra-
indications for MRI and brain lesions incidentally detected on MRI.

All patients fulfilled the DSM-III-R (American Psychiatric
Association, 1987) and NINCDS/ADRDA (McKhann et al., 1984) cri-
teria for mild dementia and probable AD. Their Clinical Dementia
Rating (CDR) scale was lower or equal to 1 (Morris, 1993). As the data
were collected before the publication of the new 2011 NINCDS/ADRDA
criteria for Alzheimer's disease (McKhann et al., 2011), the criteria for
probable Alzheimer's disease from 1984 were used (McKhann et al.,
1984).

Healthy controls did not present memory deficits or cognitive im-
pairments (CDR = 0). Table 1 presents age, gender, education and re-
sults from Mini Mental State Examination (MMSE) of AD patients and
healthy volunteers. Further details regarding the demographic and
clinical characteristics of AD subjects and controls can be found in
(Buchpiguel et al., 2014).

Table 1
Demographic characteristics of the participants.

Healthy participants Patients with AD p-value

Age: mean (SD) 72.7 (4.2) 75.5 (4.0) 0.06
Sex: male (female) 7 (11) 9 (11) 0.70
Education in years: mean (SD) 10.4 (4.8) 7.3 (3.9) 0.05
MMSE: mean (SD) 28.1 (1.3) 21.3 (2.8) < 0.01

AD – Alzheimer's disease; SD – standard deviation. The p-value was obtained using chi-
square (for gender) and Mann-Whitney tests (for the continuous variables).
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2.2. Image acquisition and pre-processing

2.2.1. T1 Magnetic Resonance Imaging (T1-MRI)
Spin echo T1-weighted images were obtained on the sagittal plane

with the following parameters: TR 12.1, TE 4.1999, flip angle 15o, pixel
bandwidth 88.75, matrix 256 × 256, voxel size
0.86 × 0.86 × 1.6 mm, 204 slices, slice thickness 1.6. These images
were acquired using a General Electric-Horizon LX 8.3 1.5 Tesla
scanner (Milwaukee, WI, USA).

Non-brain tissues were removed from the T1-MRI anatomical
images applying the Hybrid Watershed algorithm (Ségonne et al.,
2004), implemented in Freesurfer v.3.04 (Athinoula A. Martinos Center
for Biomedical Imaging, Massachusetts, USA; http://surfer.nmr.mgh.
harvard.edu). The N3 algorithm, (Sled et al., 1998) also implemented in
Freesurfer, was used to perform intensity normalization. The Brain
Extraction Tool (Smith, 2002) implemented in FSL (Oxford's Functional
MRI Software of the Brain Library, UK; www.fmrib.ox.ac.uk/fsl) was
used to perform a final non-brain tissue removal (Pereira et al., 2010).

Images were then segmented into gray matter (GM) and white
matter partitions using the unified segmentation procedure (Ashburner
and Friston, 2005) as implemented in SPM8 (Statistical Parametric
Mapping software, version 8; http://www.fil.ion.ucl.ac.uk/spm; Well-
come Department of Imaging Neuroscience, London). The segmented
images were spatially normalized to the standard MNI space using the
Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra (DARTEL) algorithm (Ashburner, 2007). This procedure max-
imizes the sensitivity and accuracy of localization by registering in-
dividual structural images to an asymmetric custom T1-weighted tem-
plate derived from the participants' structural images rather than to a
standard T1-weighted template based on a different sample (Curiati
et al., 2011). The normalized GM images were resliced with trilinear
interpolation to a final voxel size of 2 × 2 × 2 mm3. An additional
procedure was performed to modulate the images, consisting of mul-
tiplying each spatially normalized GM image by its relative volume
before and after normalization; this ensured that the total amount of
GM in each voxel was preserved. Finally, the resulting GM images were
smoothed using an 8 mm isotropic kernel at full width half maximum
(FWHM).

2.2.2. Positron Emission Tomography (PET)
All subjects had blood glucose levels determined in the beginning of

the PET scanning session. After a period of at least 6 h of fasting, they
received 370 MBq of [18F] fluoro-2-D-deoxyglucose (FDG). Imaging
started 60 min after FDG administration, using a 3-D protocol with
acquisition time of 15 min. The acquisition was performed using a
dedicated LSO-PET 16-slice CT scanner (Biograph-16, Siemens, Illinois-
USA). The matrix size was 256 × 256 with a smoothing factor of 5.
Iterative reconstruction (OSEM) was applied according to a standar-
dized protocol in our institution. Attenuation was corrected using the
CT-algorithm.

18F-FDG-PET images were coregistered to the skull striped T1-MRI
in its native space using SPM8. Partial volume effects (PVE) correction
was applied to the coregistered images to avoid confounding effects
related to regional brain atrophy (Curiati et al., 2011). The Meltzer
method (Meltzer et al., 2000), a voxel-based PVE correction algorithm
implemented in the PVElab software (http://nru.dk/downloads/
software) (Quarantelli et al., 2004) was applied.

The spatial transformation parameters resulting from the T1-MRI
normalization steps (described above) were applied to 18F-FDG-PET
images in order to achieve spatial normalization to the standard MNI
space. The normalized images were smoothed with a Gaussian filter of
8 mm at FWHM. Normalization of images to the global tracer uptake
was performed by dividing the value of each voxel by the average of all
voxels belonging to a whole-brain mask.

2.2.3. Single Photon Emission Computed Tomography (SPECT)
The subjects received IV injection of 20 mCi (740 MBq) of 99mTc-

ECD 30 min before the images acquisition. A dual-detector SPECT
camera equipped with a fan beam collimator (ECAM, Siemens,
Hoffmann Estates, Illinois) was used. SPECT images were processed
according to a standard protocol, with no attenuation correction and a
Butterworth post filtering. The reconstruction yielded 4.8 mm voxels
with a 128 × 128 matrix and 128 slices. In-plane spatial resolution was
10.6/6.7 mm full width at a half maximum (FWHM) in the center of
view. Images were reconstructed with scatter correction. The rCBF-
SPECT images were also coregistered to the skull striped T1-MRI in its
native space using SPM8 and corrected for PVE using the Meltzer as
described for the 18F-FDG-PET data (Meltzer et al., 2000).

