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Background: Measurements and models of current flow in the brain during transcranial Direct Current
Stimulation (tDCS) indicate stimulation of regions in-between electrodes. Moreover, the folded cortex
results in local fluctuations in current flow intensity and direction, and animal studies suggest current
flow direction relative to cortical columns determines response to tDCS.
Methods: Here we test this idea by using Transcranial Magnetic Stimulation Motor Evoked Potentials
(TMS-MEP) to measure changes in corticospinal excitability following tDCS applied with electrodes
aligned orthogonal (across) or parallel to M1 in the central sulcus.
Results: Current flow models predicted that the orthogonal electrode montage produces consistently
oriented current across the hand region of M1 that flows along cortical columns, while the parallel
electrode montage produces non-uniform current directions across the M1 cortical surface. We find that
orthogonal, but not parallel, orientated tDCS modulates TMS-MEPs. We also show modulation is sensitive
to the orientation of the TMS coil (PA or AP), which is thought to select different afferent pathways to M1.
Conclusions: Our results are consistent with tDCS producing directionally specific neuromodulation in
brain regions in-between electrodes, but shows nuanced changes in excitability that are presumably
current direction relative to column and axon pathway specific. We suggest that the direction of current
flow through cortical target regions should be considered for targeting and dose-control of tDCS.
Crown Copyright © 2017 Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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employ a bipolar electrode montage: one electrode is usually
placed over the target site and the other at a distance. So, for the
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Introduction

To date, the majority of studies in humans using transcranial
direct current stimulation (tDCS) to modulate cortical function

Abbreviations: PA, postero-anterior; AP, antero-posterior; ML, medio-lateral;
tDCS, transcranial direct current stimulation; MEP, motor evoked potential; M1,
primary motor cortex; TMS, transcranial magnetic stimulation; AP-TMS-MEPs,
motor evoked potentials elicited with anterior-posterior directed TMS; PA-TMS-
MEPs, motor evoked potentials elicited with posterior-anterior directed TMS.

* Corresponding author. UCL Institute of Neurology, London, WC1N 3BG, UK.

E-mail address: vishal.rawji.l1@ucl.ac.uk (V. Rawji).

https://doi.org/10.1016/j.brs.2017.11.001

hand area of motor cortex (M1), a large anode is conventionally
centred over the anatomical location of the “hand knob” of the
precentral gyrus, with a cathode over the contralateral orbit [1].
This montage, based on canonical studies by Nitsche, Paulus and
colleagues on how the position of large electrodes influences
population-averaged modulation of TMS-MEPs [2—4], is now
widely applied for targeting diverse cortical target regions [5,6]
though rarely with consideration for nuanced dose response
[7—11]. Intra-cranial recordings [12] and clinical imaging [13,14],
supported by current flow models [15,16] show bipolar electrode
montages produce current flow in brain regions between elec-
trodes. Though putative brain targets between electrodes have
been considered [17—19], previous tDCS studies have not system-
atically isolated the consequences of inter-electrode current flow.

The “inter-electrode” considerations provoke a second question.
Animal studies in lissencephalic animals indicate polarity specific
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(anodal/cathodal) excitability changes for current directed normal
to the cortical surface [2], which corresponds to current flow
directed along the primary dendritic axis of cortical pyramidal
neurons [20,21]. In the human gyrencephalic cortex, such
controlled stimulation cannot easily be achieved and the directions
of current flow underneath an electrode are complex [22,23]. The
position of primary motor cortex in the anterior wall of the central
sulcus suggests that electrode montages that direct current flow
perpendicular through this gyral wall (and thus predominantly
along the primary dendritic axis of cortical pyramidal neurons) may
optimally modulate corticospinal excitability (CSE). The second
question we address here is therefore whether there are differences
in the effect of tDCS on CSE when current is oriented perpendicu-
larly across, compared with parallel to, the cortical surface at the
level of the M1 hand area. To this end, we positioned tDCS elec-
trodes 7 cm anterior and posterior to the hand area of M1 to direct
current flow across the central sulcus (Fig. 1). This means that
depending on the position of the anode and cathode, current will
flow through M1 in anterior-posterior (AP-tDCS) or posterior-
anterior (PA-tDCS) direction, respectively. In a second condition,
we positioned electrodes 7 cm medial and lateral to the M1 hand
area to direct current flow in parallel along the cortical surface of
central sulcus (Fig. 1). We refer to this as medio-lateral tDCS (ML-
tDCS). Motor-evoked potentials (MEPs) elicited with TMS (TMS-
MEPs) were used to access CSE changes after stimulation with these
two orthogonal tDCS orientations.

