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Abstract

Cognitive impairment is the major co-morbidity in childhood epilepsy, and in many
cases will have a larger long-term impact than the seizures themselves. How-
ever, the mechanisms contributing to this are poorly understood, precluding target-
ted intervention. Sleep is crucial for intelllectual functioning. Yet sleep in children
with epilepsy, and its impact on intellectual function has scarcely been studied.
This thesis aims to examine the structure and regulation of sleep in children with
epilepsy, and to provide direct evidence of the impact of sleep on cognitive func-
tion by correlating neurophysiological characteristics with performance on sleep-
dependent neuropsychological tasks administered over the same interval as the
sleep recorded.

To examine sleep architecture in children with epilepsy, I developed a modified
system for visual sleep scoring, taking into account nocturnal seizures and interic-
tal activity. This was validated in a pilot sample, then applied to the scoring of 52
recordings from children with epilepsy. Based on established memory consolidation
tasks and open-source psycholinguistic data, I developed and piloted a memory
consolidation task battery suitable for testing school-aged English-speaking chil-
dren, comprising parallel versions of a visuospatial and a verbal task.

With these tools, I performed a prospective, within-subject comparison of mem-
ory retention across similar length intervals with or without sleep, in order to deter-
mine the contribution of sleep to memory consolidation. I compared results from
patient (n=22) and healthy control (n=21) samples, finding – contrary to expecta-
tions – that sleep benefits memory consolidation in children with epilepsy to the
same degree as controls. However, the benefit of sleep showed an inverse re-
lationship to the nocturnal interictal discharge load. I also employed quantitative
EEG analysis of slow wave activity to examine sleep homeostasis in patients with
epilepsy, studying a retrospective sample (n=16) who had undergone partial sleep
deprivation. Sleep homeostasis was fundamentally intact in these patients, who
had similar clinical characteristics to the prospective sample.

Findings from this thesis provide the first direct evidence that sleep benefits in-
tellectual functioning in children with epilepsy, particularly where its structure and
regulation is intact. Sleep-related memory consolidation may represent a compen-
satory mechanism, perhaps accounting for the relative cognitive preservation in this
cohort of children with epilepsy with a structural aetiology, despite the early onset
of seizures.
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Chapter 1

Seizures and epilepsy

“Men think epilepsy divine, merely because they do not understand
it.” - Hippocrates c.460-377BC

1.1 Classification of epileptic seizures and syndromes

Epilepsy is not a single disease, but a collection of disorders characterised pre-
dominantly by an enduring predisposition to generate epileptic seizures and by the
neurobiologic, cognitive, psychological, and social consequences of this condition
(Fisher et al. 2005). An epileptic seizure is a transient occurrence of signs and/or
symptoms due to abnormal excessive or synchronous neuronal activity in the brain
(Fisher et al. 2005).

The current International League Against Epilepsy (ILAE) classification of seizures
remains an operational one based on semiology (Scheffer et al. 2017). Seizures
can be classified according to their onset – “focal” or “generalised”, or “unknown”
if there is insufficient information to determine this. While a generalised onset im-
plies altered awareness from the start, focal onset seizures may be further divided
according to the presence or absence of impaired awareness. This is a clinically
relevant distinction because it has practical implications for the patient. The precise
symptoms present at onset – for example, automatisms or sensory symptoms –
may be used to classify the seizure further (Figure ??). A focal onset seizure may
evolve into a bilateral tonic-clonic seizure.

Epilepsies can similarly be divided into “focal”, “generalised” and “combined
focal and generalised” types (Fisher et al. 2017), with some remaining of unknown
type. Here, the typical interictal EEG (electroencephalography) findings aid (but
are not essential for) classification: generalised spike and wave activity tends to be
found in generalised epilepsy, focal discharges in focal epilepsies, and both tend to
be present in the combined group.
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It may be possible to further classify a patient’s epilepsy by aetiology, the cur-
rent recognised aetiologic groups being structural, genetic, infectious, metabolic,
immune and unknown (Fisher et al. 2017). More than one category may be ap-
plied to any given epilepsy, depending on the investigations available. The patients
studied in this thesis had focal epilepsies with a structural or presumed structural
aetiology. In a population-based study, this group accounted for 103/468 (22%) of
all cases of new childhood-onset epilepsy (Wirrell et al. 2014). They are likely to be
medication-resistant and have high rates of co-morbid psychopathology (Nabbout
et al. 2017).

An epilepsy syndrome is a cluster of features, including seizure types and EEG
features, that tend to occur together. There may be distinctive findings on neu-
roimaging, biochemistry, immune serology or other aetiological investigations. Age
of onset, seizure triggers, circadian patterns (see Section 4.4) and associated co-
morbidities (see Section 2.2) may also be important defining features. Though there
is no formal ILAE classification of specific epilepsy syndromes (Berg et al. 2010),
many - such as childhood absence epilepsy and autosomal dominant nocturnal
frontal lobe epilepsy - are well-recognised clinical entities.

It is important to mention here the 1989 ILAE classification (ILAE commission
1989), because it is these categories that are used in much of the literature cited
in this thesis. Epilepsies were classified then, as now, into those with generalised
seizures, those with focal (“partial”) seizures, and those with both. A second major
classifier was whether the epilepsy was attributable to a known (“symptomatic”) or
unknown (“idiopathic”) cause, with the category of “cryptogenic” for those thought
to be symptomatic but for which the precise aetiology could not be discerned (ILAE
commission 1989). This tier of the classification was often used to segregate pa-
tients into groups for studies of outcome, particularly seizure remission and cog-
nitive outcome (Berg et al. 2005, Aldenkamp et al. 2005). A few examples of
epilepsy syndromes which fall under each category - taken from the classifica-
tion paper (ILAE commission 1989) - are presented in the Table 1.1.1 below for
illustration. It was recognised that some syndromes - such as West syndrome and
Lennox-Gastaut syndrome- could be either symptomatic or cryptogenic. The idio-
pathic generalised epilepsies are still known as such for historical reasons. It is
notable that the epileptic encephalopathies (see Section 2.2) fall under the symp-
tomatic/cryptogenic category. The patients studied in this thesis would also have
fallen into the symtomatic (or symptomatic/cryptogenic) category.
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1.2 Pathophysiology of seizure activity

1.2.1 Generation of interictal discharges

In vitro and at the level of a single neuron, the basis of an interictal epileptiform dis-
charge (IED) is the paroxysmal depolarisation shift (PDS): a depolarisation about
ten times as long as a physiological excitatory postsynaptic potential (EPSP), gen-
erating a train of action potentials (Browne and Holmes 2008). In experimental
animals, the application of an excitatory agent such as penicillin over a focal area
of cortex produces high voltage sharp waves on the EEG corresponding to intra-
cellularly recorded PDSs. The sustained neuronal depolarisation is mediated by an
influx of calcium ions, while the action potentials are associated with sodium influx.
Repolarisation and hyperpolarisation usually follow, mediated by potassium.

In vivo, an epileptogenic focus consists of numerous abnormal neurons that dis-
charge in an abnormally synchronous fashion. PDSs may occur because of intrin-
sic abnormalities in the membrane ion channels, the receipt of excessive excitatory
or deficient inhibitory neurotransmission (Bromfield et al. 2006). Impaired neuro-
transmitter reuptake may also contribute (Bromfield et al. 2006). Such a ”focus”,
though sometimes manifest as a well-defined structural area of cortex, may be bet-
ter conceptualised as an abnormal network, sometimes involving thalamic as well
as cortical neurons; this is particularly true for spike-wave complexes (Blumenfeld
2005).

The major excitatory neurotransmitter is glutamate. There are several sub-
classes of glutamate receptor, and amongst these, the ionotropic alpha-amino-2,3-
dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA), kainate, and N-methyl-
D-aspartate (NMDA) receptors are most important in generating PDS (Bromfield
et al. 2006). The activation of AMPA and kainate receptors is rapid and rela-
tively transient, while that of NMDA receptors (NMDARs) is slower and voltage-
dependent. At resting membrane potentials, magnesium ions enter and bind tightly
to the NMDAR pore, preventing further ion permeation. A depolarisation of suffi-
cient amplitude and duration to repel and dislodge the magnesium ions is required
to allow the flow of permeant ions, including calcium, to which the NMDAR is highly
permeant (Blanke and VanDongen 2009).

The major inhibitory neurotransmitter is GABA (gamma-aminobutyric acid); there
are two types of GABA receptor, type A and type B. GABA-A receptors are found
post-synaptically and are permeable to chloride ions, which hyperpolarise the mem-
brane and inhibit action potentials. Inhibitory networks and GABAergic cells in par-
ticular may also contribute to the generation and sustenance of interictal discharges
(de Curtis et al. 2012, Muldoon et al. 2015).
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1.2.2 Generation of seizures

It is not known precisely what tips the epileptic brain from an interictal to an ictal
state (Pavlov et al. 2013). It would seem to follow from the mechanisms of IED
generation that given a sufficient temporal and spatial density of IEDs, a seizure
should result. However, there is limited human data to support this assertion. In
a recent study utilising long-term intracranial EEG recording, Karoly et al (2016)
found that the spike rate prior to seizures was significantly increased in just 3 out
of 15 human subjects. Depending on recording techniques and individual patient
characteristics, seizure onset may variously be associated with increased or de-
creased synchrony on EEG (Jiruska et al. 2013). It thus follows that in a given
patient, the IED rate and the seizure frequency may have differing and independent
effects on general brain function, including cognition. Additionally, it is notable that
2-4% of apparently healthy children (Cavazzuti et al. 1980, Grant et al. 2016) and a
far higher proportion of those with manifest neurodevelopmental problems (Spence
and Schneider 2009, Sánchez Fernández et al. 2015) may have IEDs without ever
having seizures.

1.2.3 Epileptogenesis and sleep circuitry

“Neurons wire together if they fire together” Siegrid Löwel, 1992 (para-
phrasing Hebb, 1949)

”Epileptogenesis” refers to the cellular processes that transform a normal (or po-
tentially normal) brain into one with a tendency to generate recurrent seizures (Blu-
menfeld 2011, Sloviter and Bumanglag 2013). In vitro (Ziobro et al. 2011) and in
vivo (Lévesque et al. 2016, Kandratavicius et al. 2014) models of epilepsy demon-
strate a ”latent period” following the initial brain insult before the first seizure occurs.
This period may last days to months (Kandratavicius et al. 2014) and is thought to
correlate with the years which may elapse before various human epilepsies mani-
fest (Mathern et al. 1995, Nabbout et al. 2017). During this time, plastic changes
occur (Koyama 2016) and interictal discharges are seen (Lévesque et al. 2016). It
would seem that neural networks need to ”learn” in order to generate seizures.

It has been suggested that normal sleep circuitry - such as the spindle rhythm
generator, consisting of inhibitory neurons in the reticular thalamic nucleus and ex-
citatory thalamocortical neurons in the dorsal thalamic nuclei - may be ”hijacked”
to produce epileptiform activity, in this case spike-wave discharges (Beenhakker
and Huguenard 2009). The transformation of spindle-like activity into 3Hz spike
waves has been demonstrated both in vitro and in vivo, by applying GABA-A re-
ceptor antagonists to thalamic slice preparations and the thalami of behaving rats
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respectively (Beenhakker and Huguenard 2009).
In turn, ripples and fast ripples are both generated in pyramidal neurons of the

hippocampus. The latter, thought to be pathological, are more often recorded in the
hippocampus ipsilateral to the seizure onset zone (Andrillon et al. 2011), and are
thought to represent the co-ordinated firing of pathologically connected clusters of
neurons (Beenhakker and Huguenard 2009). It has been hypothesised that recur-
rent IEDs may contribute to epileptogenesis by strengthening the synaptic connec-
tions between neurons in the epileptogenic focus (Staley and Dudek 2006). Using
simultaneous scalp and intracranial EEG recordings, Bower et al (2017) showed
that pre-seizure changes in neuronal activity may be reactivated in subsequent
slow wave sleep, suggesting that these patterns of firing could be consolidated in
a similar way to sequences which represent learned behaviours or memories (see
Section 5.2).

Thus it would seem that sleep and epilepsy are intertwined at the most funda-
mental level. I argue later in this literature review that a primary function of sleep
is to enable learning (Section 5.1). Therefore it is perhaps unsurprising that cogni-
tive difficulties are common in patients with epilepsy. Additionally, the mechanisms
underlying deranged learning at the neuronal level may ultimately account for both
epileptogenesis and cognitive impairment in these patients.



Chapter 2

Cognitive impairment in children
with epilepsy

2.1 Epidemiology and importance

Cognitive impairment is a frequent co-morbidity in childhood epilepsy, and is the
most important predictor of poor social outcome in adulthood (Camfield and Cam-
field 2007b). Population-based registers of children with epilepsy put the preva-
lence of mental retardation at 21-26% (Camfield and Camfield 2007a, Berg et al.
2008), while a recent community-based study of those with “active epilepsy” – de-
fined as being on antiepileptic medication or having had a seizure in the past year
– found that 40% of these children had an IQ below 70 (Reilly et al. 2015). Major
independent risk factors for cognitive impairment in epilepsy include an early age
of seizure onset (Aldenkamp et al. 2005, Berg et al. 2008, Cormack et al. 2007,
O’Callaghan et al. 2011) and continuing seizures/pharmacoresistance (Karrasch
et al. 2017, Berg et al. 2012).

Several groups have attempted to segregate the effects of aetiology from the ef-
fects of continued illness and medical intervention by examining children at or soon
after initial presentation. Fastenau et al (2009) compared 282 children presenting
with a first unprovoked seizure to 147 sibling controls. Even within three months
of presentation, relative deficits could be detected in attention/concentration and
executive function. Symptomatic/cryptogenic aetiology and AED use emerged as
the factors associated with the greatest odds for neuropsychological impairment,
though a history of multiple seizures and epileptiform activity on the initial EEG were
also predictive of deficits. Berg et al (2005) examined the use of special educational
services in 613 children at the time of first diagnosis with epilepsy, finding that 54%
of those with a remote symptomatic aetiology had been in receipt of services be-
fore their first seizure, compared with 15% of those with an idiopathic/cryptogenic

9
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aetiology, and 13-14% of the local general child population.
These data show that a significant proportion of the intellectual deficits seen

in childhood epilepsy are pre-existing, and depending on the precise aetiological
basis, may not be modifiable by the time of presentation with the first seizure. How-
ever, evidence from the same sources suggests that the subsequent course of
epilepsy may influence cognitive outcomes - encouragingly, none of the children
in the cohort of Fastenau (2009) showed deficits in academic achievement, while
some of those in the cohort of Cormack later showed gains in intellectual function
following seizure cessation (Skirrow et al. 2011). This suggests that there is a win-
dow for intervention, and that a better understanding of how ongoing seizures and
epileptiform activity influence neuropsychological development could lead to sig-
nificant improvements in the care of children with epilepsy. Here I outline several
paradigms which summarise the current state of knowledge.

2.2 Epileptic encephalopathies

The term epileptic encephalopathy relates to the concept that cognitive and be-
havior disturbances in the context of epilepsy are, at least in part, caused by
ongoing epileptic activity, whether clinical or subclinical. Specifically, there are a
group of childhood epilepsy syndromes characterized by developmental arrest or
regression associated with frequent or severe seizures or subcontinuous paroxys-
mal interictal activity, where this concept particularly applies (Nabbout and Dulac
2003, Berg et al. 2010). Examples include Otahara, West, Dravet, Lennox–Gastaut
and Landau-Kleffner syndromes. The electrographic and clinical manifestations
of these syndromes are strongly age-related, often independent of the underlying
cause. In the last few years, specific ion channel, neurotransmission and synaptic
function genes have been implicated, particularly in the neonatal and infant-onset
epileptic encephalopathies (Auvin et al. 2016), but findings so far do not alter the
basic concept.

In encephalopathy with status epilepticus during slow sleep (ESES; Tassinari
et al. 2009), which could be regarded as the archetypal epileptic encephalopathy,
neuropsychological regression occurs in tandem with the appearance of continuous
spike waves in slow wave sleep (CSWS). EEG resolution with treatment is asso-
ciated with cognitive recovery. Conversely, when treatment fails to abolish CSWS,
there may be severe residual impairments (Sánchez Fernández et al. 2012). In
Landau-Kleffner syndrome, there is CSWS with predominant language regression;
the duration of CSWS may be correlated with severity of language outcome (Robin-
son et al. 2001). In West syndrome, several studies have shown that a longer lead
time to treatment adversely influences cognitive outcome, even across aetiologic
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groups (Koo et al. 1993, Primec et al. 2006, O’Callaghan et al. 2011).
Lennox-Gastaut syndrome is defined by the association of multiple seizure types

(particularly tonic seizures), cognitive impairment, and an interictal EEG pattern of
diffuse, slow spike-wave complexes (Arzimanoglou et al. 2009) - however these fea-
tures appear over time, and none of them is pathognomonic. Despite the wide vari-
ety of aetiologies - including brain injury, developmental anomalies, genetic causes
(e.g. tuberous sclerosis) - the presentation and course of the illness is remarkably
consistent. Early age of onset and poor seizure control are associated with worse
cognitive outcome (Arzimanoglou et al. 2009).

The genetic basis of Dravet syndrome (DS) has been subject to intense study
in the past decade (Depienne et al. 2009, Gataullina and Dulac 2017); mutations
in the voltage-gated sodium channel gene SCN1A are found in 60–80% of patients
(Depienne et al. 2009). Cognitive impairment - manifest as developmental slowing
or arrest from the time of presentation rather than regression - is universal in DS, yet
the cognitive outcome appears unrelated to age of seizure onset (Villeneuve et al.
2014, Nabbout et al. 2013). However, the electroclinical characteristics of Dravet
syndrome are polymorphic (Scheffer 2012), and there is evidence that certain elec-
troclinical features - myoclonic seizures (Bureau and Bernardina 2011;Nabbout
et al. 2013), photo- or pattern sensitivity, frequent interictal discharges (Bureau and
Bernardina 2011) and generalised spike-wave discharges (Bureau and Bernardina
2011;Kim et al. 2014) - may be associated with worse cognitive outcome. Addi-
tionally, the early period of continued developmental progress is associated with a
striking lack of epileptiform activity on the EEG despite frequent episodes of status
epilepticus (Scheffer 2012).

2.3 Long-term effects of seizure elimination

At present, antiepileptic drugs - which essentially lower seizure threshold without
altering the underlying cause of the epilepsy - are still the mainstay of epilepsy
treatment. All antiepileptic drugs have some effect on cognitive function, mostly ad-
verse (Ijff and Aldenkamp 2013). However, non-pharmacological treatments which
directly address the cause of seizures - such as epilepsy surgery for those with a
structural aetiology, and the ketogenic diet for glucose transporter type 1 (GLUT1)
deficiency syndrome may also benefit cognition. Children who undergo surgery for
drug-resistant focal epilepsy have been shown to maintain their IQ postoperatively,
with improvements seen in the longer term (Freitag and Tuxhorn 2005;Skirrow et al.
2011). Freitag and Tuxhorn (2005) found that cognitive improvements were asso-
ciated with seizure freedom in their surgical cohort with mixed lesional aetiologies.
Skirrow et al (2011) studied patients with temporal lobe epilepsy, comparing a co-
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hort who underwent surgery in childhood to a similar group who did not undergo
surgery. Greater gains in IQ over time (beyond 6 years’ follow-up) were seen in
the surgical group, 86% of whom were seizure-free at follow-up, compared to 36%
of the control group. Drug withdrawal was associated with greater gains in IQ, a
finding recently replicated in a large multicentre study (Boshuisen et al. 2015). As
with the epileptic encephalopathies, there is some evidence that a shorter lead time
to surgery may be associated with better cognitive outcome (Freitag and Tuxhorn
2005, Shurtleff et al. 2015).

Ramm-Pettersen et al (2013) described cognitive improvement at long term
follow-up in a Norwegian cohort with GLUT1 deficiency (n=10) treated with the keto-
genic diet. In particular, two patients diganosed in infancy who became seizure-free
after commencing the ketogenic diet showed normal neurodevelopment at 3 and 6
years respectively.

2.4 Animal models

Early life seizures may be modelled by inducing seizures in normally developing
young animals, allowing the researcher to control the age of seizure onset, and
to separate the effect of seizures from the effect of underlying aetiology (Holmes
2016). Rat pups subjected to experimental febrile status epilepticus (FES; Dubé
et al. 2006) or seizures induced by flurothyl administration (Pitkänen et al. 2005)
show deficits in spatial memory, auditory discrimination and behavioural flexibility
when tested in adolescence and adulthood (Holmes 2016). In vitro recording using
brain slices from flurothyl rats showed impairment of inhibitory GABAergic synaptic
transmission in the juvenile period (Isaeva 2006), and alterations in both short-term
(Hernan et al. 2013) and long-term (Isaeva et al. 2013) potentiation in the pre-
frontal cortex at adolescence and maturity. In vivo recordings from the hippocampi
of behaving FES and flurothyl animals showed deficits in the firing characteristics of
place cells (see Section 5.2) in association with impaired spatial cognition (Holmes
2016). These studies provide evidence that seizures themselves may contribute to
cognitive impairment, and suggest possible underlying mechanisms.

Interictal spikes may be induced in animals by the application of excitatory
agents directly to the cortex (see Section 1.2.1). This allows researchers to time
the occurrence of these with respect to critical windows in neurodevelopment, such
as the neonatal period for the development of visual pathways in altricial mammals
(Wiesel and Hubel 1963). Sensory deprivation during this time in this case, by su-
turing one of the animal’s eyelids shut results in a lasting monocular visual deficit
(Hubel and Wiesel 1970). In a rabbit model, IEDs generated by the application of
penicillin (Baumbach and Chow 1981) or bicuculline (Ostrach et al. 1984) to the stri-
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ate cortex disrupt the development of the receptive visual field properties of neurons
in the lateral geniculate nucleus (LGN) of neonatal but not adult animals, reproduc-
ing the effect of sensory deprivation. This evidence suggests that IEDs occurring in
the relevant cortical areas during critical periods of early human development may
result in enduring deficits, and is a strong argument for intervention.

Recent advances in epilepsy genetics have led to the creation of various animal
models carrying mutations in the implicated genes (Holmes 2016, Galanopoulou
and Moshé 2015). Models of Dravet syndrome (see Section 2.2 above) appear to
have spatial and social cognitive problems as well as thermally-induced and spon-
taneous seizures (Holmes 2016). While such models may not neccessarily help to
discern the mechanisms of cognitive impairment, the exercise of rescuing the phe-
notype (Galanopoulou and Moshé 2015) may lead to aetiology-based interventions
that also improve cognition (Ohmori et al. 2014).

Animal models may also be used to illustrate the contribution of sleep to neural
plasticity (Dang-Vu et al. 2006). Rapid eye movement (REM) sleep is at its most
plentiful during the neonatal period, coinciding with the critical period for visual
development. Adding REM sleep deprivation to the monocular deprivation model
of Hubel resulted in an even greater difference in the size of LGN cells activated
by the open and deprived eyes than monocular deprivation alone (Oksenberg et al.
1996). It is notable that children - including infants - with epilepsy tend to have
less REM sleep than age-matched controls (see Section 4.2) and perhaps exist in
a state of relative REM deprivation.

2.5 Transitory cognitive impairment

The concept of transitory cognitive impairment (TCI) was first proposed by Aarts
in 1984, and refers to momentary cognitive deficits which occur during interictal
epileptiform discharges (Aarts et al. 1984). It is demonstrated by continuous neu-
ropsychological testing while attached to EEG monitoring, each stimulus presenta-
tion and response time-locked to the EEG (Binnie 2003). An excess of errors (Bin-
nie 2003) or delayed reaction times (Aldenkamp and Arends 2004) during epochs
containing IEDs over those without indicates impairment. Tasks involving working
memory seem most sensitive to TCI, while IED laterality appears to correspond
with the domain (verbal or visuospatial) affected (Binnie 2003). While an elegant
approach in theory because the within-patient comparison controls for aetiologic
and therapeutic confounding factors, the demonstration of TCI is necessarily lim-
ited by the available technology. Early studies required patients with frequent IEDs
in the alert state (Aarts et al. 1984) - and even then could only show TCI in 50% of
subjects; or else risked conflating the effects of IEDs with those of subtle seizures



14 CHAPTER 2. COGNITIVE IMPAIRMENT IN CHILDREN WITH EPILEPSY

(reviewed in Binnie 2003, Aldenkamp and Arends 2004). Findings from the best-
performed studies of the 1980s suggest that IEDs occurring during stimulus pre-
sentation had the largest effect (Aarts et al. 1984, Shewmon and Erwin 1988). In
more recent years, Nicolai et al. (2012) and Pressler et al. (2006) have used
the TCI task batteries of Aarts and Binnie to examine the effect of IEDs on neu-
ropsychological performance at a group level. The former found an adverse effect
of more frequent discharges on neuropsychological performance in a prospective
cross-sectional study (Nicolai et al. 2012), while the latter found - in a randomised,
double-blind crossover trial - that reducing the interictal discharge load with lam-
otrigine had no impact on performance (Pressler et al. 2006). These conflicting
results suggest that scalp EEG likely lacks the spatial resolution to detect the ac-
tual abnormal neuronal activity which may disrupt the learning process (Holmes
2013, Krauss et al. 1997). EEG-fMRI may provide a non-invasive means of sur-
mounting this limitation (Van Bogaert et al. 2012); this has been attempted - but
was not successfully demonstrated - in a single patient (Moeller et al. 2010). Two
groups have now utilised intracranial EEG in the examination of TCI: Kleen et al
(2013) examined ten temporal lobe epilepsy patients implanted with hippocampal
depth electrodes over 2070 trials of a working memory task, while Ung et al (2017)
studied 67 patients undergoing invasive EEG monitoring with mostly cortical elec-
trodes using a word recall task with a short (45 second) delay. Both groups found
that IEDs during the seconds (2 to 6 seconds for Kleen et al; 0 to 2.4 seconds for
Ung et al) following stimulus presentation resulted in errors at recall; additionally,
IEDs occurring outside of the seizure onset zone had the greatest impact on task
performance.

