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Abstract. PET/CT quantification of lung tissue is limited by several difficulties: the

lung density and local volume changes during respiration, the anatomical mismatch

between PET and CT and the relative contributions of tissue, air and blood to the PET

signal (the tissue fraction effect). Air Fraction Correction (AFC) has been shown to

improve PET image quantification in the lungs. Methods to correct for the movement

and anatomical mismatch involve respiratory gating and image registration techniques.

While conventional registration methods only account for spatial mismatch, the

Jacobian determinant of the deformable registration transformation field can be used

to estimate local volume changes and could therefore potentially be used to correct

(i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local

volume changes. This work aims to investigate the relationship between variations in

the lung due to respiration, specifically density, tracer concentration and local volume

changes. In particular, we study the effect of AFC and JC on PET quantitation

after registration of respiratory gated PET/CT patient data. Six patients suffering

from lung cancer with solitary pulmonary nodules underwent 18F-FDG PET/cine-

CT. The PET data were gated into six respiratory gates using displacement gating

based on a Real-time Position Management (RPM) signal and reconstructed with

matched gated CT. The PET tracer concentration and tissue density were extracted

from registered gated PET and CT images before and after corrections (AFC or JC)

and compared to the values from the reference images. Before correction, we observed a

linear correlation between the PET tracer concentration values and density. Across all

gates and patients, the maximum relative change in PET tracer concentration before

(after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue

density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%)

and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely

explain the observed changes in PET tracer activity over the respiratory cycle. We

also speculate that a second order effect is related to change in fluid content but this

needs further investigation. Consequently, either AFC or JC is recommended when

combining lung PET images from different gates to reduce noise.
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1. Introduction

The interest of using PET/CT imaging as a procedure for investigating pulmonary

diseases caused by infection, inflammation or fibrosis has recently increased (Groves et

al. 2009, Inoue et al. 2009, Win et al. 2012, Win et al. 2014, Abdulla et al. 2014, Scherer

and Chen 2016). PET/CT imaging could play an important role in identifying lung

abnormalities and assessing disease progression and treatment response in pulmonary

diseases. Lung quantification in PET/CT is challenging due to the presence of large

fractions of air (Lambrou et al. 2011), blood (Holman et al. 2015), and potentially other

extracellular fluids (Chen et al. 2017) and respiratory motion. Lung inflation influences

the overall lung density, whereas gravity causes lung regional differences in density by

increasing the blood component and decreasing alveolar expansion (Verschakelen et al.

1993). Therefore, PET and CT signals are expected to vary between respiratory stages,

adding to the complexity of PET/CT image quantification in the lung.

The effects of lung expansion (respiration) on tissue density has been widely studied

on CT images (Verschakelen et al. 1993, Simon 2000). Most studies use deformable

image registration between images from a 4DCT dataset representing different phases

of the respiratory cycle (usually end-inhalation and end-exhalation) and compute various

properties of the registered images and the obtained transformation fields. Lung

deformation, which corresponds to a measurement of the lung local volume change

(expansion or contraction), is determined from the determinant of the Jacobian (the

matrix of the first-order partial derivatives) of the lung CT registration deformation

field (Reinhardt et al. 2008). Christensen et al. have shown a correlation between

tracking lung motion using image registration and spirometry data in lung cancer

patients (Christensen et al. 2007). Reinhardt et al. compared the degree of regional

lung expansion (measured using the Jacobian of the registration displacement field of

respiratory gated CT images) to ventilation measures acquired using xenon CT imaging

in five sheep (Reinhardt et al. 2008). The Jacobian determinant distribution changes

at different stages of the breathing cycle (Ding 2008, Amelon et al. 2011). Observed

density changes in the lung during respiration are correlated with local volume changes

and the Jacobian determinant (Jahani et al. 2014). These studies have shown that

local lung density changes are related to local volume changes (as estimated by image

registration). Guerrero et al. reported that the total tissue mass changes up to 10 %

over the respiratory cycle (Guerrero et al. 2006). During respiration, fluids (such as

blood and lymph) could move in and out of the lungs (El-Chemaly et al. 2008), therefore

the change in tissue mass in the lungs could be attributed to changes in the amount of
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fluid in the lungs.