We also addressed a third question. The effects of TMS on motor
cortex are well-known to be directional [24,25]. TMS with a
monophasic pulse that induces an electric current flowing from
approximately posterior to anterior across the central sulcus
(perpendicular to the line of the individual's central sulcus at that
point) evokes MEPs (PA-TMS-MEPs) that have a shorter latency and
lower threshold than stimulation with an anterior-posterior
induced current (AP-TMS-MEPs). It is thought that this is because
the two directions of stimulation activate different sets of presyn-
aptic inputs to corticospinal neurones [20]. Indeed, brain slice
studies of tDCS established modulation varies across afferent
axonal pathways or varied orientation [23,26]. We therefore
hypothesised that any effects of tDCS across M1 might also be
directionally selective, and that they would interact in different
ways with the direction of TMS used for eliciting MEPs. Specifically,
using tDCS to direct current perpendicular to the M1 hand area, we
expected that stimulation with a posterior cathode and anterior
cathode (PA-tDCS) would influence MEPs evoked by PA and AP TMS
in a different way to tDCS applied with an anterior anode and
posterior cathode (AP-tDCS).

Methods
Participants

22 healthy volunteers (17 male, 21 right handed) aged 21-44
(mean age 28.95, SD 6.14) participated in this experiment. The
study was approved by the UCL Ethics Committee and none had
contraindications to TMS or tDCS as assessed by a TMS/tDCS
screening questionnaire.

Current flow modelling

Finite Element Method (FEM) models of tDCS were generated to
predict electric field (E-field) orientation along the motor cortex.
High resolution T1 and T2 weighted MRI scans (GRE sequence,
TR = 1900 ms, TE = 2.2 ms and SPACE sequence, TR = 3200 ms,
TE = 402 ms respectively for subject SO; MPRAGE, TR = 6.92 ms,
TE = 3.2 ms for subject S4) were previously collected and

segmented using a combination of automated and manual seg-
mentation techniques [27]. The two individualized subjects
selected had contrasting size, gender, hand knob shape, and
induced electric field sensitivity [27]. Automated segmentation
algorithms derived from Unified Segmentation in SPM8 [28,29]
were combined with updated tissue probability maps and
morphological filters (smoothing, dilation, erosion) specifically
developed for current flow modelling [30] Additional image masks
(fat, electrodes, gels) and regions of interest (M1) were segmented
using manual and semi-manual tools (Simpleware, Synopsys) to
remove aliasing artifacts, incorporate gyri-precise detail, and po-
sition stimulation electrodes along or across the hand knob of the
motor cortex. Adaptive tetrahedral meshes were generated using a
voxel-based algorithm (Simpleware, Synopsys) with multiple do-
mains corresponding to different material conductivies verified by
intra-cranial recording (in S/m: Scalp 0.465, fat 0.025, skull 0.01,
CSF 1.65, Grey matter 0.276, White matter 0.126, Air 1e-15, elec-
trode 5.99e7, gel 1.4) [31—33]. Meshes were imported into a FEM
solver (COMSOL Multiphysics) where the Laplace equation for
electrostatics (V - (cVV) = 0) was solved as the field equation given
a normal current density boundary condition on the anode equiv-
alent to 1 mA, ground boundary condition on the cathode, and
insulation on all other external boundaries. Results were scaled
linearly to match experimental conditions when necessary. E-field
orientation was visualized with surface arrows seeded evenly along
M1. Arrow colors corresponded to E-field normal (n-E) to the
cortical surface. By convention, positive normal E-field represented
inward “anodal” E-field (red) while negative normal E-field repre-
sented outward “cathodal” E-field (blue). Streamlines representing
current flow through M1 were generated by seeding 100 points
randomly along the surface of M1 and the gel-skin contact. Current
density was then traced throughout the model. Line thickness was
a logarithmic function of current density magnitude and colorized
to Voltage (red, anode; blue, cathode).