2.6 Sleep-related memory consolidation

TCI by definition can only be demonstrated in the awake patient. The same IEDs
occurring in the distinct neurochemical milieu of sleep (see Table 3.2.1) may have
entirely different consequences at a cellular level. Retrospective studies show that
a propensity for sleep-activated discharges is associated with worse cognitive func-
tion in children with epilepsy, even outwith the epileptic encephalopathies (Nicolai
et al. 2007, Ebus et al. 2011, Glennon et al. 2016). Memory research in the past
decade and a half has cast sleep in a central role, suggesting that disruption to
the processes underlying sleep-related memory consolidation may lead directly to
diffculties with learning. I discuss this paradigm in detail in Chapter 5.



Chapter 3

Sleep

”With regard to sleep and waking, we must consider what they are:
whether they are peculiar to soul or to body, or common to both...” -
Aristotle, On Sleep and Sleeplessness, 350BC

Sleep can be defined as a reversible state of disengagement from the environ-
ment, and is associated with specific postures and behaviours - quiescence, recum-
bance and closed eyes. Polysomnography - the combination of overnight electroen-
cephalography (EEG), cardiorespiratory monitoring and electromyography (EMG) -
reveals sleep to consist of not one but several distinct states (Kryger et al. 2015),
occurring in roughly 90-minute cycles through the course of the night. This struc-
tural organisation of sleep is known as sleep architecture. The principal division of
sleep is between rapid eye movement (REM) and non-rapid eye movement (NREM)
sleep, with the latter further divided into stages N1 to N3 (Iber et al. 2007), num-
bered in order of increasing arousal threshold. Plotting the progression of these
stages over the whole night produces an outline of the structure of sleep on a
timescale of hours, known as a hypnogram.

3.1 Sleep architecture and the neurophysiological basis
of key EEG features

3.1.1 Wake

The normal waking EEG appears as low amplitude, mixed frequency activity, rep-
resenting the asynchronous firing of neurons in response to ongoing environmental
stimuli. The quiescence and eye closure which precedes sleep onset is associ-
ated in most individuals with the posterior dominant rhythm (PDR) - an 8 to 13 Hz
(or ”alpha”) rhythm with maximal amplitude in the posterior EEG channels. In in-
fants, the PDR is usually in the theta (5-7Hz) band, reaching alpha frequency by
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around 8 years. The posterior dominant rhythm is generated at the level of large
pyramidal cells in the visual cortex, and is associated on EEG-fMRI with metabolic
deactivation (Moosmann et al. 2003).

3.1.2 N1

With increasing drowsiness and the onset of light sleep (N1), there is attenuation
of the posterior dominant rhythm, general slowing of the EEG background, and
the appearance of large surface-negative discharges maximal at the apex of the
head, known as vertex sharp transients. Though their function remains unknown,
EEG-fMRI data (Stern et al. 2011) show an association with metabolic activation
in regions of primary sensorimotor cortex, suggesting a role in sensory process-
ing during sleep. This is supported by the observation that sudden stimulation -
regardless of sensory modality - may provoke vertex sharp waves.

3.1.3 N2

As sleep deepens (N2), the same provocation produces a K complex - a short
surface postive wave followed by a large surface-negative wave, then a positive
wave. Though occurring spontaneously in sleep, the K complex has been stud-
ied most extensively as an evoked potential (Halász 2005). Its peak is biphasic:
the P200–N300 component, which is identical to the vertex sharp wave, is more
dependent on received stimuli, while the N550–P800 wave, maximal in the frontal
regions, is largely influenced by underlying sleep processes (Halász 2005). Overall,
the K complex is generalised, with a frontal predominance. The K complex is thus
believed to represent both information processing and microarousal (see later). In
individuals with epilepsy, K complexes may be associated with the generation of
spike wave discharges (Steriade and Amzica 1998). Spindles - spontaneous wax-
ing and waning bursts typically between 12-15 Hz and lasting 0.5 to 1 second -
are the other cardinal feature of N2 sleep. They are maximal over central scalp
regions, and may occur independently, or in association with a K complex. Human
EEG-fMRI data (Caporro et al. 2012) show increased metabolism in the thalami
during spindles suggesting that the oscillation has a thalamic origin, consistent with
earlier evidence from intracerebral recordings in cats (Steriade et al. 1987). Spin-
dles are thought to have a role in memory consolidation (see later), having been
observed to increase in density following memory tasks learned prior to going to
sleep (Gais et al. 2002).
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3.1.4 N3

Deep sleep (N3) is characterised on EEG by widespread high amplitude slow wave
(0.5-2Hz) activity, representing the highly synchronised firing of large numbers of
cortical neurons. Thus it is also termed ”slow wave sleep”. Intracellular recordings
show a slow (<1 Hz) oscillation between ”up” and ”down” states at the neuronal
level, the former associated with depolarisation and vigorous firing, the latter with
hyperpolarisation and quiescence (Contreras and Steriade 1995). More recently,
using simultaneous unit activity, intracranial EEG and surface EEG recording in
humans, Nir et al (2011) demonstrated that most sleep slow waves - particularly in
the latter part of the night - are regional rather than global phenomena. Additionally,
they showed sequential time lags in peak slow wave activity between brain regions,
indicating a clear direction of propagation, from the medial prefrontal cortex to the
medial temporal lobe and hippocampus (Nir et al. 2011). There is evidence that
sleep slow waves drive and group other key brain oscillations, in particular spindles
(Mölle et al. 2002) and ripples (Clemens et al. 2007). EEG slow wave activity is
a robust indicator of sleep need (Borbély and Achermann 1999) suggesting that
slow waves serve a homeostatic function (see later). Slow wave enhancement
appears to improve memory consolidation (Marshall et al. 2006), while slow wave
suppression interferes with it (Landsness et al. 2009), indicating a possible role for
sleep slow waves in learning.

3.1.5 REM

Rapid eye movement sleep (REM) is also known as paradoxical sleep, due to the
strong resemblance of the EEG to the waking trace (Jouvet, M. et al. 1959). Sub-
jects woken from REM sleep can often recall vivid dreams (Aserinsky and Kleitman
1953). Intracranial EEG in rodents reveals that while the cortical EEG is low in volt-
age, hippocampal recordings show continuous high voltage theta activity, known as
the hippocampal rhythmic slow activity (RSA). The human correlate of hippocampal
RSA is still debated (Clemens et al. 2009), limiting the generalisability of findings
from animal models to humans. Behaviourally, REM sleep is characterised by the
eponymous rapid eye movements, which resemble saccades during wakefulness,
as well as the suppression of muscle tone. These can be detected on electro-
oculogram (EOG) and electromogram (EMG) respectively. Additionally, there is
increased variability in the heart and respiratory rates, reflecting increased fluc-
tuation between sympathetic and parasympathetic influences. Despite being the
earliest sleep stage to be described, the function of REM sleep remains essentially
unknown.
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Stage Description

W Alpha activity, low amplitude mixed frequency EEG

N1 Low amplitude predominantly 4-7Hz activity, vertex sharp waves

N2 Presence of K complexes and sleep spindles

N3 Prominent slow wave activity (0.5-2Hz)

REM Low voltage mixed frequency, low EMG, intermittent presence of rapid eye movements

N NREM sleep without recognisable spindles, K complexes or slow waves

Table 3.1.1: Description of sleep stages as defined in the AASM manual (Iber 2007)

3.1.6 The microarchitecture of NREM sleep

The structure of sleep on a timescale of hours - as plotted on a hypnogram - is also
known as its macroarchitecture. The examination of NREM sleep on a timescale of
minutes - that is, at a microarchitectural level - reveals its underlying periodicity. A
relatively stable and rhythmic background is repeatedly interrupted by sudden, tran-
sient changes in amplitude or frequency [Figure 3.1.1]. This periodicity underlies
Cyclic Alternating Pattern (CAP) analysis (Terzano et al. 2001), a complementary
description of sleep structure which focuses on shifts in cortical state during NREM.
The EEG patterns used to distinguish ”background” from ”interruption” are similar
to those used for conventional sleep staging - for example, vertex sharp waves, K
complexes and intermittent alpha. However, other hallmarks of NREM which are
ignored in the AASM (Iber et al. 2007) classification, such as delta bursts, polypha-
sic bursts and EEG arousals - are included. Movements and autonomic changes
are also taken into consideration.

Under the CAP scoring system, the disruptive element is termed ”phase A”.
The intervening background between two phase As separated by 60 seconds or
less is termed ”phase B”. A ”CAP sequence” comprises a series of shifts between
phases A and B, and the more CAP sequences are present in NREM sleep, the
more ”unstable” sleep is deemed to be. Periods of sleep that do not contain CAP
sequences are termed ”non-CAP”. Phase As are further divided into subtypes A1
to A3; broadly speaking, A1s consist mainly of delta bursts while A2s and A3s
contain arousals (Terzano et al. 2001). Hence within the framework of conventional
sleep cycles, the descent from N1 to N3 contains CAP sequences rich in phase
A1s, while the ascent toward Wake or REM contains CAP sequences rich in A2s
and A3s (Bruni et al. 2010b) [Figure 3.1.2]. Though an intuitive system given the
fundamental oscillatory nature of brain rhythms (Buzsaki 2011), and particularly
insight-provoking in the study of sleep in epilepsy (Halász 2013), the utility of CAP
analysis is limited by its lack of widespread adoption by the neurological and sleep
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medicine communities.

Figure 3.1.1: Several consecutive minutes’ polysomnography shown in three sec-
tions, the middle section containing a CAP sequence (labelled), while the top and
bottom sections represent non-CAP. For each section, EEG channels appear at the
top; the unlabelled EEG channels are: Fp2-F4, F4-C4, C4-P4 and P4-O2. C4-A1
is labelled. EOG: electro-oculogram; EMG: electromyogram, EKG: electrocardio-
gram; PNG: plethysmography; TIB ANT: tibialis anterior. Adapted from Terzano
(2001).

3.2 Anatomical and neuroendocrine basis of sleep gener-
ation

An anatomical centre for sleep generation was first proposed in the early 20th cen-
tury by von Economo, based on clinical and post-mortem findings from patients
with epidemic encephalitis lethargica (von Economo 1930). The majority of von
Economo’s patients presented with marked hypersomnolence and opthalmoplegia,
particularly ptosis. Others presented instead with insomnia and chorea. Based
on the accompanying motor symptoms, he deduced that a wake-promoting region
could be localised to the posterior wall of the third ventrical, near the oculomotor
nuclei in the rostral midbrain, while a sleep-promoting region was located in the re-
gion of the lateral wall of the third ventricle, near the corpus striatum [Figure 3.2.1].
Autopsy findings confirmed this. Lesion, electrical and pharmacological manipula-
tion studies over the last century have led to the elaboration of wake- and sleep-
promoting pathways (reviewed in Brown et al. 2012). In particular, immunocyto-
chemistry techniques have facilitated the discovery and localisation of key groups
of monoaminergic neurons (Sherin et al. 1996,Gong et al. 2004) while the optoge-
netic manipulation of activity at a neuronal level now allows direct hypothesis testing
on behaving animals (Jego et al. 2013, Apergis-Schoute et al. 2015). Despite these
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Figure 3.1.2: CAP and non-CAP (NCAP) periods in relation to sleep macroarchi-
tecture. Small vertical lines superimposed on the hypnogram indicate each phase
A event. The vertical axis of the hypnogram is marked with sleep stages from the
Rechtschaffen and Kales scoring system (W: wake; MT: movement; REM: rapid
eye movement sleep; S1-4: non-REM stages 1 to 4, ordered by increasing sleep
depth). Adapted from Bruni (2010).

advances, a coherent model of sleep generation still remains to be formulated. The
major pathways are descibed below, while the main neurotransmitters involved are
summarised in Table 3.2.1.

3.2.1 Posterior hypothalamic wake-promoting pathways

Two major ascending pathways maintain arousal: the first originates in cholinergic
cell groups of the upper pons, pedunculopontine and laterodorsal tegmental nuclei,
and activates the relay and reticular nuclei of the thalamus, facilitating thalamocor-
tical transmission (reviewed in Saper et al. 2005). The second pathway originates
from neurons in monoaminergic cell groups, including the tuberomammillary nu-
cleus (TMN) containing histamine, the A10 cell group containing dopamine, dorsal
and median raphe nuclei containing serotonin and locus coeruleus containing no-
radrenaline, and activates neurons in the lateral hypothalamic area, basal forebrain
and cerebral cortex (Saper 2005). These pathways form the basis of what is termed
the ”ascending reticular activating system” [Figure 3.2.2], first proposed by Moruzzi
and Magoun (1949) based on experiments in cats.

Interactions between these wake-promoting neurotransmitter systems are com-
plex, characterised by mutual excitation and redundancy (Brown et al. 2012). Addi-
tionally, the ongoing discovery and characterisation of more neurotransmitters, such
as neuropeptide S (Adori et al. 2015), and roles in arousal pathways for what were
traditionally regarded as sleep-promoting neurotransmitters (Venner et al. 2016)
mean that the full picture is still evolving.
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Figure 3.2.1: Illustration of the human brainstem, reproduced from von Economo
(1930). Diagonal hatching indicates the wake-promoting region adjacent to the ocu-
lomotor nuclei, while horizontal hatching marks the sleep-promoting region, near
the head of the caudate nucleus. Based on pathological-anatomical examination,
von Economo proposed the borders of the ”centre for sleep regulation” as indicated
by the dotted lines.

3.2.2 Anterior hypothalamic sleep-promoting pathways

Monoaminergic cell groups in the ventrolateral preoptic area (VLPO) send inhibitory
outputs to all of the major cell groups that mediate arousal, including those in
the TMN (Sherin et al. 1996), locus coeruleus, pedunculopontine and laterodorsal
tegmental nuclei (Saper et al. 2005). These neurons - containing GABA (gamma-
aminobutyric acid) or galanin - are active primarily in sleep, their firing rates peaking
in slow wave sleep (Szymusiak et al. 1998). Conversely, the VLPO also receives
inhibitory afferents from each of these areas (Chou et al. 2002). In rodents, neu-
rons in the median pre-optic nucleus have also been implicated in sleep promotion
(Gong et al. 2004), particularly under conditions of sleep deprivation.

3.2.3 Lateral hypothalamic cell groups

von Economo further postulated that the then newly-described condition of nar-
colepsy was also caused by pathology in the anatomical regions he described (von
Economo 1930). Patients with narcolepsy suffer attacks of irresistible sleepiness
- with REM at sleep onset, and many also have cataplexy - the sudden loss of
muscle tone in response to emotional stimuli. In 1998, two groups of researchers
independently described a new family of neuropeptides found only in the posterior
lateral hypothalamus. One group named these ”orexins” (Sakurai et al. 1998) and
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Figure 3.2.2: Ascending arousal systems of the brainstem and posterior hypotha-
lamus. Nuclei producing wake-promoting monoaminergic neuromodulators are
shown in green. These include noradrenaline (NA)-producing neurons of the locus
coeruleus (LC), serotonin (5-HT)-producing neurons of the dorsal raphe (Raphe),
and histamine (HIST)-producing neurons of the tuberomammilary nucleus (TMN).
Nuclei shown in blue produce acetylcholine (ACh), which promotes forebrain ac-
tivation in both waking and REM sleep. Cholinergic nuclei include the peduncu-
lopontine (PPT) and laterodorsal (LDT). The ventrolateral preoptic area (VLPO) -
a sleep-promoting region - is shown in red. VLPO neurons produce the inhibitory
neuromodulator gamma-amino butyric acid (GABA) and the inhibitory neuropeptide
galanin (Gal). Adapted from Pace-Schott and Hobson (2013).

the other ”hypocretins” (de Lecea et al. 1998). The loss of these neurons underlies
narcolepsy (Thannickal et al. 2000, Peyron et al. 2000). Orexin/hypocretin (OH)
neurons have ascending projections to the thalamus and cortex and descending
projections to all of the monoaminergic and cholinergic cell groups of the arousal
systems (Saper 2005), as well as direct projections to spinal motor neurons (Brown
et al. 2012). Inhibitory afferents come from the VLPO (Saito et al. 2013).

Located in the same area - but unaffected by the processes which cause OH cell
loss in narcolepsy - are neurons containing melanin-concentrating hormone (MCH).
These reach their peak firing rate in REM sleep (Jego et al. 2013). They have
similar projections to the OH neurons, and receive inhibitory inputs from the nora-
drenergic, serotinergic and cholinergic arousal systems (McGinty and Alam 2013).
Additionally, OH and MCH neurons may be mutually inhibitory (Rao et al. 2008,
Apergis-Schoute et al. 2015), and both populations also secrete GABA (McGinty
and Alam 2013).

3.2.4 REM sleep generation

The proposed anatomical origin of REM sleep is located at the mesopontine junc-
tion, ventral to the locus coeruleus and medial to the trigeminal motor nucleus
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(Fraigne et al. 2015, Luppi et al. 2011). Cells in this subcoeruleus (also known as
sublaterodorsal tegmental) nucleus mostly contain glutamine, though some contain
GABA. Descending pathways through the ventromedial medulla of the spinal cord
are thought to mediate motor atonia, while ascending pathways to the thalamus
mediate cortical activation (Luppi et al. 2011). Afferents from cholinergic REM-
active neurons maintain REM sleep but are not necessary for its generation (Grace
2014). MCH neuron firing does not precede the onset of REM, suggesting that
these neurons too, maintain rather than initiate REM sleep.

3.2.5 A synthesis of current knowledge

In the mid-2000s, a model based on the concept of a flip-flop switch, with wake
and sleep as the stable, binary states was proposed (Saper et al. 2005). The
mutual inhibition of the ascending and descending pathways drove the switching
between states, while orexin neurons acted as a stabilising ”finger on the switch”.
Apart from difficulties with resolving more recent discoveries about the timings of
state changes in the various populations of neurons involved (Brown et al. 2012),
a particular weakness of this model was its failure to address REM sleep entirely
- though the same authors later proposed a separate switch for REM (Lu et al.
2006). A comprehensive model would need to include pathways for the initiation
and maintenance of each of the distinct states of NREM, REM and wake (Fort et al.
2009), as well as mechanisms for cycling between them.

3.3 The regulation of sleep

“The demand for recovery must depend on prior activity, whereas
the opportunity for recovery depends mainly on the time of day.”

- Daan 1984

The timing and quantity of sleep are determined by intrinsic as well as extrinsic
factors. A ”two-process model” to describe this was first proposed by Borbely in
1982: Process C is a sleep-independent circadian process, while Process S is a
homeostatic process reflecting sleep need. Mathematical modelling using empir-
ical and simulated data led to Process C being described by skewed sine waves
representing the sleep-onset and -offset thresholds in relation to clock time (Daan
et al. 1984, Borbély and Achermann 1999) while Process S is described by ex-
ponential functions representing the accumulation and dissipation of sleep need
(Achermann et al. 1993, Borbély and Achermann 1999). Additionally, there is an
ultradian process which leads to the alternation of NREM and REM states during a
sleep episode, but this is currently not well described.
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3.3.1 Process C

The circadian rhythm is usually entrained to Earth’s 24-hour solar cycle, but even in
the absence of entraining stimuli (termed ’zeitgebers’) demonstrates a period differ-
ing only slightly from 24 hours (Czeisler et al. 1999). The suprachiasmatic nucleus
(SCN) - a group of hypothalamic neurons located adjacent to the optic chiasm -
behaves as the master circadian clock, regulating the timing not only of sleep, but
also - via projections to the dorsomedial nucleus of the hypothalamus - of body
temperature, appetite and other essential functions (Saper et al. 2005). Its main
input is from the retinohypothalamic tract; sunlight - the chief zeitgeber - is captured
by the photopigment melanopsin contained in retinal ganglion cells, which project
to the SCN (Moore 2007). Melatonin secretion by the pineal gland is controlled by
SCN projections via the paraventricular nucleus of the hypothalamus. The feedback
loop is completed by melatonin receptors on the SCN; melatonin inhibits the firing
of SCN neurons, reducing the circadian drive for arousal (Moore 2007). The time
at which salivary melatonin rises when measured under conditions of dim light (the
dim light melatonin onset, or DMLO) may be utilised as an endogenous circadian
marker (Martin and Eastman 2002). Since the 1990s, ”clock” genes have been dis-
covered which are expressed in nearly all mammalian cells (Takahashi 2017). They
comprise a series of negative feedback loops: in the primary loop, transcription fac-
tors CLOCK and NPAS2 interact with BMAL1 in the daytime to activate transcription
of the PER and CRY genes, resulting in high levels of these transcripts. During the
night, the PER-CRY repressor complex is degraded; this allows CLOCK:BMAL1 to
activate a new cycle of transcription (Takahashi et al. 2008). Further players and
secondary loops have since been elucidated (Takahashi 2017).

3.3.2 Process S

Spectral analysis of the human sleep EEG reveals that slow wave activity (power
in the 0.75-4.5Hz frequency band; SWA) is greatest in the first sleep cycle, and
declines in subsequent cycles across the night. Ample human experimental data
employing various paradigms (reviewed in Borbély and Achermann 1999) show that
SWA increases after a period spent awake, increases further with sleep deprivation
and decreases with sleep [Figure 3.3.1]. Therefore slow wave activity serves in the
two-process model as a measure of sleep need or sleep intensity. This has been
expressed as exponential functions describing the accumulation and decay of sleep
pressure during wake and sleep respectively:
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Algorithm 3.1 t = time, τd = time constant of the decreasing exponential function,
τi = time constant of the saturating exponential function, UA = upper asymptote, LA
= lower asymptote, SSO = level of slow wave activity (S) at sleep onset, and SWU
= level of S at wake up. Adapted from Jenni and Carskadon (2005).

S(t) = UA− (UA− SWU) ∗ exp−t/τi

during wake

S(t) = (SSO − LA) ∗ exp−t/τd+ LA

during sleep

Extracellular adenosine (Porkka-Heiskanen et al. 1997, Bjorness et al. 2016)
and nitric oxide (Kalinchuk et al. 2015) acting on cholinergic neurons of the basal
forebrain (Kalinchuk et al. 2015) have been proposed as ”sleep homeostatic factors”
which accumulate and dissipate with the dynamics described in the model.

In healthy adults, there is great interindividual variation both in the absolute
values of SWA and in the dynamics of sleep homeostasis (Rusterholz et al. 2010),
the latter mainly reflected in the time constants for the build up (τi) and decline (τd)
of SWA. A longer τi - that is, a slower SWA build-up - may indicate a better capacity
to stay awake longer. A shorter τd indicates faster dissipation of sleep pressure
- or more efficient restoration to baseline. The topographical distribution of SWA
also varies between healthy subjects (Finelli et al. 2001), and is similarly trait-like,
remaining remarkably similar in repeated recordings at baseline and under sleep
deprivation.

Figure 3.3.1: Schematic diagram of normalised slow wave activity across sev-
eral nights. x-axis: time in hours, y-axis: percentage of mean slow wave activity.
Adapted from Rusterholz et al. (2010)

3.3.3 REM/NREM cycling

Data from selective REM sleep deprivation studies show that REM sleep is also
homeostatically regulated (Dement 1960, Endo et al. 1998). Across a single night’s
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sleep, an increasing number of interventions (the experimenter awakening the sub-
ject) was required to prevent REM sleep, though between subsequent nights the
increase was less marked, and REM rebound during recovery sleep was modest -
less than the amount lost (Endo et al. 1998). These complex dynamics, in addition
to the lack of a measure for REM sleep intensity have hampered the formulation of
a coherent model of REM sleep homeostasis.

3.3.4 Genetic basis of sleep traits

There are large, heritable interindividual variations in sleep traits such as a propen-
sity for ”morningness” or ”eveningness”, vulnerability and response to sleep de-
privation (Dijk and Archer 2010) and even the frequency composition of the sleep
EEG (Landolt 2011). Mutations and polymorphisms in the period genes PER2 and
PER3 have been associated with advanced and delayed sleep phase respectively
(Takahashi et al. 2008). Differences in sleep homeostasis in both rodents and hu-
mans have also been associated with polymorphisms in various clock genes (Taka-
hashi et al. 2008) - this suggests that circadian and homeostatic regulation may be
intrinsically linked. In particular, a variable number tandem repeat PER3 polymor-
phism in humans has been shown to affect sleep structure, slow wave activity and
cognitive performance in the face of sleep loss (Viola et al. 2007, Dijk and Archer
2010Viola 2007, Dijk 2010). Those with the PER35/5genotype - which is thought to
be present in about 10% of the general population (Dijk and Archer 2010) - showed
more slow-wave sleep and EEG low-frequency activity but were also more impaired
by sleep deprivation than PER34/4 homozygotes (Viola et al. 2007). Similarly, a sin-
gle nucleotide polymorphism in the adenosine deaminase gene (ADA G22A) has
been associated with a greater duration of slow wave sleep and higher delta spec-
tral power at baseline (Bachmann et al. 2012), in conjunction with greater fatigue
and poorer cognitive performance after sleep deprivation (Bachmann et al. 2012).
The dynamics of the sleep homeostatic response were however unaffected (Bach-
mann et al. 2012).

3.4 The normal maturation of sleep

”Sleep is the predominant state in developing animals” - Brown 2012

3.4.1 Sleep schedule and duration

Human sleep patterns evolve profoundly between infancy and adulthood. Recent
population-based studies (Blair et al. 2012, Price et al. 2014) have quantified -
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based on parental report - the decline in total sleep time between the ages of 0 and
11 years [Figure 3.4.1]. The large decline in early childhood is accounted for by the
cessation of daytime naps. Both studies (total n=16309) also demonstrated wide
variation in all the measured parameters, though this variability possibly decreased
with age (Blair et al. 2012). Even so, at age 11 years (n=7157), total sleep time
ranged from 8.5 to 11h per night (Blair et al. 2012). Studies utilising polysomnog-
raphy (Scholle et al. 2011, Montgomery-Downs et al. 2006, Louis et al. 1997) tend
to give slightly lower values for the total sleep time at any given age. There are
changes too over the course of adolescence, most notably a delay in sleep phase
- bedtimes and wake-up times both become progressively later (Sadeh et al. 2009,
Gradisar et al. 2011). Social and cultural factors have a large impact on adolescent
sleep schedules, with school start times dictating wake-up times during the week,
leading to a shortened total sleep time (Gradisar et al. 2011). Two large meta-
analyses showed that the age-related decline in TST across adolescence was only
present on school nights (Gradisar et al. 2011; Ohayon et al. 2004). Actigraphic
data support the finding from pooled questionnaire data that TST at the weekend
is around 1.5h longer than at weekdays (Sadeh et al. 2009; Crowley et al. 2014).
A recent longitudinal study which included dim-light melatonin onset (DLMO) as a
measure of circadian phase (see section 1.3.3) demonstrated a shift toward sleep
phase delay with age, though the mean DLMO moved forward by just an hour
(Crowley et al. 2014). Phase angle - the interval between DLMO and sleep onset
- was approximately 2 hours in the older adolescents (age 16-18 years), the same
as that in adults (Crowley et al. 2014).