The influence of respiration on quantification in PET has been well studied for

oncological and cardiological applications. However, the effect in pulmonary studies

has been less investigated, although the impact is likely to be large. In the lung, tracer

concentration is sensitive to the amount of air present. Correcting PET images for the

air component is known as the air fraction correction (AFC) which can be done based on

the CT (Lambrou et al. 2011). After AFC, the PET values are proportional to amount

of tracer per gram. Respiration will cause movement, but also air fraction and density

changes, and the expansion will affect tracer concentration. A lung voxel generally

contains parenchymal (i.e. alveolar), airway wall, vascular wall (e.g. endothelial cells)

and immune cells, as well as blood, water (i.e. extracellular fluid) and air (Chen et al.

2017). Its density will depend on the amount of cells, fluids and air that it contains,

whereas the signal measured by PET will correspond to the amount of tracer in all the

different voxel components and their relative fractions (Holman et al. 2015, Chen et al.

2017). Changes in tracer concentration and their relation to changes in density due to

respiration are therefore non-trivial and have not yet been investigated to the best of

our knowledge.

To reduce the blurring and the associated increase in partial volume effect caused by

the respiratory movement, PET data can be gated (Nehmeh et al. 2002, Vines et al.

2007). To achieve accurate PET quantitation, PET and CT need to match at each

gate to ensure correct attenuation correction (AC). Using an accurate estimate of the

density for AC has been shown to be crucial when studying the lung (Holman et al.

2016). However, gating leads to increased noise in the gated PET images. Several

gates can be combined with registration, either during or after image reconstruction, to

generate one single motion corrected PET image (Nehmeh and Erdi 2008, Rahmim et

al. 2013). To avoid the increased dose to the patient associated with gated CT, several

authors deform a single CT to match the PET gates, for instance based on registering

non-attenuation corrected (NAC) PET images (Kalantari and Wang 2017, Wells et al.

2010) or during reconstruction (Bousse et al. 2016, Rezaei et al. 2016). However,

conventional registration methods follow anatomical tissue deformation and account for

spatial mismatch, but do not correct for density and concentration changes associated

with expansion. Mass-preserving registration methods do take the local volume change

into account, usually via the Jacobian determinant (Yin et al. 2009, Thielemans et al.

2009, Gigengack et al. 2012) or alternatively via explicit calculation (Ue et al. 2006),

with only the latter reference applied to lung tracer concentrations, albeit in SPECT.

However, as noted above, it is not a priori clear if it is desirable or required to correct

PET images for local volume changes during lung expansion. Correcting PET/CT data

for local volume change during lung expansion is known as Jacobian correction (JC).

In this paper, we study how to combine lung respiratory gated PET/CT images using

registration and preserve lung density and PET tracer concentration by applying AFC

or JC. To avoid difficulties with registration of PET images and the effect observed

on PET quantitation if the wrong CTAC is used (Holman et al. 2016), we use
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patient data with cine-CT (acquired at free breathing) gated to match the PET

data. We investigate the relationship between density changes measured in CT, tracer

concentration changes measured in PET and local volume changes obtained from the

Jacobian of the registration deformation field applied on gated CT matched to gated

PET.

2. Theory

2.1. Air Fraction Correction using gated PET/gated CT

The interpretation of PET/CT images for lung disease is affected by the tissue fraction

effect (TFE). Lambrou et al. originally introduced the concept that observed activity

concentration in the lung is affected by the fraction of air present, requiring appropriate

correction (Lambrou et al. 2011). The voxel fractional air volume (Va) is obtained from

the CT images :

Va =
HUvoxel −HUtissue
HUair −HUtissue

(1)

where HU is the CT image voxel Hounsfield Units, HUtissue = 45 and HUair = −1000.

In our lung study, the lung mask is density based. Therefore, within the mask, the CT

voxel HU will mostly be lower than the HU of the tissue (i.e. 45). Negative values

of the air fraction are set to zero. The voxel fractional tissue volume, which can be

assumed to be proportional to the density of tissue in the voxel, is given by :

Vt = 1− Va. (2)

To account for the air content in the lung voxel, the PET tracer Standardized Uptake

Value (SUV) after AFC is :

SUVAFC =
SUVmeasured

Vt
(3)

where SUVmeasured is the PET tracer concentration measured directly from the PET

image. The PET voxel values after AFC are those of the tissue (without the air

component).

