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Abstract

This thesis focuses on the synthesis of a variety of different transparent conducting

oxide (TCO) nanomaterials using a continuous hydrothermal flow synthesis pro-

cess, wherein aqueous solutions of chemical precursors were mixed with heated,

pressurised water to facilitate nanoparticle formation.

In Chapter 3, a screening investigation was carried out by doping zinc oxide with

a number of different elements in order to highlight the most promising systems

with regards to electronic conductivity. Of the twenty-four materials tested, zinc

oxides doped with aluminium (AZO), gallium (GZO), and silicon (SiZO), Chapters

4 and 5, respectively, were selected for compositional optimisation and further test-

ing. Aluminium and gallium doping and co-doping (AGZO) optimisation resulted

in materials of similar conductivity to indium tin oxide (ITO), the industry standard

TCO material.

Upon completion of compositional optimisation, ITO and AGZO were synthesised

with a citrate coating added in-process (Chapter 6). This aided in the dispersion of

the nanoparticles for deposition into thin films by inkjet printing and spin coating;

the latter was also carried out with un-coated GZO, AGZO, and SiZO. Preliminary

inkjet printed films demonstrated very high conductivity (ITO) or very high trans-

parency (AGZO), but never both in the same film, indicating the promise of the

deposition method while requiring further investigation to be carried out. The spin

coated films of all four materials were highly transparent and conductive, competi-

tive with the best performing materials so far reported in literature. The AGZO spin

coated films in particular, were the most conductive ever reported, superior even to

those deposited by the sputtering methods currently used in industry.
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Chapter 1

Literature Review and General

Introduction

In this chapter, an overview of transparent conducting oxides (TCOs) is given, in-

cluding discussions of their optoelectronic properties and how they arise, the appli-

cations of TCOs, and the methods by which they are synthesised and deposited as

thin films.

1.1 Transparent Conducting Oxides
Transparent conducting oxides (TCOs) are a class of materials that demonstrate the

often incompatible properties of high optical transparency and conductivity; this

section will outline in detail their properties and key applications, as well as the

materials that are predominantly used in them.

1.1.1 Properties of TCO materials

TCOs are present in devices in the form of thin films. This reduces the space they

take up in devices, and aids in the optical transparency that is fundamental to many

of their uses. The required optical transparency is typically > 80 % across the

visible range (400 - 700 nm), and to achieve this a wide, direct optical band gap

semiconductor is needed with band gap of 3.1 eV, corresponding to the transmis-

sion of visible light.[10] In addition to the gap between the valence band maximum

and the conduction band minimum, it is also important that the first allowed transi-

tion from the conduction band minimum is also at least 3.1 eV, else already-excited
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electrons would be able to absorb visible light for further excitation, negating the

purpose of the material. Furthermore, such a material requires resistivity values of

the order of 10−4 Ω cm, and it is the unlikely combination of these two properties,

high conductivity and transmittance of visible light, that is so rare and that makes

transparent conducting materials so highly sought-after.[11] In determining suitable

candidates for these applications, a certain robustness is also required, as chemical

or thermal instability would in time contribute to shortened lifespans of the devices

in which they are used.

In order to ensure an optically transmissive, intrinsically semiconducting metal ox-

ide is sufficiently conductive, it can be extrinsically doped with an aliovalent ele-

ment. Lower valency in this element results in p-type semiconductivity, wherein the

conduction mechanism relies on mobile positive ‘holes’ in the valence band; higher

valency of the element results in n-type semiconductivity, in which the conduction

mechanism relies on additional, free-moving electrons in the conduction band.

Figure 1.1: Simplified band structures for different types of materials. Valence (filled)
bands are shown in blue, conduction (empty) are shown in red, and EF is the Fermi Energy
Level.
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A highly simplified diagram showing the valence (blue, filled states) and conduc-

tion (red, unfilled states) bands of different types of material classes is shown in

Figure 1.1. The wide band gap of insulating materials prevents excitation of elec-

trons due to the large energy distance between the Fermi level (EF ) and either of

the band edges, making them non-conductive. Within metallic materials, valence

and conduction bands overlap, allowing for the movement of charge carriers and as

such they are highly conductive. Semiconducting materials fall into the middle of

these two extremes. There is a band gap, so electrons are not as mobile as in metals,

however the gap is not prohibitively large. In p-type semiconductors, the valence

band lies close to the Fermi level. Positive holes are formed in the valence band,

which act as mobile charge carriers, balanced by negatively charged, immobile an-

ions, which are shallow acceptors. In n-type semiconductors, the conduction band

lies near to the Fermi level; additional electrons in this band are mobile and able to

carry charge. In this case the charge balance is from immobile, positively charged,

shallow donor cations.

Band gaps are visually displayed for several different semiconducting materials in

Figure 1.2 (the design of the depiction took inspiration from [12]), with data dis-

played for In2O3,[13] SnO2,[14] ZnO,[15] Cu2O,[16] and Si[17]. The deep valence

bands of In2O3, SnO2, and ZnO are indicative of n-type semiconductivity (which

can be further enhanced with doping),[12] and largely prohibit p-type semiconduc-

tivity, even with extensive doping.[18, 19] Their large electron affinities suggest a

preference for electrons rather than holes. The shallower valence bands of Cu2O

and Si indicate that these materials are p-type, as their lower ionization potentials

suggest an increased preference for holes over free electrons.[13]

Figure 1.3 directly compares the optical band gaps of In2O3[13], ITO,[20]

SnO2,[14] ZnO,[15] and TiO2,[21] four natively n-type semiconductors with wide

band gaps that can be used as TCOs. Optical band gap size can be significantly

affected by doping, as shown by the effect of altering pure In2O3 to ITO, 10 at%

Sn with respect to 90 at% In, and this can also be taken into account when select-

ing a TCO material. In this instance, the addition of tin is filling some available
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Figure 1.2: Band gap information for five different materials: In2O3, SnO2, ZnO, Cu2O,
and Si. VBM is the valence band maximum, CBM is the conduction band minimum, and
their values are relative to the vacuum level, which is set to 0 eV.

Figure 1.3: Comparison of band gap sizes for In2O3 (and ITO), SnO2, ZnO, and TiO2.
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states in the conduction band, rendering them unavailable for promoted electrons

in the valence band, thus the band gap is effectively being increased due to this

unavailability of some lower energy conduction band states. This effect is called a

Moss-Burnstein shift, which does not affect the fundamental band gap (the energy

difference between the VBM and CBM), but does effect the optical band gap, the

effective observed band gap of the material. All of these materials can, typically

when appropriately doped, demonstrate the high transparency and conductivity

required of TCOs. ITO especially is the most conductive of all industrially rele-

vant TCOs,[22] with high physical and chemical stability, which resulted from the

1960’s onwards in ITO being the TCO of choice in the vast majority of applications

over alternative materials.[23]

The conduction mechanism in ITO is based on both the tetravalent tin on the indium

sites, Sn•In, which theoretically contributes to the carrier concentration according

to 3.0 x 1020 x CSn cm−3, where CSn is the atomic percentage of Sn relative to In,

and the presence of oxygen vacancies in the lattice.[24, 25] For pure indium oxide,

the oxygen vacancy prevalence is fundamental to the conductivity of the material,

contributing as shown in Equation 1.1, using Kröger-Vink notation:

Ox
O→ V••O +2e

′
+

1
2

O2(g) (1.1)

In this notation the subscript denotes the lattice position upon which the element

is situated where relevant, and the superscript denotes charge, such that the ‘ x ’

represents neutral charge, the ‘ • ’ represents one positive charge for each present,

and the ‘ ′ ’ represents one negative charge for each present, while V is a vacancy,

and i would represent an interstitial site. In this way the oxygen vacancy is a doubly

ionised donor, which can donate up to two electrons per defect. Additionally, the

presence of these oxygen vacancies facilitates the mobility of O2− through the lat-

tice, contributing to the ionic conductivity of the material, though this is negligible

compared to the electronic conductivity.[26]

In an ideal system, the conductivity, σ , carrier concentration, n, and charge carrier
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mobility, µ , are related by Equation 1.2, where e is electronic charge.

σ = nµe (1.2)

Thus, as alluded to above, high carrier concentrations and mobilities lead to higher

conductivities. However, µ is proportional to the time between resistive scattering

events.[27] In this context, scattering refers to the mechanism by which the non-

random directional movement of charge carriers is inhibited, and it follows that the

fewer scattering processes present in a material, the higher the possible mobility of

the charge carriers.[28] This is visually apparent from the band structures elucidated

by computational calculations, in that the curvature of the bands (i.e. the dispersion)

is indicative of the mobility of the electron charge carriers such that relatively flat

bands across k-vectors show low mobility.[29] It is unfortunate then, that higher

charge carrier concentrations increase the propensity for scattering effects, and thus

have a negative impact on the mobility of the carriers. Thus the optimisation of the

resistivity of the materials is, for the most part, a balancing act between increasing

the charge carrier concentration and the mobility, increasing the former as much as

possible without inhibiting the latter.[24] For ITO, typical charge carrier concentra-

tions of ca. 1021 cm−3 are observed, with mobilities of > 30 cm2 V−1 s−1 typically

observed in literature reports.[25, 30, 31]

1.1.2 Applications of TCOs

TCOs were first of interest in coating glass for anti-fogging/icing aircraft wind-

screens and other components that would be negatively affected by the cold tem-

peratures of flight altitude.[32–34] Modern applications of TCOs are prolific, and

spread across various electronics industries, principally including organic light-

emitting diodes (OLEDs) to enhance optical power output,[35] touchscreens,[23]

solar cells (to enable current collection with short carrier diffusion lengths),[36, 37]

flat-panel displays,[38] and smart windows,[39] wherein optical properties can be

modulated by charge insertion or extraction through a transparent conducting con-

tact. These various technologies have proliferated themselves utterly through mod-
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ern society; their prevalence and growing indispensability have led to a transparent

conductor market the highest-charging analysts estimate to be worth between $5-10

billion within the next 10 years, of which ITO has comprised 90% as recently as

2013, and is expected to continue to be the most commonly used transparent con-

ducting material for at least the next several years.[40–43]

As an example of a typical TCO application, the following section outlines the

schematic of an OLED, and describes how a TCO is incorporated into the device

and its purpose.
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1.1.2.1 Example application: organic light-emitting diode

Though light emitting diodes (LEDs) have existed in some form for almost a cen-

tury, OLEDs are a relatively recent invention, with the seminal research paper pub-

lished in 1987.[35] LEDs consist of a p-n junction (i.e. a junction between a p-type

and an n-type semiconductor), such that activation by application of a voltage across

the junction facilitates the recombination of electrons with electron holes, resulting

in the emission of visible light. What distinguishes OLEDs from LEDs, is that the

emissive layer(s) are comprised of organic materials.

Figure 1.4: Example schematic for an organic light emitting diode.

A schematic is shown in Figure 1.4. Upon activation of the device, electrons are in-

jected to the cathode, typically a reflective metal (to prevent the absorption of emit-

ted photons) such as aluminium, calcium or barium with low work functions that

allow the unhindered injection of electrons into the organic emissive layer(s).[44]

The holes are injected to the organic conductive layer (also known as the hole trans-

port layer) by the anode, which is typically ITO or an equivalent transparent con-

ducting layer with a work function similar to the energy level of the highest occu-

pied molecular orbital (HOMO) of the organic conducting later, which allows the

removal of the HOMO electrons from the organic layer into the TCO, generating
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mobile holes in the organic layer.[45] These holes can move towards the emissive

layer, whereupon they recombine with electrons (from the cathode), emitting vis-

ible light photons. Depending on the nature of the organic materials in use in the

device, the anode can quite easily be the most expensive component due to the cost

of the ITO. As such, replacement of ITO with a cheaper, more sustainable material

could dramatically reduce the overall cost of fabricating such devices.

1.1.3 The indium issue

In any application that does not require mechanical flexibility, ITO is the best mate-

rial for use as a transparent conducting thin film in terms of its properties; it is highly

conductive and transmissive, as well as being physically and chemically stable.[22]

It is not, however, a sustainable material, in terms of pricing volatility and long-

term availability it is unlikely that indium supply will continue to meet demand.

ITO films started to gain traction in industry in the 1960’s with the emergence or

popularisation of various technologies, and the price of the material began its first

climb in the 1970’s. Figures 1.5 and 1.6 show the price fluctuations of the three

most significant metals in TCOs, In, Sn, and Zn, between 1950 and 2015. The

former shows best the volatility of the price of indium in the last several decades,

from below $100 kg−1 pre-1974, 1984-6, and in 2002, to highs of over $700 kg−1

in 2005 (up to $946 kg−1), 2006, and 2014.[46] The latter shows the same data, but

is adjusted to a logarithmic scale on the y-axis, so as to better compare the price of

the three metals.

Indium is sourced exclusively as a by-product from zinc mining operations.[46, 47]

The element occurs in such small amounts that dedicated mining operations are im-

practical; hence the supply of indium faces its greatest worry if the demand for zinc

falls. For example, should the automotive industry switch from steel to aluminium

car bodies, this would affect the demand for zinc, and thus the mining and produc-

tion of zinc, which in turn could reduce the amount of indium produced.

Shown in Figure 1.7 is the annual global indium production broken down by

country.[47–66] In the last decade, production has been between 500 - 900 tonnes

per year, of which the vast majority is produced in China and South Korea. Thus
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Figure 1.5: Comparison of the prices (in US$ per metric tonne) of In, Sn, and Zn, between
1950 and 2015, using a linear scale.

Figure 1.6: Comparison of the prices (in US$ per metric tonne) of In, Sn, and Zn, between
1950 and 2015, using a logarithmic (base 10) scale.
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Figure 1.7: World indium production in tonnes broken down by the principal countries
producing it, between the years of 1997 and 2016.

there is the potential for sociopolitical issues regarding continued use of indium in

industry, in addition to the price volatility and ever-growing demand.
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Though not included graphically, the price of indium in 2016 was drastically re-

duced to as low as $228 kg−1.[47] This is thought to have been due to the collapse

of the Fanya Metal Exchange Co. Ltd. in 2015, resulting in an oversupply of in-

dium and depressed demand for the the metal.[67, 68] Global production was also

affected by a fire in November 2015 that damaged the indium production plant at

the Auby zinc smelter in France,[69, 70] entirely diminishing France’s output.[47]

It is beyond the scope of this Thesis to postulate as to the possible future demand

and supply of indium beyond those analytical reports and forecasts already referred

to,[40–43] but the aforementioned economic factors have led to the growing need

to find cheaper and more sustainable alternatives for indium in technology wher-

ever possible; as such there is both a scientific and industrial imperative to conduct

research along the lines of that discussed herein. Most pertinent to this work is thus

the requirement to find alternative TCO materials to ITO.

1.2 Promising Replacement Materials
In pursuit of phasing indium out of the TCO industry, there are a number of different

potential replacement materials. The two ‘host’ materials most studied are ZnO

and SnO2. These are both conductive in their own rights, but are improved by

introduction of aliovalent dopants. This section discusses the properties of these

materials, and the precedent for their use as TCOs.

1.2.1 Tin dioxide

As shown in Figure 1.5, tin tends to be much cheaper than indium, and films based

on SnO2 can be deposited by the same processes as ITO. Thus there is no need to

replace the deposition machinery when attempting to replace the material. SnO2,

like In2O3, is a natively n-type semiconductor, and this native conductivity is again

based primarily on the formation of oxygen vacancies,[71] as shown in Equation 1.1

on page 34. The structure is tetragonal rutile, and the band gap is ca. 3.6 eV.[72] It

has been postulated for some time that the oxygen vacancies take the form of shal-

low donor levels near the conduction band.[73] Interstitial tin, Sni can also read-

ily form, another source of conductivity, and neither of these are compensated by
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the formation of VSn or Oi as might be expected, as these are formed deep in the

valence band, leading to a high charge carrier concentration even in the undoped

material.[12, 72] Additionally, if the annealing of the material is under reducing

conditions, the hydrogen present, though it is possible it could draw out some lat-

tice oxygen, will tend to add hydrogen to the structure, either as Hi, the interstitial,

or on the oxygen site, as HO. In either case, this forms an additional shallow donor

level, which can contribute to the conductivity of the material.[12, 73]

Thin films of SnO2 have been made by a variety of methods, with resistivities as

low as 1.1 x 10−3 Ω cm for CVD,[74] 1.5 x 10−3 Ω cm for films made by mag-

netron sputtering,[75] and as low as 7.5 x 10−4 Ω cm for electron beam evapora-

tion methods,[76] the latter with optical transmittance up to 90 %. Difficulty in

effective sintering/annealing has generally prevented SnO2 from obtaining the lev-

els of resistivity reported for indium or zinc-based materials, the scattering effects

from defects and grain boundaries proving deleterious for the electronic proper-

ties in many cases, particularly noticeable with increasing film thickness, which

inherently causes a greater concentration of these defects to be present in the thin

film.[77–79] One potential way around the issues of using polycrystalline material

could be to use the amorphous analogue, however despite recent advances and de-

vice implementation of amorphous TCO films, these do not tend to exhibit nearly

the electronic capabilities of the crystalline materials.[80–83]

In addition to the oxygen vacancies, aliovalent dopants can be introduced to the

lattice, most commonly Sb5+ onto the Sn4+ site, or F− on the O2− site, i.e. Sb•Sn

or F•O, respectively, both of which contribute towards the n-type semiconductiv-

ity of the material. Sb-doped SnO2, also known as ATO, and F-doped SnO2, also

known as FTO, are the most commonly researched SnO2-based materials for TCO

applications.[71] ATO is analogous to ITO, in that the metal ion is being replaced

by a dopant with an oxidation state one higher. Though in some cases, the optical

properties are below the standards set for TCOs,[84] films towards the lower end

in the order of 10−3 Ω cm have been made by sputtering,[78, 85–87], sol gel/spin

coating,[84, 88] pulsed laser deposition,[89] and spray pyrolysis.[90, 91] Generally,
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the reduced conductivity is attributed to low mobilities, caused by the abovemen-

tioned effects, often only around 10 cm2 V−1 s−1,[84, 90] compared to > 30 cm2

V−1 s−1 for ITO.

FTO is actively used in industrial processes as an ITO replacement material, ac-

counting for the second largest share of the TCO market behind ITO itself, in part

due to the reduced cost, but also due to the chemical and thermal stability of its

electrical properties, though the material is not as conductive as ITO, nor as well

suited for patterning or etching.[92] As with ATO, the best films in terms of elec-

trical properties have been deposited by spray pyrolysis,[79, 93–96] as low as 2 x

10−4 Ω cm for the resistivity.[94, 96] Sol-gel dip coating methods have obtained

resistivities in the order of 10−4 Ω cm too,[97] as have CVD processes,[98, 99]

though with film growth rates of only a few nm min−1. Up-scaling of similar CVD

processes to 100 nm min−1 have been carried out, but at a cost of resistivity by some

two orders of magnitude.[100]

Though these are the most common SnO2-based TCO materials, many other

dopants have been tested. Tantalum[101, 102] and tungsten[103] doping have

achieved resistivities of 2 x 10−3 Ω cm when deposited on glass, though by deposi-

tion onto a heated Al2O3 substrate, the former has been reported to have resistivities

as low as 3.5 x 10−4 Ω cm.[104] Praseodymium[105] and neodymium[106] have

also been tested, with resistivities of 3.7 x 10−3 Ω cm and 6.2 x 10−3 Ω cm reported,

respectively, though the former in conjunction with fluorine doping, which would

be expected to further enhance the conductivity.

Introduction of Al, Ga, or In onto the Sn site in the lattice would be superficially

expected, by the converse logic to Sb replacing Sn, to result in p-type semicon-

ductivity. And indeed, there are reports that claim precisely that, for In,[107]

Ga,[108, 109] and Al.[110] The p-type nature of the conductivity is expressed, by

Hall Effect measurements, as producing a positive Hall coefficient, whereas for n-

type materials the Hall coefficient is negative. And that is what the aforementioned

studies report, specifically a cross-over point at which drastically reduced, p-type
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semiconductivity is observed (several orders of magnitude increase in resistivity).

Though not categorically known to be impossible, the general consensus from re-

cent studies is that p-type SnO2 is highly unlikely.[12] This is from the computa-

tional standpoint of calculating the formation energies of a number of defects, and

deducing the likelihood of each being present, and what effect their presence has. It

is, from more advanced hybrid density functional theory, concluded that no shallow

acceptor levels that are uncompensated will be formed from any likely candidate de-

fects in SnO2, which would be necessary for p-type semiconductivity to occur,[12]

though there do exist less recent computational studies that have concluded that

p-type SnO2 is plausible.[111]

1.2.2 Zinc oxide

Zinc oxide exists predominantly in hexagonal Wurtzite structure, with a band gap

ca. 3.4 eV.[19, 112] The mechanism for conductivity differs from that of In2O3

or SnO2 however, in that for ZnO, the VO defects act as much deeper donor levels

than might be conventionally thought.[113] Instead, it tends to be hydrogen impu-

rities that result in the observed n-type conductivity in undoped ZnO. Hydrogen

in ZnO is highly atypical; it has been postulated that generally speaking hydro-

gen acts as an amphoteric impurity in a semiconductor, i.e. it is present as H+ in

a p-type semiconductor, and as H− in an n-type semiconductor, counteracting the

inherent conductivity of the material; the prevailing belief for a time was that in

ZnO, hydrogen is always present as H+, the only form in which it was supposedly

thermodynamically stable, and indeed this is the case below the conduction band

minimum.[114–116] However a DFT study in 2011 showed that H− could also be

present as a shallow acceptor, with the (+/-) transition for Hi at 0.34 eV above the

CBM.[117] Both Hi and HO have similar formation energies, and while in the lattice

the hydrogen will tend to be strongly bound to the lattice oxygen, effectively form-

ing O-H bonds while acting as shallow donors to contribute to the conductivity of

the ZnO.[19] Generally speaking, ZnO-based TCO materials can not be patterned

as easily due to chemical instability, particularly of Al-doped ZnO, but this sensi-

tivity to both acidic and basic conditions means that wet etching is possible, unlike
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ITO, wherein dry etching is necessary.[118]

Again, the introduction of aliovalent dopants has been shown to be highly effective

with regards to increasing the conductivity of ZnO, most commonly Al (AZO) and

Ga (GZO), but many more have been investigated. ZnO-based materials tend to

be slightly less conductive than ITO, and slightly more transparent.[37, 118] It was

concerns with the thermal stability of undoped ZnO that led Minami et al. to sputter

films of AZO in the early 1980’s,[119] achieving resistivities as low as 2 x 10−4

Ω cm. Other methods have garnered similarly low resistivities, while still main-

taining high optical transparency, including CVD,[120, 121] PLD,[122] and spray

pyrolysis.[123] GZO has seen equivalent resistivities (generally slightly higher, but

balanced by higher chemical stability than AZO) from magnetron sputtering,[124–

126] PLD,[127] and CVD,[128, 129] and the co-doped material, AGZO, has from

sputtering achieved similarly conductive thin films.[130–133] The other doped

systems explored include zinc oxide doped with silicon,[134–136], indium,[137]

tin,[138] niobium,[139] lanthanum,[140] and neodymium,[141] among numerous

others. Many of these have quite competitive resistivity and optical properties,

however the most promising remain AZO, GZO, and AGZO.[13, 37, 39, 142] The

considerable reduction in cost for zinc versus indium, and to a lesser extent versus

tin, mean that more expensive dopant elements can be considered, as the low level

of these still results in the specific cost of the material being relatively low.

For a fuller description of the different doped zinc oxide systems investigated, see

Section 3.2 on page 74. For detailed discussions into AZO, GZO, and AGZO, see

Section 4.2 on page 109 and Section 6.2.2 on page 151.

1.3 Deposition Techniques

This section will outline the predominant methods of depositing thin films of TCOs,

including physical and chemical vapour techniques, and spin coating and inkjet

printing.
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1.3.1 Physical vapour deposition methods

Physical vapour deposition (PVD) techniques are the pre-eminent thin film deposi-

tion methods employed in the majority of TCO applications. Most commonly used

is magnetron sputtering. A highly simplified schematic for such a process is shown

in Figure 1.8. Ions (in this case of the in-flowing Ar gas) bombard the target, for

example a dense ITO ceramic, and the formed plasma is ejected towards the sub-

strate, guided by electrical and magnetic fields, resulting in a thin film of the target

material forming on the substrate. Though the magnetic field helps to direct the

formed plasma and moderate thin film growth, inevitably a large proportion of the

target will end up on the walls of the chamber.

When one casts their eye over scientific reports of TCO thin films in search of the

most conductive films, inevitably magnetron sputtering will dominate the list, par-

ticularly with regards to ZnO-based films. For example, the work of Ray et al.[30]

and Shigesato et al.,[31, 143] resulting in thin films of ITO deposited by magnetron

sputtering all with resistivities < 2 x 10−4 Ω cm. Examples are prevalent too

of thin films of zinc oxide doped with aluminium (AZO),[119, 144–146] gallium

(GZO),[124, 125] aluminium and gallium together (co-doped, AGZO),[130–133]

and silicon (SiZO),[134, 135, 147] all of which had resistivities in the order of 10−4

Ω cm. Magnetron sputtering can be scaled, the technology for deposition is rela-

tively mature, and the resulting films are conductive and transparent.

The other commonly investigated PVD technique is pulsed laser deposition,

wherein a high power laser ablates the ceramic target, and the resulting plasma

plume condenses into a thin film on the substrate as shown diagrammatically in

Figure 1.9.[1] This technique has been shown to be effective in generating conduc-

tive films if ITO,[148] AZO,[122] GZO,[127] and SiZO,[136] however the films are

seldom as conductive as their sputtered analogues. This process can use an ultra-

high vacuum, higher than would be used for sputtering, and uses the Coulombic

repulsion and recoil from the target to send the plume towards the substrate, normal

to the target orientation.
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Figure 1.8: Schematic of a simplified magnetron sputtering process.

Figure 1.9: Schematic of a simplified pulsed laser deposition process. Adapted from [1]
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1.3.2 Chemical vapour deposition methods

Chemical vapour deposition (CVD) methodologies are also widespread when it

comes to thin film deposition. In a typical CVD process, volatile organometallic

precursors react and/or decompose on the surface of a heated substrate. There is

huge variation in the pressures and temperatures used across various CVD tech-

niques, but generally the TCO thin films are now deposited at atmospheric pres-

sure, and particularly for AZO[120, 121] and GZO,[121, 128, 129] some of the

most conductive films are deposited using this process. Early CVD depositions

were predominantly at reduced pressures,[149] but there is cost and safety benefit

to carrying out equivalent processes at atmospheric pressures. An aerosol assisted

CVD rig schematic is shown in Figure 1.10. A bubbler of some description is used

to generate an aerosol of an organometallic precursor, for example zinc acetylace-

tonate (Zn(acac)2) as a precursor for ZnO, which would carried into the reaction

chamber, the (acac) groups break down on contact with the heated substrate, al-

lowing the formation of the desired thin film, while the decomposition products are

extracted.