Figure 3.4.1: Left: Mean total sleep duration over 24 hours (including daytime naps)
by parental report at 8 different ages; dotted lines represent the centiles as labelled.
Adapted from Blair (2012). Right: Overnight polysomnography findings by age and
pubertal stage. SL: sleep latency; WASO: wake after sleep onset; MT: movement;
N1-N3: NREM sleep stages in order of depth; REM rapid eye movement sleep.
Adapted from Scholle (2011).
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3.4.2 Macroarchitecture

The rapid cycling of sleep in newborn infants - with a quiescent period of 20 min-
utes occurring every hour - was first noted by Aserinsky in 1951 (Aserinsky 1996).
Between the episodes of quiescence (”quiet sleep”; QS) was ”active sleep” (AS),
characterised by saccadic eye movements and movements of the body and limbs.
During the first year of life, the length of the sleep cycle remains stable at around
60 minutes, though periods of AS shorten and QS lengthens (Jenni et al. 2004).
Subsequently, the length of sleep cycles increases, reaching the mature length of
approximately 90 minutes during adolescence (Scholle et al. 2011). Active sleep is
basically REM without muscle atonia - the percentage of REM time without atonia
decreases with age, comprising just 10-15% of REM time by adulthood. The pro-
portion of sleep time spent in REM decreases from about 50% to 25% over the first
two years of life (Grigg-Damberger et al. 2007), due mainly to the fall in the number
of REM episodes - particularly episodes with REM at sleep onset - throughout the
entire 24-hour period (Louis et al. 1997). The proportion of sleep occupied by REM
subsequently remains little changed throughout the rest of childhood (Montgomery-
Downs et al. 2006, Scholle et al. 2011). Sleep spindles first appear at 3 to 8 weeks
post-term, and K complexes at about 5 months (Grigg-Damberger et al. 2007).
Vertex sharp waves are recognisable by 16 months, though broader versions may
appear by 5 months. At term, infants have high voltage slow waves on EEG, but
it is uncertain if these evolve into slow wave sleep. Recognisable slow wave sleep
emerges by 2 to 9 months post-term (Jenni et al. 2004). The proportion of sleep
time spent in slow wave sleep begins to decline from around the age of 3 years
(Montgomery-Downs et al. 2006) when it comprises about 25-30% of sleep. Be-
tween the ages of 5 and 15, SWS decreases by 5-7% per 5-year period (Scholle
et al. 2011; Ohayon et al. 2004) [Figure 3.4.1]. This is the most prominent change
in sleep architecture over the course of middle childhood. There is a converse in-
crease in N2 (Scholle et al. 2011, Ohayon et al. 2004, Jenni and Carskadon 2004).
The proportion of sleep spent in N1 does not appear to change significantly with
age across childhood (Ohayon et al. 2004, Scholle et al. 2011).

3.4.3 Microarchitecture

The EEG correlate of quiet sleep in term neonates (conceptual age 37 to 44 weeks)
is trace alternant, so called because 1-10 sec bursts of activity alternate with rela-
tively ”flat” periods lasting 6-10 secs (Niedermeyer and da Silva 2005). The bursts
consist of moderate to high voltage mixed slow, medium and fast activity - often with
spiky discharges, while the ”flat” periods actually show mixed frequencies, though
the voltage is depressed. This periodicity led intially to the belief that trace alternant
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might be a precursor of CAP (Bruni et al. 2010b). However the current consensus is
that CAP emerges with the appearance of sleep spindles, which alternate with high
voltage slow waves to produce CAP sequences, in a rudimentary form of NREM
sleep (Bruni et al. 2010b). The evolution of CAP throughout the human lifespan
has now been examined in a number of cross-sectional studies (Bruni et al. 2010b;
Miano et al. 2011). The CAP rate is low in infants, around 12% in those in whom
NREM sleep can be reliably scored (about 10 weeks post-term). There is a gradual
increase in CAP across infancy and the preschool years, then a steeper increase,
reaching a peak of 62% just prior to adolescence (Bruni et al. 2010b. It is notable
that most CAP sequences in children contain the highly synchronous phase A1s,
which are not associated with EEG arousal - in fact, these could conceivably rep-
resent ”anti-arousals” - transient shifts in cortical state leading to the preservation
of sleep. The proportion of all phase As classed as A1s also increases between
infancy and pre-adolescence, declining with age thereafter. Phase A2/3s follow the
converse pattern (Bruni et al. 2010b).

3.4.4 Spectral content, topology and homeostasis

Cross-sectional (Kurth et al. 2010) and longitudinal (Jenni and Carskadon 2004,
Feinberg et al. 2006) studies show changes in the spectral power and content of
the sleep EEG which confirm and quantify the evolution seen on visual EEG anal-
ysis. The sigma band first appears at 2 months (Jenni et al. 2004, a), theta power
is highest in the pre-school years, and slow wave activity peaks in middle child-
hood. Overall, the power of the sleep EEG declines gradually with age throughout
childhood, reaching adult levels only at the end of the second decade of life (Kurth
et al. 2010, Tarokh et al. 2011). By utilising high density EEG recordings, Kurth et
al (2010) also demonstrated age-related changes in topological distribution of the
various frequency bands, of which the postero-anterior shift in slow wave activity
was the most striking. It has been observed that the evolution of EEG spectral
power and topology parallels the development of specific abilities over the course
of infancy and childhood [Figure 3.4.2], with both processes likely underpinned by
the maturation of cortical grey matter through synaptic pruning (Ringli and Huber
2011). Sleep homeostasis is thought to develop over the first months of life, with
theta activity reflecting the dissipation of sleep propensity in infancy (Jenni et al.
2004), though by 30 months of age, an increase in slow wave activity in response
to sleep (nap) deprivation has been demonstrated (Lassonde et al. 2016). The
strength of the homeostatic response to sleep deprivation increases through to late
puberty (Jenni et al. 2005). The slower build-up of sleep pressure may facilitate the
natural sleep phase delay that occurs in adolescence (Jenni et al. 2005).
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Figure 3.4.2: Relating cortical maturation, slow wave activity (SWA) and behaviour.
Left column: Mean synaptic density (synapses/100 mm3) in visual cortex (area 17;
top) and prefrontal cortex (bottom) at various ages. Middle column: Maps of EEG
power during NREM sleep for ages 2–5 years (top) and 17–20 years (bottom). Right
column: Top: Development of visual acuity in human infants plotted against age.
Y-axis shows the number of minutes subtended by each black or white stripe of the
acuity grating and x-axis age in years. Bottom: Direction error in percentage versus
age in the antisaccade task (a test of executive function) with the target located on
the right side and the correct saccades generated to the left side. Reproduced from
Ringli and Huber (2011).

3.4.5 Primary sleep disorders of childhood

Sleep disturbance in childhood - as measured by parental report - is extremely com-
mon. Large population-based studies (n>4000 each) put the prevalence at >30%
in infants (Martin et al. 2007), and between 14-30% for pre-school aged children
(Hiscock et al. 2007, Mindell and Owens 2010). Nightwakings and bedtime resis-
tance (behavioural insomnia) were the commonest concerns. In a meta-analysis of
41 survey studies, daytime sleepiness was reported in 15-40% of children aged 8
to 15 years (Gradisar et al. 2011).

There is a strong association between sleep disruption and behavioural prob-
lems (Hiscock et al. 2007, Mindell and Owens 2010), particularly ADHD (Hiscock
et al. 2007). Studies utilising polysomnography to detect specific sleep disorders
in community-based samples are rare, and give more conservative figures. The
apnoea-hypopnoea index (AHI) is the total number of apnoeas and hypopnoeas
that occur per hour of sleep as detected on polysomnography and scored using
standardised criteria (Iber et al. 2007). Sleep-disordered breathing - defined as an
AHI of > or = 5 - occurs in 1.2-2.2% of school-aged children (Bixler et al. 2009,
Rosen et al. 2003). The quality of studies in pre-schoolers is poorer, but these
indicate the prevalence is likely higher, up to 13% (Castronovo et al. 2003). The
prevalence of sleepwalking is estimated at about 5% in childhood (Stallman and
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Kohler 2016), while that of restless legs syndrome is approximately 2% (Mindell
and Owens 2010).

3.4.6 Summary

Sleep evolves profoundly in quality and quantity over the course of childhood, and
is intimately - perhaps causally - linked to neurodevelopment. It is the primary
occupation of infancy and the early years, which represent a critical period for the
acquisition of essential cortical functions (see Section 2.4). A large proportion of
sleep ”disorders” in children may be accounted for by a conflict between parental
or societal expectations and normal developmental neurophysiology.



Chapter 4

Sleep disruption in children with
epilepsy

4.1 Sleep behaviour and prevalence of problems by parental
report

Parents report more sleep disturbances in children with epilepsy than in their near-
est aged siblings (Cortesi et al. 1999, Wirrell et al. 2005, Byars et al. 2008). All
three studies utilised the Sleep Behaviour Questionnaire (SBQ; Cortesi et al. 1999),
though the largest (Byars et al. 2008; n=332 patients) did not have sibling SBQ
scores and used historical controls from Cortesi (1999) instead. The SBQ consists
of 6 questions regarding the timing and duration of sleep, followed by a 29-item
Likert-type rating scale with questions designed to address 5 domains: Bedtime
Difficulties, Parent/Child Interaction During the Night, Sleep Fragmentation, Para-
somnias, and Daytime Drowsiness. There is a single item which alludes to sleep-
disordered breathing (“snores while sleeping”). Higher scores indicate greater
sleep disturbance. In their epilepsy sample (n=89) with normal intellect (FSIQ>/=85),
normal neurological examination and on monotherapy at least a year after diagno-
sis, Cortesi et al. (1999) found higher total scores p<0.001, and higher rates of
bedtime difficulties (p<0.001) and daytime drowsiness (p<0.0001) compared to
controls. Byars et al (2008) examined a prospective sample of children within 3
months of their first recognised unprovoked seizure; these children had higher total
SBQ scores than the historical controls (p<0.001), with 45% of the sample scoring
two standard deviations over the control group mean. Earlier age at seizure onset
and lower intellectual function (as estimated on the Kaufman Brief Intelligence Test)
were associated with higher SBQ scores. Bedtime difficulties and daytime drowsi-
ness were the most markedly affected domains. In their epilepsy clinic sample
(n=55 patients; n=55 siblings), Wirrell et al. (2005) found significantly higher total

33
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SBQ scores in children with epilepsy; interestingly, the Bedtime Difficulties domain
was the only one in which patients and controls did not differ. Refractory epilepsy
and mental retardation were associated with higher SBQ scores. Thus children
with epilepsy appear to have a higher rate of sleep disturbance than healthy chil-
dren from the outset, and this is associated with lower intellectual function. The
higher Bedtime Difficulties subscale scores suggest that behavioural insomnia may
be the commonest problem in these children, just as it is in healthy children.

4.2 Alterations in macro and micro architecture

Polysomnographic studies in children with epilepsy are scarce, and mostly small
(n<20 patients). Additionally, nights containing seizures are generally excluded
(see Section 7.2), with some studies going so far as to exclude patients with active
seizures altogether (Maganti et al. 2005). The single consistent finding is a reduced
percentage of total sleep time spent in REM when compared to age-matched con-
trols; this has been described in children with BECTS (Bruni et al. 2010a), ’partial
refractory epilepsy’ (Nunes et al. 2003, Pereira et al. 2012), idiopathic generalised
epilepsies (Byars et al. 2008) and infantile spasms (Hrachovy et al. 1981). Hra-
chovy also demonstrated an increase in REM after successful hormonal treatment.
It is notable that some of these samples were drug-naive (Bruni et al. 2010a; Pereira
et al. 2012). Within-subject comparisons in adults with temporal lobe epilepsy show
that seizures during the day are associated with decreased REM in the subsequent
night’s sleep (Bazil et al. 2000, Gutter and de Weerd 2012). Seizures during the
night may also be associated with decreased REM (Bazil et al. 2000).

The influence of epilepsy on sleep microarchitecture appears to depend on the
type of epilepsy. Children with BECTS showed a lower overall CAP rate than age-
matched healthy controls (Bruni et al. 2010a). There was a lower percentage of
phase A1s and a higher percentage of phase A3s. In contrast, adults with noc-
turnal frontal lobe epilepsy showed a much higher CAP rate than healthy controls
(Parrino et al. 2012), and seizures tended to arise in association with phase As. An-
other possible interpretation is that both groups of patients show dysmaturity, given
that CAP rate increases between infancy and adolescence and declines thereafter
(Bruni et al. 2010a).

4.3 Alterations in homeostasis

Sleep homeostasis in epilepsy has not been widely studied. Drug-naive adults
with nocturnal frontal lobe epilepsy exhibit slow wave sleep rebound in later sleep
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cycles following the fragmentation of the early cycles by seizures (Parrino et al.
2012). This appears to be at the expense of REM sleep. There is evidence that
sleep homeostasis in children with continuous spike waves during slow wave sleep
(CSWS) is impaired (Bölsterli et al. 2011, Bölsterli Heinzle et al. 2014). The au-
thors utilised the slope of slow waves as a measure of the degree of synchrony of
cortical firing (Vyazovskiy et al. 2009), with a decrease in slope over the course of
the night indicating intact homeostasis. This was demonstrated in healthy controls,
while patients showed no significant change. The same analysis was applied to
a sample with infantile spasms (Fattinger et al. 2015), who showed impaired slow
wave downscaling at diagnosis, resolving with successful steroid treatment. The
use of this method allowed for the aftercoming slow waves of the frequent gen-
eralised spike-wave complexes to be excluded from the analysis. In patients with
mainly focal discharges, it may be possible to study sleep homeostasis using more
conventional methods, such as power spectral analysis (Jenni et al. 2005), or by
within-patient comparison of slow wave sleep duration with and without sleep de-
privation (see Chapter 10).

4.4 Circadian and ultradian trends in interictal discharges
and seizures

“In many cases, epilepsy sets in during sleep” - Aristotle c.400BC

The association between the timing of seizures and the sleep/wake cycle has been
recognised since antiquity. In certain electroclinical syndromes, this relationship
may be almost pathognomic (Foldvary-Schaefer and Grigg-Damberger 2006) [Ta-
ble 4.4.1]. In adults, the circadian distribution of seizures has been studied in pa-
tients on long-term video EEG monitoring; temporal lobe seizures appear to peak
in the mid-morning and early afternoon, while frontal and parietal seizures peak in
the early hours of the morning (Durazzo et al. 2008, Kaleyias et al. 2011). One
study combined this with dim light melatonin onset (DLMO) measurement, finding
that temporal seizures occurred most frequently in the 6 hours before DLMO while
frontal seizures occurred 6-12 hours after (Hofstra et al. 2009). Interestingly, in a
rat model of mesial temporal lobe epilepsy (MTLE), the animals showed the same
clock time peaks in seizure incidence as humans (i.e. during their inactive day-
light hours) (Quigg 1998). This suggests it is possible that the activation of the
suprachiasmatic nucleus (SCN) - which is stimulated by light in both diurnal and
nocturnal animals (Saper et al. 2005) - may alter the seizure threshold for MTLE
independently of changes in sleep/wake state. Where the distribution of seizures
between sleep stages has been examined using polysomnography, stage 2 sleep
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contained the greatest number of seizures per hour (Nunes et al. [2003]; Minecan
2002, Nunes 2003), and REM the least. Both these studies contained a mixture
of patients undergoing prolonged EEG telemetry for various clinical indications and
included children with focal epilepsies with structural etiologies.

It is also well established that sleep can activate interictal epileptiform dis-
charges (IEDs) (Foldvary-Schaefer and Grigg-Damberger 2006), leading to its widespread
use as an aid to increase the diagnostic utility of the EEG. At the cellular level, the
highly synchronised thalamocortical oscillations of sleep enhance the responsive-
ness of cortical neurons, provoking some to self-sustaining oscillations or parox-
ysms (Steriade 2006). A recent study utilising continuous ambulatory electrocor-
ticography found that both IEDs and seizures followed a circadian distribution, and
within an individual, IEDs and seizures were liable to occur at similar times (Karoly
et al. 2016).

Sleep-activated Epilepsies
Benign epilepsy of childhood with centro-temporal spikes (BECTS)
Frontal lobe epilepsies. e.g. autosomal dominant nocturnal FLE
Epilepsy with continuous spike-waves in slow wave sleep (CSWS)
Awakening Epilepsies
Juvenile myoclonic epilepsy
Epilepsy with grand mal seizures on awakening
Absence epilepsy

Table 4.4.1: Examples of epilepsy syndromes characterised by seizures occurring
exclusively or predominantly from sleep or on awakening. Adapted from Foldvary-
Schaefer and Grigg-Damberger (2006).

4.5 Effect of treatment

Most antiepileptic drugs have an impact on sleep architecture - these are sum-
marised in Table 4.5.1. The available data indicate that REM sleep is reduced
by phenobarbitone, phenytoin and levetiracetam, and enhanced by ethosuxamide
(Jain and Glauser 2014). Slow wave sleep is reduced by clobazam and ethosuxam-
ide and increased by carbamazepine, gabapentin and tiagabine (Jain and Glauser
2014). Some drugs, such as topiramate and vigabatrin appear to have no effect
on sleep structure, while the data on lamotrigine are equivocal, and data on val-
proic acid are conflicting (Jain and Glauser 2014). However, much of this evidence
derives from healthy adults, with studies in epilepsy patients being insufficiently
powered to separate the effect of seizures from the effects of medication. Addtion-
ally, a lack of effect on sleep architecture does not preclude a significant effect on
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subjective sleep quality.

Non-pharmacological interventions may also impact on sleep: a small study
(n=7) found decreased respiratory effort and end tidal volumes after vagal nerve
stimulator (VNS) activation, while a study in children (n=15) showed that VNS ac-
tivation produced an increase in slow wave sleep. One study (n=18) showed an
increase in REM sleep in children with drug-resistant epilepsy at 3 months after
starting the ketogenic diet (Hallböök et al. 2007), with a further increase in those
followed up for 12 months (n=11). This was correlated with improved quality of life
scores and with seizure reduction (though not reaching statistical significance in
the latter). There was no change in the amount of slow wave sleep.

Antiepileptic drug N1 N2 N3/SWS REM WASO/arousals
Levetiracetam no change increase conflicting data decrease decrease

Pregabalin decrease no change increase no change decrease
Clobazam decrease increase decrease no change decrease

Gabapentin decrease no change increase conflicting data decrease
Tiagabine no change no change increase decrease decrease

Phenobarbitone no change increase no change decrease decrease
Carbamazepine no change no change increase decrease decrease
Ethosuxamide increase no change decrease increase no change

Phenytoin increase increase conflicting data decrease no change

Table 4.5.1: Impact of individual antiepilpeptic drugs on sleep macroarchitecture.
Drugs are ordered by level of evidence. Valproate is excluded from the table as
data are conflicting. Adapted from Jain and Glauser (2014).

4.6 Co-morbid primary sleep disorders

The prevalence of excessive daytime sleepiness in children with epilepsy is esti-
mated at 10 to 47% (Giorelli et al. 2013), with the majority thought due to undi-
agnosed primary sleep disorders rather than seizures. Poorly controlled epilepsy
may be associated with sleep apnoea (Jain et al. 2013). Conversely, there are case
reports of seizure control improving with the treatment of obstructive sleep apnoea
(Malow et al. 2003; Foldvary-Schaefer et al. 2008).

4.7 Summary

Sleep disruption is commonly reported in children with epilepsy, as it is in healthy
children, and the distribution of underlying causes would appear to follow a similar
pattern, with behavioural insomnia the commonest, followed by sleep disordered
breathing and other primary sleep disorders. Those with poorly controlled epilepsy
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appear most at risk of co-morbid sleep disorders. Objective polysomnographic data
are, however, limited.



Chapter 5

Sleep and memory consolidation

5.1 Postulated functions of sleep

“The quest for a fundamental theory of sleep is one of the most impor-
tant, unsolved problems in science.” - Savage and West (2007)

Sleep - which is ubiquitous in the animal kingdom (Roth et al. 2010) - occupies a
significant portion of the day which could ostensibly be spent on more productive
tasks to enhance survival. Additionally, the forgoing of vigilance for extended peri-
ods of time leaves an animal vulnerable to predation. Thus, in order to contribute
to evolutionary fitness, sleep must serve essential functions that are conserved
across species. It is postulated that sleep may be necessary for energy conser-
vation (Berger and Phillips 1995; Roth et al. 2010), immune function (Bollinger
et al. 2010, Majde and Krueger 2005), cellular repair (Siegel 2005) and neural
plasticity (Tononi and Cirelli 2014, Dang-Vu et al. 2006, Ringli and Huber 2011).
Evidence from sleep deprivation studies in humans show suppressed prolactin se-
cretion (Bollinger et al. 2010), increased appetite with decreased glucose tolerance
(Van Cauter et al. 2007), reduced T cell proliferation (Bollinger et al. 2010) and
impaired response to vaccination (Majde and Krueger 2005). In 1989, a seminal
study of prolonged total sleep deprivation in rats demonstrated a syndrome of de-
bilitated appearance, skin lesions, increased food intake, weight loss, increased
energy expenditure, decreased body temperature during the late stages of depri-
vation, increased plasma norepinephrine, decreased plasma thyroxine and some-
times death (Rechtschaffen et al. 2002). More recently, knock-out mouse models
lacking genes that control sleep timing and duration - including Clock, Bmal1 and
Per2 (see Subsection 3.3.4) - have been found to have altered immune function
(Kurien et al. 2013). It can, however be argued that the effects of sleep depriva-
tion cannot be entirely separated from those of stress, and that the clock genes
represent a common mechanism regulating the circadian patterns of both sleep
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and immunity. The early development of central visual pathways in young altricial
mammals appears to require the endogenous neuronal activation of REM sleep
(Dang-Vu et al. 2006). Learning too, evidently benefits from sleep (Marshall and
Born 2007). Significantly, the same neuronal networks are used for both the im-
mediate processing and the long-term storage of information, so these functions
cannot occur simultaneously (Marshall and Born 2007, Tononi and Cirelli 2014). It
can be argued therefore that the disengagement from the environment and loss of
consciousness afforded by sleep is actually necessary for neural plasticity.

5.2 Proposed mechanisms of sleep-dependent memory
consolidation

Memory may be principally divided into that for consciously recalled facts and
events (declarative, or explicit memory) and non-conscious learning capacities that
are expressed solely through performance (non-declarative, or implicit memory)
(Squire and Zola 1996) [Figure 5.2.1]. Procedural memory refers to memory for
perceptual and motor skills, which falls within the category of implicit memory. How-
ever it should be noted that the real-life experience of learning a task often engages
more than one memory system at a time. Declarative memory appears to benefit
most from slow wave sleep (SWS), while procedural memory benefits from REM;
however the dichotomy is not absolute (Marshall and Born 2007).

Figure 5.2.1: A taxonomy of long term memory systems, showing the chief anatom-
ical structures involved in each. Adapted from Squire and Zola (1996).

The neuroanatomical seat of declarative memory is the medial temporal lobe,
particularly the hippocampus (Squire and Zola 1996, Marshall and Born 2007). In
the rodent hippocampus, many individual pyramidal cells of CA1 and CA3 act as
”place cells”, discharging only when the animal”s head is in a specific part of its
environment, termed the cell”s ”firing field” (Holmes and Lenck-Santini 2006). After
spatial tasks such as maze learning, place cells which were active during learning
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show reactivation in the same temporal sequence during sleep, particularly slow
wave sleep (SWS) (Marshall and Born 2007); this has been shown to co-ordinate
with replay in the visual cortex (Ji and Wilson 2007). In humans, regional cere-
bral blood flow patterns observed in the hippocampus while learning to navigate
a virtual town showed reactivation during subsequent SWS, correlating with task
performance (Peigneux et al. 2004).

5.2.1 Active system consolidation

This replay underpins one of the two major theories of sleep-dependent memory
consolidation: Active System Condolidation (Born and Wilhelm 2012). Briefly, this
theory states that the reactivation of hippocampal neuronal assemblies, represent-
ing transient storage of the day’s learning, occurs in a temporal framework driven
by cortical slow oscillations [Figure 5.2.2]. This timed replay ensures that neuronal
firing occurs when conditions for long-term potentiation are favourable, so that new
memories can be written into long term storage in the cortex (Diekelmann and Born
2010). The temporal relationship of slow oscillations and spindles has been demon-
strated in healthy adults [Mölle et al., 2002, 2009], while that of ripples with slow
oscillations and spindles has been shown in patients with refractory epilepsy under-
going intracranial EEG (Clemens et al. 2007, 2011); those with structural damage
to the mesiotemporal regions showed less consistent associations (Clemens et al.
2007). Additionally, intense learning may lead to an increase in spindle density
during the subsequent night’s sleep (Gais et al. 2002, Fogel et al. 2007).