2.2. Registration of gated PET/gated CT and Local Volume Change

During breathing, lung density varies due to lung volume change. Correcting for local

volume change should account for these variations due to changes in the air content of

the lung. The local volume change can be extracted from the Jacobian determinant

(|J |) of the spatial transformation which can be estimated by image registration (i.e.

registration to a reference image) and is defined as the following ratio :

|J | = deformed voxel volume

reference voxel volume
(4)

To account for the local volume change that occurs during respiration, registered

(floating image registered to a reference) fractional air volume (Va) and PET images
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can be Jacobian corrected (JC) :

Image floating→reference
JC =

Image floating→reference

|J |floating→reference
Image = {Va, PET} (5)

The registered fractional air volume and PET voxel values after JC are expected to be

more similar to those of the reference image.

3. Methods

3.1. Patient Data Acquisition

Data used for this retrospective study were from 6 patients suffering from lung cancer

with solitary pulmonary nodules who underwent 18F-FDG PET/cine-CT using a GE

Discovery STE PET/CT scanner (Mawlawi et al. 2004) with list mode enabled.

With the exception of the small nodules (diameter less than 4cm in all patients), the

patients used in this study were all considered to have normal lung tissue. Patients

were scanned approximately 1 hour after injection according to the normal clinical

protocol. Patients breathing was monitored using an external device, the Varian Real-

time Position Management (RPM) system which measures the vertical position of a

block placed on the patient chest near the diaphragm. Cine-CT data was collected with

free breathing for approximately one breathing cycle over each of 10 CT bed positions,

each covering an axial Field of View (FOV) of 2 cm. The X-ray source full rotation

period was set to 0.5 seconds, its voltage to 140 kVp and current to 90 mA. The time

between cine-CT images was set to 0.45 seconds. A single PET bed position (axial FOV

15.4 cm) was acquired over 6-8 minutes. Patients were positioned to have the primary

nodules in the centre of the axial FOV.

3.2. Patient Analysis

The original PET list mode data, the cine-CT DICOM data together with the RPM

PET and CT gating signals were processed with the GE PET toolbox, a proprietary

suite of MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA) and C tools

for gating and image reconstruction. The RPM signal was used to split the PET

and CT data into 6 different respiratory states using displacement gating, where the

range of the PET and CT signals was determined manually to cover the full extent

of the breathing cycles, i.e. ignoring peaks related to irregular breathing. Gate 1

corresponds to the end-inhalation breathing stage and gate 6 to the end-exhalation

breathing stage. A full scan reconstruction was applied to the gated CT (512×512×80

voxels of size 0.9766×0.9766×2.5 mm3). Gated PET data were reconstructed with the

standard settings used on the GE Discovery scanner console (192×192×47 voxels of

size 3.64×3.64×3.27 mm3) with OSEM (Hudson and Larkin 1994), both without and

with the attenuation correction maps derived from the corresponding gated CT. After

reconstruction, a visual check was performed comparing the non-attenuation corrected

PET images with the gated CT images to confirm that PET and CT gates matched.
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3.2.1. Creating the Lung Masks Lungs were segmented from the gated CT images

with an in-house tool based on the Insight Segmentation and Registration Toolkit (ITK)

(Johnson et al. 2016). In a previous step, the bed was removed from the CT images.

The resulting image (CTnobed) consisted of the patient body and a background set to

-200. The segmentation consisted in performing a thresholding of the end-exhalation

CTnobed image, depending on whether the corresponding image voxel values lie between

the two thresholds in HU [-200, 3000]. These bounds cover most of the human body HU

except air and those organs containing air. Everything within these bounds is set to 0,

and the rest (i.e. objects with a considerable amount of air: lungs, esophagus, trachea,

bowel gas) to 1. This resulted in a tissue mask with islands corresponding to low-

density regions. These islands were identified with a connected component analysis and

objects smaller than 0.5% of the CT image volume were removed. The resulting binary

lung mask was resampled to the PET image size using a nearest neighbour interpolation

technique. Unfortunately due to the limited size of the PET axial FOV and the position

of the patients, lungs were not entirely in the FOV. To avoid lung edges and spurious

effects due to the significant presence of the liver and heart uptake, the final lung region

of interest LROI was obtained by erosion using a binary morphological transformation

with a ball structuring element (Nikopoulos and Pitas 2000) with a 3-dimensional radius

of 4 pixels (i.e. 14.56×14.56×13.08 mm3). For all patients (except patient 1), 20 slices

were removed from the bottom of the LROI image and 4 slices from the top in order to

accommodate for the movement (the lung mask stays in the FOV during inhalation) and

to exclude noisy PET data in the end-planes. For patient 1, 15 slices were removed from

the bottom of the LROI image and 6 slices from the top. Figure 1 shows an example

of an eroded and cropped lung mask obtained by segmenting the reference gated CT

image of patient 1 (i.e. exhalation).