Figure 1.10: Schematic of a simplified aerosol assisted chemical vapour deposition process.
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In some ways very similar to CVD, is spray pyrolysis, wherein a typically aque-

ous precursor solution is sprayed onto a heated substrate, and the product film is

formed by hydrolysis reactions. In this case, the distinction between spray pyrol-

ysis and CVD lies in whether or not the solution vapourises before impacting the

substrate.[150]

1.3.3 Ink/dispersion-based methods

Inks and dispersions can be made in several ways. With regards to TCOs, the most

common method would be via a sol-gel process. The metal precursor(s) are dis-

solved in a solvent or solvent mixture, heated and stirred, typically with a complex-

ing agent (added after initial nucleation) which facilitates, over time, the formation

of a colloidal suspension of the product. ‘Ageing’ of the solution can take sev-

eral days before spin coating is carried out. This is typically in a static regime, in

that drops are placed on the substrate, which then undergoes rapid spinning, ver-

sus dynamic spin coating in which the substrate is already spinning, and the mate-

rial is dropped onto it.[151–154] TCO thin films have been made by spin coating

sol-gel synthesised materials achieving resistivities as low as 6.3 x 10−4 Ω cm for

ITO,[154] and 3.9 x 10−3 Ω cm for AZO.

The alternative is to suspend already-synthesised nanoparticles in a dispersion

medium, typically by sonic agitation, and carry out the spin coating before the

particles have a chance to settle out, but generally speaking this results in infe-

rior electrical properties.[20, 154]

Inkjet printing is far less reported. In this process, a dispersion of ceramic nanopar-

ticles is used to print thin films by deposition of numerous droplets, placed very

precisely, which depending on the wettability of the substrate, and properties of the

droplets, can coalesce into a continuous layer, which can in turn be carefully dried

of the dispersion medium to leave a consistent film. Heat treatment to anneal this

film is necessary to generate the electrical contact and network through the particles.

The films tend to be highly transparent, but also highly resistive. As with the re-

dispersion of nanoparticles for spin coating, the resulting film is not as conductive
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as the materials are capable of, whether due to imperfect or ineffectual annealing,

dispersion quality or indeed quality of the film itself. Inkjet printed films of ITO

have achieved resistivities as low as 3 x 10−2 Ω cm (some 100 times higher than

required of TCOs) with transparency as high as 87 %.[155] In this study in partic-

ular is demonstrated an additional capability of inkjet printing, in that in addition

to this film, another was deposited that also had an Ag grid put down, which en-

hanced the conductivity of the film by approximately two orders of magnitude. The

transparency fell to 82%, still within the acceptable range, and due to the precision

and small droplet sizes, this required very little expensive silver to achieve. A sim-

ilarly conductive (sans silver grid) AZO film was deposited by inkjet printing with

a transparency of 93 % by Vernieuwe et al.,[156] but the resistivity of 2.5 x 10−2 Ω

cm is too high for the high transparency to make up for.

1.3.4 Deposition method comparison and summary

Given that the material cost, especially with regards to ITO, is a significant issue in

the generation of thin films, using a deposition method that is as efficient as possible

is optimal, as waste of material is an additional cost to the process.

Most of the deposition techniques described above do not deposit even a majority

of the starting material onto the substrate. This particularly concerns magnetron

sputtering, the most commonly used industrial process, wherein as little as 30 % of

the target ends up in the film, while the rest coats the walls of the chamber. Much of

this can be recovered and is not necessarily permanently lost, but the situation is not

ideal. PLD suffers similarly, though to a lesser extent, and CVD too. And it is not

only the vapour techniques; spin coating results in much of the dispersion coating

the walls rather than the substrate.

Of all the methods, only inkjet printing transfers all of the material into the film. In

terms of vehicle-to-substrate transport, it is by far the most efficient, however the

electrical properties of the films fall short of the requirements for TCOs. Resistiv-

ities in the order of 10−2 Ω cm are the best reported thus far, whereas all of the

other methods are capable of generating films in the order of 10−4 Ω cm. If inkjet
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printing is to become an industrially viable technique, address of this shortcoming

is absolutely essential.

1.4 Synthesis of Nanoparticles
This section aims to outline the specific process by which all of the nanomaterials

discussed in this thesis were synthesised, including first a comparison to analogous

batch syntheses, then a more detailed discussion as to the nucleation and growth of

nanoparticles in a continuous hydrothermal flow synthesis (CHFS) process. Find

presently a discussion as to the scientific basis and applications of CHFS; detailed

discussion as to how this pertains to the specific TCO materials appears in the in-

troduction sections of each Chapter, where relevant.

1.4.1 Batch synthesis methods versus continuous methods

The distinction between batch and continuous synthesis methods can be distilled as

follows: a batch synthesis is a closed process, in that a reaction occurs between a set

of reagents under a certain set of conditions, after which the product is separated out

and collected, the conditions returned to atmospheric norm. By contrast, a continu-

ous process is not a closed system; it involves the ongoing addition of reagents and

removal of products in flow, and subject to the longevity of the machinery involved,

and the availability of reagents, a continuous process can be continued indefinitely.

For many syntheses, precise control of temperature and pH, among other properties,

is of great importance. Slight variations can, for example in sol-gel processes, lead

to significant batch-to-batch variations, a significant issue for an industrial process,

in which consistency of particle properties is critical.[157, 158] This and other pro-

cesses, such as co-precipitation methods, can be very involved, with multiple slow

steps required before the end product can be collected.[159] Specifically concerning

metal oxides, batch industrial processes, such as the French Process for generating

zinc oxide, may involve the use of extreme temperatures (ca. 1000 ◦C), and as such

are very energy-intensive.[160]

Industrial processes for nanoparticle synthesis should ideally satisfy a number of
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requirements. These include, but are not limited to, the necessity for production of

controlled, homogeneous materials with consistent properties for their desired ap-

plications, the in-line monitoring of said consistency, lack of needless complexity

in the process (single-step processes are ideal), efficiency in energy and resource

use, both at research and industrial scale of production, flexibility in reaction pa-

rameters to fine-tune particle properties, and perhaps above all should be the safety

of the process. This includes the risk to workers from process machinery (and by

extension the facility to safely disable said process machinery), as well as from po-

tentially harmful reagents and solvents, and pertinent to this research in particular,

from nanoparticles themselves. The long-term health risks are not fully known, but

that dry nanoparticles can be inhaled is not in question, merely the potential detri-

ment to the respiratory health of those involved.[159, 161, 162]

In address of these, continuous hydrothermal processes stand tall. Temperature,

pressure, pH, concentration, flow rates, and mixing regimes among other parameters

are easily controllable, and system/flow properties and dynamics can be calculated

precisely should one have a chemical engineer to hand. Monitoring of the process

while synthesis is carried out is also possible, and from the point of view of the pro-

cess scientist carrying out the synthesis, safety precautions and reaction design can

allay the majority of concerns. Water is typically the only solvent, and the product

is collected as a wet slurry of nanoparticles in water, such that the nanoparticles

produced are not in a form that can be inhaled at all.[159] The process is, however,

typically carried out at high temperatures and pressures, though at lower tempera-

tures than many industrial batch processes,[159, 160] and though safety precautions

can minimise the risk to personnel, no such process can ever be entirely risk-free.

1.4.2 Continuous hydrothermal flow synthesis

Continuous hydrothermal flow synthesis (CHFS) processes, especially those em-

ployed herein, principally take advantage of the change in water properties across

the supercritical/liquid phase boundary. This is depicted in Figure 1.11, wherein

the phase behaviour of water at different temperatures and pressures is depicted.[2]

Three points of interest in the graph are denoted by the dashed lines. From left
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to right, first there is the triple point of water, the point at which (pure) water can

exist as solid, liquid, and gas. Second is the boiling point of water at 100 ◦C and

atmospheric pressure, and finally is the critical point. At 22 MPa (218 atmospheres)

and 374 ◦C, water becomes supercritical. Whereas room temperature and pressure

water has a density ca. 1000 kg m−3, supercritical water has a density of only 322

kg m−3 at the critical point.[163]

Figure 1.11: Simple phase diagram for water to depict the matter-phase behaviour under
different temperatures and pressures. Used with permission from [2].

Another key difference in the properties of liquid versus supercritical water is in the

dielectric constant, the measure of its ability to solvate polar species. Room tem-

perature water has a dielectric constant of 80 (the highest of all common solvents),

but this falls with higher temperature and pressure, to only 5 at the critical point,

primarily due to the breakdown of the extended hydrogen bonding network; in the

supercritical phase there is approximately 30 % free monomeric H2O molecules,

and the hydrogen bonding is reduced to ca. 17 % relative to room temperature

and pressure water, though still considerably more than would be present in the gas
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phase. Indeed, supercritical water exists in liquid-like hydrogen bonded clusters

dispersed within a gas-like phase, interfaces between other phases no longer exist

so there is no surface tension to speak of.[164–166] These changes between liq-

uid and supercritical states do not occur instantaneously upon reaching the critical

temperature and pressure, there are significant changes in near-critical (sub-critical)

water relative to the liquid phase too, and advantage can be taken of these in a CHFS

process.[159, 163]

The precursors for a CHFS reaction are typically aqueous metal salts, for example

zinc nitrate as a precursor for zinc oxide. This has a very high solubility in water,

93g per 100 mL of room temperature water,[167] because it is highly polar. This

also means that it is not soluble in non-polar solvents, as supercritical water can be

classified. Hence if a room temperature solution of zinc nitrate (even very dilute)

meets and mixes thoroughly with a stream of supercritical water, it will be in a su-

percritical, or near-critical state. The solution becomes supersaturated with the zinc

nitrate, which will crash out of solution and react with the superheated water around

it according to the two-part reaction scheme depicted in Equations 1.3 and 1.4 for a

metal nitrate reagent, where the metal is represented by ‘M’. In this case, the nitric

acid produced will make the product stream acidic; modifiers such as potassium hy-

droxide can be added to aid in the nucleation of the metal oxides, and to neutralise

or make alkaline the product stream.

M(NO3)x (aq) + xH2O→M(OH)x (s) + xHNO3 (1.3)

M(OH)x (s)→MO x
2 (s) +

x
2

H2O (1.4)

This applies to many metal oxides, though conversion of the hydroxide to the ox-

ide requires that there be sufficient energy, so in some instances, such as in the

case of the CHFS synthesis of In2O3, the oxide is only formed at mixing tem-

peratures of 400 ◦C or more; lower temperatures result in the partially converted

InO(OH).[28, 168, 169] However, with materials such as CeO2 and ZrO2,[170, 171]
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NiO,[172] ZnO,[173, 174] and TiO2,[175] among others, the oxide can be formed

at milder temperatures. The applications of CHFS are limited only by what ma-

terials can be synthesised. Gas sensing,[176, 177] photocatalysis,[174, 178, 179]

lithium ion batteries,[180–183] capacitors[184] and thermochromics[185, 186] are

only a small selection of the applications to which CHFS can be lent; for a full and

more detailed delve into the field I refer the reader to the review by Darr et al.[159]

With regards to TCO materials, ITO has been made in hydrothermal flow

before,[169, 187] but in only one report was subsequently deposited as a thin film,

yielding resistivities around 1 x 10−2 Ω cm.[168] Other prospective TCO materi-

als have been synthesised by CHFS, including some doped zinc oxides,[174] and

niobium-doped titania,[181] however these were not tested for their TCO-related

properties, but for photocatalysis and energy storage, respectively.

1.4.3 CHFS as a combinatorial tool

CHFS lends itself very effectively to high throughput, combinatorial screening

of different materials, in that by altering the precursor solutions, a large number

of samples can be synthesised in a relatively short period of time, for example

the high-throughput synthesis of a 66-sample phase diagram of CexZryYzO2−δ

in < 1 day.[170] This is something for which there is no simple analogue for

batch synthesis processes, beyond the acquisition and use of 66 autoclaves.

Other prevalent combinatorial synthesis methods (non-CHFS) have been in use

for up to two decades,[188] including magnetron sputtering,[188–192], pulsed

laser deposition,[193–195] molecular beam epitaxy,[196] flame pyrolysis,[197]

sol-gel,[198], solid state,[199, 200] and chemical vapour deposition.[201]

These have encompassed a variety of technological application research areas,

such as superconductors,[188, 193] TCOs,[189–192, 194, 197, 198, 201, 202]

photocatalysis,[196, 198] and themoelectrics.[195, 199, 200] These techniques are

for the most part geared towards the synthesis of combinatorial libraries in the

form of thin films; with the exception of solid state[200] and spray pyrolysis[197]
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methods, there has been a lack of combinatorial methodology for the production of

nanopowders. Given the few examples that so far exist, it is clear that for materials

discovery and compositional optimisation, CHFS can be a powerful combinatorial

research tool that has yet to be properly applied to the field of TCOs.

1.5 Hypotheses
In this chapter, the fundamentals to the understanding of this thesis were presented.

The properties and applications of transparent conducting oxides were discussed, as

well as the issues in the field, namely those presented by continued use of indium-

based materials, and the consequent requirement not only for more sustainable re-

placement materials, but also the development, and more prevalent use of increas-

ingly sustainable synthetic and deposition methodologies.

Thus, the hypothesis question of this thesis is as follows:

Can continuous hydrothermal flow synthesis be used to synthesise materials that

demonstrate, when deposited as thin films, the optical and electronic properties that

are required of transparent conducting oxides in their various applications.

This can be broken down into the following investigative steps:

i. To screen numerous materials synthesised by continuous hydrothermal flow syn-

thesis, in order to determine the systems that demonstrate the most promising elec-

tronic properties.

ii. To optimise these most promising systems in terms of the dopant level for maxi-

mal conductivity.

iii. To surface-functionalise these optimised materials within the synthetic process,

and deposit them as thin films by such methods as spin-coating or inkjet printing,

furthermore optimising the processing and heat treatment of the films to obtain as

optically transparent, electrically conductive, materials as possible.



Chapter 2

Experimental Methods

2.1 Introduction
This chapter discusses the experimental methods employed throughout this work.

Descriptions of the different Continuous Hydrothermal Flow Synthesis (CHFS) se-

tups used are given, followed by descriptions the various techniques used for sample

processing and characterisation. The aim of this chapter is to give an overview of

synthesis and characterisation methodologies; specific reaction and analysis param-

eters will be detailed in each corresponding chapter where relevant.

2.2 Synthesis and Cleaning of TCO Nanoparticles

via CHFS
The laboratory-scale CHFS reactor was built by Dr C. Tighe, Dr R. Gruar, and Dr

N. Makwana, and its development is detailed in the respective theses of the latter

two;[203, 204] alteration of the laboratory 3-pump setup to the high-throughput

setup was performed by Dr L. McCafferty. The pilot-scale reactor was built by Dr

R. Gruar and Dr C. Tighe.[205]

The following sections detail the reactor setups utilised in this work, including 3-

and 4-pump laboratory and pilot-scale setups, and the high-throughput setup. All

fittings and pipes were made of 316L stainless steel supplied from Swagelok (Kings

Langley, UK). Figure 2.1 shows photographs of the pilot-scale (a) and laboratory-

scale (b) reactors.
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Figure 2.1: a) The pilot-scale CHFS reactor, and b) the laboratory-scale reactor. The labels
correspond to i) pressure gauges, ii) deionised water reservoir, iii) the precursor feed vessels,
iv) the control module, v) the mixer and chiller setup, vi) the high-throughput setup Gilson
pumps, vii) the Milton Roy diaphragm pumps, and viii) the back-pressure regulator (BPR)
and outlet.

2.2.1 3-pump setup

Figure 2.2 shows the schematic for the 3-pump CHFS setup. Three identical pres-

surised diaphragm-pumps (Primeroyal K, Milton Roy, Pont-Saint Pierre, France)

were used to supply the three independent precursor feeds. In a typical reaction, P1

supplied the feed of deionised water (> 10 MΩ cm resistivity), which was heated

to 450 ◦C using a custom 7 kW electrical heater (the design of which is detailed in

Dr N. Makwana’s thesis).[204] Pumps P2 and P3 supplied precursor feeds at room

temperature; typically aqueous metal precursor solutions were pumped from P2,

and base (and base-soluble precursors) from P3. The precursor feeds from P2 and

P3 were mixed in flow in a tee mixer prior to mixing with the supercritical water

feed in the confined jet mixer (CJM), at which point the product was rapidly formed

in flow. The product feed exiting the CJM mixer was then cooled to∼40 ◦C using a

pipe-in-pipe heat exchanger. Once cooled, the product slurry passed through a back-

pressure regulator (Tescom, model 26-1762-24-194, or Equilibar, model EB1HP2

HF) and was collected in an appropriately sized beaker/vessel depending on the

volume being collected.
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Figure 2.2: Schematic for the 3-pump CHFS setup; P1, P2, and P3 are the diaphragm
pumps, T stands for the temperature, and P stands for the pressure.

Each pump was equipped with a three-way ball valve, with which the inlet could

be switched between individual 1 L conical precursor vessels and a communal 200

L reservoir of deionised water to which all pumps were connected. During heat-

up, cool-down, and flushing steps, all pumps were fed from the deionised water

reservoir, with the feeds from P2 and P3 being switched to the precursor vessels as

appropriate. Each pressured line was equipped with a pressure relief valve (Parker

HPRV, relief pressure 276 bar), a pressure gauge and a non-return valve assembly

before the feed was introduced into the reactor. The pressure relief valves ensured

that the pressure in the system did not rise above 276 bar (as would be possible

due to blockages in the system), ensuring that the system was safer to operate. The

pressure gauges allowed for independent monitoring of the pressure experienced by

each pump, and the non-return valve assembly prevented back-flow of the feeds in

the event of pump failure.

Flow rates of 80 mL min−1 for P1, and 40 mL min−1 for each P2 and P3 (a balanced

flow rate regime where the total flow rate from P2 and P3 was equal to the flow rate

of P1) resulted in a mixing temperature at the CJM of 335 ◦C.[206] Up-scaling of
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the process to flow rates of 400 mL min−1, 200 mL min−1 and 200 mL min−1 for

pumps P1, P2 and P3, respectively, was carried out using the pilot-scale CHFS, and

five-fold volumetric increase in scale, though also with a mixing temperature of 335
◦C.

2.2.2 4-pump setup

Figure 2.3: Schematic for the 4-pump CHFS setup; P1-4 are the diaphragm pumps, T
stands for the temperature, and P stands for the pressure.

Figure 2.3 shows a schematic for the 4-pump setup for a CHFS reactor. Practically,

the setup is identical to the 3-pump analogue, with the addition of a second CJM

after the first, wherein the product stream comprised of the mixed feeds from P1,

P2, and P3, met the room temperature quench feed from P4. This P4 feed contained
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pure deionised water to curtail particle growth, or sodium citrate solution to act as a

capping agent, coating the surface of the newly-formed metal oxide nanoparticles.

In order to maintain a balanced flow rate regime, the flow rate from P4 was equal to

the total flow rate of the other pumps, i.e. 160 mL min−1; this resulted in a mixing

temperature in the second CJM of 187 ◦C.

2.2.3 High-Throughput setup

Figure 2.4: Schematic for the high-throughput CHFS setup. P1 and P3 are diaphragm
pumps, P2a and P2b are Gilson pumps, T stands for the temperature, and P stands for the
pressure.

Figure 2.4 shows the schematic for the high-throughput setup. The setup was identi-

cal to that of the 3-pump laboratory-scale setup, but that pump P2 was replaced with

two Gilson 305 pumps, labelled P2a and P2b in Figure 2.4. With smaller pipe di-

ameters, less time was required flushing pure deionised water through between each

synthesis run to avoid cross-contamination, even with increased precursor concen-

trations. Thus up to 50 samples could easily be made in less than a day.
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2.2.4 Confined Jet Mixer (CJM) design

The design of the CJM is shown in Figure 2.5. The co-current mixer was designed

by Darr et al.,[3] in which the two flows (supercritical water and the reagent mix-

ture) were fed co-currently. The pipe-in-pipe setup saw the supercritical water flow

through the inner pipe, while the precursor solutions were introduced orthogonal to

the water feed. Nanoparticle formation occurred at the point the two feeds mixed,

and the reaction products were carried upwards away from the mixing point.

Figure 2.5: Schematic showing the design for the Confined Jet Mixer (CJM) (adapted from
[3]).
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2.2.5 Cleaning and processing of the as-made slurries

As-prepared samples were collected as particle-laden slurries from the CHFS reac-

tor. Solids were retrieved by centrifugation using a Sigma 4K15 centrifuge at 4500

rpm. If the sample settled readily, centrifugation was carried out using 50 mL Fal-

con tubes and centrifugation was conducted in the range 5 - 30 minutes depending

on how readily the samples settled out. If the sample did not settle, then 500 mL

centrifuge buckets were used instead. Un-coated particles were cleaned by wash-

ing centrifuged dense pastes with deionised water, agitated, and centrifuged again;

this process was repeated until the supernatant measured a conductivity < 50 µS as

measured using a Hanna Instruments H198311 conductivity meter. Coated particles

(which tended to settle less readily) were treated in like manner, but washings were

carried out with 20 wt% acetone and 80 wt% deionised water, and each centrifuga-

tion step typically took 1 - 3 hours.

After cleaning, samples were in the form of a dense paste, approximately 50-60

wt% solid. Coated samples from which inks were to be made were stored in this

form, however the majority of samples were then dried using a Virtis Genesis 35 XL

Freeze Drier. This was achieved by first freezing the sample chamber (containing

the dense wet pastes) and the condenser unit (which trapped the water) to -40 ◦C,

then implementing a vacuum. Holding the vacuum such that the pressure was < 13

Pa, the temperature of the sample chamber was slowly raised from -40 ◦C to 25 ◦C

over a period of 24 h. This resulted in free-flowing powders, which were further

ground by pestle and mortar, and total yields then measured and calculated.

2.2.6 Precursor materials

All water used in syntheses and subsequent cleaning steps was 10 MΩ deionized

water purified using a Millipore Elix Essential water purification system, and the

base was potassium hydroxide solution (KOH, Fisher Scientific, Leicestershire,

UK). Precursor reagents for each of the desired elements were used as-purchased

from the suppliers as detailed in Table 2.1.
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Table 2.1: Precursor reagents and supplier information for the synthesis of the compounds
discussed in this work. The list is organised alphabetically by element.

Element Precursor Compound

Aluminium Al(NO3)3.9H2O

Cerium Ce(NO3)4.6H2O

Chromium Cr(NO3)3.9H2O

Copper Cu(NO3)2.H2O

Gadolinium Gd(NO3)3.6H2O

Gallium Ga(NO3)3.H2O

Indium In(NO3)3.H2O

Iron FeSO4.7H2O

Lanthanum La(NO3)3.6H2O

Magnesium Mg(NO3)2.6H2O

Manganese Mn(NO3)2.H2O

Molybdenum (NH4)6Mo7O24.4H2O

Neodymium Nd(NO3)3.6H2O

Niobium (C4H4N)NbO9.H2O

Praseodymium Pr(NO3)3.6H2O

Samarium Sm(NO3)3.6H2O

Silicon Na2SiO3

Tin K2SnO3.3H2O

Titanium TiOSO4.xH2SO4.H2O

Vanadium VOSO4.H2O

Ytterbium Yb(NO3)3.5H2O

Yttrium Y(NO3)3.6H2O

Zinc Zn(NO3)2.6H2O

Zirconium ZrO(NO3)2.H2O
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2.3 Physical Characterisation of Powders

The following sections detail the methodologies employed in the characterisation

of the powders. These include X-ray diffraction, X-ray photoelectron spectroscopy,

transmission electron microscopy, energy dispersive X-ray spectroscopy, Brunauer-

Emmett-Teller analysis, thermogravimetric analysis, and atomic emission spec-

troscopy.

2.3.1 Powder X-ray diffraction (pXRD) and particle size estima-

tion using Scherrer analysis

XRD data were collected using a STOE Stadi P diffractometer in transmission ge-

ometry, employing a molybdenum source (Mo-Kα1 radiation, λ = 0.7093 ), with a

typical data collection range of 2θ = 5 - 35 ◦. Approximately 0.01 g of sample was

mounted between two transparent acetate sheets for analysis.

The 2θ scan range, acquisition time, and step size were dependent on the samples

and are detailed in each chapter separately. The phase composition of the samples

was determined by comparison to reference patterns available in the Inorganic Crys-

tal Structure Database (ICSD).

Scherrer analysis[8, 9] was carried out on the (100), (002), and (102) peaks, as

for Wurtzite ZnO-based samples, these are the three most intense and best defined

peaks, positioned at relatively low scattering angles. The method was used for

crystallite size estimation, not to be taken as accurate values on their own, rather

indicative of trends in particle size used in conjunction with BET surface area anal-

ysis and TEM particle size analysis. Equation 2.1 shows the calculation used for

the Scherrer method, where τ is the lower bound of the estimated crystallite size, K

is the dimensionless shape factor taken to be 0.9, λ is the wavelength of the X-ray

source used, β is the line broadening at half the maximum intensity for the peak in

question, and θ is the Bragg angle.

τ =
Kλ

βcosθ
(2.1)
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2.3.2 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy was carried out using a Thermo Scientific K-

alpha photoelectron spectrometer using monochromatic Al-Kα radiation. Survey

scans were collected in the binding energy range 0-1100 eV at a pass energy of

200 eV. Higher resolution scans were recorded for the principle peaks as detailed in

the respective chapters concerning them. Peak positions were calibrated using the

adventitious carbon 1s peak at 284.7 eV using CasaXPS software, from which XY

data was extracted. Samples were prepared by affixing small cuts of double-sided

carbon tape to the sample holder, with the powder samples on the up-turned side of

the tape.

2.3.3 Transmission electron microscopy and energy dispersive

X-ray spectroscopy (TEM/EDS)

Transmission electron microscopy (TEM) was performed using a Jeol 200 kV trans-

mission electron microscope in imaging mode. Samples were dispersed in methanol

and drop coated onto 300 mesh carbon-coated copper TEM grids (purchased from

Agar Scientific). Image analysis and particle size measurements were carried out

using Gatan Digital Microscopy Suite software. Energy Dispersive X-ray Spec-

troscopy (EDS) analysis was carried out using an Oxford Instruments X-MaxN 80-

T Silicon Drift Detector (SDD) fitted to the transmission electron microscope and

processed using Aztec software.

2.3.4 Inductively couples plasma atomic emission spectroscopy

(ICP-AES)

Compositional analysis was carried out on selected samples using inductively cou-

pled plasma atomic emission spectroscopy (ICP-AES). Dilute solutions of the sam-

ples were prepared by dissolution in 1% aqueous nitric acid, and analysis was car-

ried out using a Varian 720 ICP-AES in axial configuration equipped with an au-

tosampler. Prior to sample analysis, calibrations were carried out using standards

at concentrations of 2.5, 5.0, 7.5, and 10.0 ppm for zinc, and 0.25, 0.5, 0.75, and

1.0 ppm for each Al, Ga, and Si. The measurements and subsequent conversion
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calculations were carried out by I. Johnson and Dr P. Marchand.