Spatial normalization using transformation parameters resulting
from the T1-MRI data, Gaussian smoothing (8 mm at FWHM) and
normalization to global tracer uptake were conducted using the same
methods described above for the 18F-FDG-PET data.

2.3. Classification techniques

In supervised learning, classification corresponds to the task of
identifying to which of a set of categories a new example belongs, based
on a training set of data containing examples whose membership is
previously known.

2.3.1. Learning from a single source
Individual examples are often represented by a set of quantifiable

properties, known as explanatory variables or features. These properties
may be categorical, ordinal, integer-valued or real-valued (e.g. a mea-
surement of intensity of voxels in brain images). Thus, a source of in-
formation can be represented by a data matrix X composed by n ex-
amples and p features. In neuroimaging-based classification, each
feature may correspond to a single voxel and each example may cor-
respond to an anatomical scan from a single subject, for example. Many
classifiers work by comparing examples by means of a similarity or
distance function (kernels). A function is used to build kernel matrices,
whose dimensions correspond to the number of examples. In our ana-
lyses, we applied a linear kernel given by the scalar product of the data
matrix:

= ∙K X X T (1)

In a binary classification (2 classes), the examples (e.g. images from
each subject xi ϵ Rn) are associated to labels yi, which can assume one of
two possible values (−1 or 1).

In this study, we used SVM (Boser et al., 1992; Vapnik, 1998) to
classify AD patients and healthy controls. The linear SVM is defined as
an optimization problem that can be represented through a dual for-
mulation, where n is the number of training examples, αi is the con-
tribution of the i-th training example to the final solution, yi is the label
of the i-th training example and C is a regularization parameter that
controls the distance between the hyperplane and the support vectors.
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We fixed the regularization parameter C at the value 1 in all ana-
lyses, as our aim was not to maximize the accuracy, but instead to
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provide a comparison across modalities and atlases using ROI-based
MKL.

2.3.2. Learning from multiple sources
With the growing application of ML models based on neuroimaging

in neuroscience and clinical investigations, a topic that becomes in-
creasingly relevant is interpretability (i.e. which areas of the brain
mostly contribute to the predictions provided by the models). In a
clinical application, this information can provide insights about how a
psychiatric or neurologic disorder affects the brain (Mourão-Miranda
et al., 2012). However, since the prediction is based on a multivariate
pattern, all features given as input to the model contribute to generate a
predictive function. The issue of model interpretability is particularly
relevant when using algorithms that have non-sparse weights asso-
ciated to the features, as in the case of SVM (Rondina et al., 2013).

In neuroimaging, different data sources may comprise different
imaging modalities (e.g., T1-MRI or FDG-PET), different ways of ex-
tracting data from a same modality (e.g., volumetric or cortical thick-
ness in structural MRI), or different feature subsets. In the present
study, we are interested in the latter approach (i.e., using feature sub-
sets as kernels and combining them). We are particularly interested in
investigating models based on subsets of features extracted according to
anatomical criteria, in order to obtain predictions that are meaningful
in regard to anatomical localization. We use the acronym MKL-ROI
throughout the text to represent this approach (distinguishing it from
other potential uses of MKL methods to combine other kinds of sources
of data).

2.3.2.1. Multi-Kernel Learning (MKL). Kernel methods can operate on
very general types of data and can detect different types of relations.
Thus, they provide a natural way to merge and integrate different
sources of information. Recent applications have shown that using
multiple kernels instead of a single one can enhance the interpretability
of the decision function, and in some cases improve the final
performance. A convenient approach is to consider that the kernel K
(x, x′) is actually a convex combination of basis kernels (Lanckriet et al.,
2004):

∑ ∑′ = ′ ≥ =
= =

( , ) ( , ), ,K x x d K x x with d d0 1
m

M

m m m

m

M

m

1 1 (5)

In Eq. (5) M is the total number of kernels. Within this framework,
the problem of data representation through the kernel is transferred to
the choice of weights dm. Learning both the coefficients i and the
weights dm in a single optimization problem is known as the MKL
problem. In the current investigation, we applied the algorithm Sim-
pleMKL (Rakotomamonjy et al., 2008) available in the toolbox PRoNTo
(Schrouff et al., 2013).

SimpleMKL consists in optimizing problems addressed by SVM by
computing an optimal weighting. The minimization problem includes a
constraint on the L1 norm of the vector d, which induces sparsity in the
solution. This property allows the model to keep only the most relevant
patterns in the kernel computation. The SimpleMKL problem is solved
by alternating a classical SVM together with a projected gradient des-
cendent according to vector d, allowing to minimize the objective
function while ensuring that constraints on vector d are fulfilled. The L-
norm constraint on the vector d is a sparsity parameter that forces some
kernels to have zero weight, thus encouraging sparse basis kernel ex-
pansions. The mixed-norm (L1 and L2) penalization of dmKm(x,x′) is a
soft-thresholding penalizer that leads to a sparse solution, for which the
algorithm performs kernel selection. Thus, the procedure to find the
number of selected kernels (ROIs) is based on Gradient descent
(Mandic, 2004), that minimizes a cost function aiming the minimum
error in fitting parameters to the training data.

2.3.2.2. ROI-based MKL. In this study, we are interested in

investigating the anatomical localization of the features that
contribute the most to classify AD patients and healthy controls.
Thus, we applied an MKL approach in which each data source
corresponds to subsets of the features in the brain. To obtain subsets
of voxels with anatomical meaning we used parcellation templates
(brain atlases) to provide ROIs.

In order to investigate to what extent different criteria of anatomical
segmentation affect the MKL-ROI performance, we carried out separate
analyses using two atlases: Automated Anatomical Labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002) and Brodmann's Areas (BA) atlas
(Brodmann, 1909) furnished by the software MRICRO (Rorden and
Brett, 2000). Regions belonging to the cerebellum were not included, as
the effect of AD neuropathology on this area is thought to be minimal,
at least in the early stages of the disease (Fox et al., 2001; Minoshima
et al., 1997). Each structure in the AAL atlas is associated to two ROIs
(in the left and right hemispheres); on the other hand, the BA atlas
encompasses bilateral regions. Therefore, in order to make the two
atlases more comparable with each other, we merged the left and right
regions for each structure in the AAL atlas into a single ROI. Thus, we
worked with 45 regions from the AAL atlas and 48 regions from the BA
atlas. However, the number of selected regions varies across the ana-
lyses reported, due to the fact that the SimpleMKL is a sparse method
(i.e., null weight is assigned to several kernels during the learning
process).