EMG recordings

Throughout the experiment, subjects were seated comfortably
in a non-reclining chair, with their right hand rested on a cushion.
Electromyographic (EMG) activity was recorded from the right first
dorsal interosseous (FDI) muscle using Ag/AgCl cup electrodes ar-
ranged in a belly-tendon montage. The raw signals were amplified
and a bandpass filter was also applied. (20 Hz to 2 kHz (Digitimer,
Welwyn Garden City, UK)) Signals were digitised at 5 kHz (CED
Power 1401; Cambridge Electronic Design, Cambridge, United
Kingdom) and data were stored on a computer for offline analysis
(Signal Version 5.10, Cambridge Electronic Design, UK was used).

Transcranial magnetic stimulation

Single pulse, monophasic TMS was employed using a Magstim
2007 stimulator (The Magstim Co. Ltd) connected via a figure-of-
eight coil with an internal wing diameter of 7 cm. The hotspot
was identified as the area on the scalp where the largest and most
stable MEPs could be obtained for the right FDI muscle, using a
given suprathreshold intensity. The coil was held approximately
perpendicular to the presumed central sulcus and held tangentially
to the skull with the coil handle pointing backwards for postero-
anterior (PA) stimulation and handle pointing forwards for
antero-posterior (AP) stimulation. A coloured pencil was used to
draw the boundaries around the coil so that it could be accurately
positioned to the hotspot for further recordings, for PA and AP coil
orientations. Hence we found the optimal orientation and location
pertaining to the FDI muscle in each individual. TMS was delivered
at a rate of 0.2 Hz during data collection.
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Fig. 1. Comparison of electrical field modelling for montages directing current across and along the cortical surface.

Electric field orientation on the cortex as applied by electrodes along (A) or across (B) the motor strip. Note: The streamlines and arrows have two separate colorscales. Starting
outside the motor-strip, streamlines trace the direction of current density from high to low voltage (red to blue), anode to cathode. The streamlines confirm that current flows down
the voltage gradient established by the electrodes and shaped by the head anatomy. On the motor strip, arrows illustrate the direction of electric field passing through the motor
cortex surface. Arrow colour represents normal electric field where red is inward and blue is outward. Inward field corresponds to expected pyramidal soma depolarization and
outward corresponds to expected pyramidal soma hyper-polarization (though we note that the polarization of axons and terminals must also be considered). It is important to not
confuse the red/blue of voltage with the red/blue of electric field/polarization since the two are not simply related; none-the-less, this representation allows correlation of macro-
scale current flow patterns set by electrode montage with gyri-scale current flow pattern which determine cellular polarization. These modelling results show how current can be
directed to flow more uniformly through M1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Transcranial direct current stimulation

Transcranial direct current stimulation (tDCS; Starstim, Barce-
lona; 1 mA) was applied via 3.14 cm? Ag/AgCl gelled electrodes
yielding an average electrode current density of 0.318 mA/cm?. The
stimulation was applied for a total of 10 min, ramped up and down
for 5 s at the beginning and end of the stimulation. Participants
asked to stay awake and at rest during the stimulation. Sham
stimulation involved ramping up then down both at the start and
end of the 10 min period, with zero stimulation for the remaining
time.

TDCS electrodes were positioned 7 cm anterior and posterior to
the TMS hotspot along the orientation of the TMS coil; two further
electrodes were placed 7 cm medial and lateral to the hotspot
perpendicular to the coil orientation (i.e. along the length of the
central sulcus). We note that this convention is with regards to the
approximate orientation of the central sulcus, which is generally
oriented at about 45° with respect to the midline. For simplicity, we
will assume that this corresponds to the anterior-posterior and
medio-lateral orientation of the brain.

Stimulation was set up remotely on a computer and delivered
via a Bluetooth receiver connected to the electrodes. We refer to
stimulation with a posterior anode and anterior cathode as PA-
tDCS, to indicate the direction of the electric field; AP-tDCS refers
to stimulation with an anterior anode and posterior cathode. We
refer to stimulation with a medial anode and lateral cathode
(directing current flow approximately in parallel to the central
sulcus) as ML-tDCS (see Fig. 2). Subjects were blinded to the type of
stimulation.

Experimental parameters

Resting motor threshold (RMT) was defined as the lowest TMS
stimulus intensity to evoke a response of 50 1V in 5 out of 10 trials
in the relaxed FDI using the optimal PA orientation [34].

Twenty MEPs were collected before and after tDCS, with post
tDCS MEPs collected every 10 min from TO-T40. The TMS stimulus
intensity was set at the intensity required to evoke a response of
1 mV peak-to-peak amplitude (SITmV), and this intensity was kept
constant throughout the entire experiment. The mean amplitude of
these MEPs was calculated for each time point for each subject.