Figure 1. Example of one patient LROI overlaid on the CT (left) and PET (right)

images corresponding to an exhalation stage of the breathing cycle. The lung mask

was eroded to avoid lung edges and obvious artefacts (liver, heart uptake). All images

and masks are resampled to the PET space.

3.2.2. Registration Each gated CT image was registered to a reference CT image,

chosen to be the exhalation gate (i.e. smallest lung volume), using an affine followed

by a non-linear registration method as implemented in NiftyReg (Ourselin et al. 2001,

Modat et al. 2010). The lung masks were such that only the intensities within the lungs

are considered to optimise the transformations and all other areas are ignored. The affine

registration utilises a block matching approach, where the normalised cross-correlation

is used as a measure of similarity to align the most similar blocks. A least trimmed
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squared approach is used to extract a robust affine transformation from the block

correspondences. To further improve the robustness of the registration a symmetric

implementation was used (Modat et al. 2014). The obtained affine transformations are

then used to initialise the subsequent non-linear registration step avoiding the need to

resample the input images several times. A stationary velocity field parametrised by a

cubic B-Spline control point grid is used to model the non-linear deformation (Modat

et al. 2012). The control point grid is discretised with one control point every 10

voxels along each axis. Similarly to the affine scheme, a symmetric implementation

is used to maximise robustness and remove any bias towards the directionality of the

registration. To promote a smooth transformation, the bending energy is used as a

constraint. The locally normalised cross-correlation (Cachier et al. 2003) is used as a

measure of similarity with a Gaussian kernel standard deviation set to 5 voxels along each

axis. The use of local versions of the normalised cross-correlation renders the measure

of similarity robust to local intensity variation induced by the ventilation process during

the respiratory cycle.

3.2.3. Obtaining the Fractional Tissue Volume Images The CT scan dataset was used

to derive fractional tissue volume images on a voxel by voxel basis using Eq. 2. The CT

images were processed to approximately match the PET resolution by using a resampling

technique. Smoothing with a Gaussian filter has also been applied. This filter convolves

the image with a 3D Gaussian kernel using a full width at half maximum (FWHM) set

to 8.48 mm.

3.2.4. Analysis We performed two types of analysis which are illustrated in Figure 2.

In the Moved Images analysis, the gated images were transformed to match the reference

gate using the deformation fields derived from the gated CT. This analysis was used to

investigate the change in PET and CT mean ROI values (after registration) without

corrections and with either JC or AFC corrections. In contrast, in the Moved Masks

analysis, the lung mask of the reference image was deformed (i.e. deformed-LROI or

dLROI) to be able to extract total tissue volume and total tracer activity for the same

part of the lung in every gate.

• Moved Images analysis : For each gate, PET and CT images are resampled to

the reference position using the CT-derived deformation field. The voxel fractional

tissue volume and PET tracer SUV are extracted from the deformed CT and PET

images using the reference image lung mask (i.e. LROI in Section 3.2.1). This

analysis will be used to determine from the LROI a mean value of the fractional

tissue volume (V LROI
t ) and the PET tracer SUV (SUV LROI).

• Moved Masks analysis : For each gate, the reference position LROI is resampled

using the inverse of the CT-derived deformation, such that the resampled mask

matches the lung position for that gate. The lung total tissue volume (V) and total

PET tracer activity normalised with the injected activity and patient weight (A)
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Figure 2. In the Moved Images analysis, the floating image was transformed to match

the reference image. In the Moved Masks analysis, the lung mask of the reference image

was deformed to match the same region of the lung in the floating image. Both reference

and floating images are shown with the lung not entirely in the FOV. Lung masks are

eroded and cropped. For the Moved Images analysis, the shape of the floating image

is shown in light grey and the floating image after registration to the reference image

is shown in dark grey.

contained in the dLROI are extracted from un-deformed gated CT and PET images

using the transformed mask (i.e. dLROI) :

V = V dLROI
t × vdLROI

A = SUV dLROI × vdLROI

where vdLROI corresponds to the volume of the deformed-LROI.

