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Orders in Artinian rings, Goldie’s Theorem and the largest

left quotient ring of a ring

V. V. Bavula

Abstract

This short survey is about some old and new results on left orders in left Artinian rings,
new criteria for a ring to have a semisimple left quotient ring, new concepts (eg, the largest
left quotient ring of a ring).

Key Words: Goldie’s Theorem, orders, left Artinian ring, the left quotient ring of a ring,

the largest left quotient ring of a ring, the largest regular left Ore set.

Mathematics subject classification 2010: 16U20, 16P40, 16S32, 13N10, 16P20, 16U20,

16P60.

Contents

1. Introduction.

2. New criteria for a ring to have a semisimple left quotient ring.

3. Old criteria for a ring to have a left Artinian left quotient ring.

4. Necessary and sufficient conditions for a ring to have a left Artinian left quotient ring.

5. A criterion via associated graded ring.

6. Criteria similar to Robson’s Criterion.

7. A left quotient ring of a factor ring.

8. The largest denominator sets and the largest left quotient ring of a ring.

9. The maximal left quotient rings of a ring.

10. Examples.

1 Introduction

In this paper, module means a left module, all rings are associative with 1. The present paper
comprises three parts.

Part I, ‘New Criteria for a Ring to have a Semisimple Left Quotient Ring’ (Section 2). Goldie’s
Theorem (1958, 1960) is an old and up to 2013 was the only example of such criteria. Four new
criteria will be given that are independent of Goldie’s Theorem and are based on completely new
ideas and approach.

Part II, ‘Left Orders in Left Artinian Rings’ (Sections 3–7), deals with old and new criteria for
a ring to have a left Artinian left quotient ring.

Part III, ‘The Largest Left Quotient Ring of a Ring’ (Sections 8–10), is about new recent
concepts and results obtained in order to answer the old question:

Why does the classical left quotient ring of a ring not always exist?

A positive step in this direction is the fact that for an arbitrary ring R there always exists
the largest left quotient ring Ql(R), [4], which coincides with the classical left quotient ring if
the latter exists. Another new concept/fact is the existence of the maximal left quotient rings
(for an arbitrary ring R). Their existence gives an affirmative answer to the following question:
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given a ring R, replace the ring R by its left localization S−1
1 R at a left denominator set (that not

necessarily consists of regular elements). Then repeat the step again and again (infinitely many
times of arbitrary cardinality, if necessary): S−1

2 (S−1
1 R), S−1

3 (S−1
2 (S−1

1 R)), . . .; will this process
stop? (i.e. do we reach the moment we cannot invert anything new?) The answer is yes and the
rings we obtain are called the maximal left quotient rings of a ring and any such a ring can be
written as S−1R for some left denominator set S of the ring R, [4].

Goldie’s Theorem (1960), which is one of the most important results in Ring Theory, is a
criterion for a ring to have a semisimple left quotient ring. The aim of the paper is to give four
new criteria (using a completely different approach and new ideas). The first one is based on the
recently discovered fact that for an arbitrary ring R the set M of maximal left denominator sets
of R is a non-empty set [4].

Theorem (The First Criterion). A ring R has a semisimple left quotient ring Q iff M is
a finite set,

∩
S∈M ass(S) = 0 and, for each S ∈ M, the ring S−1R is a simple left Artinian ring.

In this case, Q ≃
∏

S∈M S−1R.

The Second Criterion is given via the minimal primes of R and goes further than the First one
in the sense that it describes explicitly the maximal left denominator sets S via the minimal primes
of R. The Third Criterion is close to Goldie’s Criterion but it is easier to check in applications
(basically, it reduces Goldie’s Theorem to the prime case). The Fourth Criterion is given via
certain left denominator sets.

The conditions in old criteria for a ring R to have a left Artinian left quotient ring Q are
‘strong’ (like ‘the ring R is a left Goldie ring’) and given in terms of the ring R itself and its ideals.
The conditions of the new criteria are ‘weak’ (like ‘the ring R is a left Goldie ring’ where R := R/n
and n is the prime radical of R) and given in terms of the ring R (rather than R) and of its finitely
many explicit modules.