Fig. 1 illustrates the framework of the MKL-ROI approach. The atlas
provides anatomical ROIs, represented in colours in the figure. Each
ROI is defined by a disjoint set of voxels with unique indices in a
standard three-dimensional space. As the features correspond to in-
dividual voxels, each ROI is considered a features set (represented by F1
to FM in the figure). Voxels in the training images from both groups
(patients and healthy controls) corresponding to the indices of each ROI
compose the kernel matrices (K1 to KM). They encode similarity mea-
sures of each pair of examples (images from each training subject
limited by a mask defined by the particular ROI). The SimpleMKL al-
gorithm optimizes the weights of each kernel in a sparse way, so that
only a subset of kernels have non-zero weight in the learned classifi-
cation function (ƒMKL in the figure). The complete process is performed
inside a cross-validation loop. Thus, after all iterations, a set of selected
ROIs and their respective weights is obtained. Additionally, as each
voxel correspond to a particular feature, the voxels belonging to the
selected ROIs are also associated to individual weights. This concept is
more formally detailed in Section 2.5, where we define the terms ‘ROI-
weight’ and ‘voxel-weight’, which will be important to evaluate the
predominance of hypometabolism/atrophy or hypermetabolism/hy-
pertrophy for each region in a subsequent analysis.

2.4. Validation

The predictive performance for each method is given by the ba-
lanced average (BA) between the proportions of true positive (TP) and
true negative (TN) (i.e. patients and controls correctly classified, re-
spectively).

We used cross-validation to assess how the results of the classifi-
cation analyses could generalize to an independent data set. One round
of cross-validation involves partitioning the data sample into disjoint
subsets of examples, performing the analysis on one subset (the training
set), and validating the analysis on the other subset (the validation or
testing set). To reduce variability, multiple rounds of cross-validation
are performed using different partitions, and the validation results are
averaged over the rounds. In the present study, we used a leave-one-
subject-out cross-validation (LOO-CV), which involves separating a
single example (either patient or control) from the complete sample for
test while the remaining examples are used for training. This splitting is
repeated so that each example in the whole sample is used once for
validation. After all iterations, the final accuracy is quantified as the
average of accuracies obtained across all folds. The balanced accuracy
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is computed from a set of class-specific accuracies, taking the number of
samples in each class into account.

To evaluate whether the resulting classification accuracy is statis-
tically significant, we used a permutation test with 10,000 repetitions.
In this non-parametrical test, the labels are randomly permuted across
examples and the classification procedure is repeated a high number of
times. The probability of having obtained the result by chance is given
by the count of the number of instances when the classification with
permuted labels outperforms the original classification (with the cor-
rect labels). This count is divided by the number of repetitions to obtain
a percentage value p.

2.5. Weights in selected brain regions

As both coefficients αi and dm are learnt in a single optimization
problem (linear eqs. (4) and (5)), besides the weight associated to each
kernel, the weight of each feature in the selected regions can also be
recovered. For clarity of presentation, from now on we will refer to the
weight assigned to each kernel as ‘ROI-weight’ and to the weight as-
signed to each feature as ‘voxel-weight’. In the training of the classifier,
the label +1 was assigned to the class corresponding to the AD group
and the label −1 was assigned to the healthy control group. Thus, a
positive voxel-weight indicates relatively higher radiotracer uptake
(PET and SPECT data) or increased GM volume (T1-MRI) in the AD
group when compared to the healthy control group whereas a negative
voxel-weight indicates higher radiotracer uptake or increased GM vo-
lume in the healthy control group for the particular location.

For each ROI we wanted to characterize if the predominant type of
changes were related to either hypometabolism/atrophy or hyperme-
tabolism/structural preservation. Thus we calculated the ratio between
positive and negative voxel-weights within each selected ROI,

performing the following steps:

1. Obtained the probability density function of the voxel-weight
vector;

2. Calculated the area under curve separately for negative and positive
voxel-weights (AUC- and AUC+, respectively);

3. Obtained the ratio rAUC = AUC−/AUC+.

Using rAUC we characterized the selected ROIs according to the
predominance of signal: regions for which rAUC was close to 1 were
considered to be mixed (i.e. balanced positive and negative voxel-
weights). Values close to zero suggest regions that have predominantly
positive voxel-weights and values higher than one suggest regions that
have predominantly negative voxel-weights.

3. Results

3.1. Classification performance across modalities and atlases

In this section we present the performance of the classification of AD
patients and healthy controls for all modalities using whole-brain SVM
(Table 2a) and using MKL-ROI with both atlases considered: AAL
(Table 2b) and BA (Table 2c). For each analysis we present the balanced
accuracy, the sensitivity (described as true positive - the proportion of
patients correctly classified) and the specificity (described as true ne-
gative – the proportion of healthy controls correctly classified).

For the whole-brain SVM analyses, similar accuracies were obtained
using 18F-FDG-PET (84.17%) and rCBF-SPECT (81.94%). Using T1-MRI,
the accuracy was lower (73.89%) in comparison with both functional
modalities.

For MKL-ROI analyses, the best accuracy was obtained with 18F-

Fig. 1. MKL-ROI framework. The atlas consists of anatomical ROIs represented in different colours. Each ROI is defined by a disjoint set of voxels with unique indices in a standard three-
dimensional space. These are subsets of voxels (features) represented by F1 to FM. The training images from both groups (patients and healthy controls) limited by the indices of each ROI
compose each kernel matrix (K1 to KM). The SimpleMKL algorithm optimizes the weights of each kernel in a sparse way, so that only a subset of kernels have non-zero weight in the
classification function (ƒMKL). The complete process is performed inside a cross-validation loop, resulting in a list of selected (non-zero) ROIs, from which the final accuracy is obtained.
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FDG-PET, followed by rCBF-SPECT and T1-MRI for both atlases. For
18F-FDG-PET, the accuracy obtained with the BA atlas was the same as
the accuracy obtained with AAL atlas (92.50%). Conversely, for both
T1-MRI and rCBF-SPECT, the accuracy obtained with AAL atlas was
higher than the accuracy obtained with the BA atlas (respectively
76.11% versus 68.33% for T1-MRI, and 84.17% versus 73.89% for
rCBF-SPECT) (Tables 2b and 2c).