Experiment 1

In experiment 1, we investigated whether corticospinal excit-
ability could be modulated with an electrode montage for which
the region of interest (M1 hand region) was positioned between
our stimulating electrodes. This was accomplished using two
different stimulating montages, PA and ML tDCS (as described
above), to investigate whether direction of current flow across M1
could differentially modulate responses. To this end, fifteen people
participated in a crossover study, which consisted of three rando-
mised sessions (ML-tDCS, PA-tDCS and sham), each separated by at
least five days. MEPs were assessed before and after tDCS using PA
TMS.

Experiment 2

Following the interesting results from experiment 1, we next
asked whether the observed effect of PA-tDCS on corticospinal
excitability might be explained by specific modulation of posterior-
to-anterior or anterior-to-posterior inputs into M1, as probed by
exploiting the known directional sensitivity of TMS over M1.
Fourteen people participated in this experiment, eight of whom
participated in experiment 1. PA-tDCS was applied and the effects
on PA-TMS-MEPs and AP-TMS-MEPs were assessed. For each TMS
stimulus direction at each time point, 20 MEPs were acquired.

Experiment 3

To complete the permutations, we finally assessed the effect of
AP-tDCS on both PA and AP TMS pulses in the same group as in
experiment 2.

Data analyses

The amplitude of each single MEP at each time point was
measured and averaged in each individual. Data from each indi-
vidual was then averaged into a grand mean and entered into a
two-way repeated measures analyses of variance (rmANOVA) with
main factors “STIMULATION” (in experiment 1: ML-tDCS, PA-tDCS
and Sham) or “COIL DIRECTION” (PA and AP TMS coil orientations in
experiments 2 and 3) and “TIME” (Baseline, TO, T10, T20, T30 and
T40 for all experiments). Absolute MEP values were used in each
statistical test. In cases where there was a significant “STIMULA-
TION” x “TIME” OR “COIL DIRECTION x TIME” interaction, analysis
showed no overall effect of TIME from TO-T40 (i.e. post-tDCS).
Therefore we calculated the mean post-tDCS effect and expressed
this as a fraction of the baseline for post hoc testing. To examine
test-retest reliability between individuals having repeated PA-tDCS
sessions, we used a (2,k) intraclass correlation coefficient.

Results
Modelling current flow

The electrode montages we used have not been explored in
detail previously. Adapting models with parameters previously
validated by intra-cranial recording [12], we calculated the ex-
pected electric field distribution in the central area of the cerebral
cortex using the electrodes and stimulation sites in the present
study. Fig. 1 shows the predictions for ML-tDCS (left) and PA-tDCS
(right). As reported by others [16,30,35,36], the modelling shows
that with bipolar montages substantial current flow (field in-
tensities) is produced between the two electrodes. There is a
notable and clear difference between the two electrode montages:
whereas ML-tDCS does not produce any uniformly directed elec-
trical fields through the main surface of motor cortex located in the
anterior bank of the central sulcus, PA-tDCS leads to relatively
uniform inward and outward electrical fields, which are perpen-
dicular relative to the cortical surface of M1. For AP-tDCS the cur-
rent directions reverse (not shown). Based on data from animal
models [21], inward and outward electric fields would correspond
to preferential pyramidal soma depolarization and hyper-
polarization, respectively. For ML-tDCS, the direction of the elec-
tric field is predominantly parallel long the cortical surface in
central sulcus, which would suggest no dominant pyramidal soma
polarization polarity. A following prediction would be that elec-
trode montages that lead to relatively uniform electrical fields
directed perpendicular to the cortical surface in M1 should be more
efficient in modulating CSE.

Physiological measurements

No significant differences were found between TMS thresholds
or amplitudes of the test MEP across sessions. As expected AP TMS
thresholds were higher than those for PA stimulation (see Table 1).

PA-versus ML-tDCS: effects on PA-TMS-MEPs

15 individuals in experiment 1 were given 10 min of 1 mA tDCS
using each of three separate tDCS montages tested in separate
sessions at least one week apart: PA-tDCS, ML-tDCS or sham-tDCS.
MEPs were evaluated at rest before and up to 40 min after tDCS

(2017), https://doi.org/10.1016/j.brs.2017.11.001
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Fig. 2. Effect of PA- and ML-tDCS on the amplitude of MEPs evoked by PA-TMS-MEPs.