2.3.5 Brunauer-Emmett-Teller (BET) analysis

Brunauer-Emmett-Teller (BET) measurements were carried out on dry powders to

ascertain the surface area of the different samples. 0.1 - 0.2 g of powders were

weighed out and degassed by heating to 150 ◦C under a flow of nitrogen gas for >

12 h in glass BET tubes. The samples were re-weighed to ascertain the degassed

sample mass, and the tubes affixed to the Micromeritics TriStar II PLUS surface

area and porosity analyser, which was used to measure adsorption isotherms and

thus calculate the BET surface area.

2.3.6 Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was performed on a Netzsh STA 449C instru-

ment. TGA was carried out in static air with the samples in aluminium pans at

atmospheric pressure. The rate of heating was 10 ◦C min−1, from room tempera-

ture up to a maximum temperature of 600 ◦C.

2.4 Sample Preparation for Further Analysis
Compositional optimisation was determined by pressing dry powders into discs and

performing electrical measurements on them. Optimised compositions were then

used to generate thin films, by spin coating and inkjet printing. Methods of prepara-

tion of pellets (powders only) and inks (powders and dense wet pastes) are described

in the following sections.

2.4.1 Pellet preparation

Approximately 0.5 g of dry powder sample was pressed into a 16 mm diameter, ca. 1

mm thick compact disc using a bench-top hydraulic press (Specac, Orpington, UK),

under a force of 50 kN for 5 to 30 minutes, depending on the sample in question.

Discs were made in triplicate for each sample. Once pressed, the discs were heat

treated in a tube furnace (70 mm internal work tube diameter, Elite Thermal Systems

Ltd.) for 3 hours at 500 ◦C under a 5% hydrogen in nitrogen atmosphere, with an

approximate flow rate of 5 cm3 min−1. Examples of the discs are shown in Figure
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2.6.

2.4.2 Ink formulation

Dispersions/inks of the nanoparticles, were required for multiple deposition tech-

niques, including but not limited to spin coating and inkjet printing. These dispers-

ing methodologies are discussed in the following sections.

2.4.2.1 Spin-coating inks

Inks for spin-coating were prepared from dry powders with no surface coatings, or

from citrate-coated indium tin oxide dense wet paste. To 1.0 g of dry powder (or

equivalent in paste form) was added 4.0 g of dispersing medium (typically 20 wt%

ethylene glycol in deionized water). These were mixed by hand using a spatula to

ensure that the powder was wetted, then underwent sonic agitation using a sonicat-

ing bath (VWR Ultrasonic Cleaner, USC100T) for 30 min. This began the process

of breaking up the agglomerates, and cleaned the sample off the spatula, giving a

crude dispersion. This was further treated by use of a Branson Digital Sonifier 250

sonicating tip operating at 20% amplitude with a 0.3 s on/off pulse length. The

tip was submerged in the dispersion, which was itself held in an ice bath to ensure

excessive heating of the dispersion did not occur. Each 2 min sonicating tip treat-

ment (1 min on, 1 min off) was followed by 2 min resting in the ice bath before the

next treatment was carried out. Insufficient cooling time resulted in the suspension

overheating; this coagulated the formulation, characterised by an irreversible and

sudden increase in viscosity. Eight such treatments were carried out, before further

sonic agitation of the dispersion in the sonicating bath for 30 min. The dispersions

were allowed to rest for up to 1 h before spin coating was carried out.

2.4.2.2 Inkjet printing inks

25 - 30 g inks for inkjet printing were prepared from wet pastes of surface-modified

nanoparticles that had been coated with citrate during the synthetic process. A

small amount (ca. 0.1 g) of the paste was baked at 300 ◦C in air using a Carbolite

CWF-1300 muffle furnace to ascertain the metal oxide loading (typically 55-60

wt%). An appropriate calculated amount of paste was weighed out, and to it added
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Sun Chemical ink vehicle U10197 as the dispersing medium, such that the solid

loading was 25 wt%, and the minimum mass of the ink was 25 g. This was agitated

using sonication in the abovementioned sonicating bath for 15 minutes before the

sonicating tip was used in the manner described above to carry out between 10

and 15 treatments, until the dispersion could in its entirety pass through a 3.1 µm

syringe filter (Thermo Scientific).

2.4.3 Ink/Dispersion Analysis Techniques

Dispersion analysis was carried out in the form of dynamic light scattering (DLS)

(hydrodynamic diameter and surface zeta potential measurements) and viscometry

measurements. Methodologies for these are discussed in the following sections.

2.4.3.1 Dynamic light scattering (DLS) and Zeta potential measure-

ments

DLS and zeta potential measurements were carried out using a Nano Zetasizer

ZEN3600 (Malvern Instruments Ltd). Samples were prepared by suspending 10

mg of powder (or equivalent for ink samples) in 100 mL of 5 mM NaCl solution in

deionized water.

Particle size distributions were measured at an angle of 173 ◦ using backscatter

geometry. Each size distribution obtained was taken as an average of ten measure-

ments, each lasting 10 seconds. These measurements were carried out in disposable,

chemically resistant PMMA cuvettes (Malvern).

Zeta potential measurements were carried out in like configuration, but using dis-

posable folded capillary cells with in-built electrodes (Malvern). The samples as

prepared above were adjusted to pH 7, and measurements carried out step-wise ei-

ther decreasing or increasing the pH to within the stability of the sample in question;

0.1 M and 0.01 M solutions of each HNO3 and KOH prepared using 5 mM NaCl

solution were used to adjust the pH. Each data point was an average of at least ten

agreeing measurements (up to 100, depending on the cumulatively calculated stan-

dard deviation) after voltage equilibration, and three data points were taken for each

pH value for each sample. The mean zeta potentials were then plotted against pH
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to generate zeta potential curves.

2.4.3.2 Viscosity measurements

Dynamic viscosity of inks/dispersions was measured using a Brookfield DV2T Vis-

cometer. A minimum of 16 mL of ink was required in the vessel, which was fitted

with a water jacket through which distilled water set to 25.0 ◦C flowed to maintain

the temperature. A submerged spindle was rotated in the range 1 - 200 revolutions

per minute (rpm) to find the maximum value for which the resultant torque was

as close to the viscometers measurable limit (displayed as a percentage, i.e. up to

100.0 %) as possible. Data points were collected for a range of speeds (in rpm)

up to this maximum, with single point averaging over 30 s to ensure equilibration.

Viscosity was measured in cP, centipoise (1 cP = 1 mPa s), and the value obtained

closest to 100.0 % torque was taken to be the dynamic viscosity of the sample.

2.4.4 Thin film deposition

Thin films were deposited by spin coating and inkjet printing. These preparatory

methodologies, and their subsequent heat treatments, are described below.

2.4.4.1 Spin-coating method

Spin coating was carried out using a Laurell Tech. Corp. WS650MZ-23NPPB spin

coater by manually dropping (using 150 mm glass Pasteur pipettes, Fisher Scien-

tific) the prepared dispersion onto float glass substrates (NSG Pilkingtons, UK),

spin rates in the range 3000 - 5000 rpm. Between 20 to 100 drops were added to

each substrate, depending on the desired film thickness and the material/dispersion

in question.

2.4.4.2 Inkjet printing method

Inks prepared with Sun Chemical ink vehicle U10197 as the dispersing medium

were printed onto float glass substrates using a Fujifilm Dimatix Materials Printer

DMP-2831 with a 10 pL print head. Inks were filtered by syringe sequentially

through 3.1 µm, 1.2 µm, 0.7 µm, and 0.45 µm filters, before being loaded into

a piezo-based inkjet print cartridge. Prints of 2.0 x 2.0 cm were deposited with a

drop spacing of 15 - 20 µm (1270 - 1700 drops per inch), before being dried for 30
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min in air at 95 ◦C to remove the dispersing medium. Proprietary additives were in

some cases added to the inks before printing to improve dispersion quality, surface

tension, viscosity, or wetting properties of the inks, facilitating a higher quality

film. Deposition and proprietary formulation altering was carried out by, or under

instruction of Dr M. Pickrell of Sun Chemical Ltd.

2.4.4.3 Heat treatment of thin films

All thin films, deposited by spin coating or inkjet printing methodologies, were

heat treated in a tube furnace (100 mm internal diameter work tube, Elite Thermal

Systems) at 550 ◦C for 5 h under a flow of N2 or Ar (ITO films), or 5% H2/N2

(ZnO-based films), with a ramp rate of 5.0 ◦C min−1.

2.5 Electrical and Optical Characterisation
Methods for the electrical (Hall Effect) and optical (UV/Vis/NIR) characterisation

are described below, as well as the methods used to determine film thickness (opti-

cal, and side-on SEM), needed to calculate the resistivity of the films.

2.5.1 Hall effect measurements

Heat treated pellets were prepared for Hall measurements by gold-sputtering four

electrical contact points onto the surface as shown in Figure 2.6. For heat treated

thin films, the electrical contacts were instead added using silver paint (Sigma).

Hall effect measurements were carried out using the Van der Pauw method to de-

termine the bulk resistivity of the materials. The samples (thin film or disc), once

mounted onto the sample holder as shown in Figure 2.6, were subjected to an input

current of 1 mA and a calibrated magnetic field of 0.58 T using the Van der Pauw

probe, as part of an Ecopia HMS-3000 Hall Measurement System; the transverse

voltage was then measured. The measurement was repeated by reversing the direc-

tion of the magnetic field and the current. Resistivity measurements were made in

triplicate for each sample and the mean value and standard deviations were calcu-

lated. Between each measurement, the sample was removed and re-mounted to give

a fairer representation of the average electrical properties.
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Figure 2.6: a) the Hall Probe mount upon which the sample is loaded, held in place by use
of blu-tak, b) a series of heat treated 16 mm pressed discs of varying compositions, with the
central disc sporting gold-sputtered electrical contact points, and c) a 10 x 10 mm (approx.)
cut shard of a heat treated spin-coated thin film of aluminium and gallium co-coped zinc
oxide, with four spots of silver paint added to act as electrical contact points, typical of the
size of sample used for Hall Effect measurements on thin films in this work.

2.5.2 UV/Vis/near-IR measurements

Spectra were obtained using a PerkinElmer Lambda 951 UV/Vis/NIR spectropho-

tometer with an integrating sphere setup and an air background. Samples were

measured in the form of thin films prepared by either spin coating or inkjet print-

ing; transmittance, and reflectance measurements were taken in the range 300 -

2500 nm. Average transmission in the visible range was calculated by averaging

the transmittance values in the range 400 - 700 nm.

2.5.3 Film thickness measurements

Film thickness was determined predominantly by optical methods, corroborated by

side-on scanning electron microscopy (SEM). These methodologies are discussed

in the following sections.
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2.5.3.1 Ellipsometry

Measurements were carried out using a Filmetrics F20 Thin Film Analyser. Thick-

nesses were measured at multiple points (typically 8 - 12) on each thin film sample

and a mean film thickness calculated. This value was used in the subsequent Hall

Effect measurements for the film.

2.5.3.2 Scanning electron microscopy (SEM)

Field emission scanning electron microscopy (FE-SEM) measurements were ob-

tained using a JEOL JSM-6700F microscope with a 5 keV accelerating voltage.

Zinc oxide-based samples were gold coated using a sputter coater fitted with a gold

target prior to imaging. Images were taken of the surface of the films and in some

cases side-on to determine film thickness. Side-on SEM images of inkjet printed

ZnO-based films were acquired by Dr P. Marchand.



Chapter 3

Determination of Suitable Dopants

for Transparent Conducting ZnO

3.1 Aims
The aim of this chapter is to investigate the identification by synthesis and character-

isation of various CHFS-synthesised doped zinc oxides by screening the conductiv-

ity of the materials. The electrical testing is carried out by Hall Effect measurements

on pressed, heat-treated discs. Physical characterisation is discussed with respect

to pXRD (including Scherrer analysis), TEM, and XPS. The benchmark material,

ITO, synthesised and tested by the same methods, obtained optimal resistivities of

the order of 10−3 Ω cm.

3.2 Introduction
For the reasons discussed extensively in Chapter 1, doped zinc oxides are highly

desirable as replacement materials for indium tin oxide in applications requiring

transparent conducting oxides. The ZnO dopant in question can be immensely

variable, though typically the most prevalent in industry and academic research

are aluminium[119, 120, 145] and gallium.[128, 129, 207] Many others are well

known to benefit the electrical properties of zinc oxide, including post-transition

metal elements such as indium,[137] tin,[138] and silicon,[208, 209] transition

metals such as iron,[210] manganese,[211, 212] molybdenum,[213] niobium,[139]

titanium,[214, 215] vanadium,[216] yttrium,[217] and zirconium,[218] and lan-
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thanides such as lanthanum,[140] neodymium,[141] and ytterbium.[219] Other

transition metals such as chromium and copper are known, but full characterisa-

tion is limited with respect to the desirable optoelectronic properties pertinent to

TCOs. Magnesium is also known in literature, typically as a co-dopant.[220]

Thin films of these materials were generated by a variety of different techniques, in-

cluding sputtering, atomic layer deposition, and sol gel dip-coating, but never have

the majority been made by a continuous hydrothermal flow synthesis, thus all would

be considered as part of the screening process. A good number of other elements

have been considered for use as TCOs when doped into ZnO that have been ex-

cluded for various reasons. Generally speaking the issue is potential harm to the en-

vironment, or harmfulness in their handling, or indeed their only water-soluble pre-

cursors being inherently damaging to the CHFS process machinery. These include

cobalt and nickel,[221] boron,[222] and germanium,[223] among others. Con-

versely, there were water-soluble precursors to hand for elements such as cerium,

gadolinium, prasaeodymium, and samarium, for which there is no literature prece-

dent for doped ZnO TCOs, but based on the chemistry of similar elements (the

aforementioned lanthanides for which there is literature precedent), it was judged

to be worth the effort to include them in the study.

3.3 Experimental Design and Observations

A three-pump, single mixer laboratory-scale CHFS set-up was used (see Experi-

mental chapter, section 2.2.1). With a total metal concentration, [Zn + dopant], of

0.2 M (supplied by pump P2), and pump flow rates of 80, 40, and 40 mL min−1 for

pumps P1, P2, and P3, respectively, approximately 5 g of product was expected in

a collection volume of 1.2 L. Base (KOH) concentration was maintained at twice

the metal concentration, 0.4 M, in the feed supplied by pump P3. For a full list

of the precursors used, see Table 2.1 in Chapter 2; note that silicon and tin precur-

sors (sodium metasilicate and potassium stannate, respectively) were introduced via

pump P3, as they were base soluble, all other dopants were introduced with the zinc

precursor via pump P2.



3.4. Dopant Screening Results for Doped Zinc Oxides 76

Doping of the respective investigated elements into ZnO had the effect of turning

some of the powders from white (as observed for undoped ZnO) to various other

colours, as listed in Table 3.1, along with the colours of the corresponding discs

made from those powders. All products were collected in the pH range 6-8, with

yields of 70 % (± 5 %). Most powders were light in colour, white or off-white, with

notable exceptions being those samples doped with Mn, Cu, and Fe, which turned

various shades of brown. Pressing of the powders into discs and heat treating in

a reducing atmosphere caused many colour changes, for the most part to green or

blue (if the colour changed from white at all). ZnO:Cu turned an intense purple,

ZnO:Nd turned pink, and ZnO:Fe turned green.

Powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), and

X-ray photoelectron spectroscopy (XPS) were used to characterise the powder sam-

ples, and Hall Effect measurements were used to determine the electrical properties

of the samples as pressed, heat treated discs.

3.4 Dopant Screening Results for Doped Zinc Oxides
This Section describes the electrical and physical analysis results obtained for the

various doped powders. First, the Hall Effect resistivity measurements; at this point

the testing methodology for screening was new and lacking in refinement, thus elec-

trical results are reported as being within certain ranges (as an order of magnitude).

Disc fabrication and heat treatment steps resulted in a relatively low ‘survival rate’,

in that two in three discs would break in one of the steps, failing to be tested. Once

electrical results were collected from at least five separate discs for each sample,

the relative potential of the doped zinc oxides was reasoned for future investigation.

Following the electrical results are the characterisation data, including XRD, XPS,

and TEM, for all of the materials.

3.4.1 Electrical characterisation for doped zinc oxides

For every material, at least five discs were made that were structurally robust after

pressing and heat treating. Electrical contacts were made by sputtering gold con-

tacts, such that the distance between each of the four contact points was typically
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Table 3.1: Table summarising the colour of the doped zinc oxide powders and the heat
treated discs that resulted, and the pH at which their respective slurries were collected,
organised by dopant element.

Dopant pH Colourpowder Colourdisc

- 7 white white

Al 7 pale yellow green-blue

Ce 8 white white

Cr 7 pale blue blue

Cu 6 brown dark purple

Fe 7 orange green

Ga 7 pale yellow green-blue

Gd 7 white white

In 8 white blue

La 7 white pale blue

Mg 7 white white

Mn 7 brown dark brown

Mo 6 white white

Nb 7 white white

Nd 7 white pale pink

Pr 7 white white

Si 8 white white

Sm 7 white white

Sn 8 white white

Ti 6 white white

V 6 pale grey-blue dark blue

Y 7 white white

Yb 7 white white

Zr 7 white white
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around 5 mm. Readings were taken at least in triplicate for each disc, but due to the

fluctuation in results, and judged unreliability in certain cases, the precise figures

are not included in their entirety. Rather, for each sample, the best performing disc

that obtained a certain order of magnitude in resistivity for at least three readings

was taken as the representative of that material, and the orders of magnitude as-

signed to each.

For the materials that demonstrated conductivity at all, resistivities in the range

10−2 to 101 Ω cm were obtained. In order of decreasing resistivity (i.e. least to

most promising materials), ZnO doped with Cr and Y had resistivities in the order

of 101 Ω cm, ZnO doped with Fe, In, La, Nd, Pr and V had resistivities in the order

of 100 Ω cm, ZnO doped with Cu and Si had resistivities in the order of 10−1 Ω cm,

and finally only ZnO doped with Al and Ga had resistivities in the order of 10−2 Ω

cm.

Thus the four best dopants with regards to conductivity were judged to be Al, Ga,

Cu, and Si, and purely from an electrical standpoint, these were chosen to be the

focus of investigation for compositional optimisation (see Chapters 4 and 5). Lag-

ging a further order of magnitude behind these samples were Fe, In, La, Nd, Pr, and

V-doped ZnO. These would likely never achieve the resistivities necessary for most

TCO applications, but could have been worth subsequent optimisation efforts in the

future, though no such were carried out over the course of this project.

3.4.2 Physical characterisation of doped zinc oxides

In the current section, only a representative six samples will have their data

shown in various figures, including undoped ZnO for comparison, and ZnO doped

with each Al, Ce, Cu, Ga, and Si. Full physical characterisation data (spec-

tra/images/summary tables etc.) and XPS discussion are included at the end of

the Chapter in the section titled “Appendix for Chapter 3”, beginning on page 88

for all twenty-four samples; these will be referenced as appropriate in the text in

this section.

X-ray diffractometry was carried out for all powder samples. This was principally
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for the purpose of phase identification, to determine whether any crystalline phases

in addition to Wurtzite ZnO were present. Figure 3.1 shows XRD patterns for the

selection of six samples, with a reference pattern for ZnO in red.[4] The majority of

the samples tested showed phase-pure Wurtzite ZnO structure (see Figures 3.5 and

3.6 on pages 92 and 93, respectively), however in some cases an impurity phase was

seen, with peaks denoted by a ‘*’ (see Figure 3.7 on page 94 for all such samples).

Due to the low intensity of these peaks, in most cases it was not possible to identify

the additional phases present, but in Figure 3.1, the Ce-doped sample has two clear

peaks that can be assigned to CeO2,[224] an indication that the Ce did not go into

the ZnO structure. Though no crystalline phases were detected in most samples,

this was not an indication in of itself of successful doping, however, as amorphous

phases of the various metal oxide or hydroxide species would not necessarily appear

in the XRD patterns.

TEM images are shown in Figure 3.2 for the six representative samples, and for

all doped zinc oxides in Figures 3.8 to 3.11 in the appendix, on pages 95 to 98,

respectively. Particle property data for these, including length and aspect ratio from

TEM image analysis (100 particles analysed), as well as Scherrer crystallite size,

are included in Table 3.2 on page 107. Due to the generally very broad particle

size distribution, the standard deviations were often large. What was more useful

from this data were the calculated aspect ratios, which though also suffering from

large standard deviations, were still a good indicator as to the propensity of a doped

sample to be spheroidal or more rod-like. Dopants such as Al, Fe, and Mn promoted

growth along the c-axis, generating more rod-like behaviour, whereas elements such

as Si, Ga, or Zr resulted in aspect ratios close to 1, and spheroidal morphologies.

Exceptions to this include the particularly ill-behaved Gd, which showed a high

aspect ratio of 2.2, indicative of rod-like behaviour, but as can be seen from its

TEM image (Figure 3.10a), the sample was generally spheroidal, and the presence

of a few rods of excessive proportions drastically affected the statistics. Another

generalisation that could be made from looking at the mean TEM particle length,

was that the addition of almost any element appeared to increase the particle size
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Figure 3.1: XRD pattern for as-synthesised ZnO made by CHFS (black) with a reference
pattern for ZnO (red).[4] The measurement was carried out with a molybdenum source,
with wavelength λ = 0.7093 Å

versus the undoped material. However the Scherrer crystallite size from XRD data

was not greatly altered; thus the lower bound for the crystallite size was generally

unchanged (except in the cases of In and Si, which saw a notable decrease from 28

nm to 18 nm for both), but the actual particles observed with TEM were generally

larger. Note also that In and Si-doping resulted in two of the narrowest particle size

distributions, thus it could generally be stated that those dopant elements that curtail

unchecked particle growth of ZnO during continuous hydrothermal flow synthesis

result in products with far more controllable and consistent particle sizes.
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Figure 3.2: TEM images of the six representative samples, including a) undoped ZnO, and
ZnO doped with b) Al, c) Ce, d) Cu, e) Ga, and f) Si.
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XPS added further complexity in some cases, and provided elucidation in others.

Spectra are included in Figures 3.3 and 3.4 of the six representative materials, and

in Figures 3.13 to 3.19 in the appendix on pages 99 to 106. Table 3.3 on page

108 summarises the principal XPS data, including the calculated proportion of the

dopant present relative to the zinc. In the cases of Mg, Mo, and Yb doped sam-

ples, XPS data are not shown as these elements were not detected in their respective

scans. Figure 3.12 shows the Zn 2p high resolution scans for the doped samples.

The spectra are vertically arranged in increasing binding energy of the 2p3/2 peak.

All samples were calibrated to the carbon 1s peak at 284.7 eV, thus any shift is due

to the difference in sample (i.e. the dopant). Undoped ZnO had a binding energy of

1020.6 eV, and the various dopants shifted this up to a maximum of 1021.3 eV, all

within a well-known binding energy range for ZnO.[225] Splitting of the doublet

was consistent across all samples, at 23.1 eV. All demonstrated the expected form,

with the exception of the Ce-doped sample, for which the Zn 2p peaks showed no-

table asymmetry.

XPS spectra of the metal and oxygen regions are included in Figures 3.3 (undoped,

Al-doped and Ce-doped ZnO) and 3.4 (Cu-doped, Ga-doped, and Si-doped ZnO).

In particular, note Figure 3.3a, the O 1s region for undoped ZnO, against which

the other O 1s spectra can be compared, in which two peaks were observed. The

sharper peak around 530 eV was due to the lattice oxygen in ZnO. The broader

peak at higher binding energy was due in part to other oxygen environments, in-

cluding water, oxygen or hydroxyl groups adherent to the surface.[225] In support

of the indication from XRD, the Ce 3d XPS spectrum in Figure 3.3e showed the

characteristic six peaks of cerium (IV) oxide, a triplet each for the 3d5/2 and 3d3/2

orbitals. Fitted with three peaks, the O1s region for the Ce-doped sample was ex-

pected to contain three discernible environments; the CeO2 should have accounted

for one, the ZnO for another, and then the broad peak for oxygen-containing surface

groups.[226] The indication was that another phase had formed in addition to the

ZnO, rather than a single doped material. The O 1s spectrum for the Cu-doped sam-

ple (Figure 3.4b) showed an oxygen environment in addition to the lattice oxygen
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in ZnO, and the strong satellite peaks in the Cu 2p spectrum (3.4a) were diagnos-

tic of Cu(II), hence it could be deduced that CuO was present, not Cu2O, or Cu

metal.[227] The Al 2p (Figure 3.3c), Ga 2p (Figure 3.4c), and Si 2p (Figure 3.4e)

regions indicated only a single environment each of Al, Ga, and Si, and the O 1s

spectra were markedly similar to that of the O 1s spectrum for undoped ZnO, which

taken with the XRD patterns and high conductivity of the samples, suggested that

for these three materials, the dopant element was successfully incorporated into the

ZnO lattice.

There was generally a large variation across the different samples as to the apparent

proportion of the dopant present as calculated from XPS data. For every sample, the

dopant to zinc metal in the precursor solution was 2:98 (i.e. always 2 at% dopant),

but for some of the materials, the dopant level was as high as 4 or 5 at%, particularly

in the cases of Gd, La, Sm, Sn, and Y. In the case that the dopant failed to enter the

structure, it was logical that it could have been present (in various forms, for exam-

ple as CeO2) at the surface of the ZnO particles, hence a higher dopant level was

calculated than expected, as XPS is a surface technique. Similarly, this would be

the case for successfully doped materials if there is a high surface segregation of the

dopant in the particles. This would have been possible if during particle nucleation,

the zinc nucleated first, and the dopant latterly. These figures are included in full in

Table 3.3 on page 108.
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Figure 3.3: XPS spectra of a) the Zn 2p region (in un-doped ZnO), c) the Al 2p region, e)
the Ce 3d region, and to the right of each the corresponding O 1s binding energy region.
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Figure 3.4: XPS spectra of a) the Cu 2p region, c) the Ga 2p region, e) the Si 2p region,
and to the right of each the corresponding O 1s binding energy region.
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3.5 Conclusions; Promising ZnO:dopant Systems for

Further Investigation
ZnO was synthesised via CHFS with an assortment of 24 different dopants, includ-

ing the undoped material, synthesised under the same conditions (including dopant

proportion) for direct comparison. As indicated by XPS and XRD, some elements,

such as Al and Ga, were doped successfully into the structure. Others, such as Cu

and V, appeared to be partially doped into the ZnO structure, and for some (Ce in

particular) there was no evidence of incorporation into the ZnO lattice at all. Mor-

phologies were spheroidal or rod-like for all systems tested, generally with broad,

inconsistent particle size distributions (determined by TEM image analysis). The

majority demonstrated phase-pure Wurtzite structure by XRD; crystalline impurity

peaks were only detected for 5 out of 24 samples.