5.2.2 Synaptic homeostasis hypothesis

The latter putative mechanism arises from the concept of sleep homeostasis (Borbély
and Achermann 1999), and has been termed the Synaptic Homeostasis Hypoth-
esis (Tononi and Cirelli 2014). Environmental stimulation during the day leads to
an overall increase in synaptic strength. During sleep, the repeated ”on”/”off” firing
which comprises the slow oscillations leads to global synaptic downregulation over
the course of the night, until only the strongest connections - those potentiated the
most during wake or best integrated with existing memories - survive (Tononi and
Cirelli 2014). In other words, the contribution of sleep to memory consolidation is
a reduction in the signal-to-noise ratio, allowing the most salient material to be re-
tained. Dendritic spine density in the visual neuron VS1 in flies (Bushey et al. 2011)
and cortical pyramidal cells in mice (Maret et al. 2011) has been shown to increase
after wake or sleep deprivation and decrease after sleep. In humans, the corti-
cal evoked response to transcranial magnetic stimulation - a surrogate measure of
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synaptic strength - was enhanced by sleep deprivation and diminished following
sleep (Huber et al. 2013).

The two mechanisms may not be mutually exclusive (Huber and Born 2014); it
may be that local synaptic strength increases during sleep even as global synaptic
strength declines - however this remains to be substantiated by experimental data.

Figure 5.2.2: Active system consolidation. The depolarising ”up” phases of the
slow oscillation drive both the reactivation of hippocampal memory representations
(which correlate with sharp-wave ripples), and thalamocortical spindles, creating
”spindle-ripple events” (inset). During these events, it is postulated that calcium
enters neocortical pyramidal cells, enhancing the synaptic expression of AMPA re-
ceptors and ultimately leading to long-term potentiation - in other words, the storage
of information in the neocortical circuitry (Adapted from Born and Wilhelm 2012).

5.3 Studies in healthy individuals

Paired-associate learning is a well-established paradigm of hippocampus-dependent
declarative memory, in which pairs of items are presented during a series of learn-
ing trials (Karantzoulis et al. 2011). At testing, the first item is presented as a cue
for recall of the second item. A classic real-life example of such a task is learning
people’s names - one must learn not only the name and face, but also to relate the
two. Many standardised psychometric instruments utilise paired associate tasks
that are either purely verbal or visual in their content (Karantzoulis et al. 2011).
Studies utilising verbal paired associate learning tasks consisting of semantically
related (e.g. artist-painting) or unrelated (e.g. potato-trousers) words have shown
that sleep benefits memory consolidation, both in adults (Plihal and Born 1997,
Payne et al. 2012) and children (Backhaus et al. 2008, Wilhelm et al. 2008). Payne
et al (2012) utilised a between-subjects design, allowing them to compare the effect
of delayed and immediate sleep on memory consolidation - sleep was found to ben-
efit memory consolidation even when preceded by a 12-hour interval of wake (i.e.
a 24-hour interval between learning and retrieval). The other studies cited above
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all utilised within-subject designs, comparing performance over an interval of sleep
with that over a similar length interval awake. Performance on a visual paired asso-
ciate task where subjects have to memorise the locations of pairs of cards showing
the same picture (i.e. identical to the card game known as “pairs” or “concentra-
tion”) has also been shown to benefit from sleep in both adults (Rasch et al. 2007)
and children (Wilhelm et al. 2008). Using this paradigm, it has been demonstrated
that raising acetylcholine levels during slow wave sleep (Gais and Born 2004) can
impair sleep-related declarative memory consolidation while boosting slow oscilla-
tions enhances it (Marshall et al. 2006). Procedural memory too has been shown
to benefit from sleep, with REM sleep the main putative contributor (Plihal and Born
1997). This has also been demonstrated in children (Wilhelm et al. 2008, 2013).

5.4 Studies in children with neurodevelopmental disor-
ders other than epilepsy

The effect of sleep on memory has been examined in children with autism spectrum
disorder (ASD; Maski et al. 2015) and in those with attention-deficit/hyperactivity
disorder (ADHD) (Prehn-Kristensen et al. 2011, 2014). Both conditions are asso-
ciated with high rates of sleep disturbance (Goldman et al. 2012, Cortese et al.
2009). Additionally, children with ADHD show reduced activity in the prefrontal cor-
tex – where slow oscillations originate – on functional MRI (Zang et al. 2005). Using
a paired picture location task, Maski et al (2015) showed that children with ASD
remembered better over an interval of night time sleep than a day spent awake.
Prehn-Kristensen et al (2014) showed that performance in this task improved in
children with ADHD to the level of controls if they received transcranial oscillatory
direct current stimulation (rather than a sham procedure) during NREM sleep. In
their earlier study (Prehn-Kristensen et al. 2011), the group had shown that children
with ADHD had better picture recognition accuracy after a night”s sleep compared
to a day awake, though the effect of sleep was less than that seen in controls.
Thus it would appear that sleep also benefits memory consolidation in children with
neurodevelopmental disorders, though perhaps to a lesser extent than in healthy
controls. Boosting sleep slow oscillations also appears to have the same effect
in those with ADHD (Prehn-Kristensen et al. 2014) as it does in healthy individ-
uals (Marshall et al. 2006). It is notable that both ASD and ADHD are common
co-morbidities of children with epilepsy (Russ et al. 2012, Reilly et al. 2014).
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5.5 Studies in patients with epilepsy

Memory deficits are common in epilepsy and have been well documented in both
adult and paediatric patients (Butler and Zeman 2008, Nolan et al. 2004). However,
the effect of sleep on memory in epilepsy has only recently been examined; the lit-
erature is limited and studies have been small. A few studies comparing adults with
temporal lobe epilepsy (TLE) to healthy controls have employed a within-subject
design. Deak et al (2011) found poorer recall for a word list in patients (n=7) than
controls (n=9) at a 30-minute interval, but similar recall in both groups after a 12-
hour interval including overnight sleep. A 12-hour daytime interval spent awake saw
the patients forget significantly more items than controls. A pilot study (Urbain et al.
2011) examining four children with epilepsy (one with benign epilepsy with centro-
temporal spikes, one with benign childhood epilepsy with occipital paroxysms and
two with continuous spike waves in slow wave sleep, CSWS) found that recall per-
formance decreased in these patients following an interval of overnight sleep. Us-
ing separate healthy control groups for the ”Sleep” (interval of overnight sleep) and
”Wake” (day spent awake) conditions, the authors demonstrated that their verbal
paired-associates task could detect a contribution of sleep to declarative memory
consolidation in this age group. Interestingly, one of the CSWS patients who under-
went successful corticosteroid treatment showed improved recall, suggesting that
interictal epileptiform discharges may impair memory consolidation (Urbain et al.
2011). In a further study of similar design examining 15 patients with various id-
iopathic focal epilepsies (Galer et al. 2015), patients showed a decline in recall
overnight on both the verbal paired-associates task and a paired object-location
task, while controls showed a gain of performance overnight on the verbal task and
similar performance on the object location task. There is a single study (n=10) ex-
amining the contribution of sleep to memory consolidation in children with epilepsy
using a within-subject design (Sud et al. 2014). 8 out of 10 subjects showed better
recall (free recall of a word list) under the Sleep than the Wake condition. There-
fore the contribution of sleep to memory consolidation in patients with epilepsy is
unclear; the evidence is preliminary and conflicting.



Chapter 6

Aims of the study

6.1 Summary and conclusions from reviewing the litera-
ture

The literature reviewed in the introduction to this thesis highlights the intimate re-
lationship between sleep and epilepsy, down to the fundamental neuronal phys-
iology underlying each phenomenon. I have summarised arguments for the ac-
tive contribution of sleep to neurodevelopment and continued learning, and various
paradigms to explain the development of cognitive impairment in epilepsy. Sleep
disruption, though a common co-morbidity in children with epilepsy, remains poorly
characterised. Despite various lines of circumstantial evidence linking sleep dis-
ruption to cognitive impairment in childhood epilepsy, the adverse cognitive impact
of sleep disruption in the long term is basically assumed, and direct evidence of a
plausible mechanism lacking.

6.2 Aims of the thesis

6.2.1 Investigate the structure and regulation of sleep in children with
epilepsy

I aimed to devise a system of scoring polysomnographic recordings containing
epileptiform activity, including seizures. Visual sleep scoring would provide data
on the sleep architecture of children with epilepsy, and facilitate subsequent quanti-
tative and correlational analyses. I aimed to describe the dynamics of sleep home-
ostasis in children with focal epilepsy with a structural etiology, to determine if this
is disrupted.
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6.2.2 Provide direct evidence linking neurophysiological findings dur-
ing sleep with concurrent neuropsychological performance mea-
sures

I aimed to isolate the contribution of sleep to memory consolidation by comparing
performance with and without sleep in the retention interval. I aimed to correlate
the measure of “sleep benefit” thus derived with neurophysiological data captured
over the course of the same night, in order to examine the relationship between
sleep disruption and cognitive impairment. I also aimed to correlate measures of
sleep homeostasis with general intellectual functioning.

6.3 How these aims are addressed in this thesis

The original work for this thesis is described in Parts II and IV, with the main meth-
ods described in Part III:

6.3.1 Development (Part II)

The development and validation of techniques to examine sleep architecture in chil-
dren with epilepsy (Chapter 7) and to apply the paired-associates learning paradigm
to English-speaking schoolchildren (Chapter 8).

6.3.2 Prinicipal methods (Part III)

These are detailed in Chapter 9.

6.3.3 Results (Part IV)

A retrospective, quantitative EEG study of sleep homeostasis in children with focal
epilepsy (Chapter 10), and a prospective, controlled experimental study to test the
hypothesis that children with epilepsy show impaired memory consolidation with
sleep (Chapter 11).



Part II

Development
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Chapter 7

An approach to scoring sleep in
polysomnographic studies in
children with focal epilepsy

7.1 Abstract

Purpose The American Academy of Sleep Medicine (AASM) Manual is now
widely used in clinical practice for scoring sleep in children. However, polysomno-
graphic records from children with epilepsy often contain interictal EEG abnormal-
ities which may obfuscate features of sleep. Additionally, the AASM Manual does
not allow for the scoring of epochs containing ictal events other than as “wake”
or “sleep”. We aimed to devise an optimised strategy for the scoring of sleep in
children with focal epilepsy.

Method Patients with focal epilepsy who underwent long-term videoEEG moni-
toring with concurrent polysomnography were included. Sleep was scored using
the AASM Manual. EEG features that interfere most with scoring were identified
and quantified, exploring the effect of using different EEG derivations, as well as
assigning epochs to seizure time.

Results A total of 20 studies in 9 patients with focal epilepsy were analysed. EEG
features identified included interictal discharges and seizure-related abnormalities
(pre-ictal build-up, ictal discharges, and post-ictal slowing). One study contained
continuous discharges, 5/20 frequent discharges, 13/20 infrequent discharges and
1 study no discharges. Eleven seizures were recorded across 4/20 studies. Pre-
ictal build-up began a median of 1 epoch (range 0–2) before a seizure, while post-
ictal changes lasted a median of 6 epochs (range 5–40). Using a longitudinal bipo-
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lar montage including the maximally affected channels, assigning ictal and peri-ictal
epochs to “seizure” time, and utilising stage N where necessary - without age re-
striction - made all 20 studies scorable. In 4 studies scored by two independent
raters, the overall level of epoch-by-epoch agreement was 85.1% (kappa = 0.78).

Conclusion The scoring of sleep in children with focal epilepsy – even those
with nightly seizures – is facilitated by applying simple modifications to the AASM
guidelines.

7.2 Introduction

The American Academy of Sleep Medicine (AASM) ”Manual for the Scoring of
Sleep and Associated Events” (Iber et al. 2007) (from hereon called ”the AASM
Manual”) provides technical specifications for polysomnography recordings, as well
as criteria for determining sleep stages by visual scoring. Increasingly, it is re-
placing ”A manual of standardized terminology, techniques and scoring system for
sleep stages of human subjects” (Kales et al. 1968) as the standard criteria for
the visual scoring of sleep, and is now widely used for scoring sleep in children
(Grigg-Damberger et al. 2007).

However neither manual makes any provision for the scoring of time spent hav-
ing a seizure. Additionally, polysomnographic records from children with epilepsy
often contain interictal EEG abnormalities which may mimic or obscure the features
of sleep. Under Rechtschaffen and Kales’ criteria, it was possible to mark out an
epoch filled with seizure time as ”movement”, although this would imply a motor
component to the seizure. The AASM Manual abolishes ”movement” as a label al-
together, in favour of scoring the epoch as ”wake” if it contains any alpha rhythm or
is preceded by ”wake”, otherwise assigning it the stage of the subsequent scorable
epoch (Iber et al. 2007). This makes it even more difficult to mark out seizure
time, particularly where the seizure lasts for more than 30 seconds (the length of
one scoring epoch), or is associated with pre-ictal build-up or prolonged postictal
slowing.

As a result, even studies focussing primarily on the sleep structure of children
with epilepsy have avoided examining nights on which the children had seizures
(Pereira et al. 2012, Kaleyias et al. 2008, Racaru et al. 2013, Carotenuto et al.
2014) or recruited only patients who were seizure-free at the time (Maganti et al.
2005). A further strategy has been to mark the seizures independently from sleep
scoring (Nunes et al. 2003), with the result that seizures do not result in stage
shifts, an important quantitative measure of sleep disruption. Some authors have
addressed these issues by modifying the criteria for the identification of the sleep
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stages (Carotenuto et al. 2014; Miano et al. 2010), or utilising cyclic alternating
pattern (CAP) parameters (see Section 3.1.6) to describe sleep structure, in place
of conventional sleep stages. Though effective in their context, these approaches
make it difficult to relate findings to the wider literature. We therefore aimed to
devise an optimised strategy for the scoring of sleep in children with focal epilepsy,
in which the occurrance of seizures would be reflected in quantitative parameters
of sleep disruption, while the overall polysomnographic findings remain comparable
with those reported in the general sleep literature.

7.3 Methods

7.3.1 Participants

Data were collected from nine patients with focal epilepsy who underwent video
EEG telemetry as part of their clinical evaluation at Great Ormond Street Hospital
for Children. These were consecutive inpatients who had been recruited to take
part in our study on sleep and memory consolidation (see Section 11.3.1). A total
of 20 polysomnographies were analysed.

7.3.2 EEG polysomnography recording

Recordings were performed on XLTEK EMU40 systems (Natus, USA). EEG was
recorded with a full complement of 10-10 system electrodes. Additionally, we
recorded ECG, chin EMG, respiratory effort and oxyhaemoglobin saturation. Elec-
trodes F9 and F10 were utilised as left EOG and right EOG respectively. Full tech-
nical details are covered in Section 9.5.1.

7.3.3 Sleep scoring

Sleep was scored manually in 30-second epochs using standard criteria defined in
the AASM Manual (see Section 3.1), unless epileptic activity interfered with this. In
these cases, the EEG features in question were identified and collated, and the ap-
proaches described later in this chapter were used to enable the study to be scored.
Seizures - including electrographic seizures - were defined as an abnormal, parox-
ysmal change from the background EEG activity, evolving in frequency, morphology
and amplitude, and with a plausible electrographic field (Marzec 2003, Abend et al.
2013). Following convention, electrographic seizures had to last at least 10 sec-
onds (Abend et al. 2011). Interictal epileptiform discharges included sharp waves,
spikes, spike-and-slow wave and polyspike-and-wave complexes (Noachtar et al.
1999).
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7.3.4 Montage

The recommended EEG derivations for sleep scoring in the AASM manual are:
F4-A1, C4-A1, O2-A1, with F3-A2, C3-A2 and O1-A2 as backups.

7.3.5 Interobserver agreement

Four out of the twenty recordings were scored by two independent observers.
One night’s recording from each of the first three consecutive patients was scored
prospectively by two independent raters. A further recording was selected at ran-
dom from amongst those containing seizures to be scored retrospectively by a
second independent rater, blind to the original scoring. Interobserver agreement
was assessed based on the correlation of quantitative sleep parameters (intraclass
correlations) as well as epoch-by-epoch comparison. The overall epoch-by-epoch
percentage agreement was calculated using native functions in the spreadsheet
software, Libreoffice Calc (version: 5.1.4.2, LibreOffice contributors 2016). Co-
hen’s kappa and intraclass correlation coefficients (ICC) were calculated using the
“psych” package (Revelle 2016) in R (version 3.2.2, R core R Core Team, 2015).

7.4 Results

7.4.1 Patient characteristics

These are summarised in Table 7.4.1.

7.4.2 Montages

In general, we appended eight to ten antero-posterior bipolar derivations to the rec-
ommended mastoid-referenced derivations. The bipolar derivations were selected
to highlight the most frequent interictal discharges for each patient, as identified
beforehand on a common reference montage that included all 27 scalp electrodes.
We added the transverse bipolar derivations C3-Cz and Cz-C4 to highlight sleep
features such as vertex sharp transients, K complexes and spindles [Figure 7.4.1 ].

Electrodes T9 and T10 were used as A1 and A2 respectively. EOG derivations
used were F9-T10 and F10-T9, with F9 and F10 approximating the outer canthi
in order to avoid adding more wires to the headset. Chin EMG was performed as
recommended in the AASM manual. During scoring, we referred to the common
reference montage at a slower timescale (e.g. 10 seconds per page) if a sharp
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Figure 7.4.1: Bipolar derivations highlight frontal discharges maximal at F7. Trans-
verse vertex derivations highlight spindles.

transient seemed ambiguous on the scoring montage, particularly if a stage shift
depended on its identification [Figure 7.4.2 ].

Figure 7.4.2: Generalised spike-wave complexes are better distinguished from K
complexes when viewed at 10 seconds per page

7.4.3 Specific approaches to sleep scoring in children with epilepsy

The EEG features which presented challenges to sleep scoring were a)seizure-
related abnormalities (pre-ictal build-up, ictal discharges, and post-ictal slowing)
and b)interictal discharges. For each of these, we outline an approach to make
accurate sleep staging possible, and the rationale for these modifications to the
AASM scoring criteria.
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7.4.3.1 Seizure activity

Problem Pre-ictal build-up signals a change in state. While this would meet the
criterion for an EEG arousal according to the AASM criteria, arousals do not always
mandate a stage shift (Iber et al. 2007). Seizures with a motor component often
obliterate the EEG trace completely. Post-ictal slowing contains delta waves, which
if occupying 20% or more of the epoch, would meet the scoring criterion for N3.

Prevalence Eleven seizures were recorded across 4/20 studies. Pre-ictal build-
up began a median of 1 epoch (range 0-2) before a seizure, while post-ictal changes
lasted a median of 6 epochs (range 5-40).

Proposed scoring modification When 50% or more of an epoch consists of
pre-ictal build-up (Figure 7.4.3), seizure or post-ictal changes, the epoch should be
scored as ”seizure” and excluded from the total sleep time (TST) (Figure 7.4.5).
Seizure time ends with transition to stage W, an arousal (change to N1 until a
spindle occurs), or transition to N2 (when a spindle occurs in the first half of the
epoch, or in the second half of the previous epoch). For transition to N3, only slow
wave activity that appears subsequent to a sleep spindle may be taken into account.

Rationale Seizure activity is by definition pathological, and should not be con-
sidered as sleep. Under this rule, an electrographic seizure would need to last at
least 15 seconds (half of a 30-second epoch) to result in a stage shift, well within
the common definition of >10 seconds (Abend et al. 2011). For transition to N2,
we have excluded K complexes from the definition as it is difficult to discern K
complexes from generalised discharges that may follow a seizure (Figure 7.4.4).
While post-ictal slowing and the delta oscillations of slow wave sleep both reflect
widespread neuronal synchrony, the latter arises as a consequence of a pathologic
event and should not be regarded as equivalent to the physiological attainment of
deep sleep. The requirement for the occurrence of a spindle - a physiological tha-
lamocortical oscillation (Beenhakker and Huguenard 2009) indicating transition to
N2 sleep - ensures that what is scored as N3 is in fact deep sleep.
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(a) Desynchronisation begins just before the middle of this epoch, therefore it is scored as seizure
time.

(b) Posterior slowing begins 19 seconds into Epoch 856, therefore this is still scored as N2.

(c) The subsequent epoch is scored as seizure time. The clinical seizure onset is toward the end of
this epoch.

Figure 7.4.3: Pre-ictal build-up. Subfigures b and c show consecutive epochs from
the same recording.
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(a) Clinical seizure offset followed by post-ictal slowing with some generalised bursts.

(b) Epoch 885 shown at 30 seconds per page; it is difficult to tell if these are K complexes or spike-
wave discharges

(c) A spindle occurs in the second half of this epoch; the subsequent epoch was scored as N2.

Figure 7.4.4: Transition from seizure time to N2



58 CHAPTER 7. EPILEPSY SLEEP SCORING

(a) Electrographic seizure arising from N3. Note amplitude is set at 30uV/mm.

(b) Offset of the seizure followed by post-ictal slowing

(c) Sixteen epochs later (all scored as seizure time due to lack of sleep spindles) there is a clinical
seizure

Figure 7.4.5: Electrographic seizure followed by clinical seizure
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7.4.3.2 Interictal epileptic discharges

Problem Interictal epileptic discharges (IEDs) may resemble key sleep features
- such as vertex sharp waves or K complexes - on which stage shifts may de-
pend. Aftercoming slow waves may resemble the physiological delta waves of N3.
Temporal discharges in particular may give the false impression of K complexes,
due to contamination of the mastoid references. Continuous discharges, as in the
syndrome of continuous spike waves in slow wave sleep (CSWS), may obscure or
abolish normal sleep features altogether.

Prevalence I defined frequent discharges as greater than one per 10 seconds,
and continuous discharges as greater than 8 per 10 seconds. One study contained
continuous discharges, 5/20 frequent discharges, 13/20 infrequent discharges and
one study no discharges.

Proposed scoring modification Append antero-posterior bipolar derivations to
the scoring montage to allow the identification of IEDs. Outside of “seizure” epochs
(see above), complexes with features of both a K complex (see Section 3.1.3) and a
spike or polyspike-and-wave complex should be considered as K complexes, partic-
ularly if followed by an identifiable spindle, and the AASM criteria regarding stage
shifts should be applied. In patients with pathologic central sharp waves, vertex
sharp waves should not be used to determine the onset of N1. Where interictal
discharges are continuous such that normal NREM sleep features cannot be iden-
tified, epochs may be scored as ”N” - as recommended in the AASM Paediatric
sleep scoring criteria - regardless of the patient’s age. Discharges usually abate
sufficiently in REM for this to be identified and scored by standard criteria.

Rationale Antero-posterior bipolar derivations allow for focal interictal discharges
to be detected and distinguished from sleep phenomena. Additionally, they can
demonstrate the distribution of bilateral and generalised IEDs, and act as a check
for contaminated mastoid references. IEDs by definition would not correlate to a
clinically detectable change when awake and so should not lead to stage shifts dur-
ing sleep. Their identification ensures they are not mistaken for physiological sleep
features thereby resulting in spurious stage shifts. Physiological K complexes are
indicative of paroxysmal cortical neuronal synchrony, which in the epileptic cortex
may evoke IEDs or evolve to spike-wave seizures (Steriade and Amzica 1998).
Therefore it is likely the epileptiform features are a consequence of the underly-
ing physiological change in state, which ought to be reflected in the sleep scor-
ing. Lastly, utilising the AASM Paediatric scoring criteria for epilepsy patients with
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continuous discharges in NREM sleep of all ages enables standardised sleep ar-
chitecture analysis, even where the stages N1-3 cannot be distinguished (Figure
7.4.6).

(a) Where discharges make stages N1-N3 indistinguishable, these may be scored as N

(b) REM sleep in the same patient

Figure 7.4.6: Use of AASM paediatric scoring criteria in an 11 year-old boy

7.4.4 Summary

The overall approach to the record containing IEDs and seizures can be sum-
marised in Figure 7.4.7 below. First, we modified the recommended montage in
order to highlight epileptiform discharges. IEDs were distinguished from physiolog-
ical sleep features, so that where discernible, these could be used to determine
stage shifts in the usual manner. Where sleep features could not be discerned due
to a heavy load of IEDs, the EOG, EMG and cardiorespiratory parameters could
still be used to distinguish REM from NREM sleep, the latter scored as stage ‘N’.
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Identified seizures were scored as “seizure”, according to the criteria detailed in
Section 7.4.3.1 (referred to as “Chan & Chevalier criteria” in the figure).
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Figure 7.4.7: Approach to staging the sleep EEG record containing epileptiform
discharges (see text for full description). AP=antero-posterior; Av-ref=average ref-
erenced; WASO=wake after sleep onset
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7.4.5 Preliminary data on inter-rater reliability

Three studies contained no seizures, and the fourth (from patient number 6) con-
tained three seizures. All four studies contained interictal discharges. The overall
level of epoch-by-epoch agreement was 85.1% (kappa = 0.78). The level of agree-
ment based on quantitative sleep parameters was very high; the intraclass corre-
lation coefficient (ICC) was 1 for N2 and N3, 0.94 for REM and 0.91 for N1. Both
observers scored 20 minutes of Seizure time for the single study that contained
seizures.

Figure 7.4.8: Hypnograms illustrating inter-observer agreement on records from
patient 1 (above; with no seizures overnight) and patient 6 (below; with seizures at
around 01:30, 06:50 and 07:10).

7.5 Discussion

We report adaptations to standard sleep scoring rules (Iber et al. 2007) which en-
able the analysis of EEG polysomnographic data from patients with epilepsy, in-
cluding those with nightly seizures or continuous epileptiform discharges in NREM
sleep.

In our sample of children with focal epilepsies of mainly structural etiology,
seizures and interictal discharges presented the greatest challenges to sleep stag-
ing. However, our recommended modifications enabled all 20 studies to be scored,
producing objective measures of sleep macroarchitecture.

Though the data are preliminary, an epoch-by-epoch agreement of 85.1% (kappa
0.78) compares favourably with the inter-observer reliability of standard sleep scor-
ing rules. In a study to determine the inter-rater reliability of the AASM stan-
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dard, recordings from 72 subjects were scored by pairs of experts (Danker-Hopfe
et al. 2009). Epoch by epoch agreement was 82% (kappa=0.76) for AASM and
80.6% (kappa=0.74) for R&K. Agreement by quantitative sleep parameters was
even greater, but this analysis is affected to a greater degree by the limited sample
size.