Fig. 2 corresponds to experiment 1. A, mean (+SEM) MEP amplitudes at baseline and every 10 min between TO and T40 (red triangles = ML-tDCS, black squares = Sham, blue
circles = PA-tDCS). B, mean (+SEM) post-stimulation effect (averaged from TO to T40) expressed as a fraction of the baseline value in each group (ML, red; PA, blue; sham, black).
Asterisks represent paired t-test significant differences (p < 0.05 with Bonferroni's multiple correction) when compared to sham. C, individual data points contributing to the mean
values plotted in B. The head diagrams represent coil orientation and electrode configuration used: PA-TMS-MEPs, PA-tDCS and ML-tDCS. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Physiological parameters in each experiment.

rMT 1 mV MEP Intensity 1 mV MEP Amplitude (mV)

Experiment 1 (n = 15)

ML-tDCS 408 +1.85 493 +2.60 1.17 + 0.094
PA-tDCS 404 +1.84 484 +2.81 1.08 + 0.102
Sham 406 +1.93 482 +240 1.12 £ 0.121
Experiment 2 (n = 14)

PA-TMS 47.5 + 3.34* 1.04 + 0.057
AP-TMS 60.9 + 2.99* 0.98 + 0.054
Experiment 3 (n = 14)

PA-TMS 48.8 + 3.44* 1.12 + 0.056
AP-TMS 62.3 + 3.18* 1.02 + 0.057

The first two columns give values for resting motor threshold (rMT) and the in-
tensity required to evoke a 1 mV p-p MEP response (both expressed as percentage of
maximum power output). The last column gives the actual MEP amplitude achieved
in each condition to approximate the 1 mV target value. Errors are standard error of
the mean. Asterisks represent statistically significant differences between rows in
the columns (p < 0.05).

(Fig. 2A). PA-tDCS decreased the amplitude of MEPs whereas there
was no effect of either sham or ML-tDCS. This was confirmed in a
two-way repeated measures ANOVA with STIMULATION (PA, ML,
sham) and TIME as main factors which showed a significant
STIMULATION x TIME interaction (F (10, 140) = 1.991; p = 0.039,
1% = 0.125) indicating that MEPs were affected differently by each
type of tDCS. In order to understand the source of the interaction,
the mean post-tDCS effect has been expressed as a fraction of the
baseline in Fig. 2B. A one way ANOVA showed a significant effect of
type of STIMULATION (F [2,28] = 7.134; p = 0.002, 1 = 0.311), with
posthoc (Bonferroni corrected) paired t-tests and effect sizes
showing a significant difference between the effect of PA-tDCS and
sham (t = -3.279; p = 0.005; d = -1.110) and PA v. ML-tDCS (t = -
3.196; p = 0.006) but not between sham and ML-tDCS (t = 0.760;
p = 0.46; d = 0.302).

(2017), https://doi.org/10.1016/j.brs.2017.11.001
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PA-tDCS: contrasting effects on PA- and AP-TMS-MEPs

In experiment 2, we examined whether PA-tDCS had different
effects on the MEPs evoked by TMS directed in AP or PA fashion (ie.
the coil handle pointing forward or backward) in 14 participants.
Baseline MEPs to each direction of TMS had the same amplitude
(AP-TMS-MEPs: 0983 mV + 0.201 vs PA-TMS-MEPs:
1.042 mV + 0.226), although the absolute intensity required for
AP-TMS-MEPs (49.1 + 2.6%) was higher than for PA-TMS-MEPs
(62.9 + 2.8%). Collapsing all the post-tDCS MEPs and expressing
them as a fraction of the baseline (Fig. 3A) revealed a significant
effect of PA-tDCS on PA-TMS-MEPs (t = -2.73; p = 0.017,d = -0.980)
but no effect on AP-TMS-MEPs. There was a significant difference in
the effect on PA-TMS-MEPs vs AP-TMS-MEPs (t = -2.565; p = 0.024,
d = -0.946).