Generally speaking, inclusion of dopant elements increased the mean particle size

versus undoped ZnO and broadened the particle size distribution, but the crystal-

lite size remained approximately consistent across most doped systems, with the

notable exceptions of Si- and In-doped ZnO, for which both a drastic decrease in

Scherrer crystallite size (from 28 down to 18 nm for both materials), and a signifi-

cant narrowing of the particle size distribution was observed.

Approximately half of the dopants tested demonstrated some level of conductivity

when the powders were tested as pressed, heat treated discs, but of these the only

dopants that were judged to be sufficiently conductive for further testing and opti-

misation were Al, Ga, Si, and Cu. These yielded resistivities of the order of 10−2 or

10−1 Ω cm; the benchmark material, ITO, synthesised and tested by the same meth-

ods obtained resistivities in the order 10−3 Ω cm, thus any (unoptimised) materials

with resistivities more than two orders of magnitude higher were judged to be inap-

propriate for further investigation. However, due to the intensely dark colour of the

Cu-doped sample, as prepared and then more so post-heat treatment, its promise as

a TCO material was judged to be insufficient for further investigation.
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Thus the three materials that would be focussed on as ITO-replacement TCO mate-

rials were Al-doped ZnO (see Chapter 4), Ga-doped ZnO (see also Chapter 4), and

Si-doped ZnO (see Chapter 5). For these, a selection of compositions would need

to be synthesised and tested for their electronic properties in order to determine the

optimal level of dopant in the doped ZnO system relative to the proportion of zinc.

Once this had been established, the optimal samples could be scaled up to semi-

industrial scales of synthesis and coated in flow, facilitating the dispersion of the

nanoparticles in various media to then be deposited into thin films by spin coating

or inkjet printing methods.
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Appendix for Chapter 3
This appendix section includes the full characterisation for the dopant screening ex-

periments, including XRD, XPS, TEM, and tables summarising the physical char-

acterisation data. XRD patterns are shown in Figures 3.5 to 3.7, representative TEM

images are shown in Figures 3.8 to 3.11, and XPS spectra are shown in Figures 3.12

to 3.19.

Figure 3.12 shows the Zn 2p high resolution scans for the doped samples. The

spectra are vertically arranged in increasing binding energy of the 2p3/2 peak. All

samples were calibrated to the carbon 1s peak at 284.7 eV, thus any shift is due to

the difference in sample (i.e. the dopant). Undoped ZnO had a binding energy of

1020.6 eV, and the various dopants shifted this up to a maximum of 1021.3 eV, all

within a well-known binding energy range for ZnO.[225] Splitting of the doublet

was consistent across all samples, at 23.1 eV. All demonstrated the expected form,

with the exception of the Ce-doped sample, for which the Zn 2p peaks showed no-

table asymmetry.

XPS spectra of the metal and oxygen regions are included in Figure 3.13 for un-

doped, Ce-doped, and Cr doped ZnO and in Figure 3.14 for La-doped, Nb-doped,

and Y-doped ZnO. In particular, note Figure 3.13a, the O 1s region for undoped

ZnO, against which the other O 1s spectra can be compared, in which two peaks

were observed. The sharper peak around 530 eV was due to the lattice oxygen in

ZnO. The broader peak at higher binding energy was due in part to other oxy-

gen environments, including water, oxygen or hydroxyl groups adherent to the

surface.[225] In support of the indication from XRD, the Ce 3d XPS spectrum in

Figure 3.13c showed the characteristic six peaks of cerium (IV) oxide, a triplet each

for the 3d5/2 and 3d3/2 orbitals. Fitted with three peaks, the O1s region for the Ce-

doped sample was expected to contain three discernible environments; the CeO2

should have accounted for one, the ZnO for another, and then the broad peak for

oxygen-containing surface groups.[226] The Cr 2p region in Figure 3.13e showed

only a single environment for the chromium, the 2p1/2 peak overlapping with a

Zn Auger peak. Though the conductivity of the sample was indicative of success-
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ful doping, it was shown to be incomplete by the appearance of an addition peak

in the oxygen spectrum at lower binding energy than the ZnO peak, correspond-

ing to chromium oxide, although the oxidation state of the chromium could not be

deduced from the data here, neither in the oxide form nor within the zinc oxide

structure.[228]

The La 3d5/2 binding energy region shown in Figure 3.14a showed peaks char-

acteristic of La(OH)3, supported by the O 1s region, which showed two metal

(hydr)oxide peaks; one each could be attributed to La(OH)3 and the other to

ZnO.[225, 229, 230] The Nb 3d region shown in Figure 3.14c showed a single

niobium oxide environment, the lack of conductivity and over-large peak in the O

1s region indicated the formation of Nb2O5.[231] Finally in Figure 3.14 was the

yttrium 3d region in Figure 3.14e, in which there were two doublets present, one

each for Y2O3 (lower binding energy) and Y(OH)3 (higher binding energy). This,

coupled with the presence of conductivity in the sample and the single extra peak in

the O 1s region (Figure 3.14f) could have indicated that some of the yttrium went

into the ZnO structure, while the remainder appeared to form the hydroxide.[232]

Figure 3.15 shows the Gd 4d (a), Mn 2p (c), and Sm 3d (e) regions. Gadolin-

ium showed a single environment (Figure 3.15a), complicated by the presence not

only of a satellite peak but also the strongly overlapping Zn 3s peak; the most in-

tense peak present. The O 1s spectrum indicated the possibility of the formation of

gadolinium oxide (Gd2O3) as a separate phase.[232] In the case of manganese (Fig-

ures 3.15c and 3.15d), the spectra were highly diagnostic; a clear peak was seen in

the O1s spectrum (Figure 3.15d) at lower binding energy than the one correspond-

ing to ZnO, indicating a separate manganese oxide phase. The single environment

seen in the Mn 2p spectrum coupled with a lack of satellite peaks (as would have

been seen for MnO) and also lacking the distinctive feature in the Mn 2p3/2 peak

that would have been indicative of MnO2, suggested that Mn2O3 was the species

present as the separate phase.[233] The samarium spectra pointed to one environ-

ment, but the O 1s spectrum could not be deconvoluted beyond saying that there are

likely multiple metal oxide and/or hydroxide species present. This, with the lack of
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conductivity in the sample, most likely indicated that Sm had not gone into the ZnO

structure.

Figure 3.16 shows the Sn 3d (a), Ti 2p (c), and Zr 3d (e) regions. In each case,

only a single environment was suggested by the spectra, and the lack of impurity

peaks in the XRD patterns could for these materials have suggested that the dopants

went into the ZnO structure. However this did not result in conductivity for any

of the three;[234–236] formation of additional defects in the structure (e.g. those

leading to recombination centres, rendering electrons conductively impotent) could

have been to blame.

Figure 3.17 shows the Cu 2p d (a), V 2p (c), and Fe 2p (e) regions. All three

resulted in varying degrees of conductivity, and none demonstrated impurities by

XRD, which could in itself been used as evidential of successful doping. However,

in each there were some points of interest in the XPS spectra. An extra peak in

the metal oxide region of the O 1s spectrum (3.17b) of copper indicated another

oxygen environment in addition to ZnO, and the strong satellite peaks in the Cu

2p spectrum (3.17a) were diagnostic of Cu(II), hence it could be deduced that CuO

was present, not Cu2O, or Cu metal.[227] There were characteristic peaks in the

V 2p spectrum (3.17c) of two oxidation states, (II) and (IV), with the intensity of

the latter greatly outweighing that of the former. There was no extra peak in the

O1s spectrum (3.17d), but it was likely that partial doping had taken place.[237]

Finally, the iron spectrum showed a single environment (Figure 3.17e), with one

strong satellite peak. An additional peak appeared in the O 1s spectrum, imply-

ing the formation of an iron oxide species, but the oxidation state(s) could not be

unequivocally elucidated from this data. The 2p3/2 peak appeared at 710.0 eV, for

which there is precedent for Fe(II) and Fe(III) oxides, however generally speaking

it is more likely to be due to FeO from the binding energy position.[226]

Figure 3.18 shows the Pr 3d (a), Nd 3d (c), and In 3d (e) XPS regions. In each case,

the O 1s spectra were very similar; one metal oxide peak was seen, along with the

broader peak. One environment each for Pr (3.18a) and In (3.18e), coupled with



3.5. Conclusions; Promising ZnO:dopant Systems for Further Investigation 91

the conductivity of the samples are indicative of the successful doping of these el-

ements. The neodymium spectrum was slightly hampered by the presence of two

3d5/2 peaks overlapping with the oxygen KLL Auger peak. However, due to the

conductivity of the samples, it was probable that some Nd was also successfully

doped into ZnO.[238]

Figure 3.19 shows the Al 2p (a), Ga 2p (c), and Si 2p (e) regions. As perhaps

could have been anticipated from the three most conductive samples, a single en-

vironment each of Al, Ga, and Si were indicated from both the dopant regions and

their corresponding O 1s spectra. Data for these and those discussed previously are

summarised in Table 3.3.
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Figure 3.5: XRD patterns for apparently phase-pure doped ZnO samples synthesised by
CHFS. The measurement was carried out with a molybdenum source, with wavelength λ =
0.7093 Å.
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Figure 3.6: XRD patterns for apparently phase pure doped ZnO samples synthesised by
CHFS. The measurement was carried out with a molybdenum source, with wavelength λ =
0.7093 Å.
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Figure 3.7: XRD patterns for the doped ZnO samples synthesised by CHFS that show
clear impurity peaks. The measurement was carried out with a molybdenum source, with
wavelength λ = 0.7093 Å.
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Figure 3.8: Representative TEM images of a) undoped ZnO, b) Ce-doped ZnO, c) Ga-
doped ZnO, d) In-doped ZnO, e) Nd-doped ZnO, and f) Si-doped ZnO.
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Figure 3.9: Representative TEM images of a) V-doped ZnO, b) Y-doped ZnO, c) Zr-doped
ZnO, d) Nb-doped ZnO, e) Cu-doped ZnO, and f) Mo-doped ZnO.
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Figure 3.10: Representative TEM images of a) Gd-doped ZnO, b) La-doped ZnO, c) Yb-
doped ZnO, d) Sn-doped ZnO, e) Cr-doped ZnO, and f) Al-doped ZnO.
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Figure 3.11: Representative TEM images of a) Mn-doped ZnO, b) Pr-doped ZnO, c) Sm-
doped ZnO, d) Fe-doped ZnO, e) Mg-doped ZnO, and f) Ti-doped ZnO.
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Figure 3.12: XPS spectra of the Zn 2p region for the doped ZnO samples, arranged in in-
creasing binding energies from bottom to top. As per convention, the energy scale increases
from right to left.
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Figure 3.13: XPS spectra of a) the Zn 2p region (in un-doped ZnO), c) the Ce 3d region, e)
the Cr 2p region, and to the right of each the corresponding O 1s binding energy region.
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Figure 3.14: XPS spectra of a) the La 3d region, c) the Nb 3d 3d region, e) the Y 3d region,
and to the right of each the corresponding O 1s binding energy region.
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Figure 3.15: XPS spectra of a) the Gd 4d region, c) the Mn 2p region, e) the Sm 3d region,
and to the right of each the corresponding O 1s binding energy region.
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Figure 3.16: XPS spectra of a) the Sn 3d region, c) the Ti 2p region, e) the Zr 3d region,
and to the right of each the corresponding O 1s binding energy region.
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Figure 3.17: XPS spectra of a) the Cu 2p region, c) the V 2p region, e) the Fe 2p region,
and to the right of each the corresponding O 1s binding energy region.
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Figure 3.18: XPS spectra of a) the Pr 3d region, c) the Nd 3d region, e) the In 3d region,
and to the right of each the corresponding O 1s binding energy region.
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Figure 3.19: XPS spectra of a) the Al 2p region, c) the Ga 2p region, e) the Si 2p region,
and to the right of each the corresponding O 1s binding energy region.
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Table 3.2: Table summarising key particle size information, including Scherrer crystallite
size, mean TEM length (with standard deviation, σ ) and aspect ratio (calculated from 100
particles), and corresponding Figure reference for each sample’s representative TEM image.

Dopant
element

Scherrer
size / nm

TEM length
/ nm

σ

/ nm
TEM aspect

ratio
Figure

reference

- 28 47 ± 25 1.2 3.13a

Al 32 129 ± 80 2.9 3.15f

Ce 29 56 ± 21 1.3 3.13b

Cr 31 89 ± 66 2.6 3.15e

Cu 32 72 ± 43 1.5 3.14e

Fe 27 95 ± 75 2.6 3.16d

Ga 29 47 ± 8 1.1 3.13c

Gd 29 88 ± 174 2.2 3.15a

In 22 32 ± 15 1.4 3.13d

La 26 88 ± 187 2.7 3.15b

Mg 30 67 ± 65 1.5 3.16e

Mn 31 57 ± 35 1.7 3.16a

Mo 31 84 ± 88 1.5 3.14f

Nb 28 74 ± 28 1.3 3.14d

Nd 30 45 ± 36 1.4 3.13e

Pr 33 49 ± 54 1.7 3.16b

Si 18 34 ± 10 1.4 3.13f

Sm 31 100 ± 97 1.6 3.16c

Sn 18 58 ± 172 1.6 3.15d

Ti 31 71 ± 84 1.5 3.16f

V 26 50 ± 24 1.3 3.14a

Y 26 59 ± 34 1.3 3.14b

Yb 30 73 ± 202 1.7 3.15c

Zr 29 22 ± 30 1.1 3.14c
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Table 3.3: Table summarising key XPS data on the doped ZnO samples, including the
lower energy orbital binding energies (nd5/2, np3/2 or 1s), the doublet splitting, and the
compositional ratio between zinc and the dopant element, expressed as an atomic percentage
of the dopant and based on the detection level of the elements by the instrument. ‘D.S.’ is the
doublet splitting, and ‘B.E.’ is the binding energy. ‘*’ indicates data could not be acquired.

Dopant
(orbital)

B.E.dop

/ eV
D.S.dop

/ eV
B.E.Zn

/ eV
D.S.Zn

/ eV
Dopant level

/ at%
References

- - - 1020.7 23.1 - [225]

Al (2p) 73.0 0.4 1021.3 23.1 3.3 [225, 239]

Ce (3d) 881.4 8.0 1020.9 23.1 2.2 [225, 226]

Cr (2p) 575.9 10.0 1020.7 23.1 1.7 [225, 228]

Cu (2p) 932.4 19.9 1020.8 23.1 1.4 [225, 227]

Fe (2p) 710.0 14.3 1020.6 23.1 1.3 [225, 240]

Ga (2p) 1117.6 26.9 1021.3 23.1 1.9 [225, 241]

Gd (4d) 141.6 6.8 1020.7 23.1 5.1 [225, 232]

In (3d) 444.3 7.6 1020.8 23.1 2.0 [26, 225]

La (3d)
834.3

838.2
16.8 1020.9 23.1 4.7

[225, 229]

[230, 242]

Mg (1s) * * 1021.3 23.1 * [225]

Mn (2p) 640.9 11.8 1020.9 23.1 2.0 [225, 233]

Mo (3d) * * 1021.0 23.1 * [225]

Nb (3d) 206.9 2.7 1020.8 23.1 1.8 [225, 231]

Nd (3d)
976.2

978.6
* 1020.7 23.1 3.1 [225, 238]

Pr (3d) 932.5 20.0 1020.8 23.1 1.8 [225, 229]

Si (2p) 101.2 0.6 1021.3 23.1 1.8 [225, 243]

Sm (3d) 1082.8 27.2 1020.9 23.1 4.7 [225, 232]

Sn (3d) 486.4 8.5 1021.3 23.1 4.0 [225, 234]

Ti (2p) 458.2 5.8 1020.9 23.1 0.8 [225, 235]

V (2p) 516.7 7.6 1020.9 23.1 3.9 [225, 237]

Y (3d) 157.1 2.1 1020.6 23.1 5.6 [225, 232]

Yb (4d) * * 1021.0 23.1 * [225]

Zr (3d) 182.8 2.4 1021.3 23.1 5.3 [225, 236]



Chapter 4

Al and Ga Doped and Co-Doped Zinc

Oxide for Transparent Conducting

Oxides

4.1 Aims

Having identified aluminium and gallium doping in zinc oxide (AZO and GZO, re-

spectively) as the most promising doped systems with respect to conductivity, the

aim of this chapter is to outline the investigation into the compositional optimisa-

tion of AZO and GZO for TCOs as synthesised by continuous hydrothermal flow

synthesis (CHFS), on both the laboratory and pilot scales. The effect of co-doping

zinc oxide with both aluminium and gallium (usually known as AGZO) was also

investigated. In addition to the electrical testing, characterisation including XRD,

BET, TEM, XPS, EDS, and ICP-AES is also discussed, to gauge the effect that the

different dopant ratios have on the properties of the material.

4.2 Introduction

All three of these materials, AZO, GZO, and AGZO have the same flavour of defect

chemistry that gives rise to their improved conductivity over the undoped material.

The Al3+ or Ga3+ will tend to be situated on the Zn2+ site, i.e. as Al•Zn or as

Ga•Zn. In both cases, the dopant acts as a shallow donor; the extra valence electron



4.2. Introduction 110

is loosely bound, and thus is mobile and able to carry charge.[22, 244] These point

defects cause a degree of lattice strain; Zn2+ has an ionic radius of 0.60 Å, Al3+

and Ga3+ have ionic radii of 0.39 Å and 0.47 Å, respectively,[245] and this can lead

to mobility issues for the charge carriers at higher dopant levels, counter-balancing

the increasing concentration of carriers. The point at which this occurs is difficult

to state with certainty, as formation of balancing intrinsic defects can occur, which

could trap some of these extra electrons, or inhibition by ionised impurities or scat-

tering effects. As such, not every dopant ion will necessarily contribute its extra

electron to the carrier concentration in the material.[11, 244, 246, 247]

Issues with thermal stability of non-stoichiometric (the only way to make it highly

conductive) undoped zinc oxide led to Minami et al. experimenting with deposition

of AZO for application as a TCO for the first time in 1984.[119] with a little un-

der 2 at% Al, a magnetron-sputtered film demonstrated a marked improvement in

thermal stability, and a resistivity of only 1.9 x 10−4 Ω cm, and remains among the

most conductive AZO films in literature to this day. A great number of other groups

have made films of the order of 10−4 Ω cm, however, by various deposition meth-

ods including magnetron sputtering,[144–146, 248–253] atmospheric pressure[120]

and aerosol assisted[121] chemical vapour deposition (APCVD and AACVD, re-

spectively), and pulsed laser deposition (PLD).[122, 254] Other techniques such as

spray pyrolysis[123], atomic later deposition (ALD),[255] and inkjet printing[156]

and spraying[256] have been explored, but are orders of magnitude higher in terms

of resistivity. A summary of the best performing AZO films from literature is in-

cluded in Table 6.2 in Chapter 6.

GZO was first made by magnetron sputtering in 1990 by Choi et al,[257] though

the films displayed resistivities of only ca. 2 x 10−3 Ω cm. This was soon improved

upon, to the point where films of GZO with resistivities of the order 10−4 Ω cm

have since been made by sputtering,[124–126, 207, 248, 258, 259] APCVD,[128]

CVD,[129], AACVD,[121] and PLD.[127] A tabulated summary for a selection of

these materials is included in Table 6.3 in Chapter 6.
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Similarly, several AGZO films have been made by sputtering, with resistivities of

ca. 10−4;[130–133, 248, 253, 260–263] a summary of AGZO film data from litera-

ture is included in Table 6.4 in Chapter 6. Section 6.2 of Chapter 6 also expounds

upon the additional optoelectronic properties of the materials; this Chapter focuses

on comparison of different material compositions primarily by use of their resistiv-

ity values.

Though thin films are typically formed by sputtering, the material in the target needs

first to be synthesised, in which case the ZnO would most likely have been synthe-

sised for these studies by one of three methods:[112, 160, 264, 265]

• The French (or Indirect) process, wherein metallic zinc is melted in a crucible

and vapourised (at ca. 1000 ◦C), at which point the Zn vapour reacts with

oxygen in the air to form ZnO.

• The American (or Direct) process, wherein impure minerals, ores, or compos-

ites of zinc undergo carbothermal reduction by heating with a carbon source

such as anthracite to produce the zinc vapour, at a similarly high temperature

to the French process. Due to the reduced purity of the starting material, the

American process also typically results in a lower purity ZnO product.

• Wet chemical process, wherein zinc precursor solutions are used to precipi-

tate the carbonate or hydroxide, which is converted to the oxide by calcining

(typically around 800 ◦C).

Al2O3, or alumina, is primarily sourced from the mineral Bauxite, which is typically

purified by use of the Bayer Process, adding NaOH to the Bauxite to obtain sodium

aluminate, from which pure aluminium hydroxide can be precipitated by seeding.

This can then be converted to alumina by calcining at 1100 ◦C.[266] Gallium oxide

(most stably β -Ga2O3) can be easily generated from most gallium precursors by

simply heating in air or a water environment to several hundred degrees, forming

either the oxide or hydroxide phase, which can then be calcined above 600 ◦C to

form highly pure gallium oxide.[267]
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In order to generate a sputtering target, or multiple sputtering targets depending on

the specific methodology employed, these materials would need to undergo a fur-

ther annealing step as above, generally >1000 ◦C.

Benefits of Continuous Hydrothermal Flow Synthesis (CHFS) over such processes

are fully discussed in Section 1.4 of Chapter 1, but in brief, CHFS is able to di-

rectly deliver ZnO or doped ZnO by a purely hydrothermal (i.e. water as the only

solvent) process at drastically lower temperatures than those processes mentioned

above, most of which require at least one calcination step at or above 1000 ◦C. Be-

fore the studies outlined in this chapter, no such had been carried out investigating

aluminium and gallium doping or co-doping into zinc oxide by CHFS.

4.3 AZO and GZO
This section outlines the investigation into AZO and GZO; the compositional opti-

misation and scale-up, by means of physical and electrical characterisation.

4.3.1 Experimental design and observations

Initially a three-pump, single mixer laboratory-scale CHFS set-up was used (see

Experimental chapter, section 2.2.1). With a total metal concentration, [Zn + Al] or

[Zn + Ga], of 0.3 M (supplied by pump P2), and pump flow rates of 80, 40, and 40

mL min−1 for pumps P1, P2, and P3, respectively. 8 g of product was expected in a

collection volume of 1.2 L, and base (KOH) concentration was maintained at twice

the metal concentration, 0.6 M, in the feed supplied by pump P3.

Al and Ga dopant concentrations in the range 0.5 to 6.0 at% (with 0.5 at% incre-

ments) were synthesised, such that there were twelve products of each AZO and

GZO. With the optimal AZO sample identified as 2.5 at% Al, synthesis of 1.0, 2.0,

2.5, and 3.5 at% Al-doped ZnO was carried out on the pilot scale, wherein the flow

rates used were 400, 200, and 200 mL min−1 for pumps P1, P2, and P3, respectively

(in effect a five-fold volumetric scale-up process). As the optimal GZO sample was

at 3.5 at% Ga, 2.0, 3.0, 3.5, and 4.5 at% Ga samples were synthesised on the pilot

scale.
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Doping of both Al and Ga into ZnO had the effect of turning the powders from

white to pale yellow, with the intensity of the colour increasing with dopant level.

Ga-doping resulted in more intense colouring than analogous Al doping levels.

All samples were collected at pH 7-8, and required three rounds of washing and

centrifugation (as detailed in 2.2.5) before freeze-drying. Yields of the collected,

dried powder samples were consistently at 80% (±5%). Experimental observa-

tions were the same on both the laboratory and pilot scale processes. Upon pressing

these yellow powders into discs, the colour significantly intensified, and they turned

yellow-green, with more intense green colouring as dopant levels increased. In turn,

heat treatment of these green discs resulted in a further colour change to blue, and

again the intensity of the colour was dependent on the dopant level.

Powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), en-

ergy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy

(XPS), Brunauer-Emmett-Teller (BET) measurements, and inductively coupled

plasma atomic emission spectroscopy (ICP-AES) were used to characterise the

powder samples, and Hall Effect measurements were used to determine the electri-

cal properties of the samples as pressed, heat treated discs.

4.3.2 Characterisation

Tables 4.1 and 4.2 show summaries of the characterisation of the 2.5 at% and 5.0

at% samples of each laboratory-scale synthesised AZO and GZO, and the conduc-

tively optimal samples of each synthesised on the pilot scale (2.5 at% and 3.5 at%

for AZO and GZO, respectively), including surface area, particle size, and elemen-

tal compositional analysis.

4.3.2.1 Physical analysis; XRD, TEM, and BET

XRD patterns and excerpts are shown in Figures 4.1 and 4.4; all samples across the

compositional space and synthesised on both the laboratory and pilot scales demon-

strated phase pure Wurtzite ZnO structure by XRD. Increasing the dopant level

for both materials resulted in smaller crystallite size as calculated by the Scherrer

method, and up-scaling of the synthesis to the pilot CHFS resulted in a miore sig-
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Table 4.1: A summary of the physical analysis results of laboratory and pilot scale
AZO samples. Including: initial dopant concentration in the precursor solution, the mea-
sured/calculated dopant concentrations by EDS, XPS, and ICP, and particle size from
Scherrer[8, 9] and TEM image analysis (average over 250 particles for each sample), and
BET surface area.

Material (Scale) AZO (lab) AZO (pilot)

Precursor Al conc. / at% 2.5 5.0 2.5

Al conc. (EDS) / at% 2.3 4.0 2.0

Al conc. (XPS) / at% 3.9 7.2 3.3

Al conc. (ICP) / at% 2.2 4.1 1.9

Scherrer size / nm 34 31 18

Length (TEM) / nm 132 ± 83 187 ± 92 63 ± 40

Width (TEM) / nm 43 ± 14 38 ± 17 32 ± 10

Aspect ratio (TEM) 3.1 4.9 2.0

S.A. (BET) / m2 g−1 20 27 32

Table 4.2: A summary of the physical analysis results of laboratory and pilot scale
GZO samples. Including: initial dopant concentration in the precursor solution, the mea-
sured/calculated dopant concentrations by EDS, XPS, and ICP, and particle size from
Scherrer[8, 9] and TEM image analysis (average over 250 particles for each sample), and
BET surface area.

Material (Scale) GZO (lab) GZO (pilot)

Precursor Ga conc. / at% 2.5 5.0 3.5

Ga conc. (EDS) / at% 2.2 4.8 3.1

Ga conc. (XPS) / at% 3.0 6.1 3.9

Ga conc. (ICP) / at% 2.5 5.5 2.1

Scherrer size / nm 22 21 19

Length (TEM) / nm 44 ± 8 36 ± 9 33 ± 8

Aspect ratio (TEM) 1.1 1.1 1.1

S.A. (BET) / m2 g−1 26 31 34
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nificant decrease in crystallite size, more so in AZO, which saw a fall from 34 nm

to only 18 nm, whereas the decrease for GZO was less dramatic, only a slight de-

crease.