Marzec and colleagues (2003) described a similar approach based on the Rechtschaf-
fen and Kales criteria (1968), utilising EEG polysomnography data from adults with
epilepsy. However, there are no accounts in more recent literature, and none using
the AASM criteria (Iber et al. 2007) as a basis. By adhering to the AASM manual
definitions for the conventional sleep parameters yet excluding seizure time from
total sleep time (TST), our method yields parameters that are optimised for com-
parison to those in the rest of the paediatric sleep literature.

7.5.1 Limitations

We did not have available two independent trained scorers to analyse all 20 records,
therefore the inter-rater reliability data for this scoring system is currently limited.
However, this will be an aim of future work.

7.5.2 Conclusion

This approach to sleep scoring enables the study of the natural history of sleep
macroarchitecture in various epilepsies, and provides an objective outcome mea-
sure for interventional studies, even where the nocturnal seizure burden is not com-
pletely alleviated.



Chapter 8

Design, development and pilot of
new memory consolidation tasks
“The Lingfield Memory
Consolidation Battery”

8.1 Abstract

Purpose Performance on paired-associate learning tasks – particularly the cued
recall of semantically related word pairs – has been shown to benefit from sleep.
This is best demonstrated using a within-subject experimental design. However,
there is no verbal test material available for use in English-speaking children. In the
visuospatial memory domain, a two-dimensional object location task has been used
to demonstrate sleep-related memory consolidation in children, but is not currently
available in an open-source format. I aimed to create and pilot a test battery suit-
able for the demonstration of sleep-related memory consolidation in school-aged,
English-speaking children. Additionally, the tests had to be portable and practical
for use both in the hospital and home settings.

Methods Adult (n=7) and adolescent (n=4) volunteers were recruited from amongst
colleagues and work experience placement students at Young Epilepsy. Psycholin-
guistic variables were selected to control for task difficulty between age-group and
parallel test versions. Test material was created using word pairs and pictures from
freely available corpora. The resulting test battery was piloted for feasibility, accept-
ability, ease of administration and difficulty levels.

65
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Results For the word pair task, there was no significant difference in the psy-
cholinguistic properties of the parallel lists at all three difficulty levels (p >/= 0.6 for
word pair data, p >/= 0.1 for individual word data). Using the hardest version (40
moderately related word pairs), I showed that both adults and adolescents could
reach a criterion score of >60% in a single attempt. It was possible to retain 95%
of the material over a 20-hour interval containing overnight sleep. A 15-pair version
of the two-dimensional object location task proved too difficult and time-consuming,
however a 12-pair version produced criterion scores of 58-75% in 3-5 learning tri-
als, conducted within 5 to 16 minutes. Material could be retained perfectly overnight
as well as over a 5-hour daytime interval.

Conclusion The Lingfield Memory Consolidation Battery is a portable, open-
source collection of test materials suitable for the assessment of memory con-
solidation in English-speaking children. Parallel versions facilitate a within-subject
experimental design, while difficulty levels within the verbal task will make results
comparable across age groups.

8.2 Introduction

Performance on paired-associate learning tasks has been shown to benefit from
sleep in both adults and school-aged children (see Section 5.3). However, there are
several caveats: the difficulty (Walker and Stickgold 2004) and emotional salience
(Wagner et al. 2001) of the material can affect the sleep-dependency of a task.
Different domains of memory (e.g. verbal, visuospatial) and modalities of presen-
tation (e.g. visual, auditory) may also play a role (Walker and Stickgold 2004). Task
dependency is a particular concern when studying patients with epilepsy, who may
show dissociation between memory impairments even within a single domain (Sal-
ing 2009). Additionally, the effect of sleep on memory consolidation may be missed
altogether if baseline delayed memory is not controlled for with an awake condition
(Ackermann et al. 2015, Payne et al. 2012).

Therefore, I used a verbal and a visuospatial task, the former with an auditory
presentation and the latter visual. Parallel versions of each task were needed in
order to facilitate a within-subject experimental design (see Section 11.3.4). Ad-
ditionally, because of the wide age range of my patient sample, I required more
than one difficulty level to ensure the youngest or most impaired participants were
able to complete the task, while avoiding ceiling effects (Wilhelm et al. 2013) in the
oldest or most able.

For the verbal task, I chose the semantically associated word-pair task because
it is the task for which there is the most evidence of sleep-related benefit to mem-
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ory consolidation. However, there was no material available for testing English-
speaking children. Existing lists in German or French could not simply be translated
into English. This was partly for technical reasons; for example, schaukelstuhl –
oma (rocking chair – grandmother; taken from the material used by Wilhelm and
Diekelmann, courtesy of Dr. Diekelmann) when translated is no longer a pair of
single words. Perhaps more significantly, cultural and linguistic differences may in-
fluence the psycholinguistic properties of words and their associations (Mitrushina
2005).

The picture pair (2D object location) task has been used successfully to demon-
strate sleep-related memory consolidation in healthy children (Wilhelm et al. 2008)
as well as those with neurodevelopmental disorders (Prehn-Kristensen et al. 2014;
Maski et al. 2015) though some authors have found no benefit of sleep to task per-
formance (Galer et al. 2015, Prehn-Kristensen et al. 2014). Most groups utilised
a 15-pair array created using proprietary software and presented on a desktop or
laptop computer (Rasch et al. 2007, Wilhelm et al. 2008, Maski et al. 2015, Prehn-
Kristensen et al. 2014). Wilhelm and Diekelmann (2008) lowered the criterion score
to enable healthy 6 to 8 year-old children to complete the task. I required a portable
version of the task suitable for use both on the hospital ward and in participants’
homes. The task needed to be interactive and engaging enough to encourage opti-
mum performance, while maintaining standardised presentation of the stimuli. Two
parallel versions of equal difficulty were required. I aimed to use open-source soft-
ware so that the programme might be made freely available to other researchers.

8.3 Methods

8.3.1 Participants

Seven adult volunteers (aged 24-55 years) were recruited from amongst nursing
and research colleagues at Young Epilepsy. Additionally, four adolescents (ages
15-16 years) who were attached to Young Epilepsy on work experience placements
participated with the written consent of their parents.

8.3.2 Psycholinguistic variables

8.3.2.1 Individual stimuli

Variables were selected to ensure recognition of the material, and to provide a
measure of difficulty for comparison between parallel task versions.



68 CHAPTER 8. LINGFIELD MEMORY CONSOLIDATION BATTERY

Age of acquisition Age of acquisition (AoA) refers to the estimated age at which
the word or the name of the object in question was learned. Usually generated from
self-reported data (Kuperman et al. 2012, Adlington et al. 2009), it is an indication of
cumulative exposure to the word or concept, in addition to how early in the course of
language development it was acquired. AoA data for the words used in the verbal
task were obtained from the database of Kuperman et al (2012); a collection of
ratings for 30,000 words obtained by internet crowdsourcing (https://www.mturk.
com/mturk/welcome; described in Mason and Suri 2012), but callibrated against
data gathered by more traditional methods in the United Kingdom (Stadthagen-
Gonzalez and Davis 2006). Pictures used in the visuospatial task were obtained
from the Hatfield Image Test (Adlington et al. 2009) and had associated AoA values
derived from the responses of 31 native English-speaking adults.

Word frequency Higher frequency words are more easily retrieved (Adlington
et al. 2009). Word frequency data originated from the SUBTL database (Brysbaert
and New 2009); a 51-million word collection of samples derived from American
movie and television subtitles with an emphasis on those from 1990-2007, mak-
ing this the most modern openly available database. This was accessed via the
wordnorms website (www.wordnorms.com (Buchanan et al. 2012); see Subsection
9.6.1.1), where the measurement is expressed as occurences per million words.

Concreteness Concreteness refers to the ease with which a word can be visu-
alised, or how tangible a noun is. Concreteness interacts with word frequency
such that highly concrete words with high frequency are the easiest to access from
memory (Paivio and Csapo 1969); the converse is also true. I obtained concrete-
ness ratings from the wordnorms database (Buchanan et al. 2012). These were
expressed on a seven-point Likert scale, with 1 being the most abstract and 7 the
most concrete.

Word length This is simply the number of letters in each word. These data were
extracted from www.wordnorms.com (Buchanan et al. 2012).

8.3.2.2 Word pairs

Variables were selected to indicate the semantic relatedness of word pairs.

Forward strength The forward strength of a word pair is the probability of the
cue word eliciting the target word. Forward strength values were obtained from
(www.wordnorms.com (Buchanan et al. 2012)).

https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
www.wordnorms.com
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Cosine The cosine represents the degree of semantic overlap between words in
a pair. It ranges from 0 to 1, with 0 representing no overlap and 1 complete overlap.
It is calculated using the formula:

Buchanan et al (2012) had experimental subjects list physical, functional and
categorical features of words. The frequency (expressed as a percentage of all
respondents) with which each feature occurred was recorded. To calculate the
cosine of a word pair, only the frequencies of features common to both words in
the pair were included. For a word pair A - B, Ai andBi indicate the frequencies
of the common feature “i” given in response to words A and B respectively, while
n is the number of common features. Essentially, the list of frequencies for each
word is treated as a vector, and the cosine derived from the dot product of the
two vectors (each of length n) divided by their magnitudes (Spiegel and Lipschutz
2009). Mathematically, this formula is equivalent to that for the sample Pearson
correlation coefficient. Cosine values were obtained from www.wordnorms.com
(Buchanan et al. 2012).

8.3.3 Task material construction

8.3.3.1 Verbal task

The website www.wordnorms.com (Buchanan 2012; accessed 4 June 2013) is a
searchable online lexical database containing psycholinguistic measures drawn
from multiple sources, in addition to calculated word pair values. It was explic-
itly designed for experimental stimulus creation, including the generation of word-
pair associates. I downloaded the full non-null database (Figure 8.3.1), and cross-
referenced this with the full database of Kuperman et al (2012); both were available
as Microsoft Excel (Microsoft, USA) files. I selected word pairs where both cue and
target were highly concrete (rated >5), then looked up and recorded the AoAs –
all AoAs were less than 9.3 years. Word pairs without AoA data were excluded. I
aimed to compile two lists (’A’ and ’B’) containing 40 word pairs each - the number
used in previous studies on adults (Rasch et al. 2007, Gais et al. 2002). Based on
data from healthy children, I chose 30-pair (Urbain et al. 2011) and 20-pair (Wil-
helm et al. 2008) subsets out of each list to create easier versions targetted at 9-11
year-olds and 6-8 year-olds respectively. AoAs in the 30-pair lists were mostly less

www.wordnorms.com
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than 7, and in the 20-pair lists were mostly less than 6. Where word pairs were
available that matched those of Wilhelm and Diekelmann (e.g. hand – arm, doll –
child) these were incorporated into the lists.

Figure 8.3.1: Screenshot showing upper left corner of spreadsheet containing full
non-null dataset from www.wordnorms.com (Buchanan 2012; accessed 4 June
2013). ’Zebra-donkey’ is one of the pairs included in my test material.

8.3.3.2 Visuospatial task

This task was originally designed with 15 paired locations. For the two parallel
versions, 30 pictures - two sets of 15 - were selected from the Hatfield Image
Test (Adlington et al. [2009]), a corpus of photographic colour images with asso-
ciated naming data. These were matched for age of acquisition and category of
object. Three additional pictures were selected to create a demonstration version
of the task. I programmed the application using MIT App Inventor Classic (http:
//appinventor.mit.edu/explore/classic.html), an online application-building
tool with a graphical user interface and pre-fabricated ’blocks’ of code to specify be-
haviours. These include the response of objects to being touched, and the length
of time an image apears on the screen. The completed .apk file can be shared to
any Android device. The demonstration, learning and testing phase material were
created as separate .apk files.

To ensure similar difficulty levels between the parallel versions, I used the same
template of picture-pair positions rotated by 90 degrees (Figure 8.3.2). Following
initial trials in the adult subjects (see below), I removed 3 pairs from each version
to create an easier task, with 12 paired locations.

http://appinventor.mit.edu/explore/classic.html)
http://appinventor.mit.edu/explore/classic.html)
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Figure 8.3.2: Template for version B of the visuospatial (2D object location) task.
Positions with blue outline are the ’cue’ positions.

8.3.4 Task material properties - statistical analysis

For each pair of word lists (e.g. 30A and 30B), I performed independent sample
t-tests using SPSS version 21 (SPSS Inc, USA) to compare cosine and forward
strength for word pairs, and age of acquisition, word frequency and word length for
individual words.

8.3.5 Testing procedures

8.3.5.1 Verbal task

In the learning phase of the task, all the word pairs were first read out, taking
approximately 5 seconds for each pair. Learning trials took the form of cued recall
with feedback.The subject was asked to respond with the associated target word
on presentation of each cue word. Each correct response was affirmed before the
next cue word was presented. For each incorrect response, the word pair was read
out again. Learning trials were repeated until a criterion of at least 60% correct
answers was reached. In the testing phase of the task, I read out the cue words
in a fixed order, and the participant had a single attempt - with no time limit - to
respond to each cue word with the target.
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8.3.5.2 Visuospatial task

The task was presented on a Samsung Galaxy Note 10.1 tablet (Samsung, South
Korea). In the learning phase of the task, each picture pair was presented for 4
seconds. The participant advanced to the next pair by touching the screen, though
there was a lockout time of 0.5 seconds. All the pairs were presented twice, in a
different order for each presentation. This was followed by a cued recall procedure
- the cue picture was revealed, and the participant had to touch the array position
of the matching picture (Figure 8.3.3). A correct response kept the pictures at the
cue and target positions displayed for 0.5 seconds, while an incorrect response
displayed the pictures at the correct cue and target positions for 2 seconds, without
revealing the picture at the incorrect position. Learning trials were repeated until a
criterion score of 7/12 pairs (approximately 60%) was reached, or the session was
terminated after 35 minutes.

Figure 8.3.3: Screenshots from the visuospatial (2D object location) task, learning
phase. The “Show Next” button is greyed out and will not respond during the lock-
out time when the paired stimuli are presented (left), as well as pending a response
from the subject during learning trials (right).

In the testing phase of the task, each cue picture was presented to the partici-
pant, who was given a single attempt - with no time limit - to respond to each cue
by touching the target position. The cues were presented in a different order to that
used for the learning trials. Touching the correct position revealed the matching pic-
ture, while touching the wrong position produced a buzzer sound without revealing
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the picture at the chosen position.

8.3.6 Outcome measures

For each performance of each task, I recorded the number of trials to criterion
(60% of items correctly recalled), the criterion score, immediate recall score (in
some participants), delayed recall score, number of hours’ delay, any sleep in that
period, and the time taken for learning and for recall. Additionally, comments made
by participants regarding how difficult or demanding they found the task were noted.

8.4 Results

8.4.1 Stimuli characteristics

Psycholinguistic properties of the parallel word-pair list versions are summarised
in the tables below. The shorter lists also had greater mean cosines and forward
strengths, indicating greater semantic association.

Version A Version B p
Cosine 0.2 (+/- 0.2) 0.2 (+/- 0.2) 0.6

Forward strength 0.07 (+/- 0.06) 0.06 (+/- 0.06) 1
Age of acquisition (years) 5.1 (+/- 1.6) 5.2 (+/- 1.6) 0.7

Word frequency (per million words) 50.4 (+/- 68.2) 66.4 (+/- 103.9) 0.3
Word length (letters) 5.1 (+/- 1.4) 4.9 (+/- 1.3) 0.4

Table 8.4.1: Properties of the 40-pair lists. Version A and B values are mean (+/-
standard deviation). P values are derived from independent sample t-tests.

Version A Version B p
Cosine 0.2 (+/- 0.2) 0.2 (+/- 0.2) 0.7

Forward strength 0.07 (+/- 0.07) 0.07 (+/- 0.07) 0.9
Age of acquisition (years) 5.0 (+/- 1.6) 5.1 (+/- 1.6) 1

Word frequency (per million words) 46.7 (+/- 63.6) 64.6 (+/- 108.7) 0.3
Word length (letters) 5.2 (+/- 1.5) 4.9 (+/- 1.2) 0.2

Table 8.4.2: Properties of the 30-pair lists. Columns and units as above.
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Version A Version B p
Cosine 0.3 (+/- 0.2) 0.3 (+/- 0.2) 0.9

Forward strength 0.7 (+/- 0.4) 0.7 (+/- 0.4) 0.7
Age of acquisition (years) 5.4 (+/- 1.7) 5.5 (+/-1.6) 0.8

Word frequency (per million words) 38.0 (+/- 61.6) 51.3 (+/- 85.2) 0.5
Word length (letters) 5.6 (+/- 1.5) 5.0 (+/- 1.2) 0.1

Table 8.4.3: Properties of the 20-pair lists. Columns and units as above.

8.4.2 Performance data

Two of the adolescents performed both the verbal and the visuospatial tasks, while
the other two performed the visuospatial task only. Three of the adults performed
both tasks (two of these were tested on immediate but not delayed recall), while the
other four performed only the visuospatial task. Four adults performed on both a 15-
item and a 12-item version of the visuospatial task. Only one participant (an adult)
completed both parallel versions of both tasks, though these were all performed
with a memory retention interval of 5 hours awake.

8.4.2.1 Verbal task

It took 10-15 minutes to go through a single learning trial of the 40-pair verbal task.
All subjects were able to reach criterion in a single attempt, the scores ranging from
30 to 39 (mean 34.2). There was only a single attempt - in an adolescent - contain-
ing sleep in the memory retention interval, resulting in a decrease of 5% of items
recalled compared to baseline. However there was no within-subject performance
for comparison.

8.4.2.2 Visuospatial task

This was tested more extensively due to the lack of psychometric data for assessing
task difficulty. The 15-item version proved too difficult for the adult subjects, with 5
out of the 7 volunteers requiring 5 or more attempts, and 3 of these failing to reach
criterion even after half an hour of learning trials.The 12-item version took between
5 and 16 minutes to administer in the learning phase, and 1 to 4 minutes in the test-
ing phase. The adults required 3 attempts to reach criterion, while the adolescents
required 3 to 5 attempts. Criterion scores ranged from 58 to 75%. Of the three
adolescents who had a night’s sleep between learning and testing, two maintained
their scores while the third showed a 17% decrease in items recalled. The fourth
adolescent was tested across a 5-hour daytime interval, and scored the same at
testing as at criterion. No within-subject data were available for comparison.
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8.5 Discussion

I describe here the creation and pilot testing of the “Lingfield Memory Consolida-
tion Battery”, a new memory consolidation task battery suitable for use in English-
speaking children. The battery contains parallel versions of both a verbal and a
visuospatial task, allowing the examination of two declarative memory domains in
a within-subject design. To my knowledge, there is no other such battery reported
in the literature.

Due to time constraints, it was not possible to conduct a full validation study prior
to applying the task battery to my experimental sample. However, both paradigms
are well established (Marshall and Born 2007), and I had an age-matched control
sample.

In Chapter 11, I administered the battery to 21 healthy school-aged children
and 22 children with epilepsy, demonstrating that the verbal task can detect sleep-
dependent memory consolidation (Chan et al. 2017). This is a larger total sample
than all but one (Voderholzer et al. 2011) of the existing similar studies in children,
whether healthy (Wilhelm et al. 2008, Backhaus et al. 2008, Urbain et al. 2011) or
with neurodevelopmental problems (Galer et al. 2015, Prehn-Kristensen et al. 2014,
Maski et al. 2015). The visuospatial task does not demonstrate a benefit of sleep
to memory consolidation in the healthy children, but shows a benefit correlating to
that in the verbal task in the patients. This is consistent with the findings of Galer et
al (2015), who employed a similar task in children of the same age. It is not clear
why this is, though the greater number of practice trials required by the patient
sample may have ensured better encoding and perhaps allowed for the implicit
motor aspects of the task to be consolidated in sleep as well. There was no ceiling
effect in the healthy subjects.

The validation of this task battery in a larger sample of healthy children, and of
the 40-pair version of the verbal task in healthy adults would enable it to be adopted
by other researchers in the field of memory research.
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Chapter 9

Principal methods

This chapter details methods common to the experimental studies described in
subsequent chapters.

9.1 Participant recruitment

All subjects were aged between 6 and 16 years at the time of assessment, and had
no prior diagnosis of primary sleep disorders. All patients had a firm diagnosis of
medication resistant focal epilepsy with a structural or presumed structural etiology.
The prospective cohort (see Chapter 11) were recruited from amongst those admit-
ted for prolonged video EEG telemetry at Great Ormond Street Hospital for Children
(GOSH) or at the medical facility at Young Epilepsy (YE). In addition to the diag-
nosis above, further criteria were 1) attendance at mainstream school (as a proxy
for sufficient cognitive ability to complete the experimental tasks) and 2) planned
hospital admission for at least 4 nights. The retrospective cohort (see Chapter 10)
were taken from the GOSH video telemetry database. Patients were selected on
the same diagnostic criterion, in addition to having been subjected to (and compli-
ant with) sleep restriction during their admission. Healthy controls were recruited
prospectively by advertisement directed at staff working at Young Epilepsy, a char-
ity that supports children and young people with epilepsy in the United Kingdom.
Additionally, healthy school-aged siblings of patient participants were invited to take
part.

9.2 Clinical assessment

All patients underwent full clinical assessment as part of their presurgical evalu-
ation. Demographic details, age of onset of epilepsy, clinical examination find-
ings including handedness, seizure frequency, seizure semiology, MRI findings and
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medication history were recorded. Additionally, clinical events (e.g. seizures) and
diagnostic interventions (e.g. medication reduction, sleep restriction) and their tim-
ings with respect to the course of the admission were recorded.

9.3 Neuropsychological testing

9.3.1 Intelligence

Full scale IQ scores on the Wecshler Intelligence Scale for Children version 4
(WISC-IV; Pearson, USA) for all patients were extracted from recent neuropsycho-
logical reports, performed for presurgical evaluation. Control subjects underwent
IQ testing using the two-subtest version of the Wechsler Abbreviated Scale of Intel-
ligence (WASI; Pearson, USA) during their participation in the study. FSIQ scores
derived from the two-subtest WFASI are generally a few points higher than that
measured using the WISC (Wolraich 2008). However there is a good correlation
(r=0.86), similar to that between versions III and IV of the WISC (Wolraich 2008).

9.3.2 Memory

Patients whose parents reported memory problems were also administered the
Children’s Memory Scale (CMS; Pearson, USA) as part of their presurgical work-
up. The CMS assesses declarative learning and memory functions across three
domains: Auditory/ Verbal, Visual/ Nonverbal, and Attention/ Concentration (work-
ing memory). Administering the 6 subtests yields eight index scores: Attention/
Concentration, Verbal Immediate, Verbal Delayed, Delayed Recognition, Visual Im-
mediate, Visual Delayed, Learning, and General Memory. Of note, the Verbal De-
layed score is calculated using the 30-minute recall scores on stories as well as
related and unrelated word pairs (Cohen 2011).

9.4 Questionnaires

9.4.1 Sleep habits

A parent completed the Children’s Sleep Habits Questionnaire (CSHQ; Owens et al.
2000) in relation to each participant. The CSHQ is a retrospective parent-report
sleep-screening instrument designed for and validated on children aged 4 to 10
years. It consists of 45 items, in which parents are asked to rate behaviours as oc-
curring “usually”, “sometimes” or “rarely” in a recent typical week. Some items are
reversed, so that a higher score consistently indicates more distrubed sleep. Ad-
ditionally, parents are asked to indicate if they consider each behaviour a problem
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(yes/no). Parents are asked to state the child’s typical sleep duration, bedtime, time
of awakening in the morning and duration of nightwakings. 35 of the 45 items are
used to calculate 8 subscales reflecting the following domains: 1) Bedtime Resis-
tance, 2) Sleep Onset Delay, 3) Sleep Duration, 4) Sleep Anxiety, 5) Night Wakings,
6) Parasomnias, 7) Sleep- Disordered Breathing, 8) Daytime Sleepiness. The Total
Sleep Disturbance score consists of 33 items, comprising the same items as those
used for the subscales, but with duplicates removed - therefore the lowest possible
score on the CSHQ is 33. A score of 41 is recommended as the threshold beyond
which the child should be assessed at a sleep clinic (Owens et al. 2000). Of note,
Cronenbach’s alpha was only 0.36 for the Parasomnias subscale; the other sub-
scales have alphas of 0.5-0.7. For the total score, alpha was 0.68 in controls and
0.78 in a sleep clinic sample.

9.4.2 Behaviour

The Strengths and Difficulties Questionnaire (SDQ; Goodman 1997) was com-
pleted by a parent in relation to each participant. The SDQ is a behavioural screen-
ing questionnaire validated for children aged 3-16 years, containing 25 items on
psychological attributes. These are divided equally between 5 domains: 1) emo-
tional symptoms, 2) conduct problems, 3) hyperactivity/inattention, 4) peer rela-
tionship problems and 5) prosocial behaviour. Each item can be marked “not
true”(scored 0), “somewhat true”(scored 1) or “certainly true”(scored 2). Scoring
is reversed on some items so that a higher score consistently indicates worse be-
haviour. The scores for domains 1-4 are added to give a Total Difficulties Score,
which may range from 0 to 40. Scores of 0-13 are considered to be normal, and
14-16 as borderline (Goodman 1997).

9.4.3 Memory

The Everyday Memory Questionnaire (EMQ; Sunderland et al. 1983) was com-
pleted by a parent in relation to each participant recruited subsequent to February
2014. The EMQ was developed for adults with traumatic brain injury (TBI), and cov-
ers five categories in which this group of patients suffered memory failure: speech,
reading and writing, faces and places, actions, and learning new things. Though
correlation with neuropsychological tests is variable (Drysdale et al. 2004), the
questionnaire has been validated on clinical samples with TBI, stroke and multiple
sclerosis, showing significant differences between clinical and non-clinical groups.
Importantly, it has been validated using both self- and carer reports. For valida-
tion in children, the questionnaire was modified to remove irrelevant items, such as
“getting lost on journey travelled once or twice before”, then administered to 226
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schoolchildren aged 6-12 years, and 35 patients from a learning disorders clinic
(Drysdale et al. 2004). Using an optimal cut-off score of 48, sensitivity was high at
89%, while specificity was low at 60%. The mean score for the school group was
72.89 (standard deviation 34.41).