AP-tDCS: contrasting effects on PA- and AP-TMS-MEPs

Given the equivocal effects of PA-tDCS on AP-TMS-MEPs
(experiment 2), we finally tested whether more consistent effects
might be observed on AP-TMS-MEPs when AP-tDCS was employed
(experiment 3). In the same participants as in experiment 2 we

A

1.5+

Fraction of baseline

PA AP
Coil orientation

PA current

compared the effects of AP-tDCS on PA-TMS-MEPs and AP-TMS-
MEPs (Fig. 3B). Collapsing all the post-tDCS MEPs and expressing
them as a proportion of the baseline, post hoc paired t-tests
revealed that there was no difference in the effect of AP-tDCS on
MEPs evoked by the two coil orientations (t = -0.112; p = 0.913,
d = 0.035) nor were the MEPs to either type of stimulation changed
in size after AP-tDCS (Fig. 3B).

Variability in responses to PA-tDCS

In total, 22 different individuals were examined for the effects of
PA-tDCS on PA-TMS-MEPs. The results for all of them are plotted in
Fig. 4A to illustrate the variability of the effect. Averaging over all
post-tDCS time points gives a mean reduction of the MEP to
74.3 + 5.1% of baseline values.

In addition, 15 of these participants were tested on two separate
occasions. The mean data from session 1 and 2 are shown in Fig. 4B.
A two-way ANOVA showed no effect of SESSION (p = 0.2, F
[1,14] = 1.808; p = 0.2, n? = 0.028) and no SESSION*TIME inter-
action (F (5, 70) = 0.555; p = 0.70, n* = 0.223) indicating no sig-
nificant differences between the two sessions. There was however,
a main effect of TIME (F (5, 70) = 7.328; p = 0.017, n> = 0.630). The
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Fig. 3. Effect of PA-tDCS (A) and AP-tDCS (B) on the amplitude of MEPs evoked by PA- and AP-TMS-MEPs.

Plots A and B correspond to experiments 2 and 3 respectively. Graphs plot overall mean (+SEM) post-stimulation effects (averaged from TO to T40 and expressed as a fraction of
baseline values) for PA- (blue bars) and AP-TMS-MEPs (red bars). Asterisks represent significant differences between the two coil orientations (p < 0.05 with Bonferroni's multiple
correction). The head diagrams represent coil orientation and electrode configuration used: PA- and AP-TMS-MEPs, and PA- and AP-tDCS. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. A, inter-individual variation in the effect of PA-tDCS; B, repeatability of group mean response to PA-tDCS on the amplitude of MEPs evoked by PA-TMS-MEPs.

A, In all 22 individuals, MEPs evoked at each post-TDCS time point have been expressed as a fraction of baseline. The solid black line (square symbols) represents the average
response from all individuals. B, mean (+SEM) amplitudes at baseline and every 10 min, post-tDCS in a group of 15 participants who were tested on 2 separate occasions (red and
blue symbols and lines). The head diagrams represent coil orientation and electrode configuration used: PA-TMS-MEPs and PA-tDCS. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

interclass correlation coefficient for the mean percentage reduction
in MEP was 0.68, which is generally classified as moderate-strong
reproducibility.

Discussion

Selecting the scalp position of electrodes relative to a brain
target is a paramount consideration in tDCS [5] — the common
bipolar montage places one electrode over the target and the sec-
ond electrode at some distance. Motivated by previous studies (see
below) and specific modelling predictions (Fig. 1), the present study
shows that bipolar tDCS produces quantifiable changes in the
excitability of primary motor cortex when it is located between the
positions of the two stimulation electrodes, as opposed to placing
one electrode over M1. For the hand area, the effects on cortico-
spinal excitability depend also on the direction of the electric field:
in line with the predictions from current modelling, a montage
orthogonal (perpendicular) to the gyrus generated consistently
directed electric fields as compared with a montage along (parallel)
to the gyrus. This was reflected in the after-effects on MEPs: they
were suppressed after delivering perpendicular current but there

was no effect after parallel current. Finally, the direction in which
tDCS was applied across the sulcus (i.e. anode anterior or posterior)
interacted differentially with the direction of TMS pulses: PA-tDCS
affected PA-TMS-MEPs, but had no effect on AP-TMS-MEPs. AP-
tDCS had no significant effect on either direction of TMS.