TEM images showed that the morphologies of the two dopant systems were very

different; AZO (see Figure 4.2) tended to be more rod-like, and the aspect ratio in-

creased with higher dopant level (4.9 for the 5 at% Al sample versus 3.1 for the 2.5

at% sample). Pilot scale materials, possibly due to the drastically reduced residence

time, tended to be less rod-like, and as per the data summarised in Table 4.1, the

average particle length was reduced from over 130 nm to only 63 nm for pilot-scale

2.5 at% AZO, with an aspect ratio of 2.0. TEM images of GZO are shown in Figure

4.3; morphology tended to be more spheroidal, with a consistent aspect ratio of 1.1

across all compositions and scales explored. Particle size, consistent with Scherrer

calculations, was observed to decrease with increasing dopant level, and more so

upon up-scaling of the synthetic process.

BET surface area measurements are more fully tabulated in Table 4.3; increasing

the dopant level had the effect of increasing the surface area. Taken together with

Scherrer and TEM analysis, the three techniques clearly show the trend of decreas-

ing particle size with higher dopant levels, and also the effect of the pilot-scale syn-

thesis, in the decreased particle size when synthesised at larger scale, particularly

for AZO.

4.3.2.2 Compositional analysis; ICP, EDS, XPS

Of the three testing methods for compositional analysis, ICP-AES is by far the most

precise and accurate.[268] By virtue of the complete dissolution in acid of the entire

sample, the values (accurate to parts per million) are truly representative of the sam-

ple. EDS generally agreed with the numbers returned by ICP, and XPS tended to be

notably higher, especially for AZO samples. A possible explanation for this could

be that the dopants tend to be surface-segregated in the particles, entering the struc-

ture after the initial nucleation of ZnO in the reactor. As XPS is a surface-sensitive

technique, this could account for the curiously high proportion of (especially Al in



4.3. AZO and GZO 116

Figure 4.1: XRD patterns for samples of AZO and GZO. a) shows a full pattern typical of
the zinc oxides, in this case 1.0 at% AZO. b) shows a standard ZnO pattern.[4] c1) and d1)
show peaks in the range 13.5 to 17.5 ◦ 2θ pilot scale AZO and GZO, c2 - c4) and d2 - d4)
show these same peaks for 5, 3, and 1 at% nominal dopant level for each AZO and GZO,
respectively, synthesised on the laboratory scale.[5]



4.3. AZO and GZO 117

Figure 4.2: TEM images of 2.5 at% AZO (a and b), and 5.0 at% AZO (c and d) made on
the laboratory scale CHFS.[5]

Figure 4.3: TEM images of 2.5 at% GZO (a and b), and 5.0 at% GZO (c and d) made on
the laboratory scale CHFS.[5]
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Figure 4.4: a) and b) full XRD patterns for AZO (2.5 at% Al) and GZO (3.5 at% Ga)
synthesised on the pilot scale, accompanied by c) the standard reference pattern,[4] and a
representative TEM image of each sample in d) and e) for AZO and GZO, respectively.[5]
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Table 4.3: Summary of BET surface area data for AZO and GZO samples.

Dopant dop / at% Scale BET Surface Area / m2g−1

Al

1.0

lab

19

2.0 20

3.0 21

4.0 21

5.0 22

6.0 27

2.5 pilot 32

Ga

1.0

lab

18

2.0 23

3.0 27

4.0 29

5.0 29

6.0 30

3.5 pilot 34

AZO) dopant indicated, whereas EDS and ICP are bulk analysis methods.

The indication from these three techniques is that the uptake of Al into the ZnO

lattice is approximately 80% relative to the proportions nominally present in the

precursor solutions, and that the uptake of Ga is closer to, or slightly over 100%

(over 100% is possible due to the only 80% sample yield; evidential that a fifth of

the zinc is not nucleating from solution in the reactor).

XPS data are shown in Figures 4.5 (AZO) and 4.6 (GZO). The AZO spectra in-

dicated a single environment for each aluminium and zinc, with doublet separa-

tions of 23.1 eV and 0.4 eV, respectively, consistent with those described in the

literature.[239, 241] Likewise the GZO spectra showed a single environment for

each Zn and Ga, with doublet separations of 23.1 eV and 27.0 eV, respectively,

also consistent with previous literature reports.[241] All high resolution scans (for

specific elements) were calibrated to the 184.7 eV C 1s peak, and each set of three

doped samples of AZO, and GZO, had their measurements taken in the same ses-
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sion, therefore it can be concluded the small shifts in binding energies were due

to the differences between the doped samples themselves, not any outside effects.

Consistent for both AZO and GZO are the shift in binding energy of the Zn 2p

peaks, such that the laboratory and pilot scale 2.5 at% dopant synthesised materials

showed a Zn 2p binding energy that was 0.3 eV lower than then analogous peak for

the 5.0 at% dopant materials. Similarly, a 0.2 eV and 0.3 eV (increase) shift was

seen when increasing the laboratory-scale dopant level from 2.5 to 5.0 at% for Al

and Ga, respectively. It should be noted that the dopant uptake was less efficient for

the pilot scale materials (with respect to the nominal dopant concentrations in the

precursor solutions) than for the laboratory scale. This is likely due in part to the

reduced residence time in the pilot scale process that could have had an effect on

the dopant uptake efficiencies.

4.3.3 Electrical testing of discs

This section outlines the electrical testing of all of the laboratory and pilot-scale

synthesised products to determine the optimal composition for lowest resistivity.

Table 4.7 gives a summary of all resistivities for the various AZO and GZO samples,

and the following subsections will show the trends graphically for each system.

4.3.3.1 Aluminium doped zinc oxide (AZO)

Figure 4.7 shows the resistivity trend with increasing Al-content in AZO. After an

initial decline (with increasing Al) to a low resistivity of 7.0 x 10−3 Ω cm, the resis-

tivity then rose again. The most conductive sample was thus the sample synthesised

with 2.5 at% in the precursor solution. This trend appeared to hold on the pilot

scale too, however the optimal resistivity at ca. 2.0 to 2.5 at% Al is almost an order

of magnitude higher. That the trend held (i.e. a decrease to a minimum resistivity

followed by a subsequent increase), implied that there is a factor at play beyond

uptake efficiency (as indicated by compositional analysis); leaving a combination

of the morphology, particle size, and packing of the particles as possible causes for

the inferior pellets.
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Figure 4.5: XPS spectra for the Zn 2p and Al 2p binding energy regions; a), b), and c)
show the Zn 2p binding energy regions for the 2.5 at% AZO (lab scale), the 5.0 at% AZO
(lab scale), and 2.5 at% AZO (pilot scale), respectively, and to the right of each is the
corresponding Al 2p region, in d), e), and f), respectively.[5]
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Figure 4.6: XPS spectra for the Zn 2p and Ga 2p binding energy regions; ; a), b), and
c) show the Zn 2p binding energy regions for the 2.5 at% GZO (lab scale), the 5.0 at%
GZO (lab scale), and 3.5 at% GZO (pilot scale), respectively, and to the right of each is the
corresponding Ga 2p region, in d), e), and f), respectively.[5]
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Table 4.4: Resistivity data for all of the samples, AZO and GZO, synthesised on both the
laboratory and pilot scales. The three best-performing discs of each sample were measured
in triplicate, and from these nine resistivity values were averages and standard deviations
calculated.

Dopant dop / at% Scale Resistivity x 10−3 / Ω cm

Al

0.5

lab

90.7 ± 0.3
1.0 43.8 ± 1.7
1.5 21.8 ± 5.3
2.0 15.8 ± 4.6
2.5 7.0 ± 3.7
3.0 22.6 ± 5.9
3.5 43.7 ± 9.4
4.0 43.4 ± 16.8
4.5 47.3 ± 4.3
5.0 61.2 ± 12.8
5.5 57.9 ± 3.0
6.0 95.5 ± 24.7
1.0

pilot

861.7 ± 0.2
2.0 60.6 ± 1.0
2.5 77.2 ± 0.8
3.5 229.9 ± 5.1

Ga

0.5

lab

33.0 ± 0.1
1.0 26.1 ± 0.1
1.5 17.2 ± 0.6
2.0 21.1 ± 1.5
2.5 16.8 ± 1.7
3.0 14.1 ± 6.7
3.5 9.1 ± 3.1
4.0 17.4 ± 4.6
4.5 15.6 ± 5.1
5.0 13.4 ± 4.2
5.5 11.7 ± 0.6
6.0 11.9 ± 1.5
2.0

pilot

494.2 ± 5.1
3.0 236.0 ± 0.3
3.5 47.5 ± 0.3
4.5 13.0 ± 0.3
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Figure 4.7: Resistivity trend in laboratory scale CHFS-made AZO as tested by Hall Effect
measurements on pressed, heat treated discs. Error bars represent the standard deviation in
the values.[5]

Figure 4.8: Resistivity trend in laboratory scale CHFS-made GZO as tested by Hall Effect
measurements on pressed, heat treated discs. Error bars represent the standard deviation in
the values.[5]
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4.3.3.2 Gallium doped zinc oxide (GZO)

Figure 4.8 shows the resistivity trend with increasing Ga content in GZO. As with

AZO, increasing dopant level causes the resistivity to decrease to a minimum of 9.1

x 10−3 Ω cm (at 3.5 at% Ga), however unlike with the AZO trend, the subsequent

increase in resistivity was not observed. Within error, the resistivity remained ap-

proximately constant from 3.5 at% Ga upwards, implying that though additional Ga

was not contributing to higher conductivity, neither was it particularly conductivity-

inhibiting at the dopant levels being investigated. This was further observed on the

pilot scale, wherein increasing the dopant level reduced the conductivity, until by

4.5 at% the resistivity of the pilot-scale powder was 1.3 x 10−2 Ω cm, comparable

to the laboratory scale material.

4.3.4 Conclusions: AZO

Doping of Al into ZnO was successful; up to 6.0 at%, only a single phase was iden-

tified by XRD, and only a single environment was observed for each Zn 2p and Al

2p orbital binding energies. Increasing the dopant level promoted growth along the

c-axis, resulting in increasingly rod-like morphology.

The optimal composition as determined by pressing the powder samples into discs

and heat treating, pointed to the 2.5 at% AZO sample as being consistently the most

conductive. Higher resistivity was observed with both higher and lower dopant lev-

els, above the optimal 7.0 x 10−3 Ω cm. This value was close to that of 6.0 x 10−3 Ω

cm obtained by ITO as synthesised using the same CHFS process,[168] demonstrat-

ing the promise of AZO as an ITO replacement material for TCOs. Up-scaling of

the synthesis to 330 g h−1 resulted in a deterioration of the electrical properties by

almost a factor of 10. Rod-like behaviour decreased, as did particle size and dopant

uptake, however as the trend observed on the laboratory scale appeared largely to

be consistent on the pilot scale (though with fewer data points), the explicit cause of

this remains unknown. The most likely reasons could include differences in particle

size, packing and agglomeration, altering the resistance of the pellets when pressed.
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4.3.5 Conclusions: GZO

Doping of Ga into ZnO was successful; up to 6.0 at% Ga, only a single phase was

identified by XRD, and only a single environment was observed for each Zn 2p

and Ga 2p orbital binding energies from XPS data. Increasing the dopant level did

not alter the morphology, but did decrease particle size. The optimal composition

as determined by pressing the powder samples into discs and heat treating, pointed

to the 3.5 at% GZO sample as being consistently the most conductive. Higher

resistivities were observed with both higher and lower dopant levels, above the op-

timal 9.1 x 10−3 Ω cm. This was also close to the 6.0 x 10−3 Ω cm obtained by

ITO as synthesised using the same process and the 7.0 x 10−3 Ω cm seen in AZO,

demonstrating the promise of GZO as an ITO replacement TCO material as made

by CHFS. Up-scaling of the synthesis to 330 g h−1 resulted in a minor deterioration

of the electrical properties, and a shift in the trend to the optimal nominal dopant

level (in the precursor solutions) increasing from 3.5 at% to 4.5 at%.

4.4 AGZO: Aluminium and Gallium co-doped Zinc

Oxide

4.4.1 Experimental design and observations

The high-throughput set-up was used as described in Section 2.2.3. Twenty compo-

sitions were investigated, between 1.0 and 5.0 at% total dopant level, with dopant

increments of 0.5 at%. The following naming convention is in use in this section:

each sample has been designated (x,y)AGZO, such that x and y are the nominal

dopant concentrations in the precursor solutions of Al and Ga, respectively. Thus

the sample (1,2)AGZO is the sample made with 1 at% Al, 2 at% Ga, and 97 at% Zn

in the precursor solution.

In keeping with the high-throughput nature of the experiment, higher concentration

precursor solutions were used than in the previous AZO and GZO experiments;

metal concentration, [metal], was 0.5 M, and [KOH] was 1.0 M. 100 mL of each

precursor solution was used, such that the 400 mL collected was set to contain
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approximately 4 g of each sample as dried powder product. Consistent with the

observations from the previous AZO and GZO syntheses, increasing the dopant

level increased the intensity of the yellow colour in the product slurry and pow-

ders, and higher Ga samples had a visibly more intense colour than those with low

Ga. Products were collected in > 80% yield, consistent across the compositional

space explored. As with AZO and GZO samples previously, AGZO samples re-

quired three cleaning steps in deionised water (as described in Section 2.2.5) before

freeze-drying could be carried out. Again, the yellow powders were pressed into

green discs, which turned blue upon heat treatment in a reducing atmosphere.

Powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), X-ray

photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) measurements,

and inductively coupled plasma atomic emission spectroscopy (ICP-AES) were

used to characterise six representative powder samples across the compositional

space; (0.5,1.5)AGZO, (1.5,0.5)AGZO, (1,2)AGZO, (2,1)AGZO, (1,3)AGZO, and

(3,1)AGZO. Hall Effect measurements (see Section 2.4) were used to determine the

electrical properties of all the samples as pressed, heat treated discs.

4.4.2 Physical characterisation; XRD, TEM, ICP and BET

All samples were phase-pure Wurtzite ZnO structure by XRD, as shown in Figure

4.9, and demonstrated broadly similar morphologies as can be seen from represen-

tative TEM images in Figure 4.10. Particle size and composition information are

summarised in Table 4.5; Scherrer analysis indicated a slight decrease in crystallite

size from 17 nm to 16 nm for 4 at% total dopant level, and the mean particle size

by TEM image analysis correspondingly showed a slight decrease from 26 nm for

2 at% and 3 at% total dopant level to 23 nm for 4 at% total, and the aspect ratio was

consistent across all samples at 1.2 (± 0.3). Finally, the BET surface area was also

consistently for all samples, around 38 m2 g−1, rising up to 40 m2 g−1 for the high-

est total dopant level. The similarity across the compositional space implies that any

changes observed in the electrical properties of the materials are most significantly

due to the compositional differences.

Dopant uptake efficiency was between 70-100 % as indicated from ICP analysis,
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Figure 4.9: XRD data for the six representative AGZO samples, including a) (3,1)AGZO,
b) (1,3)AGZO, c), (2,1)AGZO, d) (1,2)AGZO, e) (1.5,0.5)AGZO, f) (0.5,1.5)AGZO, and g)
a ZnO reference pattern.[4, 6]

Table 4.5: Physical characterisation data for the six representative samples, including
Scherrer calculated crystallite size, mean particle size as calculated from TEM images (300
particles analysed), and BET surface areas.

Sample
/ Al,Ga

Scherrer size
/ nm

Mean length
(TEM) / nm

BET surface
area / m2 g−1

0.5,1.5 17 26 ± 12 38

1.5,0.5 17 26 ± 16 38

1,2 17 26 ± 12 38

2,1 17 25 ± 12 39

1,3 16 23 ± 10 40

3,1 16 23 ± 10 40
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Figure 4.10: TEM images for the six representative AGZO samples, including a)
(0.5,1.5)AGZO, b) (1.5,0.5)AGZO, c) (1,2)AGZO, d) (2,1)AGZO, e) (1,3)AGZO, and f)
(3,1)AGZO.[6]
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Table 4.6: Compositional information as determined by ICP-AES data, in the form of
relative atomic percentages of each Zn, Al, and Ga.

Sample /
[Al,Ga]

Zn / at% Al / at% Ga / at%

0.5,1.5 98.4 0.5 1.1

1.5,0.5 98.6 1.1 0.3

1,2 97.8 0.8 1.3

2,1 97.9 1.4 0.7

1,3 96.6 0.9 2.5

3,1 96.9 2.3 0.8

with lower nominal dopant levels returning proportionally higher uptake. Precise

compositional figures are detailed in Table 4.6 as determined by ICP-AES analysis.

4.4.3 Electrical characterisation

Details of the resistivities of all the samples are summarised in Table 4.7, and dis-

played visually as a point map in Figure 4.11 (as conductivities), and as a resistivity

contour map in Figure 4.12. In both cases, data for the singularly doped AZO and

GZO systems was included for the added context and data points.

Thus away from the edges of the plots there were three ’islands’ of low resistivity,

with (1.0,2.0)AGZO, (2.0,2.0)AGZO, and (3.0,1.0)AGZO measuring resistivities

of 9.1 x 10−3 Ω cm, 9.3 x 10−3 Ω cm, and 9.4 x 10−3 Ω cm, respectively. These

all significantly reduced the material cost versus GZO (by almost halving the Ga

contingent, by far the most expensive component), while retaining almost identical

resistivities.

4.4.4 Conclusions

AGZO was synthesised by high-throughput CHFS up to 5 at% total dopant level.

Physical characterisation revealed minimal variation across the compositional space

explored in terms of particle size, surface area and morphology, indicating that

changes seen in the electrical properties were primarily due to the elemental com-

positions. These, as measured by ICP-AES, indicated a good dopant uptake > 70%
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Table 4.7: Resistivity data for all of the (x,y)AGZO samples synthesised in this investiga-
tion. Emboldened are the three samples that measured a mean below 1 x 10−2 Ω cm.

Sample /
(x,y)AGZO

Resistivity x 10−3 / Ω cm

(0.5,0.5)AGZO 32.5 ± 0.3

(0.5,1.5)AGZO 41.9 ± 0.4

(1.0,1.0)AGZO 33.9 ± 0.5

(1.5,0.5)AGZO 35.6 ± 0.4

(0.5,2.5)AGZO 11.4 ± 7.0

(1.0,2.0)AGZO 9.1 ± 3.6

(1.5,1.5)AGZO 31.9 ± 0.6

(2.0,1.0)AGZO 35.2 ± 0.4

(2.5,0.5)AGZO 50.5 ± 0.4

(0.5,3.5)AGZO 21.6 ± 0.3

(1.0,3.0)AGZO 16.2 ± 0.2

(1.5,2.5)AGZO 23.8 ± 0.6

(2.0,2.0)AGZO 9.3 ± 2.3

(2.5,1.5)AGZO 20.7 ± 8.1

(3.0,1.0)AGZO 9.4 ± 7.7

(3.5,0.5)AGZO 52.9 ± 0.3

(0.5,4.5)AGZO 43.4 ± 0.4

(1.0,4.0)AGZO 20.6 ± 0.1

(1.5,3.5)AGZO 20.7 ± 1.1

(2.0,3.0)AGZO 22.4 ± 3.2



4.4. AGZO: Aluminium and Gallium co-doped Zinc Oxide 132

Figure 4.11: Colour point map of the conductivity of the AGZO compositional space ex-
plored. Black encircled data points are from AZO and GZO. Green represents high conduc-
tivity, and red represents low conductivity. The bottom right apex represents 100 at% Zn,
the top apex represents 5 at% Al and 95 at% Zn, and the bottom left apex represents 5 at%
Ga and 95 at%.[5, 6]

Figure 4.12: Resistivity data ternary contour plot, including several AZO and GZO sam-
ples. Data points are marked with a black spot, and the contour is generated using Origin
Pro’s probability algorithm, wherein red represents the lowest resistivity, and blue the high-
est. The bottom right apex represents 100 at% Zn, the top apex represents 5 at% Al and 95
at% Zn, and the bottom left apex represents 5 at% Ga and 95 at% Zn.
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relative to the nominal precursor solution concentrations, and Hall Effect measure-

ments determined three samples that obtained low resistivities < 1 x 10−2 Ω cm;

(1.0,2.0)AGZO, (2.0,2.0)AGZO, and (3.0,1.0)AGZO measured resistivities of 9.1 x

10−3 Ω cm, 9.3 x 10−3 Ω cm, and 9.4 x 10−3 Ω cm, respectively, comparable to the

singularly doped GZO (9.1 x 10−3 Ω cm at 3.5 at% doping level), but not quite as

conductive as the best AZO sample (7.0 x 10−3 Ω cm).

4.5 Overall Conclusions for AZO, GZO, and AGZO
AZO, GZO, and AGZO were synthesised by CHFS with varying dopant levels in

order to determine the optimal composition in terms of electrical conductivity. This

was tested by pressing each sample into a pellet and heat treating in a reducing

atmosphere, and reproducibility ensured by the pressing of multiple pellets, with

multiple readings taken for each pellet before calculating the average and standard

deviations. The optimal compositions of each laboratory-scale synthesised (produc-

tion rate of 60 g h−1) material were as follows: AZO with 2.5 at% Al yielded an

average resitivity of 7.0 x 10−3 Ω cm, while GZO with 3.5 at% Ga, and AGZO with

1 at% Al and 2 at% Ga both yielded an average resistivity of 9.1 x 10−3 Ω cm.

Physical analysis by XRD, BET, and TEM indicated a decrease in particle size with

increasing nominal dopant levels in the precursor solutions. Furthermore, colour

change and the onset of conductivity in the doped samples relative to un-doped ZnO

initially implied that successful doping into the ZnO structure was taking place.

These, when taking also into account the single phase observed by XRD, the single

environments for the Zn 2p, Al 2p, and Ga 2p XPS peaks, and the compositional

analysis by both XPS and ICP, were strongly evidential that these materials, though

not in themselves novel, had been synthesised for the first time by CHFS.

For comparison of the electrical properties, the optimal composition of ITO (made

with 10 at% Sn) synthesised and tested by the same methods, had a resistivity of

6.0 x 10−3 Ω cm.[168] Thus each of the optimal compositions of each AZO, GZO,

and AGZO had resistivities very close to that of ITO, indicating their promise as

conducting oxide materials when synthesised by CHFS.



Chapter 5

Si Doped and Co-Doped Zinc Oxide

for Transparent Conducting Oxides

5.1 Aims
After AZO and GZO, the next most promising system with respect to conductivity

was silicon-doped zinc oxide (SZO, or SiZO). The aim of this chapter is thus to

investigate the compositional optimisation of SiZO as synthesised by continuous

hydrothermal flow synthesis (CHFS), as well as subsequent up-scaling to the pilot-

scale CHFS. The effect of co-doping SiZO with either aluminium or gallium is

also investigated. In addition to the electrical testing, characterisation including

XRD, BET, TEM, XPS, and ICP-AES is also discussed, to gauge the effect that the

different dopant ratios have on the properties of the materials.

5.2 Introduction
Silicon is a tetravalent ion, i.e. Si4+, thus when it is present as Si••Zn, as a substitu-

tional defect on a zinc site, it will donate two electrons rather than the single electron

donated by trivalent dopant cations such as Al or Ga. Additionally, Si4+ is consid-

erably smaller than Zn2+; their ionic radii are 0.26 Å and 0.60 Å, respectively.[245]

This has a number of effects; the high charge concentration means that silicon in

SiZO will draw oxygen anions to it more effectively than trivalent cation dopants

would, and indeed more strongly than the Zn2+ in the lattice. Each acts as a point

defect, and perturbs the Zn ions closest to it in the Zn plane, generating localised
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planar defects.[269] This, coupled with the two electrons (charge carriers) con-

tributed by each SiZn mean that as dopant level increases, the conductivity will be

significantly hampered by scattering effects in the lattice, inhibiting carrier mobil-

ity, thus the optimally conductive composition of SiZO should have a lower dopant

level than seen for AZO, GZO or AGZO.[270] Additionally, upon over-saturation

of Si into ZnO, one would expect to see the appearance of additional phases due to

the strain on the lattice that the Si ions cause.[269, 270]

Silicon itself is a highly desirable element for incorporation in a ZnO-based TCO

film due to a number of factors; comparatively little is needed relative to the equiv-

alent trivalent-doped systems, silicon is highly earth abundant and accessible (sec-

ond most abundant element in the Earth’s crust after oxygen),[271] and has neither

the chemical stability issues of AZO, nor the high costs associated with gallium in

GZO.[272, 273]

The first calculations on SiZO were carried out by Körner and Elsässer in

2011,[270] to which the conclusion was that substitution of Si onto the Zn sites

in the lattice was by far the preferential doping mechanism. Though interstitial sil-

icon was not addressed in that study, in subsequent work by Wu et al.[274] it was

shown that Si in either the octahedral or tetrahedral interstitial site has too high a

formation energy, at least double that of the substitutional SiZn, thus the substitu-

tional defect is formed upon Si-doping into ZnO.

Few studies exist in literature in which SiZO thin films are generated and fully

characterised in the context of application as TCOs, i.e. with optical and electri-

cal characterisation in tow. That said, from the studies that have been carried out,

competitive resistivities, carrier concentrations, charge carrier mobilities, and trans-

mittance properties have been achieved. SiZO thin films have been made by several

techniques, including CVD,[275] spray pyrolysis,[276, 277] pulsed laser deposition

(PLD),[136, 208, 278] and magnetron sputtering.[134, 147, 279] Of these, sputtered

films were the most transmissive, at 90%[134] and 94.5%[147], but PLD and spray

pyrolysis techniques also garnered films with > 80% transmittance across the vis-
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ible range. The seminal work by Minami et al.[135] was also the first to reach the

order of 10−4 Ω cm, but many published sputtering and PLD studies managed to

match this feat.[134, 136, 147, 208, 278, 279] For a detailed summary of a selec-

tion of SiZO thin films deposited by various methods in literature, see Table 6.5 in

Chapter 6.

Though thin films are typically formed by sputtering, the material in the target needs

first to be synthesised, in which case the ZnO would most likely have been synthe-

sised by one of three methods:[112, 160, 264, 265]

• The French (or Indirect) process, wherein metallic zinc is melted in a crucible

and vapourised (around 1000 ◦C), at which point the Zn vapour reacts with

oxygen in the air to form ZnO.

• The American (or Direct) process, wherein impure minerals, ores, or compos-

ites of zinc undergo carbothermal reduction by heating with a carbon source

such as anthracite to produce the zinc vapour, at a similarly high temperature

to the French process.

• Wet chemical processes, wherein zinc precursor solutions are used to precip-

itate the carbonate or hydroxide, which is converted to the oxide by calcining

(typically ca. 800 ◦C).

In order to generate a sputtering target, these materials would need to undergo a

further annealing step as above, likely also >1000 ◦C.