The relative change (in %) in fractional tissue volume (δV LROI
t ) and PET tracer SUV

(δSUV LROI) between registered gates and the reference gate (relative to the reference

gate) are obtained following the Moved Images analysis :

δV LROI
t =

V LROI ,gate
t − V LROI ,reference

t

V LROI ,reference
t

× 100 (6)

δSUV LROI =
SUV LROI ,gate − SUV LROI ,reference

SUV LROI ,reference
× 100 (7)

The relative change (in %) in lung total tissue volume (δV) and total PET tracer activity

(δA) between registered gates and the reference gate (relative to the reference gate) are

computed similar to Eqs. 6 and 7. The measurement of these relative changes (before

and after correction: AFC or JC) will provide an estimate of the importance for a

density correction of registered respiratory gated PET/CT images.
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Reference Image Floating Image Registered Image

ftissue = 0.1563 ftissue = 0.1577 ftissue = 0.1526

Figure 3. Top row shows an example of one patient CT registration: gated CT in the

reference (end of exhalation) gate (left); gated (gate 2) CT (middle) and registration

of gate 2 to the reference (right). The yellow line shows the position of the bottom of

patient’s left lung (displayed on the right of the image). The bottom row shows the

corresponding fractional tissue volume images. The reference and registered images

are overlaid with the reference image lung mask. The floating image shows the moved

mask (reference lung mask resampled using the inverse of the CT-derived deformation,

such that it matches the lung position for the floating gate). These masks were used

to extract the fractional tissue volume values quoted below.

3.3. Air fraction correction

Registered gated PET images were corrected for air fraction using the voxel fractional

air volume maps extracted from the gated CT images (see Eq. 3). Using the Moved

Images analysis, the relative change in the PET tracer SUV (δSUV LROI) was extracted

from registered gated PET images (before and after AFC) following Eq. 7.

3.4. Jacobian correction

The Jacobian determinant maps were obtained from the deformation fields (6 gates, 5

deformation fields) of the registration of gated CT images to the reference image (i.e.

exhalation). Following the Moved Images analysis, the relative change in fractional

tissue volume (δV LROI
t ) and PET tracer SUV (δSUV LROI) were calculated before and

after Jacobian correction (local volume change correction) using Eqs. 6 and 7.

4. Results

4.1. Patient Analysis

Figure 3 shows an example of one patient CT registration. The registration was visually

judged to be of very good quality. Figure 4 shows an example of one patient Jacobian

determinant map obtained after the registration of two gated CT images.

Figure 5 plots the fractional tissue volume (i.e. representative of tissue density) and

the PET tracer concentration after registration (without any corrections) normalised to

the value in the reference (i.e. gate 6 corresponds to exhalation). For both gated CT

and PET, image intensities after resampling (using the registration deformation field)
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Figure 4. Example of one patient CT registration with the corresponding Jacobian

determinant map: gated CT in the reference gate (end-expiration) (top); gated CT

in the floating gate (end-inhalation) (middle) and registered image overlaid with the

Jacobian determinant map (bottom).

are lower than at exhalation. Across all gates and patients, the maximum (mean)

Gate number
1 2 3 4 5 6

0.8

0.85

0.9

0.95

1
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REF
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Reference gate: Exhalation

Gate number
1 2 3 4 5 6

0.8

0.85

0.9

0.95

1

1.05

REFSUV

REGSUV

patient 1
patient 2
patient 3
patient 4
patient 5
patient 6

Reference gate: Exhalation

Figure 5. Fractional tissue volume and PET tracer concentration (using the Moved

Images analysis) after registration and normalised to the value in the reference for each

gate before corrections.

relative change in fractional tissue volume (δV LROI
t ) and PET tracer SUV (δSUV LROI)

between registered gates and the reference gate (relative to the reference gate) without

any correction is 17.1% (7.5%) and 16.2% (7.3%) respectively (see also Figure 8).
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4.2. Accounting for density changes: air fraction correction

Figure 6 shows the relationship between the fractional tissue volume and the PET tracer

concentration after registration (before and after air fraction correction) normalised to

the value in the reference. After AFC, the registered PET signal is relatively stable

(i.e. gate independent). Figure 7 shows the maximum relative change in PET tracer

Before air fraction correction After air fraction correction

Figure 6. PET tracer concentration after registration and normalised to the value

in the reference as a function of the fractional tissue volume in each gate for each

patient: (left) before and (right) after air fraction correction and using the Moved

Images analysis.