The number of selected ROIs (NSR) was slightly higher for the AAL
atlas than for the BA atlas in the three modalities, although the actual
number of features used as input for the MKL-ROI models (NF) varies
across them. It is interesting to notice that even though the accuracies
resulting from MKL-ROI analyses with AAL atlas was higher than the
accuracies obtained using whole-brain SVM for all modalities, the
number of selected ROIs was considerably low. Out of 45 ROIs, 20 were
selected in T1-MRI, 23 in 18F-FDG-PET and 18 in rCBF-SPECT, corre-
sponding to respectively 29%, 33% and 27% of the total number of
voxels. For the BA atlas, out of 48 ROIs, 19 were selected on T1-MRI, 21
on 18F-FDG-PET and 17 on rCBF-SPECT, corresponding to respectively
30%, 29% and 27% of the total number of voxels. These results show
that the models are substantially sparse, providing good accuracy in-
dices using only the most relevant features.

In Fig. 2 we show the Receiver Operating Characteristic (ROC)
curves (plots of the true positive rate against the false positive rate for
the different possible cut points) for each analysis presented in Table 2.
Plots (a)–(c) were derived from SVM using the whole-brain for T1-MRI,
FDG-PET and rCBF-SPECT, respectively. Plots (d)–(f) were derived from
MKL-ROI using the Brodmann atlas and plots (g)–(i) were derived from
MKL-ROI using the Brodmann atlas. The area under curve (AUC) is
presented in each plot.

3.2. Selected brain regions and relevance

In Tables 3 and 4, we present the brain regions which were selected
by MKL-ROI to classify AD patients and healthy controls using the AAL
and BA atlases, respectively. For each modality (T1-MRI, 18F-FDG-PET
and CBF-SPECT), the selected ROIs were sorted in descending order of
ROI-weight.

In the analyses using the AAL atlas (Table 3), although several
cortical and subcortical regions contributed to the discrimination be-
tween AD patients and controls, highly prominent ROI-weights were

detected in: the posterior cingulate gyrus (around 30% of the total ROI-
weight), fusiform gyrus and cuneus (around 15% each) for PET; the
posterior cingulate gyrus (around 25%), fusiform gyrus and angular
gyrus (around 20% each) for SPECT; and the inferior temporal gyrus
and caudate nucleus (both around 20%) for T1-MRI (Table 3). In the
analyses using the BA atlas, a similar pattern involving several brain
foci but with greater emphasis on a few selected regions emerged
(Table 4). However, there were differences in regard to brain location
and attributed ROI-weights relative to the analyses using the AAL atlas,
with greatest ROI-weights detected in: the medial parietal cortex
(around 35%) and parahippocampal gyrus (around 15%) for PET; the
medial parietal cortex (around 25%), secondary visual cortex (around
20%) and posterior cingulate gyrus (around 15%) for SPECT; and en-
torhinal cortex, posterior cingulate gyrus, inferior and auditory tem-
poral gyri (each around 15% of the total ROI-weight) for T1-MRI
(Table 4).

The data presented in Tables 3 and 4 also provide the description of
brain regions in which voxels with lower or higher values predominated
in AD patients relative to controls (as ascertained by the ratio between
positive and negative voxel-weights within each ROI - rAUC). These
analyses demonstrated that for the three imaging modalities, most re-
gions presented rAUC above 1, indicating a predominant pattern of
hypometabolism/atrophy. A number of brain regions presented rAUC
values below 1; thus the ROI-weight of discrimination in these regions
was mostly due to a pattern of increased (rather than decreased) voxel-
weight values in AD individuals, indicating relative hypermetabolism/
structural preservation in AD patients relative to controls. Most of the
ROIs that presented such pattern encompass brain regions typically
spared in mild stages of AD, including: the visual cortex, primary motor
and somatosensory cortices, subcortical nuclei (caudate, putamen,
pallidum and thalamus) and orbitofrontal cortex (Tables 3 and 4).

Fig. 3 and Fig. 4 illustrate the selected brain regions in colours ac-
cording to the ROI-weight assigned to them by the MKL-ROI classifi-
cation using the AAL and BA atlases respectively. Each modality is
shown in a separate panel: T1-MRI (Fig. 3a and Fig. 4a); 18F–FDG-PET
(Fig. 3b and Fig. 4b) and rCBF-SPECT (Fig. 3c and Fig. 4c).

Fig. 5 presents examples of voxel-weights within ROIs BA7 and
BA37 to illustrate the heterogeneity of the regions regarding the signal
of weights assigned to each feature as well as the presence of spatial
clusters of similar weights.

Fig. 6 and Fig. 7 present the predominance of positive and negative
signal in the voxel-weights of each ROI selected using the AAL and BA
atlases, respectively. The colour in each region represents the rAUC.
Cool colours represent predominance of hypometabolism/atrophy in
AD patients while warm colours indicate relative hypermetabolism/
structural preservation.

4. Discussion

To the best of our knowledge, the present study is the first to
compare the diagnostic performance of two different SVM approaches
(MKL-ROI-based and whole-brain-based) to discriminate patients with
mild AD from age- and gender-matched healthy controls using multi-
modal neuroimaging data acquired in exactly the same subjects with
short inter-scanning intervals. The use of the MKL-ROI approach to rank
brain regions allowed us to highlight the foci with greatest dis-
criminating ROI-weight to distinguish AD patients from healthy con-
trols across the three imaging modalities employed (T1-MRI, 18F-FDG-
PET and rCBF SPECT), with analyses repeated using two different brain
atlases.

Regardless of the atlas employed, the MKL-ROI analysis of PET data
indicated highest discriminating ROI-weight afforded by medially lo-
cated posterior cortical regions (medial parietal cortex encompassing
the precuneus and posterior cingulate gyrus). This pattern of results is
highly consistent with the findings of previous functional imaging
studies that conducted statistical group comparisons or visual

Table 2
Classification results.