9.5 EEG and polysomnography

9.5.1 Data aquisition

Sleep was recorded with the Xltek Trex (Natus, USA) system, using 8 EEG elec-
trodes (F3, F4, C3, C4, O1, O2, A1, A2) positioned according to the international
10-20 system in control subjects, and 27 EEG electrodes (Fz, Cz, Pz, Fp1, Fp2,
F3, F4, F7, F8, F9, F10, C3, C4, C5, C6, T5, T6, T7, T8, T9, T10, P3, P4, P9, P10,
O1, O2) positioned according to the international 10-10 system in patients. Elec-
trocardiogram, surface chin electromyogram, chest and abdominal movements and
pulse oximetry were recorded in all participants. Eye movements were detected
using standard electro-oculogram derivations (Iber et al. 2007) in controls, while
electrodes F9 and F10 were utilised for this purpose in patients. The retrospective
patient cohort had EEG (27 electrodes, as above) and ECG recorded only.

The equipment used on all subjects was similar: silver/silver chloride cup elec-
trodes (Ambu Neuroline, Denmark) were used on the scalp and arms, and self-
adhesive conductive gel electrodes (Ambu Neuroline, Denmark) for chin and EOG.
The amplifiers used were Xltek Trex (Natus, USA) for controls and Xltek EMU40
(Natus, USA) for patients. Respiratory belts were piezo-electric belts (ProTech
- Philips, Netherlands) for controls and respiratory inductance plethysmography
(SleepSense, USA) for patients. Pulse oximeters were Masimo SET (USA). Natus
NeuroWorks software (Natus, USA) was used for recording. Signals were sampled
at 256Hz or 516Hz in controls and 516Hz or 1032Hz in patients.

9.5.2 Sleep scoring

Sleep recordings from healthy participants, and from patients who did not have
seizures during the recording were scored visually according to standard criteria
(Iber et al. 2007) using Sleepworks software (Natus, USA). Sleep scored as “N3” is
equivalent to slow wave sleep (Iber et al. 2007). For recordings containing seizures
(n=5), conventional sleep stages were scored by standard criteria, but epochs were
scored as “seizure” if they contained ictal discharges, >50% pre-ictal build-up or
>50% post-ictal slowing. “Seizure” epochs were not included in the Total Sleep
Time. For all patient recordings, I added custom bipolar channels to the standard
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sleep scoring montage, in order to highlight focal epileptiform activity and distin-
guish this from sleep phenomena. Full details of the rationale behind the modifi-
cations to standard criteria and results of a pilot validation study are described in
Chapter 7.

9.5.3 Quantification of interictal discharges

Interictal epileptiform discharges (IEDs) included sharp waves, spikes, spike-and-
slow wave complexes, and polyspike-and-slow wave complexes, as defined by the
International Federation of Societies for Electroencephalography and Clinical Neu-
rophysiology (Noachtar et al. 1999). I identified the IED morphologies for each
patient, and verified these with a consultant neurophysiologist.

The count was recorded as the number of IEDs per minute, calculated by di-
viding the total number of IEDs by the duration of sleep time over which they were
counted. I marked the discharges manually for the first two sleep cycles, to include
at least one period of rapid eye movement (REM) sleep. There is evidence from
paediatric patients with focal epilepsies that the IED rate does not differ significantly
between sleep cycles across the night (Nobili et al. 1999). For the two patients with
>10 discharges in most 10 s epochs, I counted 100 IEDs for each sleep stage in
each sleep cycle, and divided the result by the duration of EEG reviewed for each
stage. For all other patients, I parsed the record manually for the whole of the first
two sleep cycles. For analysis, I expressed the discharge load for each patient as
the number of discharges per 100 s, to facilitate comparison with existing studies in
the literature.

9.5.4 Data pre-processing for quantitative analysis

The EEG record was pruned with lights on and lights off (as derived from visual
sleep scoring, see 9.4.2) as the cut points, and then exported from Natus Neu-
roworks (Natus, USA) as an .edf file. The .edf file was downsampled to 128Hz in
EDFbrowser, version 1.58 (van Beelen; http://www.teuniz.net/edfbrowser/).
All further data processing and analysis was performed with Spike2, version 7
(Cambridge Electronic Design, Cambridge, UK). Analysis was carried out on EEG
channels F3 and F4, each referenced to CpZ. Visual and semi-automatic artefact
removal was performed. First, seizure time was cropped from the trace manually
with cut points determined from visual sleep scoring (see Chapter 7). Next, move-
ment artfact was removed using an amplitude threshold trigger, usually +/-500uV,
though this was increased as necessary where visual inspection revealed the am-
plitude of true slow waves to be higher. A script was used to delete the trace 5

http://www.teuniz.net/edfbrowser/
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seconds before and 20 seconds after the amplitude trigger, joining the remaining
data with a straight line.

9.6 Memory tasks

The memory tasks were adapted from Wilhelm and Diekelmann (2008). Verbal
declarative memory was tested using a word-pair associate learning task, while
visuospatial declarative memory was assessed using a two-dimensional (2D) object
location task, similar in concept to the card game commonly known as “Pairs”. Full
details on the creation and piloting of the test materials can be found in Chapter 8.

9.6.1 Verbal task

9.6.1.1 Stimulus material

The generation of the word pairs is described in Section 8.3.3.1. I created three
versions of the word pair lists, containing 20, 30 or 40 word pairs, for children aged
6 to 8 years, 9 to 11 years and 12 to 16 years respectively. Subjects with a full scale
IQ of <80 were tested on the version for the age group just below their chronological
age. Each age-group version consisted of two parallel lists of word pairs, allowing
for two administrations of the task. This was necessary to facilitate within-subject
comparison of performance under different conditions.

To allow for multiple learning trials, a random number sequence generator (Haahr;
https://www.random.org/) was used to re-assort the word pairs for each learning
trial beforehand. To avoid semantic priming effects, the resulting lists were checked
and any consecutive pairs containing semantically related words (e.g. lobster-tail
and coral-sea) rearranged in the list so that they were no longer consecutive.

9.6.1.2 Testing protocol

The testing protocol was as described in Section 8.3.5.1.

9.6.2 Visuospatial task

9.6.2.1 Stimulus material

The stimulus material is described in Section 8.3.3.2.

https://www.random.org/
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9.6.2.2 Testing protocol

The learning procedure was as described in Section 8.3.5.2. Learning trials were
repeated until a criterion score of 7/12 pairs (approximately 60%) for children aged 9
to 16 years or 5/12 (approximately 40%) for children aged 6 to 8 years was reached,
or the subject refused further trials.

The testing phase was as described in Section 8.3.5.2.

9.6.3 Scoring

For each administration of each task, the percentage of correct answers at the
end of the learning trials was recorded as the “criterion score”. The percentage of
correct answers in the testing phase was recorded as the “test score”. The criterion
score was subtracted from the test score to obtain a “memory retention score”,
representing the difference between delayed and immediate recall. Therefore for
each subject, the administration of the full test battery produced a verbal memory
retention score and a visuospatial memory retention score under each of the two
testing conditions.

For the experimental protocol detailed in Subsection 11.3.4, the order of presen-
tation of the parallel versions of each task was counterbalanced across subjects,
and across conditions. In this study, the conditions in question were “wake” and
“sleep”. The “wake” condition, an 8-hour daytime delay between immediate and
delayed recall, served as the control condition, while the “sleep” condition - with a
night’s sleep between immediate and delayed recall - was the experimental condi-
tion. For each subject, the difference between the sleep and wake condition mem-
ory retention scores for each task yielded a quantitative measure of the contribution
of sleep to memory consolidation (“sleep benefit”) for that domain.
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Chapter 10

Sleep homeostasis in children
with focal epilepsy and
correlation with cognitive
measures

10.1 Abstract

Objective The global downregulation of synaptic strength by slow wave activity
in sleep is thought to be essential in maintaining the ability to learn. I aimed to
determine if sleep homeostasis is intact in children with focal epilepsy but without
epileptic encephalopathy, and whether its integrity correlates with intellectual ability.

Methods Retrospective EEG recordings from 16 children (aged 7-16 years) who
had undergone partial sleep deprivation during hospital admission were analysed.
Sleep homeostasis parameters were determined by visual sleep scoring as well as
the quantification of EEG slow wave activity (1-4Hz) using fast Fourier transform.
These were correlated with full scale IQ scores obtained from contemporaneous
neuropsychological test reports.

Results The proportion of time spent in slow wave sleep was significantly higher
in the sleep deprived night (p=0.01), and correlated with the degree of sleep depri-
vation (r=0.56, p=0.03). The average power density in the slow wave activity (SWA)
band was also higher on the sleep deprived night, though this did not reach sta-
tistical significance (p=0.06). Total SWA power (uV2·s) varied significantly across
NREM cycles both on the baseline (F=13.3, p<0.0001) and sleep deprived (F= 4.6,
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p=0.009) nights. A repeated measures ANOVA with NREM cycle and night (base-
line vs sleep deprived) as within-subject factors showed a significant main effect of
NREM cycle (F=6.9, p=0.01) but no significant interaction of NREM cycle by night
(F=0.3, p=0.9), and no significant main effect of night (F=0.8, p=0.4). The abso-
lute SWA power showed great interindividual variability, but was highly conserved
within individuals. I found no correlation of SWA power or dynamics with clinical
factors or IQ. The majority of patients did not show a monotonic decline in SWA
power density across the night; where seizures were recorded on the analysed
EEG, their occurrence was associated with an increase in SWA power density later
in the night.

Conclusion Sleep homeostasis is fundamentally intact in children with focal epilepsy
with a structural or presumed structural etiology, with a clear fall in SWA power den-
sity across the night, and evidence of upregulation of both time spent in SWS and
average SWA power density in response to acute sleep restriction. I did not show
a correlation with global intellectual function. The synaptic downregulation afforded
by sleep homeostasis may be utilised to address both the physiological and patho-
logical causes of synaptic potentiation in this group of children.

10.2 Introduction

Sleep homeostasis (see Section 3.3.2) is thought to maintain normal daytime cog-
nitive functioning through the global downregulation of synaptic strength over the
course of a night’s sleep (Tononi and Cirelli 2014). Apart from children with CSWS,
in whom recent data suggest sleep homeostasis may be impaired (Bölsterli et al.
2011, Bölsterli Heinzle et al. 2014), the integrity of sleep homeostasis in children
with epilepsy has not been examined, and its dynamics and relationship to cognitive
functioning are essentially unknown.

Sleep deprivation is a well-known activator of ictal and interictal discharges
(IEDs) in patients with epilepsy - yet the pathophysiological mechanisms remain
poorly understood (Dı́az-Negrillo 2013). The propensity to have seizures triggered
by sleep deprivation varies greatly between individual patients, and between dif-
ferent epilepsy syndromes (Foldvary-Schaefer and Grigg-Damberger 2006). This
variation in sensitivity to sleep manipulation suggests that patients with epilepsy
likely have a wide range of sleep homeostasis dynamics, with impairment poten-
tially contributing to both cognitive and seizure vulnerability. In healthy adults and
adolescents, acute sleep deprivation does not alter the fundamental dynamics of
homeostasis, but allows for enhanced observation of the build-up and decline of
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sleep pressure as measured by slow wave activity (SWA) (Rusterholz et al. 2010,
Jenni et al. 2005).

I aimed to investigate the integrity of sleep homeostasis and its relationship
with cognitive ability in a group of children with epilepsy of focal structural (or pre-
sumed structural) etiology who underwent sleep deprivation. I hypothesised that
sleep homeostasis would be fundamentally intact in this group without epileptic
encephalopathy; that is, SWA would build up during prolonged wakefulness and
decline during subsequent sleep. I hypothesised that there would be a positive cor-
relation between favourable sleep homeostasis dynamics - that is, slower build-up
and faster dissipation of SWA - and intellectual function.

10.3 Methods

10.3.1 Participants

I collected data retrospectively from 16 children with focal epilepsy. Two of these
had participated in the main study (see Chapter 11). Data retrieval and inclusion
criteria are described in Sections 9.1 and 9.2.

10.3.2 Sleep restriction

Patients were instructed to remain awake for at least 2 hours after their habitual
bedtime, and were awoken by a nurse the next morning at least 1 hour earlier than
their habitual wake-up time. This was usually carried out on the second night of the
admission, after medications had been reduced in the morning.

10.3.3 EEG records

Video EEG recordings had been acquired between June 2012 and January 2014;
these were parsed manually to exclude those containing daytime sleep episodes or
evidence of non-compliance with sleep-restriction. Two nights’ data were extracted
for each participant: the sleep-restricted night (SD), and a baseline night (BN). The
first night of admission was chosen as the baseline night, except in four patients in
whom sleep restriction occurred on the first night of admission. In these patients,
the third or fourth night was used as a baseline instead.

10.3.4 Intelligence scores

I used the full scale IQ as a measure of cognitive ability (see Section 9.3.1). In all
but one patient, neuropsychological testing was performed on the same admission
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as video EEG telemetry.

10.3.5 EEG data acquisition and sleep scoring

These are detailed in Section 9.5. All but two patients had EEG and ECG elec-
trodes only as this was a retrospective cohort. F9 and F10 were utilised as electro-
oculogram for the purposes of sleep scoring.

10.3.6 EEG quantitative analysis

After pre-processing (detailed in Section 9.5.4), the EEG data were subject to spec-
tral analysis offline using a fast Fourier transform (FFT) routine (Spike2, CED, UK).
FFT configuration was 4-second Hanning windows, resulting in a frequency reso-
lution of 0.25 Hz. The lowest four frequency bins (0.25 - 1 Hz) were not used for
further analysis due to their sensitivity to low frequency EEG artefacts. Slow wave
activity (SWA) was defined as power in the 1 - 4 Hz band. For further analysis, I
selected the frontal channel (F3-CpZ or F4-CpZ) contralateral to the seizure focus
as determined by semiology, imaging and video EEG (see Table 10.4.1).

To investigate SWA build-up, the mean power density (power/ 10 seconds) in
the 1 - 4Hz frequency band for the whole night was calculated for each of the sleep
deprived (SD) and baseline (BN) nights. Additionally, the mean power density up to
a time point to match the length of the sleep restricted night was calculated for each
baseline night - a truncated baseline night (BN-short) - in order to enable better
comparison with the sleep deprived night, given that patients had been awoken
early as part of the sleep deprivation protocol (Lassonde et al. 2016). The ratio of
mean power density in SD to that in BN-short was calculated as a crude indicator
of sleep need in lieu of the time constant of SWA build-up (Rusterholz et al. 2010;
see Section 3.3.2).

To examine SWA decline, I calculated the total SWA power in each NREM cycle
across the night for each recording. A median filter was applied with SWA av-
eraged every 180 seconds. The start and end times for each NREM cycle were
determined by a thresholding procedure as follows: for each patient, mean SWA
power in the first REM period (as defined by visual sleep scoring) was calculated,
and the threshold for NREM was set at 2 standard deviations above this value (Fig-
ure 10.3.1; see section 10.5.6). The area under the curve (delta power-time) was
calculated for each NREM cycle (Figure 10.3.1). Normalised SWA power was cal-
culated by dividing the SWA power in each NREM cycle by the average NREM
SWA power on the baseline night for each subject (Malow et al. 1998). These were
plotted for successive NREM cycles across each night to illustrate the variation in
patterns of SWA dynamics across the patient group.
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Figure 10.3.1: Calculation of SWA in each NREM cycle. A: Skyline plot of SWA
in each 10-second epoch, for the whole night. B: A median filter was applied with
SWA averaged every 180 seconds. NREM cycles were determined by applying
a threshold (red line) set 2 standard deviations above the mean SWA in the first
REM period for that patient (not shown). Four NREM cycles are identified in this
recording.

10.3.7 Statistical analysis

Paired sample t-tests were used to compare the mean polysomnographic param-
eters and whole-night average power densities between the baseline and sleep
restricted nights. Pearson’s r correlation coefficient was used to investigate the as-
sociation between whole-night average power densities on the baseline and sleep-
deprived nights, and to investigate the relationship between the degree of sleep
restriction (percentage reduction in total sleep time) and the precentage increase
in SWA power density.

Trends in SWA power and power density across consecutive NREM periods
were tested with repeated measures analysis of variance (ANOVA). Pearson’s r
correlation coefficient was used to test for a correlation of IQ with the percentage
change in whole-night SWA power density.

10.4 Results

10.4.1 Participant characteristics

The clinical characteristics of the patient sample are summarised in Table 10.4.1.
All patients had focal epilepsy with a structural or presumed structural cause and
were admitted for pre-surgical evaluation.
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10.4.2 Diagnostic interventions and clinical events

Of those on medication, 14 (88%) had this reduced or stopped. All patients under-
went sleep restriction, though compliance was variable. I recorded the degree of
sleep restriction for each patient as the percentage reduction in sleep time using
the baseline night as the reference. On average, the sleep restricted night was 36%
(standard deviation +/- 13%) shorter than the baseline night. Eight patients (50%)
had no seizures during their admission, five patients (31%) had seizures following
sleep deprivation, three (19%) had seizures both before and after sleep deprivation
and one (6%) had a seizure before sleep derivation. Three records on the baseline
night contained seizures while three records on the sleep restricted night contained
seizures.

10.4.3 Sleep architecture

A comparison of sleep architecture on the baseline and sleep restricted nights is
summarised in Table 10.4.2. At the group level, the proportion of time spent in N3
(equivalent to slow wave sleep) increased significantly (p=0.01) with sleep depri-
vation, while that in N2 decreased (p=0.02), suggesting that sleep was deeper on
the sleep restricted night. There was a linear correlation between the percentage
reduction in total sleep time and the percentage of total sleep time spent in N3
(R=0.56, p=0.03). The proportions of total sleep time spent in N1, N2, N3 and REM
on the baseline night were consistent with normative values for age (Scholle et al.
2011).

Baseline night Sleep restricted night p
TST (mins) 560 (+/- 65) 360 (+/- 87) <0.001
N1 (% TST) 5.7 (+/- 3.5) 6.9 (+/- 3.5) 0.3
N2 (% TST) 33.8 (+/- 11.1) 26.2 (+/- 10.6) 0.02
N3 (% TST) 34.9 (+/- 13.6) 44.5 (+/- 12.9) 0.01

REM (% TST) 25.7 (+/- 7.6) 22.4 (+/- 8.5) 0.1

Table 10.4.2: Comparison of sleep architecture on the baseline and sleep restricted
nights. All quantities are presented as mean (+/- standard deviation). TST = total
sleep time. p values were derived from paired sample t-tests; non-parametric tests
gave similar results.

10.4.4 SWA power density across the whole night

Mean SWA power density across the two nights was closely correlated within indi-
viduals (r=0.9, p<0.001), but showed a large variation between individuals (Figure
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10.4.1). SWA power density was higher on the sleep restricted night compared
to either the whole (p=0.055) or the truncated (p=0.1) baseline night, but this did
not reach statistical significance. The ratio of SWA power density in the sleep re-
stricted night to that in the truncated baseline night was >1 in 10 patients, but <1 in
6 patients. A higher percentage reduction in TST tended to correlate with a greater
percentage increase in SWA (r=0.4, p=0.1).

Figure 10.4.1: Mean SWA per 10-second epoch in NREM sleep across the whole
night (uV2·s/10 sec). BN = baseline night; SDN = sleep restricted night

10.4.5 Slow wave activity across NREM cycles

Total SWA power (uV2·s) varied significantly across NREM cycles both on the
baseline (F=13.3, p<0.0001) and sleep deprived (F= 4.6, p=0.009) nights. A re-
peated measures ANOVA with NREM cycle and night (baseline vs sleep deprived)
as within-subject factors showed a significant main effect of NREM cycle (F=6.9,
p=0.01) but no significant interaction of NREM cycle by night (F=0.3, p=0.9), and no
significant main effect of night (F=0.8, p=0.4). The normalised SWA power across
the first four NREM cycles is plotted for each patient in Figure 10.4.3). Interestingly,
most patients (11/16 on the baseline line and 9/16 on the sleep restricted night) did
not show a monotonic decline - that is, the relative SWA power density increased
between subsequent NREM cycles - even though there was an overall decrease
from the first to the last cycle.
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Figure 10.4.2: Mean SWA power (uV2·s) during successive NREM cycles
(“NREMP”) for the first 4 cycles on the baseline and sleep restricted nights. Er-
ror bars show 95% confidence intervals.
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Figure 10.4.3: Normalised SWA power across the first four NREM cycles (x-axis:
NREM cycle; y-axis: normalised SWA power) on the baseline and sleep restricted
nights for each patient. Note that most patients did not show a monotonic decline
in SWA power across successive NREM cycles, though the overall pattern was
one of decline over the course of the whole night. Patient 14 had 30 times mean
normalised SWA power in the first NREM cycle and 34.3 times in the second NREM
cycle on the sleep restricted night. Patients 5 and 16 had seizures during the sleep
restricted night while Patient 14 had a seizure during the baseline night.

Raw FFT and median filtered data are shown in Figure (10.4.4), illustrating the
decline in SWA power across the night in all subjects for both nights, as well as the
variation in dynamics.

10.4.6 Relationship of sleep homeostasis to cognitive and clinical
factors

The baseline whole-night SWA power density was not correlated with age (p=0.4)
or IQ (=0.4). There was no correlation between the increase in SWA power density
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with sleep restriction and IQ (r=0.01, p=1). Controlling for the degree of sleep
restriction (percentage change in TST) did not change this result (r=0.08, p=0.8).
There was no correlation between age of onset of seizures and increase in SWA
power density with sleep restriction (p=0.9). In two of the three recordings which
included seizures (Patient 14 on the baseline night and Patient 16 on the sleep
deprived night), a late increase in SWA power density (in NREM cycles 3 and 4
respectively) was seen (Figure 10.4.3). However on the third recording (Patient 5
on the sleep deprived night) there was a monotonic decline in SWA power.

10.5 Discussion

In this study, I used paired baseline and sleep deprived overnight EEG recordings
to examine the integrity of sleep homeostasis in children with focal epilepsy. I found
that sleep homeostasis was fundamentally intact in these children: more prolonged
wakefulness was associated with a greater increase in both the proportion of sleep
time spent in slow wave sleep and the SWA power density. There was a clear de-
cline in SWA across successive NREM cycles across the night, though this decline
was not monotonic in the majority of patients. I did not find a correlation between
SWA dynamics and IQ. The visual sleep scoring results provided further validation
of our modified scoring criteria.

10.5.1 Changes in SWA between nights

The ability to compensate for sleep loss is present from the neonatal period, though
this ability continues to develop throughout childhood (see Section 3.4.4). New-
borns are able to respond to NREM sleep deprivation by increasing the time - both
absolute and as a proportion of total sleep time - spent in quiet sleep(QS, or NREM)
during the recovery period (Anders and Roffwarg 1973). While there are no pub-
lished studies of sleep deprivation in children aged between 8 days and 30 months,
data from the power spectral analysis of overnight EEG in infants aged beween 2
weeks and 9 months suggest that SWA dissipation does not increase in response
to sleep pressure in this age group (Jenni et al. 2004, a). By 30-36 months of
age however, an increase in SWA power density in reponse to sleep deprivation
can be demonstrated (Lassonde et al. 2016), occurring together with an increase
in SWS, both absolute and as a proportion of TST (Lassonde et al. 2016). In my
cohort, I found an increase in SWS duration with sleep deprivation, and were able
to demonstrate a linear correlation with TST restriction, providing evidence that this
aspect of sleep homeostasis is intact in children with focal epilepsy. However, the
increase in SWA power density with sleep deprivation did not reach statistical sig-
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nificance, nor did the correlation of this with TST. This dissociation could reflect a
degree of impairment in sleep homeostasis in children with focal epilepsy, with the
more primitive mechanism better conserved.

Another possible explanation is that SWA power density may be more sensitive
than SWS duration to other clinical factors - such as acute medication changes,
recent seizures (Boly et al. 2017), interictal discharges (Bölsterli et al. 2011) or
a background of chronic sleep deprivation (Clasadonte et al. 2014) - than SWS
duration. That is, the regulation of SWA power density in this group may be wholly
intact, but may be responding here to factors other than acute sleep pressure.

10.5.2 Changes in SWA across the night

I showed that SWA power density declined across the night, suggesting fundamen-
tally intact synaptic homeostasis. However, the majority of this cohort did not show
a monotonic decline in SWA, as would be expected in both adults (Borbély and
Achermann 1999) and adolescents (Campbell et al. 2011). Examining individual
patients in whom seizures were apparent from the analysed EEG recordings sug-
gests that there may be an association between seizures early in the night, and an
increase in SWA power density in the latter part. This has been described in adult
patients with nocturnal frontal lobe epilepsy (Parrino et al. 2012). Indeed, the two
patients who demonstrated this phenomenon had lesion-negative epilepsy with a
frontal lobe focus, whereas the patient who had a seizure overnight but still showed
a monotonic decline in SWA power density had temporal lobe epilepsy.

10.5.3 Correlation with intellectual function

The purported role of slow oscillations in memory consolidation (see Section 5.2.1)
suggests that there may be some cognitive impact of their dysregulation. How-
ever, I found no correlation between IQ and my measures of sleep homeostasis.
The correlation of sleep homeostasis with intelligence has not been previously ex-
amined, however a positive correlation between sleep spindle density and IQ has
been described in healthy individuals (Bódizs et al. 2005, Geiger et al. 2011). Boly
et al (2017) recently described a negative correlation between spindle density and
IQ in 14 adults with focal epilepsy. However, it is likely that the full scale IQ is not
a sufficiently sensitive measure to detect the cognitive effects of impaired sleep
homeostasis.
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10.5.4 Inter- and intra-individual variation in SWA

I found a large range of absolute SWA power density values in this sample, consis-
tent with the findings of studies in healthy adults (Achermann et al. 1993, Ruster-
holz et al. 2010) and adolescents (Jenni et al. 2005, Jenni and Carskadon 2004,
b). This large interidividual variation would have masked any trends in relation to
age (Campbell et al. 2011) and likely IQ. However, within individuals, the absolute
values were consistent from night to night, as in healthy adult subjects, in whom the
quantitative and topological characteristics of overnight SWA power density have
been described as trait-like (Finelli et al. 2001).