Stimulation between two electrodes

Previous modelling studies have predicted bipolar tDCS will
produce cortical electric fields between the two stimulation sites
which may be as large or larger than those immediately under the
electrodes [16,37,38] — predictions recently validated [12,39,40].
Moreover, our own modelling presented here suggests that
perpendicular current flow through the sulcus produces more
uniformly directed current at the target site, compared to montages
that direct current along the sulcus. This leads to the prediction that
tDCS of M1 hand area will have different effects when current is
passed between electrodes posterior and anterior to the axis of the
central sulcus, compared with electrodes placed medial and lateral.
These predictions were indeed borne out by the present results:
PA-tDCS leads to aftereffects on corticospinal excitability whereas
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ML-tDCS has no effect. This also indicates that not just the strength
of current but also its direction with regards to the cortical surface
play an important role in mediating changes in corticospinal
excitability.

Although it is possible that the posterior anode changes activity
in parietal cortex and this secondarily leads to changes in M1,
previous work suggests that electrodes positioned more posteriorly
do not effectively modulate corticospinal excitability [35]. We
conclude that stimulation of sites between two scalp electrodes
occurs with bipolar tDCS, as dictated by the physics of current flow,
which has important implications for studies seeking to target a
specific brain region. Moreover, our results indicate that controlling
for the direction of current flow through a target region may help to
improve the efficacy of tDCS. For example, it is conceivable that in
many studies a mix of PA and ML currents will occur between
subjects. If one adds to this the notion that the intensity of stimu-
lation will vary greatly across subjects when controlling stimulator
output rather than effectively applied current inside the brain
[41,42], we have the situation of large variability in applied current
intensity and direction at the presumed target site. Indeed, given
our results, in which ML-tDCS produced no reliable effects on CSE,
such a mix of current flow direction may contribute to reports of
inter-subject variability in physiological and behavioural stimula-
tion outcomes [43—46]. At least for motor cortex, control of current
flow direction could be easily achieved based on the optimal
orientation and position of TMS for eliciting motor-evoked
potentials.

Directionality of tDCS directed across central sulcus

“Anodal stimulation” with a large electrode placed directly over
M1 can increase cortical excitability. This is usually explained in the
following way. Anodal stimulation produces in inward current flow
[17,36], though not exclusively depending on cortical folding [23].
Cortical pyramidal neurons, including those on the gyral surface of
M1, are aligned perpendicular to the surface of the cortex, such that
an inward current flow hyperpolarises their dendrites and depo-
larises the cell body [21]. Neurophysiological studies in animal
indicate that the net effect of this is an increase the excitability of
the neuron [47,48] including to synaptic inputs [23], favouring
build-up of an LTP-like effect over the 10 min of tDCS [2,49]. This is
thought to result in larger MEPs when the same inputs are activated
using TMS.

The current flow modelling work presented here shows that our
present placement of electrodes produces directional current
which, depending on the polarity, enters and exits from the pos-
terior and anterior banks of the precentral gyrus. For PA-tDCS, in-
ward flow on the anterior bank of the central sulcus should polarise
the pyramidal neurones in the sulcal wall (which are oriented
parallel to the surface of the brain) in the same way as direct
“anodal stimulation” over M1 is presumed to operate (though we
note this inference stems from animal studies with well-controlled
current flow). If so, then we might expect that PA-tDCS has the
same effect as conventional anodal tDCS. In fact, the opposite was
observed here: 10 min of 1 mA PA-tDCS suppresses MEPs, whereas
“anodal stimulation” directly over M1 enhances MEPs, despite this
effect also being variable [43].

The different excitation by “anodal tDCS” applied with con-
ventional or focal 4 x 1 HD electrodes [50], and inhibition by PA-
tDCS may be explained by difference in which neuronal elements
are modulated. In contrast to the above proposed action on cortical
neurons in the gyri-wall by PA-tDCS, “anodal tDCS” may modulate
TMS responses by polarisation of cortical neurons specifically in
gyral crowns, where inward direct current is indeed more likely

[23]. PA-tDCS will produce current at the gyri-crown parallel to the
cortical surface, which is orthogonal to cortical neurons but aligned
with cortico-cortical axons afferents. This leads to an alternative
hypothesis where PA-tDCS modulates TMS response by polar-
isation of afferent axons in the gyri crown, which are sensitive to
direct current. Animal neurophysiology suggests direct current
orientation toward the activated axon terminal (PA in this case) will
indeed decrease excitability [23,26].

Arange of further alternative explanations can be proposed, that
to varying extents explain the lack of the expected modulation of
directional tDCS on changes in PA-TMS-MEPs or AP-TMS-MEPs.
Even using HD electrodes, tDCS is not focal so net changes motor
excitability may reflect actions on other cortical regions [23,51]. A
none-trivial dependence on tDCS polarity was already known [8]
and the non-linear properties of neurons [52] and networks can
produce preferential responses to one tDCS polarity [53].