The silicon source could take the form of a single crystal wafer (typical for

PLD)[208], or could be used in the form of SiO2, which could be made top down (it

exists in nature as quartz) or bottom-up in the laboratory by a vast number of meth-

ods, for example by acidification of solutions of sodium silicate to form a silica gel,

then washing, drying, and dehydrating of the gel to form microporous silica; by this

method annual global production of silica has exceeded 1 billion kg.[280, 281] In

order to generate a sputtering target, these materials would need to undergo a fur-

ther annealing step as above, likely also >1000 ◦C.
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Benefits of Continuous Hydrothermal Flow Synthesis (CHFS) over more conven-

tional synthesis processes are fully discussed in Section 1.4 of Chapter 1. In brief,

CHFS should be able to directly deliver ZnO or doped ZnO by a purely hydrother-

mal (i.e. water as the only solvent) process at much lower temperatures than those

processes mentioned above. Before the studies outlined in this chapter, no such had

been carried out investigating silicon doping or co-doping into zinc oxide by CHFS.

5.3 SiZO: Laboratory and Pilot Scale Synthesis
This section outlines the investigation into SiZO synthesised on the laboratory (60

g h−1) and pilot (300 g h−1) scales, i.e. the compositional optimisation by means of

physical and electrical characterisation.

5.3.1 Experimental design

Initially, a 3-pump, single mixer laboratory-scale CHFS set-up was used (see Ex-

perimental chapter, section 2.2.1). With a total [Zn + Si] concentration of 0.3 M

(Zn supplied by pump P2, Si supplied by the base feed in pump P3), and pump flow

rates of 80, 40, and 40 mL min−1 for pumps P1, P2, and P3, respectively, 8 g of

product was expected in a collection volume of 1.2 L. Base (KOH) concentration

was maintained at twice the [Zn + Si] concentration, 0.6 M, in the feed supplied by

pump P3.

Optimal Si dopant level was anticipated to be lower than that of Al or Ga due to

the scattering affects alluded to in section 5.2; as such, concentrations of 0.25, 0.5,

1.0, 1.5, 2.0, 2.5, and 3.0 at% Si were investigated. Increasing the Si level had no

visible effect on the powders, which remained white for all samples, and the yield

remained fairly constant at ca. 79% (± 3%). As seen for AZO, GZO, and AGZO,

and as detailed in Section 2.2.5, all samples required three rounds of washing and

centrifugation before the supernatant measured negligible conductivity. Powders

were still white upon freeze-drying, and remained so after pressing into discs and

the subsequent heat treatment.

The optimal composition of 0.25 at% Si was scaled up to the pilot scale CHFS pro-
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cess, with the [Zn + Si] concentration set to 0.5 M and the base (KOH) set to 0.8

M, with flow rates increased to 400, 200 and 200 mL min−1 for pumps P1, P2, and

P3, respectively, resulting in a production rate (taking yield into account) of at least

300 g h−1.

Powder X-ray diffraction (pXRD), transmission electron microscopy (TEM), X-

ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) measure-

ments, and inductively coupled plasma atomic emission spectroscopy (ICP-AES)

were used to characterise the powder samples, and Hall Effect measurements were

used to determine the electrical properties of the samples as pressed, heat treated

discs.

Figure 5.1: XRD patterns of silicon-doped zinc oxide, including samples with 2.5 at% Si
(blue), 1.0 at% Si (green), 0.25 at% Si (red for lab-scale and gold for pilot-scale), and a
standard ZnO pattern (black).[4, 7]
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Figure 5.2: TEM images of various SiZO samples as follows: a) and c) show 0.25 at% Si
made on the laboratory and pilot scales, respectively, b) shows 2.5 at% Si, and d) shows 1.0
at% Si.[7]

5.3.2 Physical characterisation of SiZO samples

XRD patterns are shown in Figure 5.1 for 0.25 at% Si (laboratory and pilot scale),

as well as laboratory scale 0.5, 1.0, and 2.5 at% Si, including a reference pattern

for ZnO.[4] As expected, all samples showed phase-pure Wurtzite ZnO structure,

though with increasing dopant level, the degree of crystallinity appears (from the

noise level in the background) to decrease slightly. A summary of BET, Scherrer

analysis, and TEM image analysis for these samples is included in Table 5.1. These

indicate that inclusion of a very low (0.25 at%) level of silicon increases the par-

ticle size relative to un-doped ZnO, but that further increase results in the particle

size decreasing as seen for other systems previously investigated. TEM images are
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Figure 5.3: XPS spectra for a) and b) the Zn 2p binding energies for the 1.0 and 2.5 at%
SiZO samples, respectively, and c) and d) the Si 2p binding energies for the 1.0 and 2.5 at%
SiZO samples, respectively, as synthesised using the laboratory scale CHFS.[7]

shown in Figure 5.2; the morphology of the particles was spheroidal with a propen-

sity towards being diamondoid, with higher-Si samples considerably narrowing the

particle size distribution. The size decrease was from 83 nm mean particle length

for the 0.25 at% Si sample down to 34 nm for the 2.5 at% Si sample, and up-scaling

to the pilot scale process resulted in a much smaller decrease in size, from 83 nm to

68, though with a similarly large standard deviation.

Quantitative analysis of XPS spectra of the samples gave a composition of 0.9 and

2.2 at% Si for the nominally 1.0 and 2.5 at% Si samples, respectively, indicated

approximately a 90% uptake of the dopant relative to the nominal proportion of Si

to Zn in the precursor solutions. XPS spectra for the Zn 2p and Si 2p regions are

shown in Figure 5.3 for the 1.0 and 2.5 at% Si-doped samples. Each of the doublets

indicates a single environment for each Zn and Si, with the 2p3/2 peak appearing at
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Table 5.1: Summary of characterisation information on 0.25 at% (laboratory and pilot
scale), 1.0 at%, and 2.5 at% Si-doped ZnO, including the BET surface area, particle size as
calculated using the Scherrer method, and mean particle length and aspect ratio from 300
particles from TEM image analysis.

Sample Scherrer size
/ nm

Mean length
(TEM) / nm

Aspect
ratio

BET surface
area / m2g−1

0.25 at% Si 28 82.7 ± 50.7 1.4 12

1.0 at% Si 24 43.8 ± 17.1 1.3 21

2.5 at% Si 17 33.9 ± 13.9 1.3 27

0.25 at% Si

(pilot)
26 68.2 ± 37.5 1.4 13

1021.2 eV[241] and 100.8 eV[243] for Zn and Si, respectively, consistent over both

samples. Due to the low relative sensitivity factor of Si in X-ray photoelectron spec-

troscopy, Si 2p analysis of samples below 1.0 at% Si did not show any discernible

peaks.

5.3.3 Electrical characterisation

Figure 5.4 shows the trend of resistivity (and conductivity) versus silicon content in

the range 0.25 - 3.0 at% Si for SiZO synthesised by CHFS and tested as heat treated,

pressed discs. The trend appears almost exponential, with the lowest composition

tested (0.25 at% Si) garnering the lowest resistivity of 3.50 x 10−2 Ω cm, increasing

slowly with dopant level until sharply jumping at 2.5 - 3.0 at% Si, by which point

the resistivity is of the order of 100, two orders of magnitude higher than that of

the optimally conductive sample. The pilot scale 0.25 at% sample measured 3.98 x

10−2 Ω cm, very close to that of the analogous sample synthesised on the laboratory

scale, indicating a proportionally better scalability of SiZO than seen for AZO and

GZO with respect to the electrical properties. Resistivity data for the samples is

summarised in Table 5.2 along with the standard deviation in the measurements.
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Figure 5.4: Resistivity (blue) and conductivity (red) data for all compositions of SiZO
synthesised on the laboratory scale CHFS.[7]

Table 5.2: Summary of the resistivity date for SiZO across the compositional range ex-
plored, from 0.25 to 3.0 at% Si, including the standard deviation for each reading.

Sample Resistivity x 10−2 / Ω cm

0.25 at% Si 3.50 ± 0.04

0.5 at% Si 5.93 ± 0.65

1.0 at% Si 8.87 ± 0.01

1.5 at% Si 11.84 ± 0.01

2.0 at% Si 15.95 ± 0.47

2.5 at% Si 30.57 ± 0.15

3.0 at% Si 119.73 ± 0.15

0.25 at% Si

(pilot)
3.98 ± 0.10
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5.3.4 Conclusions

SiZO was synthesised by CHFS in the dopant range 0.25 to 3.0 at% Si. These

powders were tested for their resistivity by pressing into discs and subsequent heat

treatment, and from Hall Effect measurements the optimally conductive sample was

found to be the sample made with 0.25 at% Si, with a resistivity of 3.50 x 10−2 Ω

cm. This was then synthesised again on the pilot scale process (> 300 g h−1), and

was found to retain the electrical properties well; this sample measured a resistivity

of 3.98 x 10−2 Ω cm. Increase of the dopant level led to a decrease in particle size

and an increase in resistivity, and it was also seen that pilot scale synthesis resulted

in a slight decrease in particle size and increase in resistivity. There is no indication

as to whether the dopant level is directly and solely responsible for the increase in

resistivity, or whether particle size is also a significant factor, particularly at low

dopant levels where the small change in Si results in a dramatic change in particle

size. It is possible that the large particle size resulting from 0.25 at% Si benefits the

resistivity by means of reducing the grain boundary effects in the compacts.

5.4 SiZO: Co-Doping Investigation
Though SiZO was among the best materials screened in the experiments discussed

in Chapter 3, the optimally conductive sample (ρ = 3.5 x 10−2 Ω cm) was still

considerably more resistive than the optimal samples of AZO (ρ = 7.0 x 10−3 Ω

cm), GZO (ρ = 9.1 x 10−3 Ω cm), or AGZO (ρ = 9.1 x 10−3 Ω cm), by around 4 - 5

times. Thus further experiments were planned to enhance the conductivity of SiZO

by co-doping with Al or Ga, SiAZO and SiGZO, respectively.

5.4.1 Experimental design

Synthesis was exactly as carried out previously on the laboratory scale CHFS pro-

cess for purely Si-doped ZnO. Si was once more introduced into the process with

the base feed via pump P3, and Al, Ga, and Zn in various ratios were introduced

via pump P2. The samples made were as follows (and as summarised in Table

5.3): 0.25 at% Si with 1.0, 1.5, 2.0, and 3.0 at% of either Al or Ga, and 0.5 at%

Si with 1.0, 2.0, and 3.0 at% of either Al or Ga; the remaining at% of each sample



5.4. SiZO: Co-Doping Investigation 144

Table 5.3: Summary of particle size data for the co-doped SiZO samples in direct compar-
ison to the singularly doped samples, including BET surface area, and mean particle length
and aspect ratio from TEM image analysis.

Si / at% Al / at% Ga / at% BET Surface
Area / m2g−1

TEM Particle
Length / nm

Aspect

0.25 0 0 12 82.7 ± 50.7 1.4

0.25 2 0 20 32.0 ± 17.2 1.4

0.25 0 2 27 30.8 ± 14.5 1.4

0.5 0 0 19 46.1 ± 17.2 1.4

0.5 2 0 26 31.4 ± 16.9 1.5

0.5 0 2 29 24.4 ± 12.9 1.3

consisted of Zn by this nomenclature. No samples were made without Si, as such

samples were already investigated as described in Chapter 4.

As was observed for Al- and Ga-doping into ZnO in the previous Chapter, introduc-

tion of these resulted in an immediate colour change in the slurries and powders to

off-white/yellow depending on the proportion of dopant. Similarly upon pressing

of the powders the colour changed to green, then to blue-green after heat treatment.

The co-doped samples were characterised by TEM, BET, and Hall Effect measure-

ments on the pressed, heat treated discs.

5.4.2 Characterisation

As previously, all samples were phase pure Wurtzite ZnO as shown in Figure 5.5.

Representative TEM images are shown in Figure 5.6 of 2 at% Al or Ga with ei-

ther 0.25 at% or 0.5 at% Si. Co-doping of the samples resulted in largely more

spheroidal (less diamondoid character) particles than purely Si-doped ZnO, with

Al-doped samples more rod-like, particularly in the 0.5 at% Si sample, which saw

a slight increase in mean aspect ratio of 1.5, compared to typically 1.4 for undoped

SiZO. Addition of either Al or Ga resulted in considerable reduction in particle size,

as shown from the data summarised in Table 5.3.

A summary of resistivity data for all of the co-doped samples is shown in Table

5.4. Addition of either Al or Ga was shown to improve the electrical properties as
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Figure 5.5: XRD patterns for four representative co-doped samples, including the standard
pattern for ZnO.

Figure 5.6: TEM images of the Si-co-doped ZnO samples. a) and b) were 0.25 at% Si
with 2 at% Al and Ga, respectively, and c) and d) were 0.5 at% Si with 2 at% Al and Ga,
respectively.



5.4. SiZO: Co-Doping Investigation 146

Table 5.4: Summary of the resistivity data for all co-doped SiZO samples synthesised. In
bold are the least resistive samples for each Al- and Ga-(co-)doped SiZO, and in italics are
the singularly doped SiZO samples.

Si / at% Al / at% Ga / at% Resistivity x 10−2 / Ω cm

0.25 0 0 3.50 ± 0.04

0.25 1 0 1.11 ± 0.35

0.25 1.5 0 0.83 ± 0.05
0.25 2 0 1.16 ± 0.03

0.25 3 0 3.22 ± 0.12

0.25 0 1 2.96 ± 0.05

0.25 0 1.5 1.13 ± 0.04
0.25 0 2 1.75 ± 0.02

0.25 0 3 2.39 ± 0.01

0.5 0 0 5.93 ± 0.65

0.5 1 0 6.94 ± 0.03

0.5 2 0 3.68 ± 0.02

0.5 3 0 5.32 ± 0.03

0.5 0 1 3.14 ± 0.02

0.5 0 2 2.80 ± 0.01

0.5 0 3 5.97 ± 0.52

shown graphically in Figures 5.7 and 5.8 (Al and Ga, respectively). In both cases the

optimal sample was that made with 0.25 at% Si and 1.5 at% of Al or Ga, achieving

resistivities of 8.3 x 10−3 Ω cm and 1.1 x 10−2 Ω cm, respectively. In each case,

these were very close to the values obtained from purely Al- or Ga-doped ZnO, but

reducing the required amount of dopant; in the case of Ga co-doping, the amount

of gallium (by far the most expensive component) required was reduced to less

than half (from 3.5 at% to 1.5 at%), with only a very small amount of Si required,

a negligible cost by comparison. This resulted in a reduction of conductivity of

approximately 20%, which in many applications might not discount the material

while making it industrially much more viable due to having halved the cost.
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Figure 5.7: Resistivity data for the Al- and Si-co-doped ZnO samples. Those with 0.25
at% Si are in red, those with 0.5 at% Si are in blue. The minimum point (*) represents a
resistivity of 8.3 x 10−3 Ω cm.

Figure 5.8: Resistivity data for the Ga- and Si-co-doped ZnO samples. Those with 0.25
at% Si are in red, those with 0.5 at% Si are in blue. The minimum point (*) represents a
resistivity of 1.13 x 10−2 Ω cm.
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5.5 Conclusions
Si-doped and co-doped (with Al or Ga) ZnO was synthesised using CHFS and the

powders tested by pressing into discs and heat treating. Singularly doped SiZO

had the optimal resistivity of 3.5 x 10−2 Ω cm at a dopant level of 0.25 at% Si.

Doping 1.5 at% Al into this resulted in a decrease in resistivity to only 8.3 x 10−3

Ω cm, very close to the optimally conductive AZO sample, which had a resistivity

of 7.0 x 10−3 Ω cm with 2.5 at% Al. Thus equivalent electrical properties could be

obtained but with a 40% reduction in Al (a source of chemical instability in AZO).

Similarly, doping with 1.5 at% Ga into the optimally conductive SiZO sample also

resulted in a decrease in resistivity, to 11.3 x 10−3 Ω cm. This compares well to the

optimally conductive GZO sample, which had a resistivity of 9.1 x 10−3 Ω cm at a

dopant level of 3.5 at% Ga. Thus, again similar resistivity to GZO is seen but with

drastically reduced (57% reduction) level of gallium required, more than halving

the cost of the material for almost equivalent electrical properties.



Chapter 6

Transparent Conducting Oxide

Nanoparticle Ink Formulation and

Deposition

6.1 Aims

The principal aim of this chapter is to investigate the deposition of Continuous

Hydrothermal Flow Synthesis (CHFS)-made transparent conducting oxide (TCO)

nanoparticles onto glass substrates in the form of thin films. This first involves

the investigation into the citrate-coating of the nanoparticles, ink formulation, and

finally the inkjet printing and spin coating of the optimised materials in order to

gauge the effect of depositing the nanoparticles on the optoelectronic properties of

the material.

6.2 Introduction

Deposition by inkjet printing would first involve the in-process surface modifica-

tion of the nanoparticles by inclusion of sodium citrate in the reactor quench feed,

coating the particles with citrate. Thus the loading optimisation of citrate is first

investigated onto ITO and AGZO (which will henceforth be referred to as cit:ITO

and cit:AGZO, respectively, when coated with citrate), followed by deposition by

inkjet printing and characterisation of the thin films by optical and electronic means.
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Additional deposition by spin coating is also investigated, followed by in-depth op-

toelectronic characterisation of the thin films, made from cit:ITO, GZO, AGZO,

and SiZO. This section outlines the relevant studies so far reported in literature of

the deposition of thin films of ITO and ZnO doped with Al, Ga, Al/Ga, and Si, for

direct comparison with the films deposited as part of this work, as well as outlin-

ing the theory behind surface functionalisation and zeta potential measurements of

nanoparticles.

6.2.1 Synthesis and properties of ITO as a TCO

Studies into the deposition of ITO by various methods have generated thin

films with resistivities of the order of 10−4 Ω cm, including magnetron

sputtering,[30, 31, 143, 282] spray deposition[25] and pyrolysis,[283, 284]

CVD,[149] dip coating,[285] and spin coating.[154] These films tended to have

very high charge carrier concentrations (> 1021 cm−3) and reasonable mobilities

(> 30 cm2 V−1 s−1), as summarised in Table 6.1, from the last five decades. Almost

untested is inkjet printing, the results of which have thus far disappointed in terms

of the resistivities, which have been considerably higher than more conventional

deposition techniques.[155, 286] That said, optically the inkjet printed films tend to

be superior, and inclusion of co-printed Ag grids can decrease the resistivity < 2 x

10−4 Ω cm, at a slight cost to the optical light transmittance (82 % vs. 87 %).[155]

ITO has been made in hydrothermal flow before,[169, 187] and a dopant optimisa-

tion investigation was recently carried out,[168] which reported the most conductive

CHFS-made ITO nanomaterials, 6.0 x 10−3 Ω cm as a pressed, heat treated pellet,

and spin-coated films of this un-coated material had resistivities ca. 1 x 10−2 Ω

cm. However, ITO has not been surface-functionalised in-process and subsequently

printed. Lu et al. functionalised ITO nanoparticles with hexanoic acid for disper-

sion in hexane, however the only electrical testing by pressing a thin film indicated

resistivity ca. 8 Ω cm, but no printing or other deposition method took place.[169]
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Table 6.1: Summary of the properties of a selection of ITO films deposited by various
methods, visible light transmittance, resistivity (ρ), charge carrier concentration (n) and
mobility (µ), and the corresponding reference. CVD is chemical vapour deposition, DC is
dip coating, IP is inkjet printing, MS is magnetron sputtering, RS is reactive sputtering, SC
is spin coating, and SP is spray pyrolysis. Included in italics (bottom row) are the figures
for the best spin coated ITO film from this work, for comparison.

Deposition
Method

ρ x 10−4

/ Ω cm
n x 1020

/ cm−3

µ / cm2

V−1 s−1

Trans.
/ %

Reference

MS 0.7 27 36 89 [30]

SP 1.3 15 35 - [25]

MS 1.3 11 43 - [31]

MS 1.7 8.1 46 - [143]

SP 2.0 10 30 < 80 [283]

CVD 2.2 - - 80 [149]

DC 2.5 8.0 27 83 [285]

MS 4.0 10 10 85 [282]

SP 4.8 8.0 16 85 [284]

SC 6.5 7.0 14 85 [154]

IP 300 1.0 1.2 87 [155]

IP 17000 - - 90 [286]

SC 0.9 28 24 82 -

6.2.2 Synthesis and properties of ZnO as a TCO

Aluminium-doped zinc oxide (AZO) was first prepared by Minami et al. in

1984.[119] The investigation was prompted by issues with thermal stability of non-

stoichiometric undoped zinc oxide, which was the only way to make the mate-

rial conductive without dopants present. With a little under 2 at% Al, magnetron-

sputtered films of AZO demonstrated a marked improvement in thermal stability,

and a resistivity of only 1.9 x 10−4 Ω cm, and remains among the most conduc-

tive AZO films in literature to this day. A great number of other groups have

made films of the order of 10−4 Ω cm, however, by various deposition methods in-

cluding magnetron sputtering,[144–146, 248–253] atmospheric pressure[120] and

aerosol assisted[121] chemical vapour deposition (APCVD and AACVD, respec-
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Table 6.2: Summary of the properties of a selection of AZO films deposited by various
methods, including dopant level, visible light transmittance, resistivity (ρ), charge carrier
concentration (n) and mobility (µ), and the corresponding reference. MS is magnetron
sputtering, APCVD and AACVD are atmospheric pressure and aerosol assisted chemical
vapour deposition, respectively, SP is spray pyrolysis, and IP is inkjet printing.

Deposition
Method

ρ x 10−4

/ Ω cm
n x 1020

/ cm−3

µ / cm2

V−1 s−1

Dopant
level / at%

Trans.
/ %

Reference

MS 1.9 5.0 25 1.9 85 [119]

APCVD 3.0 8.0 35 0.6 85 [120]

MS 3.4 4.8 38 1.0 78 [144]

MS 3.4 13.0 14 3.2 85 [145]

AACVD 4.2 2.3 65 2.7 81 [121]

MS 4.7 7.5 15 4.0 90 [146]

MS 4.9 8.9 13 4.0 85 [249]

PLD 5.1 6.7 20 - 90 [122]

SP 20.0 0.8 43 1.0 85 [123]

IP 254.0 0.2 11 3.0 93 [156]

tively), and pulsed laser deposition (PLD).[122, 254] Other techniques such as

spray pyrolysis[123], atomic later deposition (ALD),[255] and inkjet printing[156]

and spraying[256] have been explored, but are orders of magnitude behind in

terms of resistivity. Most of the aforementioned studies have however achieved

transparencies of 80% or higher, with several surpassing 90% in the visible

range.[122, 146, 156, 252, 256] Electron mobilities were variable, though typically

in the range 10 - 40 cm2 V−1 s−1, and charge carrier concentrations were in the

range 4 - 27 x 1020 cm−3, (typically mid-range in the order of 1020 cm−3). The

vast majority of these materials had dopant levels no higher than 4 at% Al, with the

average at 3.4 at% Al. A summary of the best performing AZO films from literature

is included in Table 6.2.

GZO was first made by magnetron sputtering in 1990 by Choi et al,[257] though

the films managed only resistivities around 2 x 10−3 Ω cm. This was improved

upon significantly in 1992 by Hu and Gordon, when they made the first GZO thin
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Table 6.3: Summary of the properties of a selection of GZO films deposited by various
methods, including dopant level, visible light transmittance, resistivity (ρ), charge carrier
concentration (n) and mobility (µ), and the corresponding reference. MS is magnetron
sputtering, APCVD and AACVD are atmospheric pressure and aerosol assisted chemical
vapour deposition, respectively, and SC is spin coating. Included in italics (bottom row) are
the figures for the best spin coated GZO film from this work, for comparison.

Deposition
Method

ρ x 10−4

/ Ω cm
n x 1020

/ cm−3

µ / cm2

V−1 s−1

Dopant
level / at%

Trans.
/ %

Reference

APCVD 2.0 13.5 23 4.3 85 [128]

MS 2.2 24.0 13 4.7 85 [124]

MS 4.0 4.0 22 4.4 85 [125]

CVD 5.0 3.0 15 2.0 85 [129]

MS 5.4 6.5 16 2.6 92 [126]

MS 6.1 1.0 12 5.0 80 [259]

AACVD 6.4 1.9 51 2.5 85 [121]

PLD 7.0 6.8 20 5.0 85 [127]

MS 11.1 3.8 15 0.5 85 [253]

SC 1.8 19.0 19 3.5 83 -

film with resistivity appropriate for TCO application,[207] at 2.4 x 10−4 Ω cm,

equalling the best AZO films (using APCVD in place of magnetron sputtering).

Other films of GZO with resistivities of the order 10−4 Ω cm have since been made

by sputtering,[124–126, 248, 258, 259] APCVD,[128] CVD,[129], AACVD,[121]

and PLD.[127] These generally display a lower transmission of visible light, with

only one exceeding 90% transmission in the visible range,[126] and generally have

higher carrier concentrations, similar mobilities, and slightly higher mean dopant

levels, around 3.8 at% Ga. A tabulated summary for a selection of these materials

is included in Table 6.3.

AGZO is considerably newer in terms of literature presence to AZO and GZO. No

fully optoelectronically characterised AGZO thin film was published until 2010, in

which effort Kim et al. deposited a film by magnetron sputtering that had a resis-

tivity of 6.8 x 10−4 Ω cm. Almost all AGZO films in literature were deposited by

magnetron sputtering, and average dopant levels were 2.0 at% Al and 1.2 at% Ga.



6.2. Introduction 154

Table 6.4: Summary of the properties of a selection of AGZO films deposited by various
methods, including dopant level, visible light transmittance, resistivity (ρ), charge carrier
concentration (n) and mobility (µ), and the corresponding reference. MS is magnetron
sputtering, AACT is aerosol assisted chemical transport, and SC is spin coating. Included
in italics (bottom row) are the figures for the best spin coated AGZO film from this work,
for comparison.

Deposition
Method

ρ x 10−4

/ Ω cm
n x 1020

/ cm−3

µ / cm2

V−1 s−1

(Al, Ga)
/ at%

Trans.
/ %

Reference

MS 3.0 5.0 42 1.6, 0.9 82 [130]

MS 3.2 2.4 9 0.8, 2.7 <80 [131]

MS 4.5 2.5 10 2.7, 0.3 >90 [132]

MS 4.7 12.0 11 4.3, 2.1 95 [133]

MS 5.7 6.0 29 1.4, 0.3 92 [260]

MS 6.8 4.9 17 - >85 [262]

MS 7.8 3.9 23 1.6, 0.9 78 [263]

MS 13.0 6.1 10 2.4, 1.3 95 [287]

AACT 57.0 0.7 14 1.5, 1.5 90 [288]

SC 1.9 18.0 20 2.0, 2.0 82 -

Average transmission was comparable to AZO films and improved on GZO films,

as perhaps should have been expected, with several obtaining visible light transmis-

sions above 90%.[132, 133, 260, 287, 288] The carrier concentration is of the same

order of magnitude as AZO, a little lower than GZO, and mobilities are generally

modest in the range 10 - 30 cm2 V−1 s−1, leading to resistivities generally higher

than AZO or GZO films, though still typically of the order of 10−4 Ω cm.[130–

133, 248, 253, 260–263] A summary of AGZO film data from literature is included

in Table 6.4.