10.5.5 Sleep architecture

Though delineating the sleep architecture of my patient cohort was not the primary
aim of this study, the size and age range of my sample compares favourably with
published studies of sleep architecture in children with epilepsy (Nunes et al. 2003,
Maganti et al. 2005, Carotenuto et al. 2014). My findings suggest that this group of
children with focal epilepsy with a structural aetiology have normal sleep architec-
ture for age. Our scoring criteria (Chapter 7) allow this to be captured despite the
occurrence of nocturnal seizures.

10.5.6 Limitations

The major limitations of this study were its retrospective design and the lack of
data from healthy controls. The retrospective nature of this study meant that I
could not standardise the sleep restriction procedure. Perhaps more significantly, it
was not possible to ascertain if the baseline night was a fair representation of the
patient’s usual sleep. In particular, acute sleep deprivation just prior to the hospital
admission could not be ruled out. I could not control for effects of acute medication
withdrawal, as this tended to occur at the same time as sleep restriction, that is,
during the period of extended wakefulness. However, the majority (12/16) of the
patients were not on medications known to have a large impact on sleep structure
(see Section 4.5).

In lieu of control data, I compared my measurements to published data to gauge
their validity. Jenni et al (Jenni et al. 2005, Jenni and Carskadon 2004) studied a to-
tal of 29 adolescents: 16 in a cross-sectional study comparing Tanner 1 with Tanner
5 adolescents at baseline, and 13 under conditions of sleep deprivation. A longitu-
dinal study (Campbell et al. 2011) examined 67 children aged between 9 and 18,
but used a linear model, with the aim of documenting age-related changes in SWA
power rather than the dynamics of SWA build-up and decline. Sleep deprivation
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was not applied. My measures of SWA power density and total SWA power in 12
of the 16 patients fell within the general range of values cited in these studies.

Control data would also have allowed for the validation of my method of NREM
cycle definition. Ideally, the visual sleep scoring data would have been fully in-
tegrated into the thresholding procedure, and the established criteria of Feinberg
(1979), with modifications by Jenni (2005) applied. I was however limited by a lack
of technical expertise - this will be addressed in further work. With the present
method, the accidental splitting of the first NREM cycle into two may have ac-
counted for some of the non-monotonic declines in SWA power. However the whole
night average SWA power densities would not have been affected by this method-
ological limitation.

Lastly, I did not model my data to the exponential functions of SWA build-up and
decline (Jenni et al. 2005, Rusterholz et al. 2010). However, my chosen measures
of sleep homeostasis are established in the sleep literature (Campbell et al. 2011,
Lassonde et al. 2016, Malow et al. 1997).

10.5.7 Conclusion and further work

I have demonstrated that sleep homeostasis is fundamentally intact in children with
focal epilepsies with a structural or presumed structural cause - there is a clear
fall in SWA power density across the night, and evidence of upregulation of both
time spent in SWS and average SWA power density in response to acute sleep
restriction. I have shown that the SWA power density profile in these children shows
a high interindividual variation that is conserved between nights, as it is in healthy
individuals. The majority of my patients did not show a monotonic decline in SWA
power across NREM cycles, and this may be related to the occurrence of seizures
early in the night. I did not show a correlation with intellectual function.

Both learning (Ji and Wilson 2007; Whitlock et al. 2006) and epileptiform activity
(Staley and Dudek 2006) cause an increase in synaptic strength in animal models.
There is evidence from human data that slow wave sleep may facilitate the replay of
both physiological (Peigneux et al. 2004) and epileptic (Bower et al. 2015) neuronal
firing sequences. Taken together, these data suggest that in a system with intact
sleep homeostasis, the physiological and pathological neuronal assemblies would
compete for long-term potentiation, perhaps accounting for some of the cognitive
impairments seen in patients with epilepsy. However, this hypothesis has not been
tested directly.

Utilising the EEG and behavioural data collected for Chapter 11, future work will
aim to correlate the magnitude of sleep-related benefit to memory consolidation
with the time constants of SWA power build-up and decline. I would also aim to
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characterise the topology of SWA power and relate this to the epileptogenic focus.
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Figure 10.4.4: Juxtaposition of the SWA profiles for the baseline (red) and sleep
restricted (blue) nights in each subject. Top row, left to right: patients 1 to 4; second
row: patients 5-8; third row: patients 9-12; fourth row: patients 13 - 16. Axes are
similar those in Figure 10.3.1, however the scales vary between patients.



Chapter 11

Sleep-related memory
consolidation in children with
focal epilepsy

11.1 Abstract

Objective Sleep benefits memory consolidation in healthy individuals, but it is
uncertain if this is also true in patients with epilepsy. I aimed to determine the con-
tribution of sleep to memory consolidation in children with focal epilepsy, comparing
it to that in healthy controls, and correlating the magnitude of the sleep-associated
benefit (or deficit) with clinical chracteristics.

Methods I performed a within-subject comparison of memory retention across in-
tervals of wake or overnight sleep. Healthy children (n=21, 6-16 years, 12 females)
and children with focal epilepsy (n=22, 6-16 years, 9 females) performed verbal and
visuospatial memory tasks under each condition. Sleep was assessed with EEG
polysomnography during the overnight interval. Interictal discharges were quanti-
fied manually.

Results Memory retention was greater in the sleep condition in both the ver-
bal [F(1,39)=10.8, p=0.002, Cohen’s d=0.67] and the visuospatial [F(1,36)=4.23,
p=0.05, Cohen’s d=0.40] tasks, with no significant interaction of group by condi-
tion in either task. Across the total sample, gain in memory retention with sleep in
the verbal task correlated with duration of slow wave sleep (r=0.4, p=0.01). In pa-
tients, sleep-dependent memory consolidation was negatively correlated with inter-
ictal discharge rate in both the verbal (Rho=-0.49, p=0.04) and visuospatial (Rho=-
0.45, p=0.08) tasks. On post-hoc analysis, a longer history of epilepsy (r=0.53,

105
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p=0.01) and a temporal [t[10]=1.8, p=0.1, Cohen’s d=0.86] rather than an extra-
temporal seizure focus [t(10)=0.8, p=0.4, Cohen’s d=0.30] were associated with
greater contribution of sleep to verbal memory retention.

Significance I have demonstrated that memory consolidation in children with fo-
cal epilepsy benefits from sleep, showing the same correlation with slow wave sleep
as in healthy children, but an inverse relationship with the interictal discharge load
during sleep. This mechanism appears to be increasingly recruited with longer du-
ration of illness, indicating a resilient homeostatic function which may be harnessed
to aid learning.

11.2 Introduction

The mechanisms underlying the development of cognitive impairments in children
with epilepsy are poorly understood, though it has been proposed that sleep disrup-
tion and epileptic activity during sleep may be significant contributors (see Section
2.6). Sleep benefits memory consolidation in healthy individuals (see Section 5.3),
with slow wave sleep contributing particularly to the consolidation of declarative
memory. Thus it might be expected that the disruption of this process by epilepti-
form activity may be one way in which cognitive deficits accrue.

In this chapter, I compared a group of children with focal epilepsies of structural
or presumed structural etiology to an age-matched group of healthy children. I
examined the gain in items recalled with sleep and the association of this with
sleep parameters and clinical characteristics, using a within-subject comparison of
memory retention over intervals with and without sleep. Specifically, I hypothesized
that the children with epilepsy would show impaired memory consolidation with
sleep, and that impairment would correlate i) inversely with the amount of slow
wave sleep and ii) positively with the amount of interictal discharges in sleep.

11.3 Methods

11.3.1 Participants

I collected data on 22 children with focal epilepsy (6-16 years) and 21 healthy chil-
dren (6-16 years) recruited prospectively to take part in this study. Inclusion criteria
are detailed in Section 9.1.

Over a period of 18 months, I approached 40 consecutive inpatients at the EEG
video-telemetry unit at Great Ormond Street Hospital (GOSH) or Young Epilepsy.
Twelve declined to participate. Of the 28 who consented, three were discharged
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home before they could complete the study protocol, one withdrew, and two were
unavailable to perform the tasks during the time window for testing. Additionally, one
participant was found not to have epilepsy, and was excluded from the analysis. No
apnoeas or desaturations were detected in patients apart from those associated
with seizures.

23 healthy children consented to take part in the study; one did not complete
the study protocol. One child showed evidence of sleep disordered breathing on
polysomnography and was excluded from the analysis. Only one control participant
was the sibling of a patient.

11.3.2 Clinical assessment

This is described in Section 9.2.

11.3.3 Intelligence scores and parental questionnaires

For all but one patient, I obtained full scale IQ scores on the Wecshler Intelligence
Scale for Children version 4 (Pearson, USA) from recent neuropsychological re-
ports. The assessments had been performed as part of evaluation for epilepsy
surgery. I administered the two-subtest version of the Wechsler Abbreviated Scale
of Intelligence (Pearson, USA) to all control subjects during their participation in the
study. For each participant, the Children’s Sleep Habits Questionnaire (CSHQ) and
Strengths and Difficulties Questionnaire (SDQ) were completed by a parent. For
those recruited after February 2014, parents also completed the Everyday Memory
Questionnaire. For details on these assessments and questionnaires see Section
9.4.

11.3.4 Experimental design

We performed a within-subject comparison of memory retention across similar
length intervals with or without sleep (Figure 11.3.1). Each participant was tested
on two occasions - once under each of the ‘sleep’ and ‘wake’ conditions. For each
condition, participants performed parallel versions of a verbal and a visuospatial
memory task. The order of task versions and order of conditions were randomised
separately, using a block design for each. For each participant, the sleep and wake
conditions were separated by at least 24 hours.

For the overnight (”sleep”) condition, material was learned in the early evening
(between 5:00 and 6:00pm), after preparation for polysomnographic recording. Par-
ticipants went to bed at their habitual time, apart from patients who underwent sleep
restriction for diagnostic purposes (n=6), who stayed up 2 to 3 hours later than
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usual. The next morning, participants were awakened at their usual time. Testing
took place an hour later. The interval between learning and testing was approx-
imately 15 hours (15.3+/-1.2). For the daytime (”wake”) condition, learning took
place in the morning an hour after awakening, and testing in the evening, at an ap-
proximately 8 hour (8.4+/-1.1) interval. Parents kept a record of the child’s activities
through the day.

Figure 11.3.1: Study design. Each participant performed a verbal and a visuospa-
tial task under both ”wake” (top) and ”sleep” (bottom) conditions, with the order of
conditions balanced across participants.

11.3.5 Memory tasks

The stimulus material, testing procedures and scoring for the memory tasks were
as detailed in Section 9.6.

11.3.6 EEG and polysomnography, sleep scoring and quantification
of interictal discharges

These are detailed in Section 9.5.

11.3.7 Statistical analyses

Independent sample t-tests were used to compare descriptive data between pa-
tients and controls. Pearson’s r correlation coefficient was used to investigate the
relationship between FSIQ, and parent-rated measures of sleep, behaviour and
memory.
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A repeated measures ANOVA was used to investigate the effect of sleep on
memory retention for each task, with Condition (sleep or wake) as the within-subject
factor and Group (patient or control) as the between-subjects factor. Paired sample
t-tests were used for post-hoc comparisons between the sleep and wake conditions
for controls and patients respectively. The same statistical tests were employed for
patient subgroup analyses.

Pearson’s r correlation coefficient was used to investigate the association of
gain in performance with sleep between the two memory tasks, and the relation be-
tween sleep architecture parameters and gain in memory performance with sleep.
Independent two-group t-tests (Welch) were used to compare sleep architecture
parameters.

The association between memory scores and clinical factors in the patient group
was examined with Pearson’s r correlation coefficient. The relationship between
memory consolidation and interictal discharge count was investigated with Spear-
man’s Rho, because the distribution of counts remained positively skewed after log
transformation. Log transformation was performed using the formula y=log10(x+1),
due to the number of patients (n=4) with zero discharges.

11.3.8 Power calculation

I anticipated an effect size of group and condition on memory score at least equal
to the standard deviation, as had been found in studies of sleep-dependent mem-
ory consolidation in healthy school-aged children (Wilhelm et al. 2008, Voderholzer
et al. 2011). With a two-sided significance of 0.05 and a power of 0.8, this required
a minimum sample size of 16 for each group.

11.4 Results

11.4.1 Participant characteristics

Demographic, neuropsychological and questionnaire data for the patients and con-
trols are summarised in Table 11.4.1. Patients had significantly lower intelligence,
and worse parent-rated sleep, behaviour and everyday memory than controls. Twenty
(20/22) patients met the recommended cut-off on the CSHQ for a sleep clinic refer-
ral, while 12/22 had borderline or high scores on the SDQ, indicating behavioural
concerns. CSHQ and SDQ scores were highly correlated in patients (p<0.001)
but not controls (p=0.6). CSHQ and EMQ scores were also correlated in patients
(p=0.009) but not controls (p=0.3). EMQ and SDQ scores were correlated in both
patients and controls (p<0.03), with a stronger correlation in the latter. None of the
questionnaire scores was significantly correlated to FSIQ.



110 CHAPTER 11. SLEEP AND MEMORY IN EPILEPSY

Patients (n=22) Controls (n=21) p
Age (years; mean +/-SD) 11.5 (+/-3.0) 10.6(+/-2.8) 0.3

Sex (females, males) 8,14 12,9 0.2
FSIQ (mean +/-SD) 88.4(+/-11.3) 115.3(+/-12.9) <0.001

Years maternal education 14 (+/- 1.9) 16.7 (+/- 2.6) 0.004
CSHQ (mean +/-SD) 49.6 (+/-9.6) 37.4(+/-3.8) <0.001
SDQ (mean +/-SD) 18.4 (+/-8.4) 5.3 (+/-4.1) <0.001
EMQ (mean +/-SD) 129.1 (+/-43.9) [n=14] 54.4 (+/-23.3) [n=16] <0.001

Right handed 19 (86%) 19 (90%) 1

Table 11.4.1: Participant characteristics. SD = standard deviation; FSIQ = full scale
intelligence quotient; CSHQ = Children’s Sleep Habits Questionnaire total score;
SDQ = Strengths and Difficulties Questionnaire Difficulties score; EMQ = Everyday
Memory Questionnaire total score. p values are derived from independent sample
t-tests.

Clinical characteristics of the patients are summarised in Table 11.4.2. Loca-
tions of the predominant focal interictal discharges for each patient are summarised
in Table 11.4.3. Twenty patients (20/22) were admitted for pre-surgical evaluation.
One of these underwent invasive EEG monitoring. The remaining two patients
(2/22) were admitted to guide the management of their seizures. Demographics
and epilepsy characteristics of those who declined to take part were similar to those
of the participants.
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Epilepsy characteristics
Age of epilepsy onset (mean +/- SD) 5.3 years (+/-4.1)
Duration of epilepsy (mean +/- SD) 6.1 years (+/-2.8)

MRI findings

no lesion 7 (32%)
Focal cortical dysplasia 7 (32%)

Mesial temporal sclerosis 2 (9%)
Low grade tumour 2 (9%)

Other lesion 4 (18%)

Seizure frequency

Daily 5 (22%)
Weekly 9 (41%)
Monthly 3 (14%)

<1 per month 5 (23%)

Seizure localisation

Frontal 3 (13%)
Temporal 6 (27%)

Fronto-temporal 5 (23%)
Central 1 (5%)
Parietal 1 (5%)

Undetermined 6 (27%)

Number of anti-epileptic drugs

0 2 (9%)
1 10 (45%)
2 7 (32%)
3 3 (14%)

Type of anti-epileptic drug

Levetiracetam 8 (36%)
Sodium valproate 7 (32%)
Carbamazepine 6 (27%)

Lamotrigine 4 (18%)
Clobazam 3 (14%)

Oxcarbazepine 2 (9%)
Topiramate 2 (9%)
Lacosamide 1 (5%)

Table 11.4.2: Clinical characteristics of the patient sample. Seizures were later-
alised and localised by semiology, imaging and video EEG. Figures for anti-epileptic
drugs used do not add up to 100% due to polypharmacy.

11.4.2 Diagnostic interventions and clinical events

Of those on medication, 16(72%) had this reduced or stopped. Twelve (54%) pa-
tients underwent sleep restriction at some point during the study period, half of
these during the overnight study condition. Five patients (23%) had seizures dur-
ing the overnight memory retention interval, and 2 (9%) during the daytime interval.
Nine patients (41%) had no seizures during the study period. Four patients (18%)
did not contribute data to the sleep architecture or interictal discharge rate anal-
yses; three of these had their EEG electrodes removed (2 for MRI, one for early
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discharge) before testing could be completed, while one underwent invasive EEG
monitoring and did not have adequate surface electrode data for analysis. One con-
trol (5%) did not contribute data to the sleep architecture analysis due to technical
problems with the EEG data acquisition.

11.4.3 Testing schedule

Due to dropouts subsequent to randomisation, of those who completed the study,
nine patients were tested under the Wake condition first, while 13 were tested under
the Sleep condition first. The day of testing under each condition for each patient
relative to admission is detailed in Table 11.4.3. One patient (Patient 10) was dis-
charged home early and returned to the hospital on a separate occasion 3 weeks
later for testing under the Wake condition. The patient who underwent invasive
EEG monitoring (Patient 16) was tested 4 days (Sleep condition) and 6 days (Wake
condition) after implantation respectively. Neither of these patients underwent med-
ication reduction or sleep deprivation. For the remaining 20 patients, the average
time from admission to be tested under each condition was night 2(+/-1) for the
Sleep condition and day 3(+/-1) for the Wake condition.

11.4.4 Sleep architecture

Sleep architecture during the sleep condition memory retention interval is sum-
marised in Table 11.4.4. Patients slept less than controls (t[30]=3.4, p=0.002), but
spent similar amounts of time in light sleep (N1 and N2; p>0.6), with the deficit
occurring instead in N3 (t[37]=2.1, p=0.04) and REM (t[37]=4.2, p<0.001). In the
control sample, there was a strong inverse correlation between age and amount of
time spent in N3 (r=-0.60, p=0.007), but this was not observed in the patient sam-
ple (r=-0.18, p=0.43). Therefore the analysis of sleep macroarchitecture suggests
patients experienced more disrupted sleep during the sleep condition memory re-
tention interval than controls.
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Patient no. IED location Sleep Wake
1* F7, F3 4 3
2 O1 3 2
3 F4 2 4
4 P8 2 4
5 C6, P8 4 3
6* F4, F3 1 3
7 F4, F8 3 2
8 F7, F9, T7 1 3
9 F4, F8 1 2

10 C5, C6 2 23
11 F9, F7, T9 3 2
12 P8, P4 1 3
13 F4, C4 2 4
14 T7, T9 1 3
15 F8, F10 2 4
16* RAD1, LHD1 5 7
17 F4 1 3
18 T7, F9 3 2
19 F4 1 3
20 Fz, F3 4 2
21* C3 4 2
22 F3, C3 4 2

Table 11.4.3: Locations of the predominant focal interictal discharges for each pa-
tient, and time of testing (number of days after admission) for the Sleep and Wake
conditions. Patients who did not contribute data to the interictal discharge rate anal-
ysis are marked with an asterisk ‘*’. RAD = right amygdala depth electrode, LHD =
left hippocampal depth electrode.

Patients (n=18) Controls (n=20) p
TST 477 (+/-104) 566 (+/-51) 0.002

WASO 24 (+/- 19) 28 (+/-34) 0.7
N1 34 (+/- 17) 36 (+/-19) 0.6
N2 192 (+/-80) 178 (+/-47) 0.6
N3 162 (+/-56) 205 (+/-60) 0.04

REM 88(+/-45) 147 (+/-34) <0.001

Table 11.4.4: Sleep architecture during overnight memory retention interval. All
quantities are in minutes and presented as mean (+/- standard deviation). TST =
total sleep time; WASO = wake after sleep onset; N1, N2, N3 = deepening stages
of NREM sleep; N3 is equivalent to slow wave sleep. REM= rapid eye movement
sleep. WASO includes nocturnal seizures (n=5 Patients). Independent sample t-
tests (Welch) were used to compare parameters between patients and controls.
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11.4.5 Learning performance and raw test scores

Patients achieved similar criterion scores to controls (p>0.2) where they had un-
dergone a greater number of learning trials (p<0.001), but lower criterion scores
than controls (p ranging from 0.007 to 0.06) if the number of trials had been similar
(p>0.2). The raw test scores were significantly lower in patients than in controls
(p</=0.04) for both conditions in the verbal task, and for the wake condition in the
visuospatial task, but was similar to that in controls for the sleep condition in the
visuospatial task (p=0.3) (Table 11.4.5). These findings indicate that patients found
the tasks more difficult than controls, and emphasise the need for a within-subject
design in order to detect the contribution of sleep to memory consolidation.

Control (n=21) Patient (n=22) p

Verbal task

Sleep condition
Criterion score 75 (+/- 11) 72 (+/- 9) 0.2
Raw test score 83 (+/-10) 74 (+/-16) 0.04

Trials 1(1-2) 2(1-3) <0.001

Wake condition
Criterion score 79(+/-10) 66(+/-18) 0.007
Raw test score 78(+/-12) 62(+/-21) 0.003

Trials 2(1-2) 2(1-3) 0.2

Visuospatial task

Sleep condition
Criterion score 55(+/-14) 46(+/-17) 0.06
Raw test score 46(+/-20) 40(+/-18) 0.3

Trials 3(1-5) 3(1-5) 0.2

Wake condition
Criterion score 57(+/-14) 46(+/-19) 0.03
Raw test score 45(+/-14) 30(+/-19) 0.007

Trials 3(1-5) 3(1-5) 0.8

Table 11.4.5: Learning performance in controls and patients. Scores are expressed
as mean % items correctly recalled (+/- standard deviation). Trials are expressed as
median (range). P values are from independent sample t-tests (Welch) comparing
the two groups.

11.4.6 Memory task performance

Verbal task

Memory retention was greater in the sleep condition [F(1,39)=10.8, p=0.002; Co-
hen’s d=0.67], with no significant interaction of condition by group [F=0.03, p=0.9],
and no significant main effect of group [F=2.1, p=0.1] (Figure 11.4.1). Co-varying
for differences in baseline task performance did not alter the result. In separate
pairwise comparisons between the sleep and wake conditions for each group, both
controls (t[20]=3.0,p=0.008; Cohen’s d=0.76) and patients (t[21]=2.0, p=0.06; Co-
hen’s d=0.61 ) remembered more word pairs in the sleep condition. The mean gain
in recall with sleep was 8.3% in controls and 7.5% in patients; on an independent
samples T-test, this did not differ between the groups (p>0.8, Cohen’s d=0.05). The
patient with the largest decrease in memory retention with sleep (Figure 11.4.1)
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(Patient 8 in Table 11.4.3) had a high overnight interictal discharge count, consis-
tent with later findings in the correlation analysis.

Figure 11.4.1: Memory task performance. Memory retention scores, calculated as
the percentage difference in items recalled at testing compared to criterion. The
Wake and Sleep condition scores for individual participants on each task are con-
nected to show the change in recall with sleep. In the verbal task (top), mem-
ory retention was greater in the sleep condition [F(1,39)=10.8, p=0.002; Cohen’s
d=0.67], with no significant interaction of condition by group [F=0.03, p=0.9], and
no significant main effect of group [F=2.1, p=0.1]. In the visuospatial task (bot-
tom), memory retention was greater in the sleep condition [F(1,36)=4.23, p=0.05,
Cohen’s d=0.40], with no significant interaction of condition by group [F=0.6, p=0.4].

Visuospatial task

Two patients were unable to co-operate on the visuospatial task due to inattention.
One patient completed testing on the verbal task over the telephone following hos-
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pital discharge, but this was not possible for the visuospatial task. Memory retention
was greater in the sleep condition [F(1,36)=4.23, p=0.05, Cohen’s d=0.40]. There
was no significant interaction of condition by group [F=0.6, p=0.4] (Fig 11.4.1). In
separate pairwise comparisons between the sleep and wake conditions for each
group, patients remembered significantly more object locations in the sleep con-
dition (t[18]=2.3, p=0.03; Cohen’s d=0.65) but controls did not (t[20]=0.79, p=0.4;
Cohen’s d = 0.22). The mean gain in recall with sleep was 9.2% in patients and
4.0% in controls, and this was not different between the groups (p>0.4, Cohen’s
d=0.25).

General findings and interim conclusion

The gain in memory retention with sleep was correlated for the two tasks in the
patient group (R=0.53, p=0.02) but not the control group.

Thus we found that patients did not show impaired memory consolidation with
sleep compared to controls. The magnitude of benefit from sleep was similar to that
in controls for the verbal task and greater than that in controls for the visuospatial
task.

11.4.7 Relationship of memory consolidation to slow wave sleep du-
ration

Across the total sample, the gain in memory retention with sleep in the verbal task
correlated with time spent in slow wave sleep (r=0.40, p=0.01)(Figure 11.4.2). This
correlation remained after controlling for age (r=0.4, p=0.03). Analysing the con-
trol and patient groups separately yielded the same correlation, but not reaching
statistical significance (r=0.4, p=0.07 in controls; r=0.4, p=0.1 in patients).
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Figure 11.4.2: Sleep benefit and time spent in N3. Across the total sample, the gain
in memory retention with sleep (i.e. sleep condition memory score - wake condition
memory score) for the verbal task correlated with time spent in N3 (p=0.01). This
correlation remained after controlling for age (p=0.03).

11.4.8 Effect of epilepsy

Interictal epileptiform discharges in sleep

Four patients had no interictal discharges overnight during the sleep condition
memory retention interval, six had only focal or unilateral discharges (3 left; 3 right),
and eight had bilaterally independent or generalised discharges. Specific locations
of IEDs for each patient are detailed in Table 2. Those with bilateral discharges
tended to have higher IED loads than those with unilateral discharges only (t[9]=1.5,
p=0.2, Cohen’s d=0.76) (Figure 11.4.3). The log transformed interictal discharge
rate in sleep was negatively correlated to sleep-related memory consolidation in
the verbal task (Rho= -0.49, p=0.037)(Figure 11.4.3A), but this correlation did not
reach significance in the visuospatial task (Rho=-0.45, p=0.08)(Figure 11.4.3B).
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Figure 11.4.3: Effect of interictal discharges on sleep benefit. In the verbal task
(A), a higher rate of interictal discharges was associated with lesser gain in mem-
ory retention with sleep (p=0.04). In the visuospatial task (B) this correlation did
not reach significance (p=0.08). Sleep benefit was calculated as the difference be-
tween the sleep and wake condition memory retention scores – this was positive if
the patient remembered more items in the sleep condition. SWI= spike wake index;
transformation used = log10(1+x).