Goldie’s Theorem [12] characterizes left orders in semi-simple rings, it is a criterion of when
the left quotient ring of a ring is semi-simple (earlier, characterizations were given, by Goldie [11]
and Lesieur and Croisot [16], of left orders in a simple Artinian ring). Talintyre [26] and Feller and
Swokowski [10] have given conditions which are sufficient for a left Noetherian ring to have a left
quotient ring. Further, for a left Noetherian ring which has a left quotient ring, Talintyre [27] has
established necessary and sufficient conditions for the left quotient ring to be left Artinian. Small
[21, 22], Robson [20], and latter Tachikawa [25] and Hajarnavis [13] have given different criteria
for a ring to have a left Artinian left quotient ring. In this paper, three more new criteria are
given (Theorem 4.1, Theorem 5.1 and Theorem 6.1).

Theorem 7.1 gives an affirmative answer to the question: Let R be a ring with a left Artinian
left quotient ring Q and I be a C-closed ideal of R such that I ⊆ n. Is the left quotient ring Q(R/I)
of R/I a left Artinian ring?

The set C of regular elements of a ring R is not always a left (or right) Ore set in R (hence, the
left quotient ring C−1R or the right quotient ring RC−1 does not always exist) but there always
exists the largest regular left Ore set Sl,0 and the largest regular right Ore set Sr,0 in C of the ring
R, [4]. In general, Sl,0 ̸= Sr,0, [3]. In [4], the largest left quotient ring Ql(R) := S−1

l,0 R and the

largest right quotient ring Qr(R) := RS−1
r,0 are introduced. In [3], these rings are found for the ring

I1 = K⟨x, ∂,
∫
⟩ of polynomial integro-differential operators over a field K of characteristic zero,

Sl,0(I1) ̸= Sr,0(I1) and Ql(I1) ̸≃ Qr(I1).
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Part I

New criteria for a ring to have a

semisimple left quotient ring

In the paper, the following notation is fixed:

• R is a ring with 1, R∗ is its group of units, n = nR is its prime radical and Min(R) is the set
of minimal primes of R;

• C = CR is the set of regular elements of the ring R (i.e. C is the set of non-zero-divisors of
the ring R);

• Q = Ql,cl(R) := C−1R is the left quotient ring (the classical left ring of fractions) of the ring
R (if it exists) and Q∗ is the group of units of Q;

• Denl(R, a) is the set of left denominator sets S of R with ass(S) = a where a is an ideal of
R and ass(S) := {r ∈ R | sr = 0 for some s ∈ S},

• max.Denl(R) is the set of maximal left denominator sets of R (it is always a non-empty set,
[4]).

• Orel(R) := {S |S is a left Ore set in R};

• Denl(R) := {S |S is a left denominator set in R};

• Locl(R) := {S−1R |S ∈ Denl(R)};

• Assl(R) := {ass(S) |S ∈ Denl(R)};

• Sa = Sa(R) = Sl,a(R) is the largest element of the poset (Denl(R, a),⊆) and Qa(R) :=
Ql,a(R) := S−1

a R is the largest left quotient ring associated to a, Sa exists (Theorem 2.1, [4]);

• In particular, S0 = S0(R) = Sl,0(R) is the largest element of the poset (Denl(R, 0),⊆), i.e.
the largest regular left Ore set of R, and Ql(R) := S−1

0 R is the largest left quotient ring of
R [4];

• Locl(R) := {[S−1R] |S ∈ Denl(R)} where [S−1R] is an R-isomorphism class of the ring
S−1R (a ring isomorphism σ : S−1R → S′−1R is called an R-isomorphism if σ( r1 ) =

r
1 for all

elements r ∈ R); we usually write S−1R instead of [S−1R] if this does not lead to confusion;

• Locl(R, a) := {[S−1R] |S ∈ Denl(R, a)}.