Modality NSR NF TP TN BA p

T1-MRI – 219,727 70.00% 77.78% 73.89% 0.013
18F-FDG-PET – 219,727 85.00% 83.33% 84.17% < 0.001
rCBF-SPECT – 219,727 75.00% 88.89% 81.94% < 0.001
(a) SVM (Whole-brain)

T1-MRI 20 64,605 80.00% 72.22% 76.11% 0.016
18F–FDG-PET 23 71,673 85.00% 100.00% 92.50% < 0.001
rCBF-SPECT 18 59,286 85.00% 83.33% 84.17% < 0.001
(b) MKL-ROI (AAL atlas)

T1-MRI 19 66,111 70.00% 66.67% 68.33% 0.080
18F–FDG-PET 21 64,197 85.00% 100.00% 92.50% < 0.001
rCBF-SPECT 17 58,975 70.00% 77.78% 73.89% 0.018
(c) MKL-ROI (BA atlas)

T1-MRI: T1-weighted magnetic resonance imaging; 18F-FDG-PET: 18F-fluorodeox-
yglucose-positron emission tomography; rCBF-SPECT: regional cerebral blood flow single
photon emission computed tomography; NSR: Number of selected ROIs (assigned non-
zero ROI-weight); NF: number of features (voxels) in the set of selected ROIs; TP: true
positive (percentage of patients correctly classified); TN: true negative (percentage of
healthy controls correctly classified); BA: balanced accuracy; p: statistical significance
given by permutation.
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inspection of individual PET data from patients suffering from AD or
amnestic mild cognitive impairment (MCI) compared to elderly con-
trols; these investigations have highlighted the relevance of metabolic
hypoactivity in the posterior cingulate gyrus (BA 23) and medial par-
ietal cortex (BA 7) among the most characteristic features of the pro-
dromal phase of AD and early stages of dementia (Ishii, 2014;
Minoshima et al., 1997; Mosconi et al., 2010; Silverman, 2004). It is
relevant to note that these brain regions alone were responsible for
approximately 25% and 40% (using the AAL and BA atlases, respec-
tively) of the ROI-weight of discrimination between AD patients and
controls in our MKL-ROI analysis of PET data. Our results indicate that
such localized foci of brain hypoactivity have very strong voxel-weight
in the discrimination between patients with early AD and elderly con-
trols when SVM-based methods are applied to PET data. It is widely
known that local molecular and neuropathological changes and dis-
connection patterns that characterize AD may begin several years be-
fore any cognitive deficits emerge (Delacourte et al., 1999; Morris et al.,
1996), slowly progressing in a spreading fashion across cortical and

subcortical brain regions (Braak and Braak, 1991; Delacourte et al.,
1999). Our PET findings reinforce the view that the macroscopic brain
metabolic patterns that most critically typify the probable diagnosis of
AD on an individual basis remain relatively localized even when clear
symptoms of dementia are already present. By highlighting the same
brain regions emphasized in previous studies investigating the clinical
utility of 18F-FDG-PET data to allow diagnostic predictions in individual
elderly subjects (Ishii, 2014), our findings strengthen the potential
usefulness of ML-based approaches in clinical practice.

When comparing the MKL-ROI-based findings obtained with SPECT
with the results of the same analysis using PET data, we found a con-
siderable degree of coincidence in regard to the brain regions that had
the largest ROI-weight of discrimination between AD patients and
healthy controls between the two functional imaging modalities, par-
ticularly in regard to medially located posterior cortical regions (medial
parietal cortex encompassing the precuneus and posterior cingulate
gyrus). Taking into account the results based on the BA atlas, there was
also concordance in the MKL-ROI-based analysis of PET and SPECT data

Fig. 2. ROC curves. (a) Whole-brain-based SVM using T1-MRI; (b) Whole-brain-based SVM using FDG-PET; (c) Whole-brain-based SVM using rCBF-SPECT; (d) AAL-based MKL-ROI using
T1-MRI; (e) AAL-based MKL-ROI using FDG-PET; (f) AAL-based MKL-ROI using rCBF-SPECT; (g) Brodmann-based MKL-ROI using T1-MRI; (h) Brodmann-based MKL-ROI using FDG-PET;
(i) Brodmann-based MKL-ROI using rCBF-SPECT.
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in regard to the considerable ROI-weight attributed to the medial
temporal region, despite some differences in the exact location of the
temporolimbic findings between the SPECT (parahippocampal gyrus
and perirhinal cortex – BA 36 and BA 27) and PET (perirhinal cortex
only – BA 36) analyses. The coincidence between MKL-ROI-based
ranking profiles obtained with PET and SPECT data reinforces the va-
lidity of the spatial pattern of rCBF deficits mapped by SPECT when
compared to the location of the brain metabolic abnormalities typically
delineated with FDG-PET in AD patients when compared to elderly
controls (Matsuda, 2007).

Since we corrected both PET and SPECT data for PVE, it is unlikely
that the large ROI-weight attributed to functional abnormalities in
postero-medial cortical regions and temporo-limbic structures in our
study was due to PVE introduced by brain atrophy in those regions. This
strengthens the view that functional neuroimaging methods applied to
the diagnosis of AD provide high sensitivity to uncover localized pat-
terns of functional hypoactivity in regions critical to the pathophy-
siology of AD regardless of the presence of brain atrophy in the same
locations (Mevel et al., 2007).

There were important differences in regard to the labeling and

ranking of brain regions between the analyses carried out with the two
atlases for PET and SPECT data. For instance, in regard to the ROI-
weights attributed to medially located posterior cortical regions (pre-
cuneus and posterior cingulate gyrus), the BA atlas produced larger
values for both PET and SPECT data (above 40%) compared to the AAL
atlas (around 25% for PET and 29% for SPECT, respectively). Also,
much larger ROI-weights were attributed to functional patterns in
medial temporal cortical regions (mainly perirhinal cortex for PET, and
parahippocampal plus perirhinal cortices for SPECT) when the BA atlas
was used as compared to the AAL atlas (which attributed only small
ROI-weights to the parahippocampal gyrus and hippocampus). In both
AD and MCI, different results depending on the atlas employed have
been repeatedly reported in previous ML-based studies based on the use
of ROIs (Ota et al., 2015, 2014; Yao et al., 2015). This is to be expected,
given their considerable differences in regard to the size and boundaries
of the ROIs employed between the AAL and BA templates (Ota et al.,
2014).