Length of illness

In the verbal task, a longer duration of epilepsy was associated with poorer mem-
ory retention in the wake condition (r=-0.61, p=0.003), but not the sleep condition
(r=0.13, p=0.5)(Figure 11.4.4A). Therefore, for the verbal task, the contribution of
sleep to memory consolidation increased with duration of epilepsy (r=0.53, p=0.01).
In the visuospatial task, longer duration of epilepsy was associated with poorer
memory retention under the wake condition (r=-0.58, p=0.009), with a trend toward
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poorer memory retention in the sleep condition (r=-0.43, p=0.07) (Figure 11.4.4B).
Thus the contribution of sleep to memory consolidation in the visuospatial task also
increased with duration of epilepsy, but this did not reach statistical significance
(r=0.28, p=0.2, corrected p=0.8).

Figure 11.4.4: Effect of duration of epilepsy on memory retention. In the verbal task
(A), a longer duration of illness was associated with poorer memory retention in the
wake condition (p=0.003), but no change in memory retention in the sleep condition
(p=0.5). In the visuospatial task (B), a longer duration of illness was associated
with poorer memory retention in both conditions (wake condition: p=0.009, sleep
condition: p=0.07).

11.4.9 Subgroup analysis by seizure focus

According to the seizure semiology, imaging and video EEG telemetry findings,
11 patients had a temporal or fronto-temporal seizure focus while 11 had frontal,
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central, parietal, occipital or undetermined foci (see Table 11.4.2). We termed the
former group ”temporal” and the latter ”extra-temporal”.

In the verbal task, a repeated measures ANOVA with condition (wake or sleep)
as the within-subjects factor and subgroup (control, temporal, extratemporal) as the
between-subjects factor showed that memory retention was greater in the sleep
condition (F[1, 39]= 11.2, p=0.002, Cohen’s d=0.67), with no significant interaction
of condition by subgroup (F=0.9, p=0.4) (Figure 11.4.5, top). In pairwise com-
parisons between the sleep and wake conditions for each subgroup, the temporal
group remembered more word pairs in the sleep condition, though this did not reach
statistical significance (t[10]=1.8, p=0.1, Cohen’s d=0.86). The extratemporal group
had similar scores in both conditions (t[10]=0.8, p=0.4, Cohen’s d=0.30).

In the visuospatial task, memory retention was also greater in the sleep condi-
tion (F[1,36]=3.8, p=0.05, Cohen’s d=0.40), with no significant interaction of condi-
tion by group (F=0.3, p=0.7) (Figure 11.4.5, bottom). All of the patients (n=3) who
did not complete the visuospatial task were from the extratemporal subgroup. In
pairwise comparisons between the sleep and wake conditions for each subgroup,
neither group showed a significant difference between the wake and sleep condition
scores (p>0.1).
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Figure 11.4.5: Memory task performance by temporal/ extra-temporal seizure fo-
cus. Memory retention scores, calculated as the percentage difference in items
recalled at testing compared to criterion. The Wake and Sleep condition scores for
individual participants on each task are connected to show the change in recall with
sleep. In the verbal task (top), Memory retention was greater in the sleep condition
(p=0.002), with no significant interaction of condition by group. Post-hoc pairwise
comparisons of performance in the Sleep and Wake conditions show a large ef-
fect of sleep on memory consolidation in the ‘temporal’ subgroup ( t[10]=1.8, p=0.1,
Cohen’s d=0.86) but not the ‘extra-temporal’ subgroup (t[10]=0.8, p=0.4, Cohen’s
d=0.30) . In the visuospatial task (bottom), memory retention was greater in the
sleep condition (p=0.05), with no significant interaction of condition by group.

11.5 Discussion

Contrary to my primary hypothesis, I found that sleep contributes to memory consol-
idation in children who have focal epilepsy with a structural or presumed structural
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etiology, to the same degree as it does in healthy children. The correlation between
the duration of slow wave sleep across the night and the gain in memory with sleep
was the same in both groups, suggesting an intact, common underlying mecha-
nism. The data demonstrate this phenomenon to be robust despite a long history
of illness, increasingly recruited where delayed verbal memory during waking is
more impaired. Taken together, these findings suggest that sleep-related mem-
ory consolidation may serve as a compensatory mechanism to maintain cognitive
function in this group of patients. Lastly, in agreement with predictions, a higher in-
terictal discharge load during sleep was associated with lesser contribution of sleep
to memory consolidation.

11.5.1 Sleep-related memory consolidation

My findings appear to contradict those of smaller studies (Urbain et al. 2011, Galer
et al. 2015, Sud et al. 2014) examining sleep-related memory consolidation in chil-
dren with various focal epilepsies (see Section 5.5). However, there are important
differences in both the patient samples and study designs that could account for
this. Urbain et al.(2011) and Galer et al.(2015) studied patients (total n = 19) with
primary genetic epilepsies and higher interictal discharge loads (median spike wave
indices of 65 and 34, respectively) than those in my study (median spike wave in-
dex = 0.7). In addition, the lack of a delayed recall condition without sleep in these
studies did not allow for the effect of sleep to be separated from the effect of delay,
which is likely significant in a sample with childhood epilepsy (Cormack et al. 2012,
Danielsson and Petermann 2009). Sud et al. (2014) performed their study in a sim-
ilar setting, on patients similar to mine (median spike wave index = 5). Seven of 10
subjects remembered better in the sleep condition; however, the analyzed sample
(n = 9) was too small to show an effect of sleep. Therefore, despite differences in
study design, these results, taken together with my findings, all support the idea
that sleep-related memory consolidation occurs in children with epilepsy, but may
be vulnerable to high interictal discharge loads in sleep.

It is also possible that sleep-related memory consolidation may be impaired in
the primary genetic epilepsies but not in focal epilepsies with a structural etiology,
an idea supported by data from adult patients with temporal lobe epilepsy (Deak
et al. 2011). Additionally, my results are concordant with those of other studies in
children with neurodevelopmental conditions (see Section 5.4)

11.5.2 Relationship with slow wave sleep

I found a correlation between duration of slow wave sleep (equivalent to time in
N3), and the magnitude of sleep-related benefit to memory consolidation in both
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the control and patient samples, which was statistically significant over the total
sample even when corrected for age. A correlation between sleep-related memory
consolidation and N3 time has been demonstrated in adults (Backhaus et al. 2007)
- including those with epilepsy (Deak et al. 2011), though not to our knowledge in
children. Maski (2015) and Prehn-Kristensen (2011) examined slow wave activity
(expressed as delta power in NREM); the former found no linear correlation with
sleep-related memory consolidation in either healthy children or those with autism,
while the latter demonstrated a correlation in controls but not patients with ADHD.
Both slow wave sleep duration and slow wave activity are markers of sleep home-
ostasis, but I chose to analyse the former due to its lower intra-individual variability
in the face of sleep deprivation (Voderholzer et al. 2011, Bersagliere and Acher-
mann 2010), and lesser developmental decrease over the age range of my subjects
(Feinberg et al. 2006).

It may be even more pertinent to quantify sleep homeostasis directly, using a
measure independent of both absolute delta power and N3 time, such as that em-
ployed by Bölsterli et al (2014). They showed that sleep homeostasis is impaired
in children with continuous spike waves in slow-wave sleep (CSWS), the syndrome
affecting two of the four children in whom Urbain et al (2011) found impaired mem-
ory consolidation over an interval of sleep. In Chapter 10, I demonstrate that sleep
homeostasis is fundamentally intact in a retrospective sample with similar clinical
charateristics to the sample here.

11.5.3 Relationship with nocturnal interictal discharges

I found an inverse correlation between nocturnal IED load and sleep-related mem-
ory consolidation. Galer et al. (2015) showed a negative correlation between spike
wave index and memory performance, although only in the visuospatial domain.
They also showed that the spike wave index correlated highly with the diffuseness
of interictal discharges. Similarly, those cases in our sample with the greatest IED
loads tended to have bilateral discharges. It is notable that all but two of our pa-
tients showed sleep benefit within the range seen in healthy controls, even though
just four were free of IEDs. This suggests it may be possible to elucidate a threshold
below which interictal discharges in sleep have no significant impact on cognition
and hence would not warrant treatment. There is evidence that this threshold may
lie between spike wave indices of 1 and 10 (Ebus et al. 2011, Glennon et al. 2016)
regardless of underlying etiology, and my findings are consistent with this.
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11.5.4 Relationship with duration of epilepsy

Early age of onset (Berg et al. 2012) and long duration (Nolan et al. 2004) of
epilepsy are known to be associated with a high risk of cognitive impairment in
general, particularly where there is drug resistance (Berg et al. 2012), as in my
sample. Although the wake condition memory retention scores showed a strong
correlation with duration of epilepsy, the sleep condition scores did not, suggesting
some protective or compensatory effect of sleep on memory retention. This was
more marked (reaching statistical significance) in the verbal task, consistent with
this task benefiting strongly from sleep in both patients and controls.

11.5.5 Effect of seizure focus

When assessed with standard psychometric tests, children with temporal lobe epilepsy
show greater memory impairment— particularly in the verbal domain—than chil-
dren with frontal seizure foci (Nolan et al. 2004). In our sample, memory retention in
the Wake condition—which is similar to standard tests of delayed verbal recall—was
poorer in the “temporal” subgroup, yet the benefit of sleep to memory consolidation
was greater, thus supporting the idea of a robust compensatory mechanism.

11.5.6 Limitations

The main weakness of my study was the lack of patients with moderate to high
interictal discharge loads in sleep, limiting my examination of the relationship be-
tween sleep-related memory consolidation and interictal epileptiform discharges.
However, this is typical for a group of children with focal epilepsies with a structural
etiology, and I was still able to demonstrate a linear relationship. The heterogeneity
of my patient sample meant that once it was broken into subgroups by underlying
pathology, medication or seizure burden, numbers became too small for meaning-
ful analysis. Conversely, this clinical diversity increases the generalizability of my
results to children with such focal epilepsies. The hospital setting and clinical in-
terventions may have disrupted patients’ sleep, although one would have expected
an adverse effect on sleep-related memory consolidation. There is in fact evidence
that neither setting (Galer et al. 2015) nor acute sleep disruption (Voderholzer et al.
2011) significantly influence performance on delayed memory tasks. Patients un-
dergoing long-term video-EEG telemetry for presurgical evaluation tend to accu-
mulate clinical interventions and ictal events over the course of their admission. To
minimize the influence of this on memory task performance, I counterbalanced the
order of the sleep and wake conditions across participants. The first testing was
performed as soon as possible after consent was obtained, and the second testing



11.5. DISCUSSION 125

as soon as possible with at least a 24-hour interval from the first.

11.5.7 Conclusions and further work

I have demonstrated that sleep-related memory consolidation is intact in children
with focal epilepsies with a structural or presumed structural cause. It appears
resilient to ongoing seizures, poor sleep habits, and acute sleep disruption perhaps
accounting for the relatively preserved cognition in this sample. This finding may be
exploited by children with epilepsy and their families, who should be encouraged to
recap each day’s learning before retiring to bed. The efficacy of such an educational
strategy could be quantified on neuropsychological testing and academic outcome
measures in a randomised trial.

Our data also suggest that high rates of nocturnal interictal epileptiform dis-
charges may disrupt sleep-related memory consolidation. A prospective study in-
cluding patients with a full range of nocturnal interictal discharge loads would allow
for a “cognitively significant” threshold beyond which sleep no longer benefits mem-
ory to be discerned, particularly if the focality of discharges were to be consistent
between patients. Patients in the BECTS to Landau-Kleffner spectrum might pro-
vide such a sample, though it would be important to use a within-subject design.
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Part V

Discussion and conclusion

127





Chapter 12

Conclusion

12.1 Addressing the aims of this thesis, and main find-
ings

The main aims of this thesis were firstly, to examine the structure and regulation of
sleep in children with epilepsy and secondly, to provide direct evidence of the impact
of sleep on cognitive function by correlating neurophysiological characteristics with
performance on sleep-dependent neuropsychological tasks administered over the
same interval as the sleep recorded. How well this thesis addresses each of these
aims, and the main findings are outlined below:

12.1.1 Examining the structure of sleep in children with epilepsy

Based on the current standard visual sleep scoring criteria (Iber 2007), I developed
a systematic approach to scoring polysomnographic records containing interictal
discharges and seizures.

• Preliminary data showed good inter-rater agreement (Section 7.4.5)

• Using my scoring criteria, I found that sleep architecture in children with focal
epilepsy with a structural or presumed structural etiology is generally appro-
priate for age (Section 10.4.3)

• The output from visual sleep scoring facilitated the quantitative EEG analysis
(Section 10.4.5), and correlational analyses (Sections 11.4.7; 10.4.4; 10.4.5)

12.1.2 Examining the regulation of sleep in children with focal epilepsy

I demonstrated that sleep homeostasis is fundamentally intact in children with fo-
cal epilepsies with a structural or presumed structural cause (Chapter 10). As in
healthy individuals, the children showed:

129
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• A clear fall in SWA power density across the night

• Upregulation of both time spent in SWS and average SWA power density in
response to acute sleep restriction

• High interindividual variation in the SWA power density that is conserved be-
tween nights

However, the decline in SWA power across NREM cycles in most patients was not
monotonic.

12.1.3 Neuropsychological tasks to examine sleep-dependent mem-
ory consolidation

Based on the paired-associates paradigm, I designed and developed memory con-
solidation tasks suitable for use in English-speaking children.

• The “Lingfield Memory Consolidation Battery” is a new memory consolidation
task battery, created using open-source psycholinguistic data, images and
software, and running on an Android platform

• It comprises a verbal and a visuospatial task presented in two different modal-
ities (auditory and visual respectively), allowing the examination of two declar-
ative memory domains

• The battery contains parallel versions of both tasks, allowing for a within-
subject experimental design.

• Age-group versions allow the testing of children as young as 6 years old; older
children with cognitive impairment may also use the simpler versions

• I was able to demonstrate sleep-related memory consolidation in healthy chil-
dren and children with epilepsy, particularly in the verbal domain (Chapter
11)

12.1.4 Sleep-related memory consolidation and its relationship to neu-
rophysiological and clinical features

Finally, I demonstrated that memory consolidation in children with focal epilepsy
benefits from sleep, showing the same correlation with slow wave sleep as in
healthy children (Chapter 11)

• High rates of interictal discharges – particularly bilateral discharges – during
sleep may disrupt sleep-related memory consolidation
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• The contribution of sleep to memory consolidation increased with duration of
epilepsy, and was greater in those with temporal lobe epilepsy

12.2 Discussion and conclusions

My examination of sleep stucture and homeostasis in children with focal epilepsy
with a structural or presumed structural etiology reveals that sleep as a biological
function is not objectively disrupted in this group, despite refractory seizures and
high rates of medication use. The picture on parental survey data (Section 11.4.1)
is somewhat different, but this needs to be interpreted in the light of data from
healthy children, in whom parent-rated “sleep problems” afflict up to 40%, yet the
prevalence of polysomnographic abnormalities is low (Section 3.4.5).

Taken together with evidence that the brain oscillations thought to underlie
sleep-related memory consolidation are unaffected in many patients with focal epilepsy
(section 5.2.1), the finding that sleep benefits memory consolidation – and there-
fore may be a contributor to cognitive function rather than dysfunction in this group
– is therefore not wholly surprising. But how does this help explain the general
cognitive impairment seen in refractory focal epilepsy?

In a rat model of temporal lobe epilepsy, Titiz et al (2014) showed that the re-
activation of behaviour-driven patterns in CA1 place cells during SWS was intact,
even though task performance was impaired. These rats also showed normal sleep
macroarchitecture. While there are no studies of the reactivation of physiologi-
cal neuronal assemblies in humans, data from adult patients with TLE undergoing
intracranial EEG monitoring revealed the reactivation of seizure-related neuronal
activity during subsequent SWS (Bower et al. 2015). My data support these in
providing evidence that sleep-related consolidation is intact in patients with focal
epilepsy. However, in a Hebbian model of learning by long-term potentiation, the
greater synchrony of epileptic activation would give these pathological traces an
edge over useful memories in the competition for consolidation.

Recent data from adult TLE patients show a global increase in SWA associated
with generalised seizures in the 3 to 5 days previously, and focal increases in SWA
in areas of seizure foci (Boly et al. 2017). This focal increase parallels that seen
after intensive training on a motor task activating a specific cortical area (Huber
et al. 2004), suggesting that the synaptic homeostasis afforded by SWS may also
be utilised in epilepsy patients to downregulate synaptic strength postictally. This
may account for the lack of a monotonic decline in SWA seen in most of my patient
cohort (Section 10.4.5). Thus, epileptic activity may increase the burden of synaptic
homeostasis, and at some point, there may be decompensation.
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12.2.1 Future directions

The finding that sleep benefits memory consolidation in children with focal epilepsy
could be applied to an educational psychology intervention for this group of children,
which could be tested in a randomised controlled trial with academic performance
and neuropsychological test scores as outcome measures. Teenagers and those
with a natural tendency to eveningness may particularly stand to benefit.

My findings suggest that those with focal epilepsy and parent-rated sleep dis-
turbance would likely benefit from simple sleep hygiene interventions, or screening
and treatment for primary sleep disorders, because the underlying sleep structure
and regulation is likely to be intact in spite of refractory epilepsy and polypharmacy.
These interventions could also be tested in randomised controlled trials, with sub-
jective sleep quality and seizure control as the primary outcome measures.

Caution should probably be advised on the boosting of slow oscillations either
by pharmacological or physical means, because this would likely increase the con-
solidation of epileptic neuronal assemblies more than physiological ones. However,
the “tagging” of salient memories would apear a tantalising option; this has been
attempted in healthy individuals by targetting memory reactivation with olfactory or
auditory cues (Rasch et al. 2007; Oudiette and Paller 2013).

To further investigate the contribution of interictal discharges to cognitive im-
pairment, the experimental paradigm employed in Chapter 11 could be applied to
a sample with a full range of interictal discharge loads – though perhaps including
only those with bilateral discharges – in order to determine a “cognitively significant”
threshold, beyond which it may perhaps be justifiable to medicate with the primary
aim of reducing interictal discharges.

The study of sleep homeostasis in children with epilepsy may reveal more about
the processes of ictogenesis and epileptogenesis, and the further ongoing work
described in Section 10.5.7 will help to facilitate this.

Lastly, the validation of my sleep scoring system on recordings from patients
with other epilepsies both paediatric and adult will provide a tool for examining
sleep macroarchitecture in patients with epilepsy, helping to advance the field. The
validation of the memory task battery will facilitate the examination of sleep-related
memory consolidation in English-speaking cohorts.
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process gated by a circadian pacemaker. The American Journal of Physiology,
246(2 Pt 2):R161–183, February 1984. ISSN 0002-9513.

T T Dang-Vu, M Desseilles, P Peigneux, and P Maquet. A role for sleep in brain
plasticity. Pediatric rehabilitation, 9(2):98–118, June 2006. ISSN 1363-8491. doi:
10.1080/13638490500138702.

Julia Danielsson and Franz Petermann. Cognitive deficits in children with benign
rolandic epilepsy of childhood or rolandic discharges: a study of children between
4 and 7 years of age with and without seizures compared with healthy controls.
Epilepsy & Behavior: E&B, 16(4):646–651, December 2009. ISSN 1525-5069.
doi: 10.1016/j.yebeh.2009.08.012. URL http://www.ncbi.nlm.nih.gov/pubmed/

19879197.

Heidi Danker-Hopfe, Peter Anderer, Josef Zeitlhofer, Marion Boeck, Hans Dorn,
Georg Gruber, Esther Heller, Erna Loretz, Doris Moser, Silvia Parapatics, Bernd
Saletu, Andrea Schmidt, and Georg Dorffner. Interrater reliability for sleep
scoring according to the Rechtschaffen & Kales and the new AASM standard.
Journal of Sleep Research, 18(1):74–84, March 2009. ISSN 1365-2869. doi:
10.1111/j.1365-2869.2008.00700.x.

Marco de Curtis, John G. R. Jefferys, and Massimo Avoli. Interictal Epilep-
tiform Discharges in Partial Epilepsy: Complex Neurobiological Mechanisms
Based on Experimental and Clinical Evidence. In Jeffrey L. Noebels, Mas-
simo Avoli, Michael A. Rogawski, Richard W. Olsen, and Antonio V. Delgado-
Escueta, editors, Jasper’s Basic Mechanisms of the Epilepsies. National Cen-
ter for Biotechnology Information (US), Bethesda (MD), 4th edition, 2012. URL
http://www.ncbi.nlm.nih.gov/books/NBK98179/.

L. de Lecea, T. S. Kilduff, C. Peyron, X. Gao, P. E. Foye, P. E. Danielson,
C. Fukuhara, E. L. Battenberg, V. T. Gautvik, F. S. Bartlett, W. N. Frankel, A. N.

http://science.sciencemag.org/content/284/5423/2177
http://science.sciencemag.org/content/284/5423/2177
http://www.ncbi.nlm.nih.gov/pubmed/19879197
http://www.ncbi.nlm.nih.gov/pubmed/19879197
http://www.ncbi.nlm.nih.gov/books/NBK98179/


144 BIBLIOGRAPHY

van den Pol, F. E. Bloom, K. M. Gautvik, and J. G. Sutcliffe. The hypocretins:
hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the
National Academy of Sciences of the United States of America, 95(1):322–327,
January 1998. ISSN 0027-8424.

Maryann C Deak, Robert Stickgold, Alison C Pietras, Aaron P Nelson, and Ellen J
Bubrick. The role of sleep in forgetting in temporal lobe epilepsy: a pilot study.
Epilepsy & behavior: E&B, 21(4):462–466, August 2011. ISSN 1525-5069.
doi: 10.1016/j.yebeh.2011.04.061. URL http://www.ncbi.nlm.nih.gov/pubmed/

21715230.

W. Dement. The effect of dream deprivation. Science (New York, N.Y.), 131(3415):
1705–1707, June 1960. ISSN 0036-8075.

C. Depienne, O. Trouillard, C. Saint-Martin, I. Gourfinkel-An, D. Bouteiller,
W. Carpentier, B. Keren, B. Abert, A. Gautier, S. Baulac, A. Arzimanoglou,
C. Cazeneuve, R. Nabbout, and E. LeGuern. Spectrum of SCN1a gene mu-
tations associated with Dravet syndrome: analysis of 333 patients. Journal
of Medical Genetics, 46(3):183–191, March 2009. ISSN 1468-6244. doi:
10.1136/jmg.2008.062323.

Antonio Dı́az-Negrillo. Influence of sleep and sleep deprivation on ictal and interic-
tal epileptiform activity. Epilepsy Research and Treatment, 2013:492524, 2013.
ISSN 2090-1348. doi: 10.1155/2013/492524.

Susanne Diekelmann and Jan Born. The memory function of sleep. Nature Reviews
Neuroscience, 11(2):114–126, February 2010. ISSN 1471-003X. doi: 10.1038/

nrn2762. URL http://www.nature.com/nrn/journal/v11/n2/full/nrn2762.

html.

Derk-Jan Dijk and Simon N. Archer. PERIOD3, circadian phenotypes, and sleep
homeostasis. Sleep Medicine Reviews, 14(3):151–160, June 2010. ISSN 1532-
2955. doi: 10.1016/j.smrv.2009.07.002.

Karen Drysdale, Arthur Shores, and Wayne Levick. Use of the everyday memory
questionnaire with children. Child Neuropsychology: A Journal on Normal and
Abnormal Development in Childhood and Adolescence, 10(2):67–75, June 2004.
ISSN 0929-7049. doi: 10.1080/09297040490911087.
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Borbély. Selective REM sleep deprivation in humans: effects on sleep and sleep
EEG. The American Journal of Physiology, 274(4 Pt 2):R1186–1194, April 1998.
ISSN 0002-9513.

P S Fastenau, C S Johnson, S M Perkins, A W Byars, T J deGrauw, J K Austin, and
D W Dunn. Neuropsychological status at seizure onset in children: risk factors
for early cognitive deficits. Neurology, 73(7):526–534, August 2009. ISSN 1526-
632X. doi: 10.1212/WNL.0b013e3181b23551. URL http://www.ncbi.nlm.nih.

gov/pubmed/19675309.

Sara Fattinger, Bernhard Schmitt, Bigna K. Bölsterli Heinzle, Hanne Critelli, Os-
kar G. Jenni, and Reto Huber. Impaired slow wave sleep downscaling in patients
with infantile spasms. European journal of paediatric neurology: EJPN: official
journal of the European Paediatric Neurology Society, 19(2):134–142, March
2015. ISSN 1532-2130. doi: 10.1016/j.ejpn.2014.11.002.

I. Feinberg and T. C. Floyd. Systematic Trends Across the Night in Human Sleep
Cycles. Psychophysiology, 16(3):283–291, May 1979. ISSN 1469-8986. doi:
10.1111/j.1469-8986.1979.tb02991.x. URL http://onlinelibrary.wiley.com/

doi/10.1111/j.1469-8986.1979.tb02991.x/abstract.

Irwin Feinberg, Lisa M. Higgins, Wong Yu Khaw, and Ian G. Campbell. The ado-
lescent decline of NREM delta, an indicator of brain maturation, is linked to age
and sex but not to pubertal stage. American Journal of Physiology. Regulatory,
Integrative and Comparative Physiology, 291(6):R1724–1729, December 2006.
ISSN 0363-6119. doi: 10.1152/ajpregu.00293.2006.

Luca A. Finelli, Peter Achermann, and Alexander A. Borbély. Individual
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