SUV (Max. δSUV LROI) before and after air fraction correction. Across all gates and

patients, the mean relative change in PET tracer SUV before (after) AFC is 6.1% ±
5.0% (1.2% ± 1.2%) and the maximum relative difference before (after) AFC is 16.2%

(4.1%).

4.3. Accounting for local volume changes: Jacobian correction

Figure 8 displays the maximum relative change in fractional tissue volume (Max.

δV LROI
t ) and PET tracer SUV (Max. δSUV LROI) between registered gates and the

reference, before and after Jacobian correction using the Moved Images analysis. Across

all gates and patients, the maximum relative change in fractional tissue volume and

PET tracer SUV before (after) Jacobian correction is 17.1% (5.5%) and 16.2% (6.8%)

respectively. The mean relative change in fractional tissue volume and PET tracer SUV

before (after) Jacobian correction is 6.3 ± 5.2 (1.8 ± 1.8) and 6.1 ± 5.0 (1.8 ± 1.8)

respectively.
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Figure 7. Maximum relative change in PET tracer SUV before and after air fraction

correction following the Moved Images analysis.
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Figure 8. Maximum relative change in fractional tissue volume and PET tracer

SUV before and after Jacobian correction for all patients following the Moved Images

analysis.

4.4. Relative change in total Tissue Volume and Activity

The results in the previous sections are largely consistent with the mass-preservation

hypothesis. To test this further, Figure 9 shows the relative change in total tissue

volume (δV) as a function of the relative change in total PET tracer activity (δA). No

corrections were applied and the lung total tissue volume and total PET tracer activity

were determined using the Moved Masks analysis. If mass-preservation would hold, we

would expect δV and δA to be independent of the gate. Across all gates and patients, the

maximum (mean) relative change in total tissue volume and total PET tracer activity

is -6.7 % (2.1 %) and -6.5 % (2 %) respectively (see Figure 9). For patients 1,4 and

5, the changes in total tissue volume and total activity are very small (maximum 1.3
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Figure 9. Relative change in total tissue volume as a function of the relative change

in total PET tracer activity, without any corrections.

% and 0.9 % respectively) as expected. However, for patients 2,3 and 6, the changes

are 6% with a linear correlation between δV and δA, suggesting that some substance

containing PET tracer entered (or left) the region.

5. Discussion

The aim of this work is to investigate the extent of changes over the respiratory cycle

in thoracic image data. While a few papers have suggested to use mass-preserving

registration, most of the existing literature on respiratory motion correction for PET

considers only deformation and interpolates the images to a different gate. This paper

therefore investigates how the image values change between respiratory gates.

With reference to Figure (5), without any correction, the maximum relative change

(between the registered and the reference image) in fractional tissue volume and PET
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tracer concentration is 17.1% and 16.2% respectively, implying that these quantities are

not conserved after the image registration process. The registration aligns images, but

the voxel intensities in the registered image should become similar to the intensities in

the reference. A correction is needed in order to account for volume/density changes.

After applying the AFC, the registered PET signal appears to be gate independent

(Figure 6). As illustrated in Figure 7, the maximum change in PET tracer concentration

after AFC reduces to 4.1%. This substantial reduction can be explained by the fact that

AFC aims to correct the registered PET signal intensities to account for differences in

density.

When using the Jacobian determinant map, obtained from the registration deformation

field, to correct CT and PET images for local volume changes, it has been found that

the maximum relative change in fractional tissue volume and PET tracer concentration

after JC is 5.5% and 6.8% respectively (Figure 8).

These results show that to a large extent, changes (due to respiration) in lung tissue

density, air fraction, PET tracer concentration and local volume changes (derived from

the Jacobian determinant of the registration deformation field) are all proportional and

non-negligible.