The largest left quotient ring of a ring. Let R be a ring. A multiplicatively closed subset
S of R (i.e. a multiplicative sub-semigroup of (R, ·) such that 1 ∈ S and 0 ̸∈ S) is said to be a left
Ore set if it satisfies the left Ore condition: for each r ∈ R and s ∈ S,

Sr
∩

Rs ̸= ∅.

Let S be a (non-empty) multiplicatively closed subset of R, and let

ass(S) := {r ∈ R | sr = 0 for some s ∈ S}

(if, in addition, S is a left Ore set then ass(S) is an ideal of the ring R).

Definition. Then a left quotient ring of R with respect to S (a left localization of R at S) is a
ring Q together with a homomorphism ϕ : R → Q such that

(i) for all s ∈ S, ϕ(s) is a unit of Q,

3



(ii) for all q ∈ Q, q = ϕ(s)−1ϕ(r) for some r ∈ R, s ∈ S, and
(iii) ker(ϕ) = ass(S).

If such a ring Q exists, it is unique up to isomorphism and it is denoted by S−1R. The condition
(ii) means that the left quotient ring is as ‘small’ as possible in the sense that every element of it
is a left fraction (the situation resembles the commutative situation). The condition (iii) means
that the left quotient ring is as ‘large’ as possible in the sense that the elements of the ideal ass(S)
are the only elements of the ring R that disappear when inverting the elements of the set S (the
elements ass(S) are forced to disappear in any ring where the elements of the set S are units: if
sr = 0, for some elements r ∈ R and s ∈ S, then 0 = s−1sr = r). Recall that S−1R exists iff
S is a left Ore set and the set S = {s + ass(S) ∈ R/ass(S) | s ∈ S} consists of regular elements
([17], 2.1.12). If the last two conditions are satisfied (i.e. those after ‘iff’ above) then S is called
a left denominator set. Similarly, a right Ore set, the right Ore condition, the right denominator
set and the right quotient ring RS−1 are defined. If both rings S−1R and RS−1 exist then they
are isomorphic ([17], 2.1.4.(ii)). Recall that the left quotient ring of R with respect to the set CR
of all regular elements is called the left quotient ring of R. If it exists, it is denoted by Fracl(R)
or Qcl(R). Similarly, the right quotient ring, Fracr(R) = Qr

cl(R), is defined. If both left and right
quotient rings of R exist then they are isomorphic and we write Frac(R) or Q(R) in this case.

2 Four new criteria for a ring to have a semisimple left

quotient ring

A ring is a semiprime ring if {0} is the only nilpotent ideal. Let X be a non-empty subset of a
ring R and l(X) := {r ∈ R | rX = 0} be its left annihilator (it is a left ideal of R). A ring R
satisfies the ascending chain condition on left annihilators if every ascending chain of the type

l(X1) ⊆ l(X2) ⊆ · · ·

stabilizers. A ring R is called a left Goldie ring if it satisfies the ascending chain condition on left
annihilators and does not contain infinite direct sums of nonzero left ideals.

Goldie’s Theorem [12] is a criterion for a ring to have a semisimple left quotient ring.

Theorem 2.1 (Goldie’s Theorem, [12]) A ring has a semisimple left quotient ring iff it is
a semiprime ring that satisfies the ascending chain condition on left annihilators and does not
contain infinite direct sums of nonzero left ideals.

In [4], we introduce the following new concepts and prove their existence for an arbitrary ring:
the largest left quotient ring of a ring, the largest regular left Ore set of a ring, the left localization
radical of a ring, a maximal left denominator set, a maximal left quotient ring of a ring, a (left)
localization maximal ring. Using an analogy with rings, the counter parts of these concepts for
rings would be a maximal left ideal, the Jacobson radical, a simple factor ring. These concepts
turned out to be very useful in Localization Theory and Ring Theory. They allowed us to look at
old/classical results from a new more general perspective and to give new equivalent statements
to the classical results using a new language and a new approach as the present paper, [4], [3],
[5], [7] and [8] and several other papers under preparation demonstrate. Their universal nature
naturally leads to the present criteria for a ring to have a semisimple left quotient ring. For an
arbitrary ring R the set M of maximal left denominator sets of R is a non-empty set [4].