Few studies exist in literature in which SiZO thin films are generated and fully

characterised in the context of application as TCOs, i.e. with optical and electrical

characterisation together. That said, from the studies that have been carried out,

competitive resistivities, carrier concentrations, charge carrier mobilities, and trans-

mittance properties have been achieved. SiZO thin films have been made by several

techniques, including CVD,[275] spray pyrolysis,[276, 277] pulsed laser deposition



6.2. Introduction 155

Table 6.5: Summary of the properties of a selection of SiZO films deposited by various
methods, including dopant level, visible light transmittance, resistivity (ρ), charge carrier
concentration (n) and mobility (µ), and the corresponding reference. MS is magnetron
sputtering, PLD is pulsed laser deposition, SP is spray pyrolysis, CVD is chemical vapour
deposition, and SC is spin coating. Included in italics (bottom row) are the figures for the
best spin coated SiZO film from this work, for comparison.

Deposition
Method

ρ x 10−4

/ Ω cm
n x 1020

/ cm−3

µ / cm2

V−1 s−1

Dopant
level / at%

Trans.
/ %

Reference

MS 3.3 4.3 15 1.5 90 [134]

MS 3.8 10.0 12 2.0 85 [135]

PLD 3.9 5.9 28 2.0 83 [136]

MS 5.5 5.0 23 3.0 94 [147]

PLD 6.2 2.9 38 1.1 77 [208]

MS 8.7 4.5 16 0.5 >80 [279]

SP 15.0 19.0 - 4.0 87 [277]

SP 37.0 1.7 9 3.0 80 [276]

CVD 200.0 0.3 17 4.0 75 [275]

SC 24.0 1.0 11 0.25 83 -

(PLD),[136, 208, 278] and magnetron sputtering.[134, 147, 279] Of these, sputtered

films were the most transmissive, at 90%[134] and 94.5%[147], but PLD and spray

pyrolysis techniques also garnered films with > 80% transmittance across the vis-

ible range. The seminal work by Minami et al.[135] was also the first to reach the

order of 10−4 Ω cm, but all published sputtering and PLD studies managed to match

this achievement,[134, 136, 147, 208, 278, 279] with the most conductive film thus

far reported by Clatot et al.[134] at 3.3 x 10−4 Ω cm. The dopant level varied in

these studies, but never exceeded 4 at% Si, and mobilities were around 16 cm2 V−1

s−1. Das et al.[208] reported the highest electron mobility for this material of 38

cm2 V−1 s−1, a feat not since matched. In almost all cases, the carrier concentration

was of the order of 1020 cm−3, with only one study, Rashidi et al. (spray pyrolysis)

exceeding to 1021 cm−3,[277] and this achieved only by additional incorporation

of fluoride into the preparation and deposition methodology. A summary of all of

this data is included in Table 6.5 in order of increasing resistivity, along with the
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corresponding references for further reading.

All of these materials, AZO, GZO, AGZO, and SiZO, have demonstrated electrical

and optical properties rivalling (or at least nearing) those of ITO, not only from mag-

netron sputtering but from several other deposition techniques, to the extent that any

of them could be considered as viable replacement materials and worthy of study.

This is especially true with regards to using CHFS, as there are very few studies into

inkjet printing that show any promise at all (whether with ZnO-based materials, or

indeed with ITO itself); typically the films demonstrate excellent optical properties,

but with low conductivity.[155, 156, 256, 286] Surface functionalisation of these

materials for aid in formulation of inks would be a significant step towards replac-

ing the ubiquitous sputtering techniques currently in use, but there was first the need

to elucidate the optimal composition of the materials as made by CHFS, as they had

not before been synthesised by such a method before this research. Results of the

compositional optimisation are discussed in Chapters 4 (AZO, GZO, and AGZO)

and 5 (SiZO), while surface functionalisation and deposition results are discussed

further on in this chapter.

6.2.3 Surface functionalisation of nanoparticles using citrate

Efforts toward surface-functionalisation using various different capping agents

have been used in coating ceria,[289, 290] various iron oxides,[291–293]

silicon,[293] titanium,[294, 295] hafnium,[296] and zirconium dioxides,[297] and

gold nanoparticles,[298, 299] among others. The majority of these synthesis meth-

ods involve batch processes, but some are continuous, analogous to the method-

ologies employed in this research. This offers a benefit as coating particles can

be introduced at lower temperatures after the initial nucleation of the primary

product particles, without risk of organic capping agents thermally decompos-

ing at the elevated temperatures required to synthesise many of the materials in

question.[291, 300]

Citrate-coated nanoparticles are desirable in a number of applications, particu-

larly biomedical applications due to citrate’s inherent biocompatibility, for example
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functionalised magnetite nanoparticle synthesis for use in magnetic hyperther-

mia treatments.[291, 292] This has been demonstrated in hydrothermal flow,[300]

however the synthesis of surface-functionalised citrate-coated nanoparticles for ap-

plication as TCOs has yet to be investigated in literature, though there are a very few

articles on other surface modifiers used to disperse TCO nanoparticles including

ITO[169] and ZnO.[301]

Citrate was selected as the surface modifier in this instance because of the nature

of the desired ink ‘product’; the hypothetical ink was to be water-based, as was

the synthesis method. As such, the modifier had to be water soluble in reagent

form, and hydrophilic when coated onto nanoparticles. Citrate is naturally oc-

curring, inexpensive and has been shown to be effective in this pursuit for other

systems.[291, 294, 299, 300] Grafting density of the citrate molecules on the sur-

face of the functionalised nanoparticles can be calculated using Equation 6.1.

σ = M
(4

3πr3)d(mCA
mNP

)

MCA
/4πr2 (6.1)

In this equation, σ is the grafting density in molecules per square nanometer (CA

nm−2), M is Avogadro’s Constant, and mCA/mNP is the ratio of solid mass ac-

counted for by the citrate (versus citrate and metal oxide nanoparticles), which is

determined from TGA analysis. MCA is the molecular weight of the capping agent

(192.12 g mol−1), d is the density of the metal oxide (assumed to be 7.14 g cm−3

for ITO and 5.61 g cm−3 for AGZO), and r is the mean radial length across the

three axes for each nanoparticle; thus 4πr3 represents an estimation of the volume

of each nanoparticle, which is more accurate the closer the particle is to a perfect

sphere. As grafting density is only to be calculated to 1 d.p., the approximation was

judged to be acceptable.

For the most part, citrate was used in the form of citric acid in previous reports,

however due to the pH sensitivity of ZnO-based materials (particularly at low

pH), sodium citrate was used in this study. Its structure is as shown in Figure

6.1. Each of the three (COO)− groups can be the point of adherence to the sur-
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face of nanoparticles, leaving multiple other groups loose, which can then interact

with the water molecules in an aqueous medium, facilitating the dispersion of the

nanoparticles.[300]

Figure 6.1: The structure of sodium citrate, the citrate precursor used to functionalise the
CHFS nanoparticles.

6.2.4 Zeta potential measurements

Zeta potential is a measure of the potential difference between the molecules of the

suspending medium adherent to the particles in suspension versus those in the bulk,

wherein a greater magnitude of this potential difference is indicative of a more sta-

ble suspension. The sign is indicative of the charge on the surface of the particles

in suspension, such that positive zeta potentials are observed for particles with net

positive charge on the surface, and negative zeta potentials are observed for parti-

cles with negative surface charge. For each sample being tested, the zeta potentials

should be measured for a number of points across a pH range, which typically gen-

erates a reverse S-curve. For every sample there is a pH at which the zeta potential

is zero; i.e. the surface charge of the particle is neither positive nor negative; acidi-

fication of the solution from this point increases the propensity to positive charge at

the surface due to the additional H+ (or equivalent) ions present, and the addition of

alkaline species has the opposite effect, generating negative surface charge on the

particles in suspension.[302–304]

Though there are differing accounts as to the exact ranges, generally speaking sam-

ples with zeta potentials, ζ < |20| mV will quickly agglomerate and settle out of

suspension, if |20|mV < ζ < |40|mV then the particles will be fairly stable but will

tend to slowly settle out, and for ζ > |40| mV the suspension tends to be inherently

stable.[302–304]
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6.3 Citrate-Coated Indium Tin Oxide

This section investigates the coating of ITO with citrate as part of the CHFS pro-

cess, starting with the optimisation of citrate-loading and continuing with the char-

acterisation of the optimal material. Ink formulation and deposition are detailed in

following sections.

6.3.1 Experimental design

Dr P. Marchand et al. previously investigated the compositional optimisation of

ITO as synthesised by CHFS, finding that 10 at% Sn relative to 90 at% In gave

the lowest resistivity when pressed into a disc and heat treated, with ρ = 6.0 x

10−3 Ω cm. Formic acid was used in order to facilitate the formation of oxygen

vacancies in the ITO structure.[168, 169] This was included in the indium precursor

feed supplied by pump P2. Pump P3 contained the tin precursor and base (KOH),

and pump P1 provided the flow of supercritical water as in all previous syntheses.

Pump P4 contained aqueous sodium citrate solution at various concentrations, the

capping/surface-coating agent. Pumps P1, P2, P3, and P4 had flow rates of 80, 40,

40, and 160 mL min−1, respectively; the mixing temperature in the first mixer was

335 ◦C, and the mixing temperature in the second mixer was 187 ◦C, low enough

that the citrate ions would not begin to decompose. The indium concentration was

0.09 M, the tin concentration 0.01 M, the formic acid concentration 0.5 M, and the

KOH concentration 0.75 M. Citrate:metal ratios of 0, 0.33, 0.67, 1.0, 1.5, and 3.0

were used, the highest citrate concentration a two times excess of citrate versus the

metal concentration. Inclusion of citrate had an immediate and drastic effect on the

propensity of the slurries to settle out; washing with water and acetone was required

for all samples as per the outline in Section 2.2.5, with centrifugation steps up to 3

h per wash. Significant losses of sample during the cleaning steps resulted in final

yields of ca. 50 %, though this could have been mitigated by additional time on

the centrifuge or improved recovery. The samples were collected at a pH of 8, all a

similar colour, very pale blue, indicative of the formation of oxygen vacancies.[168]
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6.3.2 Citrate-loading onto ITO investigation

This section outlines the use of zeta potential measurements to gauge the optimal

amount of citrate in the ITO synthesis, with regards to the stability of the coated ma-

terial in aqueous dispersions. The primary method of sample analysis was dynamic

light scattering, by which method (see also Section 2.4.3) zeta potential curves were

extracted for each material. These are shown in Figure 6.2a, whereas Figure 6.2b

shows the comparisons of the different zeta potentials at pH 7 for each sample, the

goal being the greatest magnitude of zeta potential, signifying the most stable par-

ticles in neutral solution.

As can be seen from the figure, the zeta potential drops sharply on addition of any

citrate to the particles, reaching a minimum at a citrate:metal ratio of 1:1. Excess of

citrate causes the zeta potential at pH 7 to rise above -30 mV, reducing the effective-

ness of the citrate present in preventing agglomeration of the suspended particles.

This value of -39.7 mV is indicative of good stability in aqueous media, and it was

this material that saw its synthesis scaled up for further characterisation.

6.3.3 Further characterisation of optimal cit:ITO

This section discusses additional characterisation of the 1:1 cit:ITO material, includ-

ing pre- and post-heat treatment XRD and XPS. As can be seen from XRD in Figure

6.3, the as-synthesised cit:ITO is in fact for the most part InOOH, although some

In2O3 peaks can also be seen when compared to the reference pattern.[305, 306]

The InOOH phase disappeared entirely upon heat treatment of the as-made material

(5 h at 550 ◦C under an Ar atmosphere), leaving phase pure ITO, consistent with

previous investigations in the UCL group.[168] This is further supported by XPS

as shown in Figure 6.4. The as-prepared material (Figure 6.4a, c, and e) shows

clearly two chemical environments for the metals (both In, show in 6.4a, and Sn, in

6.4c). These can be attributed to the oxyhydroxide and oxide phases for the larger

and smaller peaks, respectively. Upon heat treating, only a single environment for

each metal was observed, consistent with observations from XRD. The 3d5/2 peaks

of 444.9 eV and 486.8 eV for In and Sn, respectively, are consistent with expected
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Figure 6.2: a) Zeta potential curves for the ITO samples made with and without citrate
in the quench (P4) feed, and b) comparison of the zeta potentials at pH 7 for the different
citrate-coated samples. The red curve represent the sample containing no citrate, and then
the orange, yellow, green, blue, and indigo curves represent the samples with citrate:metal
ratios of 1:3, 2:3, 1:1, 3:2, and 3:1, respectively, and the colour of each point in the lower
graph corresponds directly with the curve of the same colour.
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binding energies in the literature.[26, 234] Compositional analysis on the 3d regions

of both elements indicated a proportion of 89.6 at% In, versus 10.4 at% Sn in the

heat treated material.

Figure 6.3: XRD patterns of the as-synthesised “ITO” material, with a 1:1 citrate ratio,
and the same material after heat treatment. Standard patterns are included for InOOH and
In2O3. Diffraction was carried out with a Mo source (λ = 0.7093 Å).
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Figure 6.4: XPS spectra for the as-synthesised cit:ITO material, and post-heat treatment,
including a) and b) the In 3d region, c) and d) the Sn 3d region, and e) and f) the O 1s
region. A reduction in the number of environments is observed between a), c), and e) (as-
synthesised) and b), d), and f) (post-heat treatment), as the (Sn-doped) InOOH is converted
completely to (Sn-doped) In2O3.
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6.4 Citrate-coated AGZO

This section investigates the coating of ZnO doped with 2 at% Al and 2 at% Ga

(with respect to 96 at% Zn, hereafter referred to simply as “AGZO” in this Chapter)

with citrate as part of the CHFS process, starting with the optimisation of citrate-

loading and continuing with the characterisation of the optimal material. Ink for-

mulation and deposition is detailed in following sections.

6.4.1 Experimental design

The investigation into the compositional optimisation of Al and Ga co-doped ZnO

as synthesised by CHFS took place in 2016,[6, 307] and is detailed in Chapter 4.

Over the course of the investigation, three compositions were found to have resis-

tivities below 1 x 10−2 Ω cm.[6] These were ZnO doped with (Al at%, Ga at%) of

(1.0, 2.0), (2.0, 2.0), and (3.0, 1.0). Of these, the greatest precision of the repeat

measurements was with 2 at% each of Al and Ga, the second lowest resistivity sam-

ple in the study (ρ = 9.3 x 10−3 Ω cm), and as such it was judged to be the best

candidate material for the citrate-optimisation study, being cheaper than GZO, and

more stable than AZO.

A 4-pump setup was used as described in Section 2.2.2. Pump P1 provided the

stream of supercritical water, P2 provided the metal precursors ([Zn + Al + Ga] =

0.3 M), P3 provided the base feed ([KOH] = 0.6 M), and P4 contained various con-

centrations of aqueous sodium citrate solution. Pumps P1, P2, P3, and P4 had flow

rates of 80, 40, 40, and 160 mL min−1, respectively; the mixing temperature in the

first mixer was 335 ◦C, and the mixing temperature in the second mixer was 187 ◦C.

As with the cit:ITO experiments, citrate:metal ratios of 0, 0.33, 0.67, 1.0, 1.5, and

3.0 were used, the highest citrate concentration a two times excess of citrate versus

the metal concentration. Similarly to the observations in the cit:ITO experiments,

inclusion of citrate had an immediate and drastic effect on the propensity of the slur-

ries to settle out; washing with water and acetone was required for all samples as

per the outline in Section 2.2.5, with centrifugation steps up to 1 h per wash; all of

the cit:AGZO samples settled more readily than the analogous cit:ITO samples had
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previously. Yields were higher however, perhaps due in part to the ease of settling

of the material, and all samples were obtained in ca. 70% yield by mass.

6.4.2 Citrate-loading onto AGZO investigation

This section outlines the use of zeta potential measurements to gauge the optimal

amount of citrate in the ITO synthesis, with regards to the stability of the coated ma-

terial in aqueous dispersions. The primary method of sample analysis was dynamic

light scattering, by which method (see also Section 2.4.3) zeta potential curves were

extracted for each material. These are shown in Figure 6.5a, whereas Figure 6.5b

shows the comparisons of the different zeta potentials at pH 7 for each sample, the

goal being the greatest magnitude of zeta potential, signifying the most stable par-

ticles in neutral solution.

As can be seen from the figure, the zeta potential drops sharply on addition of any

citrate to the nanoparticle surfaces, reaching a minimum at a citrate:metal ratio of

1:1; however further increase in citrate concentration, differing from the effect ob-

served with cit:ITO, resulted in no change in the zeta potential at pH 7. Thus the

1:1 sample was judged to be the best sample (as it used the minimum amount of

citrate for the same result). Its zeta potential at pH 7 was -27.9 mV, indicative of

moderate stability, considerably worse than the -39.7 mV obtained for the analo-

gous cit:ITO sample. It should also be noted that the values were less predictable

for cit:AGZO; the curves exhibited less of the characteristic s-shape expected, and

less of a trend between samples could be identified. This could be due in part to the

inherent chemical instability of ZnO-based materials in lower pH environments; de-

rived count rate of the cit:AGZO samples dropped significantly by pH 3 (indicating

that the material had most likely started to dissolve), whereas the same effect was

not observed for cit:ITO until pH 2. Additionally, reduced efficiency and proclivity

of the citrate to bind to the surface could have had an effect.

A visual depiction of the effect of coating ITO with citrate is shown in Figure 6.6,

wherein as time passed (up to 3 h), the sample with no citrate settled completely,

and samples with increasing citrate loading settled out noticeably slower.



6.4. Citrate-coated AGZO 166

Figure 6.5: a) Zeta potential curves for the AGZO samples made with and without citrate
in the quench (P4) feed, and b) comparison of the zeta potentials at pH 7 for the different
citrate-coated samples. The red curve represent the sample containing no citrate, and then
the orange, yellow, green, blue, and indigo curves represent the samples with citrate:metal
ratios of 1:3, 2:3, 1:1, 3:2, and 3:1, respectively, and the colour of each point in the lower
graph corresponds directly with the curve of the same colour.
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Figure 6.6: A photographic depiction of the settling rate of cit:ITO, with increased citrate
loading from left to right. a) is how the as-prepared slurries looked initially, b) shows the
slurries after 1 h, and c) shows the slurries after 3 h. These materials were synthesised by
Dr P. Marchand, who also took the photographs.
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6.4.3 Further characterisation of optimal cit:AGZO

This section discusses additional characterisation of the 1:1 cit:AGZO material,

including XRD and XPS. As could be seen from XRD in Figure 6.7, the as-

synthesised cit:AGZO was, as for previously synthesised ZnO materials, phase pure

Wurtzite structure.[4] However, the Zn 2p and O 1s binding energy regions from

XPS (as shown in Figure 6.8) appeared to indicate an additional, smaller chemical

environment at higher binding energy, which disappeared upon heat treatment of

the material, possibly due to the citrate bound to the surface of the material. The Ga

2p region was largely unchanged, though a decrease in peak intensity could have

indicated that upon heat treatment that the gallium became less surface-segregated.

The Al 2p region (Figure 6.8e) saw the greatest change; there was no Al detected

until after heat treatment.

6.5 Inkjet Printing of cit:ITO and cit:AGZO
This section explores the formulation of the citrate-loaded materials, ITO and

AGZO, into inks for inkjet printing. This includes TEM images of the as-prepared

materials, TGA-DSC of the pastes, and viscometry measurements.

6.5.1 Further characterisation and ink formulation of cit:ITO

and cit:AGZO

Both of the materials, cit:ITO and it:AGZO exhibited very good consistency in par-

ticle sizes as measured and calculated from TEM images (see Figure 6.9). cit:ITO

typically appeared as 19.4 ± 5.1 nm, with an aspect ratio of 1.2, and cit:AGZO was

typically 21.8± 4.6 nm, with an aspect ratio of 1.1. This was smaller than observed

for the un-coated material, at 1.2 (see Figure 4.10 in Chapter 4), with a considerably

narrower particle size distribution, indicating that citrate-coating was of significant

benefit in pursuit of particle size control.

When thermogravimetric analysis with differential scanning calorimetry (TGA-

DSC) was carried out on dense pastes of the two materials, the graphs as shown

in Figures 6.10 and 6.11 were extracted. In both cases, an initial mass loss accom-

panied by a DSC endotherm (see the regions marked in red) indicated the loss of
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Figure 6.7: XRD patterns of the as-synthesised 1:1 cit:AGZO material, showing phase pure
Wurtzite ZnO structure as seen from the ZnO reference pattern included. Diffraction was
carried out with a Mo source (λ = 0.7093 Å).

water from the sample, and again for both samples there was another change in

mass, this time accompanied by a DSC exotherm (see the regions marked in green),

representing the breakdown of the surface-bound citrate molecules. The cit:ITO

sample had an additional change not observed for the cit:AGZO sample, in that (as

can be seen in the purple region in Figure 6.10) further loss of mass was observed

in the temperature range ca. 350 - 400 ◦C, accompanied by a slight, ill-defined

endotherm. This, taking XRD and XPS analysis into account, is most likely indica-

tive of the structural water lost from the indium oxyhydroxide as it was converted

to indium oxide. This made extraction of the actual loading of the citrate difficult,
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Figure 6.8: XPS spectra for the cit:AGZO material, including a) the Zn 2p region (as-
synthesised), b) the Zn 2p region (post-heat treatment), c) the O 1s region (as-synthesised),
d) the O 1s region (post-heat treatment), e) the Al 2p region, before and after heat treatment,
and f) the Ga 2p region, both before and after heat treatment (lower and upper, respectively).
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Figure 6.9: TEM images of a) and b) the as-prepared cit:ITO, and c) and d) the as-prepared
cit:AGZO. Both materials were made by CHFS according to the procedure outlined in Sec-
tion 2.2.2

rendering the values as estimates more than calculations. Assuming that the mass

change only within the citrate-decomposition exotherm was entirely due to citrate

loss, then this accounts for ca. 3.1 % of the mass of the dry sample (i.e. post initial

water loss). Citrate accounted for considerably less of the cit:AGZO sample, how-

ever, only ca. 1.6 % of the dry mass, approximately half that of the cit:ITO sample.

Using Equation 6.1, the grafting density of the citrate was calculated from these

to be 2.0 CA nm−2 for cit:ITO, and 1.0 CA nm−2 for cit:AGZO, based on calcula-

tions using particle sized gleaned from TEM image analysis. When compared to the

citrate-coated magnetite made previously in CHFS, this had a grafting density of up
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to 2.6 CA nm−2, so the cit:ITO is very close. However, the density is considerably

reduced for the cit:AGZO sample. The reason for this remains unknown, however

it suggested a probable reason behind the reduced stability of cit:AGZO in water

versus the cit:ITO as measured by DLS.

Figure 6.10: Thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) of the citrate-coated ITO material as a dense wet paste after cleaning of the as-
synthesised material. The change in mass is a black solid line, displayed as a percentage
loss, while the heat flow from DSC is shown as a blue dashed line.

TGA analysis was important not only with regards to knowing how much citrate

was present in each of the samples and the grafting density, but also in determining

the solid metal oxide content of the dense pastes to then formulate inks. The ink

vehicle was Sun Chemical designation U10197, an approximately 20 wt% ethy-

lene glycol in water-based vehicle with a number of organic additives to lead to

improved dispersibility of metal oxide nanoparticles. Note that these additives, and

those chemicals added immediately prior to printing to alter the surface tension and

viscosity of the inks, are a closely guarded trade secret. Speculation as to their
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Figure 6.11: Thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) of the citrate-coated AGZO material as a dense wet paste after cleaning of the as-
synthesised material.The change in mass is a black solid line, displayed as a percentage
loss, while the heat flow from DSC is shown as a blue dashed line.

identities is beyond the scope of this investigation. The solid metal oxide content of

the cit:ITO sample was 66.9 % by mass, and that of the cit:AGZO sample was 61.5

%. Thus to make, for example, a 25 wt% ink of each, 30 g total, to the first would

have been added 11.2 g of cit:ITO wet paste and 18.8 g of vehicle U10197, and to

the second would have been added 12.2 g of cit:AGZO wet paste and 17.8 g of the

ink vehicle. Sonication treatments as described in Section 2.4.2.2 were carried out,

resulting in excellent dispersions of the inks, upon which were carried out viscosity

measurements.

Figure 6.12 shows a typical dataset for dynamic viscosity readings for a sample

at varying shear rates, in this case ink vehicle U10197 with no further additives.

From this, the dynamic viscosity of the fluid would be taken as the reading obtained

for the highest shear rate for which it was measured (corresponding to the highest
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percentage torque), for U10197 this was 3.46 cP at a spindle rotation speed of 170

RPM and shear rate 208 s−1. Dynamic viscosity, η (conventionally expressed in

centipoise, 1 cP = 1 mPa s), was calculated from the shear rate and shear stress ac-

cording to equation 6.2, where τ is the shear stress (in N cm−2), and γ is the shear

rate (in s−1).

η =
τ

γ
(6.2)

Figure 6.12: An example depiction of the effect of shear rate on the dynamic viscosity, of
ink vehicle U10197.

The effect on increasing the mass loading of the inks was, as should have been

expected, to increase the viscosity, as shown in Figure 6.13. Loadings of up to 40

wt% cit:ITO in vehicle U10197 were analysed for their dynamic viscosities, which

increased exponentially (the linear fitting on the logarithmic plot was calculated to

have an adjusted r2 of 0.99968) from 3.46 cP at 0 wt% (i.e. the vehicle alone), to

6.23 cP at 20 wt% cit:ITO and to a maximum of 11.16 cP at 40 wt%. In all cases,



6.5. Inkjet Printing of cit:ITO and cit:AGZO 175

Figure 6.13: The dynamic viscosities of the ink vehicle (U10197), a series of mass loadings
of cit:ITO (up to 40 solid wt%), and including the viscosities of the 25 wt% inks of each
cit:ITO and cit:AGZO, which were 7.25 cP and 9.81 cP, respectively.

the ink could pass unhindered through a 3.2 µm syringe filter, but only those inks

of 30 wt% or less could pass through a 1.2 µm syringe filter without significant

blockage from larger agglomerates. Loadings of 35 or 40 wt% were limited to no

more than ten separate sonication treatments; further treatments invariably (despite

the constant use of an ice bath) led to coagulation of the ink, which could not be

reversed or undone.

The desired mass loading for inkjet-printable inks was 25 solid wt%; one for each

cit:ITO and cit:AGZO was prepared, and these were couriered to Sun Chemical

Ltd., where Dr M. Pickrell and co-workers deposited thin films of each according

to the procedure outlined in Section 2.4.4.2.