Some residual changes in the corrected fractional tissue volume and PET tracer

concentration were observed. This is consistent with the results of the Moved Image

analysis. The maximum relative change in total tissue volume and total PET tracer

activity in the lungs is -6.7 % and -6.5 % respectively (Figure 9). For patients 2, 3

and 6, a linear correlation is observed between these total quantities, suggesting that

some substance containing PET tracer entered (or left) the region. For other patients

the observed changes are too small to draw any conclusions. These results could be

explained by a component of the lung tissue (other than parenchyma) that flows in

and out of the lungs over the breathing cycle, such as blood or lymph. The lymphatic

circulation is a vital component in lung biology (El-Chemaly et al. 2008). Blood is a

large component of the lung voxel (∼ 20%) (Wollmer et al. 1984) and adds to the PET

signal (Holman et al. 2015). Brudin et al. have explored the relationships between the

volume elements within the voxel (gas, blood and tissue) and ventilation (Brudin et al.

1994, Rhodes and Hughes 1995). They have shown that there was an inverse correlation

between regional vascular and alveolar gas volumes. This implies that vascular volume

is inversely related to alveolar expansion, which in itself is a determinant of regional

ventilation. Measuring changes in the blood fraction over the respiratory cycle, e.g. by

using gated 11CO data, will help to understand this further but will be the subject of

future work.

This study is limited by the small number of patient datasets. In addition, the use of the

RPM for gating can still lead to remaining mismatches between PET and CT, especially

during irregular breathing (Sun and Mok 2012). In this study, no coaching was used

for controlling the breathing. A further limitation of this work is that results were

aggregated over a large lung ROI. Results for smaller ROIs would have been dependent

on several elements such as the ROI position, the registration accuracy and the gating
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of the cine-CT data due to irregular breathing among patients.

PET/cine-CT is not generally available in the clinic, while essential for this study.

Therefore data from a previous oncology study looking at solitary pulmonary nodules

was utilised to investigate the lung tissue. With the exception of the small nodules

(diameter less than 4cm in all patients), the patients used in this study were all

considered to have normal lung tissue. The nodules themselves were not considered

in this paper. Due to their small size reliable computation of the Jacobian determinant

in the nodules could not be performed and the work by Holman et al. suggested that

tumour quantitation was not affected by density effects anyway. The relations between

density, air fraction, tracer concentration and local volume changes will need further

investigation for patients with both oncological and diffuse lung diseases.

When combining (using a registration technique) respiratory gated PET images to

reduce noise, our work has shown that applying a correction is necessary for quantitation

in order to take into account the changes in the lung due to respiration. AFC of PET

images was recommended (Lambrou et al. 2011, Holman et al. 2015) to be able to

measure the amount of tracer per tissue, independent of the amount of air in the

region. The results of this paper show that the PET tracer concentration corrected

for the air fraction is indeed (largely) independent of respiration. Therefore, if matched

respiratory gated CT data are available (i.e. CT acquisition in cine mode), AFC of

gated PET images followed by registration and combination is a viable approach. If

only an inspiration/expiration CT pair is available due to dose considerations, data at

intermediate stages could be obtained by interpolation (Mok et al. 2013) combined with

the Jacobian correction to correct for density changes. If only a single CT scan (i.e.

snapshot of the respiratory cycle) is available, any CT image representing a different

stage of the breathing cycle could theoretically be generated by transforming the single

CT using the deformation field obtained from the registration of gated PET data.

The Jacobian determinant of the registration field should then be used to correct both

the obtained CT images and the reconstructed PET images for local volume changes

during respiration. These suggestions will be evaluated in future work. Compared

to using static CT at several stages of the respiratory cycle, the acquisition in cine

mode is a great asset in testing the method at any stage of the respiratory cycle.

The approximate radiation dose (CT-Expo, Stamm and Nagel 2002) from the cine-CT

(2.3mSv) is significantly higher than the low dose CT (0.3mSv). Nevertheless this work

used cine-CT to demonstrate the need for correcting for variation lung density between

respiratory stages. Methods using lower dose CT acquisitions will also be investigated

hoping that it will lead to extension of methods that avoid cine-CT to increase their

accuracy.

6. Conclusion

Respiration affects PET/CT quantitation in the lung. These variations seem dominated

by local volume changes. To a large extent, Air Fraction Correction (AFC) or Jacobian
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Correction (JC) explains the change in lung density and PET tracer activity over the

respiratory cycle. These corrections are needed when using registration techniques to

combine gated images.
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