Despite some differences between atlases, the discrimination be-
tween AD patients and controls using the T1-MRI GM data in our study
also highlighted medially located posterior cortical regions

Table 3
Regions from AAL atlas selected by MKL-ROI to classify AD patients and healthy controls.

IRM-1T 18F-FDG-PET CBF-SPECT 

ROI
ROI-

weight 
(%) 

rAUC ROI 
ROI-

weight 
(%) 

rAUC ROI 
ROI-

weight 
(%) 

rAUC 

1 Inf. temporal gyrus 22.344 6.37 Posterior cingulate gyrus 31.238 2.03 Posterior cingulate gyrus 26.882 3.63 

2 Caudate nucleus 19.379 0.89 Fusiform gyrus 15.398 3.15 Fusiform gyrus 22.680 1.08 

3 Paracentral lobule 11.489 0.04 90.1841.41suenuC Angular gyrus 20.796 9.73 

4 Sup. temporal pole 9.595 0.22 Medial frontal gyrus 10.524 12.48 Hippocampus 11.655 4.38 

5 Posterior cingulate gyrus 9.029 22.28 Globus pallidus 8.848 0.05 Lingual gyrus 10.014 0.41 

6 Amygdala 7.948 8.96 Angular gyrus 7.499 3.83 Precuneus 3.186 4.82 

7 Sup. temporal gyrus 6.575 1.18 Sup. parietal lobule 5.693 1.01 Globus pallidus 2.343 0.09 

8 Inf. frontal gyrus, pars orb. 4.339 1.81 Olfactory cortex 2.742 51.61 Postcentral gyrus 1.070 0.30 

9 Medial orbitofrontal cortex 3.071 0.25 74.0086.1sumalahT Sup. parietal lobule 0.444 1.25 

10 Inf. parietal lobule 2.332 3.37 Paracentral lobule 0.528 0.15 40.1043.0suenuC

11 Postcentral gyrus 1.444 0.94 Hippocampus 0.487 2.23 Inf. frontal gyrus, pars tri. 0.177 3.26 

12 Precuneus 0.741 2.46 Precuneus 84.2323.0 Paracentral lobule 0.122 0.10 

13 Middle frontal gyrus 0.541 2.09 Calcarine sulcus 0.262 0.23 Medial frontal gyrus 0.100 6.10 

14 20.2461.0alusnI96.7225.0suryglaropmetesrevsnarT 15.0660.0aladgymA

15 Sup. frontal gyrus, orbital part 0.258 3.27 Middle occipital gyrus 0.103 1.02 Transverse temporal gyrus 0.046 9.52 

16 Inf. frontal gyrus, pars tri. 62.0640.0nematuP07.0890.0mulucrepocidnaloR47.1032.0

17 Middle occipital gyrus 0.074 3.07 Gyrus rectus 0.085 11.66 Middle occipital gyrus 0.033 1.65 

18 tnorf.puS02.3760.0suryglaropmetelddiM96.2270.0sumalahT al gyrus 0.001 2.37 

19 Sup. Occipital 0.015 3.77 Inf. frontal gyrus, pars tri. 0.049 7.40 

20 Inf. occipital cortex 0.003 3.15 Medial orbitofrontal cortex 46.3420.0

21 Inf. frontal gyrus, pars orb. 0.023 5.61 

22 110.0aeraetalugnicdiM 68.1

23 400.0suryglapmacoppiharaP 28.7

T1-MRI: T1-weighted magnetic resonance imaging; 18F-FDG-PET: 18F-fluorodeoxyglucose-positron emission tomography; rCBF SPECT: regional cerebral blood flow single photon
emission computed tomography; ROI: region of interest obtained from AAL atlas. rAUC: ratio between areas under curve corresponding to negative and positive voxel-weights (values
close to zero reflect a predominance of positive values whereas values above 1 are found in regions with predominant negative values). The words orbitalis and triangularis. were
abbreviated as orb. and tri., respectively, and the words superior and inferior were abbreviated as sup. and inf., respectively. The brain regions that were selected in all three modalities
were highlighted in dark blue. Regions that were selected in both functional modalities (18F-FDG-PET and rCBF-SPECT) were highlighted in medium blue. Regions that were selected in
both T1-MRI and one of the functional modalities (either 18F-FDG-PET or CBF-SPECT) were highlighted in light blue. For each modality (T1-MRI, 18F-FDG-PET and CBF-SPECT), the
selected ROIs were sorted in descending order of ROI-weight.
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Table 4
Regions from BA atlas selected by MKL-ROI to classify AD patients and healthy controls.

IRM-1T 18F-FDG-PET CBF-SPECT 

 ROI 
ROI-

weight 
(%) 

rAUC ROI 
ROI-

weight 
(%) 

rAUC ROI 
ROI-

weight 
(%) 

rAUC 

1 BA34 Dorsal entorhinal ctx. 17.807 3.66 BA7 Medial parietal ctx. 34.259  2.60 BA7 Medial parietal ctx.  23.471 2.30 

2 BA23 Posterior cingulate gr. 16.564 1.13 BA36 Parahippocampal gr. 14.335  7.15 BA18 Secondary visual ctx. 19.052 0.22 

3 BA20 Inferior temporal gr. 16.062 3.32 BA32 Dorsal anterior cingulate  9.722  4.44 BA23 Posterior cingulate gr. 15.977 6.93 

4 BA22 Auditory temporal ctx. 15.951 0.98 BA23 Posterior cingulate gr. 8.683  1.93 BA27 Pyriform ctx. 13.775 6.45 

5 BA4 Primary motor ctx. 8.850 0.22 BA26 Ectosplenial area 8.301  2.53 BA30 Agranular retrolimbic  9.1602 1.51 

6 BA10 Anterior prefrontal ctx. 7.971 0.56 BA30 Agranular retrolimbic  7.472  0.96 BA26 - Ectosplenial area 5.3420 11.65 

7 BA37 Fusiform gr. 6.312 3.09 BA17 Primary visual ctx. 5.712 0.36 BA43 Somatosensory ctx. 4.6339 0.14 

8 BA45 Inferior frontal gr. (pars tri) 4.741 2.24 BA39  Angular gr. 2.691  4.84 BA39  Angular Gr. 3.1095 5.72 

9 BA28 Ventral entorhinal ctx. 1.236 0.43 BA45 Inferior frontal gr. (pars tri) 2.619  3.07 BA37 Fusiform gr. 2.1893 0.67 

10 BA3 Primary somatosensorial. ctx. 1.027 0.88 BA18 Secondary visual ctx. 1.750  0.25 BA32 Dorsal anterior cingulate  1.6145 13.87 