6.5.2 Inkjet printing results from cit:ITO and cit:AGZO inks

Fewer prints from cit:ITO inks were deposited over the course of the project than of

the zinc-based analogues, thus only preliminary results are discussed here, with a
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good deal more work to be done as part of the investigation. Print quality was incon-

sistent; many gaps and macro-scale disconnections are clearly visible in the films,

as shown in Figure 6.14. The films as-deposited were highly transparent, however

were non-conductive. Heat treatments were carried out in H2/N2, air, and Ar, and

the results are shown in Figure 6.14b, c, and d, respectively, as per the procedure

outlined in Section 2.4.4.3. Heat treatment in air resulted in films that were nei-

ther transparent, nor conductive. Heat treatment in Ar (as preferred for ITO-based

materials)[168] resulted in highly transparent films that were not very conductive;

sheet resistances of ca. 25 kΩ were measured by 2-point probe. Heat treatment in a

reducing atmosphere resulted in discolouration of the films (see Figure 6.14b) as a

result of the burning and inefficient removal of the organic components of the film,

principally the citrate bound to the surface of the nanoparticles, but also any compo-

nents of the ink that were not removed upon drying of the newly-printed film at 90
◦C. The resistances plummeted however, to only ca. 40 Ω by 2-point probe, almost

a factor of 1000 lower than the films heat treated in Ar. Due to the inconsistency of

the film, thickness was impossible to gauge accurately, but could correspond to re-

sistivities around 10−3 Ω cm, perhaps as low as the order of 10−4 Ω cm depending

on the thickness at the point of measuring the resistance.

Figure 6.14: Inkjet printed thin films printed from 1:1 cit:ITO inks. a) shows the films
as-printed, b) shows the films after heat treatment in 5 % H2/N2, c) shows the films after
heat treatment in air, and d) shows the films after heat treatment in Ar. All heat treatments
were carried out at 550 ◦C for 5 h onto microscope slides.
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Even if the resistivity of the films were to be towards the upper end of the window

suggested above, these would still be the most conductive TCO thin films yet de-

posited by inkjet printing. Further depositions are necessary, and re-formulation of

the inks so as to better wet the surface of the glass substrate; this could result in

improved, more consistent coverage. An area of relatively even coverage is shown

in Figure 6.16 (a and b) of the film shown in Figure 6.14b. In this region, the sur-

face is relatively smooth and featureless, the majority of features can only be seen

at X50,000 magnification, but particulates are not easily distinguishable. Return-

ing to the characterisation of the ITO nanoparticles, the relatively un-crystalline

(Sn-doped) InOOH appeared to have been annealed especially effectively, forming

crystalline ITO with few micro-defects and imperfections in the film, resulting in

high conductivity.

Figure 6.15 shows 2 typical inkjet printed films made from cit:AGZO. The as-

printed film is non-conductive and has an optical transparency of 80 %. Upon heat

treating in a reducing atmosphere (5 % H2/N2), the film does not change very much

by eye; the transmittance rises to 84 % however, and the film becomes conductive.

The lowest resistivities measured for inkjet printed AGZO films are of the order of

10−1 Ω cm, considerably higher even than the pressed discs of the material. Deposi-

tion of the inks, whether due in part to one or more component of the ink interacting

with the ZnO-based nanoparticles, or to the parameters with which the depositions

were carried out, did not result in the same conductivity as was seen even in unopti-

mised inkjet printed ITO. Figure 16 (c and d) shows SEM images of the cit:AGZO

film post-heat treatment. More distinct particles were clearly visible than in the

ITO analogue, and the surface appeared rougher with cracks and particles. Most

notably, many long rodlike needles were visible, up to microns in length, which

were not seen at all in TEM images of the nanoparticles after synthesis. Sinter-

ing growth appeared to have been preferentially oriented, along the c-axis, possibly

accounting in part for a less effective annealing step, and thus a less (electrically)

well-connected film and higher resistivity.

Side-on SEM imaging was carried out by Dr P. Marchand on several ZnO-based
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inkjet printed films, and four representative images are shown in Figure 6.17. Film

thickness typically ranged from ca. 1 - 2 µm, and despite some pooling at the edges

of the print area (see Figure 6.15), the films were highly regular in thickness.

Figure 6.15: Inkjet printed thin films printed from 1:1 cit:AGZO. a) shows an untreated,
as-printed film, and b) shows a typical heat treated film. Heat treatments were carried out
under 5 % H2/N2 at 550 ◦C for 5 h. The substrate was NSG Pilkington float glass.
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Figure 6.16: SEM images of the surface of a 1:1 cit:ITO inkjet printed film (a and b) and a
cit:AGZO inkjet printed film, both heat treated under 5 % H2/N2.

Figure 6.17: Side-on SEM images of inkjet printed films 1:1 cit:AGZO films, to determine
thickness. Images were taken by Dr P. Marchand.
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Figure 6.18: UV/Vis/NIR spectra of pre- (red) and post-heat treatment (blue) 1:1 cit:AGZO
inkjet printed films, including transmittance, T (solid lines) and reflectance, R (dashed lines)
spectra.

6.5.3 Inkjet printing summary and conclusions

Considerably more research is required into the optimisation of inkjet printed TCO

films made from inks of CHFS-made coated-nanoparticles, however the results ob-

tained thus far are indicative of immense promise in the area. For both ITO and

AGZO, the optimal loading of citrate was obtained by including a 1:1 ratio of cit-

rate to metal in the CHFS process, and this resulted in a 2.0 and 1.0 molecules nm−2

surface grafting density for ITO and AGZO, respectively. For both, an endotherm in

the DSC indicated the loss of water in the as-prepared paste by ca. 100 ◦C, and an

exotherm indicated the break-down of the surface-bound citrate at ca. 300 ◦C. The

cit:ITO sample experienced a further endotherm due to water loss from the structure

as the oxyhydroxide was converted to the oxide in the temperature range ca. 340 -

420 ◦C.

cit:AGZO printed films were orders of magnitude weaker than industry standards

in terms of resistivity (ca. 10−1 Ω cm), perhaps due in part to the mode of anneal-
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ing during heat treatment, which appeared to have preferentially occurred along

one axis over the other two, due to the appearance of many rods in the entirely

spheroidal as-synthesised nanomaterial. However, the optical properties were as

high as needed in most industrial applications, > 80 % post-heat treatment. Even

so, without significant improvement in the cit:AGZO printed films’ electrical prop-

erties, they will remain unsuitable for application as TCO thin films. cit:ITO inkjet

printed thin films demonstrated resistivities approaching 10−4 Ω cm, depending on

the precise thickness of the film in the area tested. This could not be determined

with any accuracy or reliability due to the poor coverage and quality of the films.

Improved wettability of the ink onto substrates will in future be necessary, as will be

improvements in the method of heat treatment so as to avoid the ‘burning’ observed

after the reducing heat treatment, and further investigations into the scaling up of

the printing process over larger substrate areas will need to take place before these

films could even begin to be implemented industrially. However, if these issues can

be addressed, the cit:ITO printed films demonstrate immense promise in the field of

TCO thin films.
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6.6 Spin Coating of CHFS Nanomaterials
This section investigates the deposition of thin films of CHFS-made nanomaterials

by spin coating, including cit:ITO, GZO, AGZO, and SiZO. A considerable amount

of work was carried out by N. Kuye in the testing of different dispersing media,

and by Dr P. Marchand before her. Some credit is due to both of them in the work

subsequently described.

6.6.1 Experimental design and observations

The thin films herein characterised were deposited from dispersions made from

20 wt% cit:ITO, GZO, AGZO, and SiZO in Sun Chemical ink vehicle U10197,

dispersed and deposited as described in Section 2.2. Heat treatment of all films was

carried out for 5 h at 550 ◦C, ITO under argon, and ZnO-based materials under 5 %

H2/N2.

6.6.2 Spin coated films; SEM and optical measurements

Figures 6.19 and 6.20 show SEM images of the spin coated cit:ITO and ZnO-based

materials, respectively. Figure 6.19 also includes three representative side-on SEM

images, which were used to confirm film thickness as calculated from ellipsometry.

As can be seen from the cit:ITO film, it is very similar aesthetically to the inkjet

printed film as shown in Figure 6.16. Where it differs significantly is in the thick-

ness. Ellipsometry indicated a thickness of just 90 nm, and this was confirmed from

side-on SEM; some regions were slightly thicker, approaching ca. 1 µm, and some

were thinner, of the order of a few 10’s of nm, however the mean thickness was ap-

proximately 100 nm (Figure 6.19c), thus the optical thickness measurements were

taken to be accurate for the resistivity measurements and calculations.

The SiZO film was relatively featureless, a smooth film with some small particulate

lumps and extrusions as shown from Figure 6.20f. Curiously, the GZO and AGZO

films were for the most part smoother still, with much more minor extrusions, but

particles were visible of similar size to those of the SiZO. Morphologically, the

difference was drastic between the spin-coated AGZO film, and the inkjet printed

cit:AGZO film, which should both have annealed similarly, however in the AGZO
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spin coated film there are very few rods visible, unlike the inkjet printed films, for

which rod-like morphology post-heat treatment was the norm (see Figure 6.16d),

perhaps indicative that the citrate bound to the surface of the AGZO particles could

have been directing the annealing growth of the particles along a particular axis.

The films for the ZnO-based materials were too fragile to yield any side-on SEM

images; whether due to brittleness of the films themselves, or delicacy in their ad-

hesion to the substrate, no film was ever visible at the cloven edge of the substrate.

As such, only the ellipsometry measurements of the thin films gave an indication as

to the thickness of the films, but given the apparent accuracy of the technique for

the cit:ITO films, the indication that it was an appropriate measure of thickness was

reasonably strong. As such, the determined mean thicknesses of the GZO, AGZO,

and SiZO spin coated films were 131, 127, and 150 nm, respectively.

UV-Vis-NIR spectra of representative cit:ITO, GZO, AGZO, and SiZO spin coated

films are shown in Figures 6.21, 6.22, 6.23, and 6.24, respectively. The cit:ITO

(Figures 6.21 and 6.24, respectively) and SiZO films behaved similarly, in that the

high transmittance in the visible range fell dramatically at higher wavelengths, i.e.

in the near infra-red region of the spectrum. For both of these two films, the re-

flectance did not rise however, indicating that the materials were absorbing the IR

radiation. The GZO film (Figure 6.22) saw the same fall in transmittance in the IR

region, but in this case the reflectance increased, indicating that rather than absorb-

ing the IR radiation, the GZO film was reflecting it, a particularly pronounced effect

post-heat treatment. The AGZO film (Figure 6.23) behaved similarly to its inkjet

printed counterpart (see Figure 6.18), in that the transmittance remained high across

the entire range, and the reflectance remained approximately constant, and low. All

four of the heat treated films had mean transmittance values across the visible range

(400 - 700 nm) above 80 %, as detailed in Table 6.6, with the other optical and

electrical characterisation values for the films.
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Figure 6.19: SEM images of spin-coated 1:1 cit:ITO films, including surface images (a and
b) and side-on (c, d, and e) to gauge thickness.
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Figure 6.20: SEM images of spin-coated GZO (a and b), AGZO (c and d), and SiZO (e and
f) films.
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Figure 6.21: UV/Vis/NIR spectra of pre- (red) and post-heat treatment (blue) 1:1 cit:ITO
spin coated films, including transmittance, T (solid lines) and reflectance, R (dashed lines)
spectra.

Figure 6.22: UV/Vis/NIR spectra of pre- (red) and post-heat treatment (blue) GZO spin
coated films, including transmittance, T (solid lines) and reflectance, R (dashed lines) spec-
tra.
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Figure 6.23: UV/Vis/NIR spectra of pre- (red) and post-heat treatment (blue) AGZO spin
coated films, including transmittance, T (solid lines) and reflectance, R (dashed lines) spec-
tra.

Figure 6.24: UV/Vis/NIR spectra of pre- (red) and post-heat treatment (blue) SiZO spin
coated films, including transmittance, T (solid lines) and reflectance, R (dashed lines) spec-
tra.



6.6. Spin Coating of CHFS Nanomaterials 188

6.6.3 Spin coated films; electrical measurements

Electrical data is summarised in Table 6.6 with the optical measurements carried

out. Resistivity, and charge carrier concentration and mobility values are the mean

values from three Hall Effect measurements on the best performing thin film of each

material. Note that the four electrical contact points were ca. 8 - 10 mm apart for

all four films.

The SiZO film performed adequately enough, resistivity to the lower end of 10−3 Ω

cm was not as low as for many films deposited by magnetron sputtering[134, 135,

147, 279] or pulsed laser deposition,[136, 208] but given the high transparency, for

certain applications it could be acceptable, especially given the very low cost of

the material. The mobility value of 11 cm2 V−1 s−1 was middling to low, but the

charge carrier concentration was around the values the afore-cited studies achieved,

just reaching the order of 1020 cm−3.

As discussed in Section 6.2, the only thin films of AGZO thus far characterised in

literature achieving resistivities of the order of 10−4 Ω cm were deposited by mag-

netron sputtering. Of these, the lowest had a resistivity of 3.0 x 10−4 Ω cm.[130]

Working under the assumption that the optically measured thickness of the film

characterised in this section is accurate, it was more conductive than any thin film

of AGZO yet reported, at 1.9 x 10−4 Ω cm. The charge carrier mobility of 20.1 cm2

V−1 s−1 was towards the higher end of those of the sputtered films, and the carrier

concentration is higher than all of them, at 1.7 x 1021 cm−3, part of the reason the

resistivity is so low.[131–133, 260, 262, 263, 287]

The GZO spin coated film had very similar properties to that of AGZO, a resis-

tivity of 1.7 x 10−4 Ω cm, slightly higher carrier concentration, and slightly lower

mobility. The mobility was around that seen in previous reports, the concentration

higher than most, with only one study measuring one higher.[124] Again, some

doubt could be cast that the thickness measurements might not have been accurate

as they could not be corroborated by side-on SEM. But again, assuming the thick-

ness measurement to be accurate, the resistivity obtained was superior to the vast
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majority of the studies reported thus far.[121, 125–129, 249]

Narrowly breaking into the order of 10−5 Ω cm, the cit:ITO spin coated film easily

meets the industry standard requirements, surpassing all but a few reported studies,

and those only based on pre-eminent magnetron sputtering and pulsed laser depo-

sition methods. The mobility of 23.7 cm2 V−1 s−1 is not close to the theoretical

limits of the material, but the very strong carrier concentration makes up for this

limitation, at 2.8 x 1021 cm−3. As alluded to already, the film quality post-annealing

appears to be a critical factor; a well-packed film consisting of citrate coated par-

ticles of mostly amorphous tin-doped indium oxyhydroxide was deposited by spin

coating, which annealed and crystallised together, forming a dense, cohesive ITO

film, which demonstrated exceptional optical and electrical properties. It is the most

conductive TCO thin film deposited from a nanoparticle dispersion, ever. Data for

spin coated thin films of this material, and for the other three, are summarised in

Table 6.6.

Table 6.6: Summary of the optical and electrical characterisation data for the four spin
coated materials; cit:ITO, GZO, AGZO, and SiZO. Data includes transmittance, thickness
from ellipsometry, charge carrier concentration (n) and mobility (µ), and resistivity (ρ).

Material cit:ITO GZO AGZO SiZO

Transmittance / % 81.9 83.0 85.2 82.1

Thickness / nm 90 131 127 150

n / cm−3 x 1021 2.8 1.9 1.7 0.1

µ / cm2 V−1 s−1 23.7 18.8 20.1 11.0

ρ / Ω cm x 10−4 0.94 1.8 1.9 24.3
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6.6.4 Spin-coating summary

Spin-coating of the CHFS nanomaterials resulted in thin films with considerably

enhanced conductivities, mobilities, and charge carrier concentrations than for the

analogous pressed, heat treated discs. The spin coated SiZO film did not perform

as well as conventionally deposited films from other reports, with the lowest resis-

tivity measured of 2.4 x 10−3 Ω cm, not quite reaching the order of 10−4 Ω cm.

However, the cit:ITO, GZO, and AGZO spin coated films surpassed the properties

(particularly the electrical properties) of the majority of previously reported films

by various deposition methods, with resistivities of 0.9, 1.8, and 1.9 x 10−4 Ω cm,

respectively. In each case these are the most conductive films yet reported for thin

films deposited from nanoparticle dispersions, and in the case of the AGZO film, it

was the most conductive film of all previous reports, surpassing even the best mag-

netron sputtered films.[130, 131] Transmittance of all films was over 80 % across

the visible range, and thickness was determined by ellipsometry, side-on SEM only

used in the case of the cit:ITO film. The ZnO-based films were determined to be

130 - 150 nm thick, the cit:ITO film only 90 nm thick.

6.7 Overall Conclusions

Surface functionalisation of ITO and AGZO was carried out, and in each case the

optimal loading of citrate onto the surface was determined to be in a 1:1 ratio with

the metal, from zeta potential measurements of the samples, and the cit:ITO had a

lower zeta potential at pH 7 than the cit:AGZO (i.e. it was more stable in disper-

sion). From these materials, inks were formulated and deposited by inkjet print-

ing in collaboration with Sun Chemical (Dr M. Pickrell). cit:AGZO films demon-

strated the required optical transparency (> 80 %) required of TCO films, however

the resistivity only ever reached ca. 10−1 Ω cm, considerably more resistive than

required. cit:ITO films suffered in kind; those heat treated in Ar were optically

transparent but similarly resistive, and those heat treated in 5 % H2/N2 were consid-

erably less transmissive, but demonstrated resistivities nearing 10−4 Ω cm; should

the optical properties be capable of improvement then cit:ITO inkjet printed films
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could become industrially viable alternatives to magnetron sputtered films, as al-

most ubiquitously used in TCO depositions today.

Spin coating of cit:ITO, GZO, AGZO, and SiZO resulted in thin films with highly

competitive electrical and optical properties, with resistivities of 9.4 x 10−5 Ω cm,

1.8 10−4 Ω cm, 1.9 10−4 Ω cm, and 2.4 10−3 Ω cm, respectively. These values were

(comparatively between the materials) in keeping with previous reports testing the

materials as pressed, heat treated discs, for which ITO had the lowest resistivity,

GZO and AGZO similar but higher, and SiZO five times higher resistivity again.[5–

7, 168] These represent, for each of the four materials, the most conductive thin

films yet reported for depositions of dispersed nanoparticles by a considerable mar-

gin.

Though the spin coating results were very promising indeed, the process is still rel-

atively wasteful; it was one of the aims of the thesis to deposit thin films of the

materials by inkjet printing (a zero-waste deposition process) with sufficient opto-

electronic properties that the films could be applied as transparent conducting films

in industry. This was not achieved; electronically, or optically, every film thus far

has failed to reach the benchmarks set. cit:ITO inkjet printed films show the most

promise, as they at least appear to have reached the electronic properties required

of TCOs, however more work is required in the optimisation of the deposition and

heat treatment steps to give more consistent, and indeed transparent, films.



Chapter 7

Conclusions and Outlook

This project had three investigative steps generated by the central hypothesis. First,

was to use continuous hydrothermal flow synthesis (CHFS) to identify ZnO-based

replacement materials for indium tin oxide (ITO) in transparent conducting oxide

(TCO) applications. Then, to optimise the most promising materials in terms of the

electronic properties. And finally, to surface-functionalise selected CHFS nanoma-

terials to facilitate the formulation of stable dispersions and inks, which could then

be deposited by such methods as inkjet printing and spin coating.

In pursuit of the first, Chapter 3 discussed the dopant screening experiments, in-

cluding the synthesis and characterisation of a number of different doped zinc ox-

ides. These were screened as pressed, heat treated discs by performing Hall Effect

measurements to determine the bulk resistivity of the materials. As ITO had pre-

viously been synthesised, tested and optimised by the same methods, it was used

as the benchmark, achieving resistivities as low as 6 x 10−3 Ω cm. Of all doped

zinc oxides synthesised and tested, only four unoptimised materials obtained resis-

tivities within two orders of magnitude of this. This was judged to be acceptable

variance from ITO’s electrical properties, as this was a single, arbitrarily chosen

composition (2 at% dopant with respect to 98 at% Zn) of each material, and had

not yet been optimised. These materials were ZnO doped with Al, Cu, Ga, and Si.

Of these, Cu-doping resulted in a material that was dark in colour, black post-heat

treatment, marking it inappropriate for use as a TCO, and so the three materials

that were highlighted for further investigation as potential ITO replacements were
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Al-doped ZnO (AZO), Ga-doped ZnO (GZO), and Si-doped ZnO (SiZO).

Chapter 4 discussed the compositional optimisation of AZO and GZO, finding that

the lowest resistivities occurred at dopant levels of 2.5 at% Al and 3.5 at% Ga, re-

spectively, with resistivities of 7.0 x 10−3 Ω cm and 9.1 x 10−3 Ω cm for AZO and

GZO, respectively, both very close to the optimally resistive ITO sample. Further

investigation was carried out in the co-doping of these materials (Al- and Ga-co-

doped ZnO, AGZO), in an attempt to balance the chemical instability of AZO, and

the high costs associated with the use of Ga in GZO. This compositional screening,

also included in Chapter 4, indicated that three compositions of AGZO gave similar

resistivities to singularly doped GZO, with compositions described as (Al at%,Ga

at%)AGZO of (1.0,2.0)AGZO, (2.0,2.0)AGZO, and (3.0,1.0)AGZO obtaining re-

sistivities of 9.1 x 10−3 Ω cm, 9.3 x 10−3 Ω cm, and 9.4 x 10−3 Ω cm, respectively.

Of these, the narrowest distribution of measurements (i.e. the most reliable) was of

the sample synthesised with 2 at% of each Al and Ga. As such, this material was

selected for surface functionalisation experiments as discussed in Chapter 6.

Chapter 5 first conducted the compositional optimisation of SiZO, finding that the

most conductive sample made was that with 0.25 at% Si, a considerably lower

dopant level than for AZO, GZO, or AGZO. This had a resistivity some four times

higher than GZO and AGZO, however, with ρ = 3.5 x 10−2 Ω cm. Introduction of

Al and Ga as co-dopants improved the electrical properties; in each case the most

conductive sample had 0.25 at% Si and 1.5 at% of either Al, or Ga. These materi-

als, SiAZO and SiGZO, obtained resistivities of 8.3 x 10−3 Ω cm and 11.3 x 10−3

Ω cm, respectively, very close to the singularly doped AZO and GZO materials.

Future work to functionalise these and deposit as thin films would be a logical con-

tinuation of the project.

Chapter 6 discussed the pursuit of the final project goal, the functionalisation and

deposition of CHFS nanomaterials into thin films. Functionalisation was imple-

mented by inclusion of sodium citrate in the CHFS process, introduced at a second

mixing point. This quenched particle growth and introduced citrate to the surface
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of the particles. The two systems for which this was investigated were ITO and

AGZO, and for both of these the optimal loading was achieved by a 1:1 ratio of

citrate to metal in the CHFS process. From these, cit:ITO and cit:AGZO, were for-

mulated large ink batches, which were deposited by inkjet printing in collaboration

with Dr M. Pickrell of Sun Chemical. These films showed promise either optically,

or electrically, but never both at the same time in the same film. cit:ITO printed

films neared the conductivity requirements of a TCO thin film when heat treated in

a reducing atmosphere, perhaps within an order of magnitude (though precise de-

termination of resistivity was not possible due to inconsistent film coverage). This

would represent the most conductive injet printed TCO film reported by orders of

magnitude, but further depositions and testing are absolutely necessary in the future,

as well as improvements to the heat treatment regime so as not to hamper the opti-

cal properties of the films. cit:AGZO films were optically and aesthetically superior,

however suffered from high resistivities. Formulation optimisation, and improved

sintering should be the focus of future research to match the electrical properties

required of TCO thin films.

Chapter 6 went on to cover the spin coating of optimised cit:ITO, GZO, AGZO,

and SiZO. Each of these films, though the deposition technique was more wasteful

than inkjet printing would have been, obtained competitive resistivities, particularly

the former three, which showed resistivities of 9.4 x 10−5 Ω cm, 1.8 10−4 Ω cm,

and 1.9 10−4 Ω cm, for cit:ITO, GZO, and AGZO, respectively. These are among

the most conductive thin films ever reported for any of those materials, particularly

significant when noting that this is when compared principally to the sputtering

techniques typically used in industrial TCO thin film depositions. When compared

to other thin films made from nanoparticle dispersions, these (including the SiZO

film, with ρ = 2.4 x 10−3 Ω cm) are the most conductive films yet reported by a

considerable margin, where comparisons exist at all.

The cit:ITO film was robust, and optimally measured thickness could be corrobo-

rated by side-on SEM, however the mechanical strength of the ZnO-based films was

lacking. Dropping the film to the floor resulted in significant cracks, and cleaving
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the substrate destroyed the film to the point that side-on SEM images could not be

retrieved for any of the films. It is possible that spin coating of citrate-coated ZnO

analogues could aid in the formation of denser, more robust films, and this could be

investigated further. Also, as alluded to above, there are other ’optimal materials’

for which depositions were not carried out as part of this investigation, including

the SiAZO and SiGZO films, and the other optimally conductive AGZO samples.

These offer similar solutions to the issues of singularly doped AZO and GZO, by

reducing cost and hopefully increasing the chemical stability. Furthermore, this

project was limited only to ZnO as the host material. There is precedent for SnO2

and TiO2-based materials too; a dopant screen could be carried out for each, fol-

lowed similarly by compositional optimisation of the most promising materials and

finally surface-functionalisation and deposition as thin films.

In conclusion, the goals that were set out in the beginning of the project have broadly

been accomplished, though incompletely. There is scope for further research into

different dopants (for example, those highlighted in Chapter 3 that were judged

insufficiently conductive), different material families altogether, such as SnO2, and

the work as detailed in Chapter 6 would benefit from many more depositions, partic-

ularly of the cit:ITO ink by inkjet printing, if the deposition technique is ever to be

taken seriously as an industrially viable alternative to magnetron sputtering. Investi-

gations into spin coating of CHFS nanomaterials have demonstrated unequivocally

that the materials are capable of exemplary, in some cases unparalleled, optical and

electronic properties as thin films. As such they are worth future consideration and

experimentation, in order to fully realise their potential, and perhaps through them

the potential of the inkjet printing on the whole, in pursuit of a more sustainable,

cheaper, and less wasteful technique to generate TCO thin films.
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materials with hierarchical porosity. Chem. Soc. Rev., 45(12):3377–3399,

2016.

[159] J. A. Darr, J. Zhang, N. M. Makwana, and X. Weng. Continuous Hydrother-

mal Synthesis of Inorganic Nanoparticles; Applications and Future Direc-

tions. Chem Rev, in press:1–141, 2017.

[160] Agnieszka Kolodziejczak-Radzimska and Teofil Jesionowski. Zinc oxide-

from synthesis to application: A review. Materials, 7(4):2833–2881, 2014.
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