The seemingly null findings for ML-tDCS are also of interest.
Using this montage, any current flowing should flow orthogonal to
parts of the hand knob, thereby creating a polarized half and
depolarized half. In doing so, one might predict that the hetero-
geneity in the field induced should cause some subjects to have
inhibited responses. However, as can be seen, there is a trend to-
wards an excitatory effect of anodal, ML-tDCS. It would be inter-
esting to individualize tDCS based on high resolution M1 images, in
light of the potentially opposing effects on intrinsic hand muscles
depending on their medio-lateral location.

The heterogeneity of the induced electric field emphasises the
simplistic and outdated notion of anodal-exciting/cathodal-
inhibiting tDCS. We suggest that rather than a given montage
yielding a particular result, directing the current in such a way gives
an overall more consistent effect across the population.

Another explanation for the anisotropic effects of tDCS lies in
the difference in magnitude of the electric field induced between
PA- and ML-tDCS. The sensitivity of TMS coil orientation is partially
explained by higher generated fields for AP directed currents than
LM [54]. This has been proposed to be a result of the boundary
effect at the CSF-grey matter interface [55]. A similar effect should
therefore exist for tDCS generated currents. In fact, the modelling
performed for our montages indicated a difference in the magni-
tude of the currents at the region of interest between PA- and ML-
tDCS, which could account for the difference in effects seen on
corticospinal excitability.

In general, the nuance in neuromodulation identified here de-
rives from details of cortical folding and cellular morphology. Given
that AP-TMS-MEPs and PA-TMS-MEPs activate different inputs to
corticospinal output neurones [20] it is not unforeseen that AP-
TMS-MEPs were unaffected by PA-tDCS. The dependence on idio-
syncratic anatomy (and gradation in coil positioning) may lead to
inter-individual variability that masks population effects for many
conditions, and produce individual variability.

Variability

We examined the after-effects of PA-tDCS on PA-TMS-MEPs in
22 individuals and found that in 15 of them tDCS reduced corti-
cospinal excitability by 10% or more. Furthermore, the ICC for
repeated assessments within an individual was 0.68. Both of these
figures are higher than previously reported for standard montage
tDCS [56]. It would need a larger study to power this comparison
adequately, but it could be that by aligning the tDCS to the indi-
vidual best direction for PA-TMS-MEPs we achieved an increased
uniformity of electric field normal to the surface of M1 compared
with a single central anode.

(2017), https://doi.org/10.1016/j.brs.2017.11.001

Please cite this article in press as: Rawji V, et al., tDCS changes in motor excitability are specific to orientation of current flow, Brain Stimulation




V. Rawjji et al. / Brain Stimulation xxx (2017) 1-10 9

Limitations

It has been pointed out that detailed mapping of the output
representation of the hand knob requires that the coil orientation is
rotated to maintain perpendicular current at all locations [57].
Since different muscles can be represented at different points on
the curved surface of the hand knob, placing tDCS electrodes
approximately PA, AP or ML will not ensure optimal stimulation in
every individual. However, we hoped to account for this by first
finding, in each individual, the best coil orientation for evoking FDI
responses, and then using this orientation to guide placement of
tDCS electrodes. In doing so, we likely stimulated the majority of
FDI output and accounts for the individual differences in hand knob
anatomy that undoubtedly exists between people. Therefore, we
think that this might be an important feature, rather than a limi-
tation, as it potentially could be exploited for individualized “dose-
control” without requiring complex and expensive current flow
modelling, which many users will not have access to.

The effects of PA- and ML-tDCS indeed outlasted the period of
stimulation. However, corticospinal excitability did not return to
baseline by the end of the testing period. Unfortunately, we did not
track excitability changes for longer than 40 min and so cannot
provide any concrete statements on the duration of offline effects.
Hence, further experiments should assess this in more detail.

Conclusion

We provide strong support for the notion that bipolar tDCS has
effects on cortex between the primary sites of stimulation, as pre-
dicted by models of current flow in the brain. Furthermore, these
effects can be directionally-dependent. These factors may be
important when interpreting (and comparing) results from con-
ventional tDCS. More generally, our results indicate how current
flow models can guide electrode placement and motivate experi-
mental questions concerning the key factors for optimizing tES.
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