11 BA7 Medial parietal ctx. 0.942 0.63 BA43 Somatosensory ctx. 1.105  0.26 BA36 Parahippocampal gr. 0.9387 6.54 

12 BA38 Temporopolar area 0.899 0.35 BA35 Perihinal ctx. 0.904  1.03 BA45 Inferior frontal gr. (pars tri) 0.4814 3.10 

13 BA41 Anterior transv. Temporal 0.782 2.16 BA4 Primary motor ctx. 0.685  0.11 BA3 Primary somatosensorial ctx. 0.0923 0.14 

14 BA47 Frontal ctx. (pars orb.) 0.278 1.14 BA27 Pyriform ctx. 0.661  3.25 BA34 Dorsal entorhinal ctx. 0.0898 0.95 

15 BA2 Posterior primary somatosens. ctx. 0.267 1.31 BA41 Anterior transv. temporal  0.321  14.88 BA35 Perihinal ctx. 0.0716 3.13 

16 BA46 Dorsolateral prefrontal ctx. 0.119 1.96 BA3 Primary somatos. ctx. 0.295  0.10 BA41 Anterior transv. temporal  0.0007 0.95 

17 BA42 Auditory ctx. 0.087 0.68 BA37 Fusiform gr. 0.188 1.28

18 BA29 Granular retrosplenial ctx. 0.053 55.99 BA34 Dorsal entorhinal ctx. 11.1721.0

19 BA11 Orbitofrontal ctx. 0.051 0.86 33.9211.0.xtclanihrotnelartneV82AB

02 72.3440.0aeraraloporopmeT83AB

07.3510.0.xtclatnorferplaretalosroD9AB12

T1-MRI: T1-weighted magnetic resonance imaging; 18F-FDG-PET: 18F-fluorodeoxyglucose-positron emission tomography; rCBF SPECT: regional cerebral blood flow single photon
emission computed tomography; BA: Brodmann's area; ROI: region of interest obtained from BA atlas;. rAUC: ratio between the areas under curve corresponding to negative and positive
voxel-weights (values close to zero reflect a predominance of positive values whereas values above 1 are found in regions with predominant negative values). The words orbitalis and
triangularis. were abbreviated as orb. and tri., respectively, and the words cortex and gyrus were abbreviated as ctx. and gr., respectively. The brain regions that were selected in all three
modalities were highlighted in dark blue. Regions that were selected in both functional modalities (18F-FDG-PET and rCBF-SPECT) were highlighted in medium blue. Regions that were
selected in both T1-MRI and one of the functional modalities (either 18F-FDG-PET or rCBF-SPECT) were highlighted in light blue. For each modality (T1-MRI, 18F-FDG-PET and rCBF-
SPECT), the selected ROIs were sorted in descending order of ROI-weight.

Fig. 3. ROIs from AAL atlas selected by MKL-ROI to classify AD patients and healthy controls. The regions were overlapped on a structural template and their colour varies from light
yellow (minimum ROI-weight) to red (maximum ROI-weight).
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Fig. 4. ROIs from BA atlas selected by MKL-ROI to classify AD patients and healthy controls. The regions were overlapped on a structural template and their colour varies from light
yellow (minimum ROI-weight) to red (maximum ROI-weight).

18F-FDG-PET(a)

(b) rCBF-SPECT
Fig. 5. Voxel-weight in BA areas 37 and 7: (a) 18F–FDG-PET; (b) rCBF-SPECT.
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(particularly the posterior cingulate gyrus) and temporolimbic struc-
tures (mainly entorhinal cortex and inferior temporal region for the
Brodmann-based analysis and the amygdala and the inferior and su-
perior temporal gyri for the AAL-based analysis). One notable finding
regarding the T1-MRI analysis regarded the greatest emphasis given to
atrophy located in the lateral temporal neocortex (whichever the atlas
employed), which was not highlighted in the ranking analyses for PET
or SPECT data. Such T1-MRI findings are consistent with the results of
previous mean group comparisons of patients with mild AD and elderly
controls using voxel-based morphometry methods, which have reported
prominent findings of reduced GM volume of the lateral temporal
neocortex in AD (Busatto et al., 2003; Desikan et al., 2008). A high
discrimination ROI-weight for lateral temporal atrophy (based on T1-
MRI) not accompanied by discriminative hypoactivity in the same re-
gions (based on PET or SPECT imaging) is an intriguing pattern that
awaits replication in future investigations with larger samples.

It is important to emphasize, however, that there is a mismatch of

brain structures included in each ROI across the atlases. For example,
the dorsal entorhinal cortex (Brodmann area 34) received the highest
weight when classifying T1 images using the Brodmann atlas (Table 4).
However, there is no specific ROI delimitating the entorhinal region in
the AAL atlas. The dorsal entorhinal ROI of the Brodmann atlas has a
high degree of overlap with the amygdala ROI from the AAL atlas. Not
surprisingly, the amygdala ROI received a high weight when classifying
T1 images using the AAL atlas (Table 3). Therefore, it is possible that 1)
atrophic changes in the entorhinal cortex were more precisely labelled
when using the Brodmann atlas, and that 2) these changes reflected in a
high weight to the amygdala ROI when using the AAL atlas. We illus-
trate the overlap across the atlases in these areas in Fig. S1 (supple-
mentary material).

One novel aspect of our investigation consisted in the calculation of
the rAUC, the ratio between the positive and negative voxel-weights in
each selected ROI. This strategy allowed us to identify a few ROIs in
which the ROI-weight of discrimination was due to a pattern of

Fig. 6. Predominance of signal in voxel-weights. The colours represent the rAUC (ratio between AUC- and AUC+) for each selected ROI in the AAL atlas. For clarity, rAUC was
normalized independently for each modality so that cool colours (from purple to light blue) always represent rAUC< 1 (i.e., regions with predominantly positive voxel-weights). In the
same way, warm colours (from yellow to red) represent rAUC> 1 (regions with predominantly negative voxel-weights) and greenish colours represent regions with rAUC close to 1 (no
clear predominance of signal).

Fig. 7. Predominance of signal in voxel-weights. The colours represent the rAUC (ratio between AUC- and AUC+) for each selected ROI in the BA atlas. For clarity, rAUC was normalized
independently for each modality so that cool colours (from purple to light blue) always represent rAUC< 1 (i.e., regions with predominantly positive voxel-weights). In the same way,
warm colours (from yellow to red) represent rAUC> 1 (regions with predominantly negative voxel-weights) and greenish colours represent regions with rAUC close to 1 (no clear
predominance of signal).
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increased voxel-weight values in AD individuals present in all mod-
alities. Surprisingly, the ROI-weights attributed to such regions were far
from negligible, ranging from approximately 20% to 40% of the dis-
crimination between AD patients and controls depending on the ima-
ging modality. The main brain regions in which such pattern of in-
creased voxel values in AD patients relative to controls was apparent
are known to be spared by neurodegenerative AD-related processes
until late stages of dementia (Busatto et al., 2003; Silverman et al.,
1999; Tzourio-Mazoyer et al., 2002), including the somatosensory
cortex (BA 3, BA 43), primary motor cortex (BA 4), basal ganglia,
thalamus and visual cortex (BA17 and BA18). Other recent SVM in-
vestigations of FDG-PET data have reported similar findings, with the
somatosensory cortex among the brain regions showing highest dis-
crimination between MCI patients converting to AD and healthy con-
trols (Pagani et al., 2015). Apparent functional hyperactivity in brain
regions known to be spared until late stages of AD has been reported in
previous PET and SPECT studies that performed mean group compar-
isons against elderly controls (Duran et al., 2007; Pagani et al., 2015;
Soonawala et al., 2002); since the metabolic activity and cerebral blood
flow in AD individuals is decreased in many GM areas, data normal-
ization of count values in each ROI to the global tracer uptake in the
brain leads to an overestimation of the relative activity measures in AD
subjects in the selected brain regions that are most notably spared by
the neurodegenerative AD process (Duran et al., 2007). The findings
reported herein demonstrate that the classification of voxels with in-
creased values in AD patients relative to healthy controls make an
important contribution to their diagnostic discrimination when SVM-
based methods are applied to PET, SPECT or T1-MRI data.

The present investigation also aimed to compare diagnostic accu-
racy indices obtained with the MKL-ROI approach to the indices ob-
tained with SVM based on the whole-brain. There has been some degree
of controversy in previous ML-based neuroimaging studies of AD in
regard to whether greater diagnostic accuracy for the diagnosis of AD is
afforded when analyses are based on whole-brain data or, instead, se-
lected brain regions thought to be critical to the pathophysiology of AD
(Cuingnet et al., 2011; Magnin et al., 2009; Pagani et al., 2015). We
found some support to the latter prediction, since there was a clear
increment in accuracy for PET data when applying the MKL-ROI-based
method (with both the AAL and BA atlases) as compared to whole-brain
findings, due to an increased ability to avoid false positives. This is a
potentially relevant finding, and we argue that such accuracy increment
may be explained by the large ROI-weights attributed specifically to
postero-medial cortical regions in the MKL-ROI-based analyses, in-
cluding the posterior cingulate gyrus (in the Brodmann-based analysis)
and the precuneus (in the AAL-based analyses). It is interesting to note
that such increment in diagnostic accuracy seen for 18F-FDG-PET data
was not obtained for rCBF SPECT data; this is consistent with the
findings of recent direct comparisons that favour the use of 18F-FDG-
PET rather than rCBF-SPECT for the diagnosis of AD when accuracy is
measured with basis on visual inspection of key brain regions by experts
(O'Brien et al., 2014). When we compared the accuracy indices afforded
by the two SVM methods specifically for the T1-MRI data, results were
less conclusive than those for 18F-FDG-PET. With MKL-ROI using the
AAL atlas, the number of AD patients correctly classified did increase
slightly for T1-MRI data; however, we actually found some degree of
decrement in accuracy for T1-MRI data when the MKL-ROI-based
method with the BA atlas was used in comparison to the whole-brain
analysis, driven by a slightly lesser ability to correctly classify healthy
controls as true negatives.

Limitations of the present investigation must be acknowledged, such
as the modest size of the samples recruited. It is plausible to predict that
greater power afforded by the use of samples of larger size would
produce larger diagnostic accuracy indices than those reported herein
(Frost and Kallis, 2009). On the other hand, even if modest in size, our
sample was sufficient to allow a ranking profile of brain regions that is
highly consistent with previous neuroimaging findings and

pathophysiological models of AD. Moreover, the MKL-ROI analysis of
PET data (using either of the two atlases) produced a balanced accuracy
above 90%, a measure that is highly similar to accuracy indices re-
ported in previous studies carried out with larger samples (Zhang et al.,
2011). We should also acknowledge that although we employed state-
of-the-art methods to correct functional neuroimaging data for PVE,
such PVE correction methodology has been validated for 18F-FDG-PET
rather than SPECT rCBF data.

In conclusion, the MKL-ROI approach used in the present SVM-
based multimodal neuroimaging investigation highlighted brain areas
of known relevance to the pathophysiology of AD (namely the posterior
cingulate gyrus, precuneus and temporo-limbic cortical regions) as
highly discriminative in the comparison of patients with mild AD pa-
tients versus age- and gender-matched healthy controls, particularly in
the analyses carried out using functional imaging data (18F–FDG-PET or
rCBF SPECT). Moreover, the MKL-ROI strategy allowed us to demon-
strate that voxels located in other brain regions known to be spared by
AD-related neurodegenerative changes also provide substantial con-
tribution to the SVM-based discrimination between AD and elderly
control individuals, consistently across structural and functional neu-
roimaging modalities. Finally, while similar diagnostic accuracy indices
were obtained with the MKL-ROI and whole-brain methods for T1-MRI
and rCBF SPECT data, there was an increment in accuracy for the PET
data when applying the MKL-ROI-based method (with both atlases),
again underscoring the relevance of functional activity decrements in
circumscribed posterior cortical regions as a critical imaging feature for
the early diagnosis of AD.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.10.026.
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