Theorem 2.2 [6] (The First Criterion). A ring R has a semisimple left quotient ring Q iff
M is a finite set,

∩
S∈M ass(S) = 0 and, for each S ∈ M, the ring S−1R is a simple left Artinian

ring. In this case, Q ≃
∏

S∈M S−1R.

The Second Criterion is given via the minimal primes of R and certain explicit multiplicative
sets associated with them. On the one hand, the Second Criterion stands between Goldie’s The-
orem and the First Criterion in terms how it is formulated. On the other hand, it goes further
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than the First Criterion in the sense that it describes explicitly the maximal left denominator sets
and the left quotient ring of a ring with a semisimple left quotient ring.

Theorem 2.3 [6] (The Second Criterion). Let R be a ring. The following statements are
equivalent.

1. The ring R has a semisimple left quotient ring Q.

2. (a) The ring R is a semiprime ring.

(b) The set Min(R) of minimal primes of R is a finite set.

(c) For each p ∈ Min(R), the set Sp := {c ∈ R | c+ p ∈ CR/p} is a left denominator set of
the ring R with ass(Sp) = p.

(d) For each p ∈ Min(R), the ring S−1
p R is a simple left Artinian ring.

If one of the two equivalent conditions holds then max.Denl(R) = {Sp | p ∈ Min(R)} and Q ≃∏
p∈Min(R) S

−1
p R.

So, the Second Criterion says that a ring has a semisimple left quotient ring iff all the left local-
izations at the minimal primes are simple Artinian rings, there are only finitely many minimal
primes and the ring is semiprime.

The Third Criterion (Theorem 2.4) can be seen as a ‘weak’ version of Goldie’s Theorem in the
sense that the conditions are ‘weaker’ than those of Goldie’s Theorem. In applications, it could
be ‘easier’ to verify whether a ring satisfies the conditions of Theorem 2.4 compared with Goldie’s
Theorem as Theorem 2.4 ‘reduces’ Goldie’s Theorem essentially to the prime case and reveals the
‘local’ nature of Goldie’s Theorem.

Theorem 2.4 [6] (The Third Criterion) Let R be a ring. The following statements are equiv-
alent.

1. The ring R has a semisimple left quotient ring.

2. The ring R is a semiprime ring with |Min(R)| < ∞ and, for each p ∈ Min(R), the ring R/p
is a left Goldie ring.

Remark. This result is close to [17, Proposition 3.2.5]. The condition |Min(R)| < ∞ in Theorem
2.4 can be replaced by any of the equivalent conditions of Theorem 2.5. For a semiprime ring R
and its ideal I, the left annihilator of I in R is equal to the right annihilator of I in R and is
denoted ann(I).

Theorem 2.5 ((Theorem 2.2.15, [17]) The following conditions on a semiprime ring R are equiv-
alent.

1. RRR has finite uniform dimension.

2. |Min(R)| < ∞.

3. R has finitely many annihilator ideals.

4. R has a.c.c. on annihilator ideals.

As far as applications are concerned, Theorem 2.6 is a very useful criterion for a ring R to have
a semisimple left quotient ring.

Theorem 2.6 [6] (The Fourth Criterion) Let R be a ring. The following statements are
equivalent.

1. The ring R has a semisimple left quotient ring.
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2. There are left denominator sets S′
1, . . . , S

′
n of the ring R such that the rings Ri := S′−1

i R,
i = 1, . . . , n, are simple left Artinian rings and the map

σ :=
n∏

i=1

σi : R →
n∏

i=1

Ri, R 7→ (
r

1
, . . . ,

r

1
),

is an injection where σi : R → Ri, r 7→ r
1 .

If one of the equivalent conditions holds then the set max.Denl(R) contains precisely the distinct
elements of the set {σ−1

i (R∗
i ) | i = 1, . . . , n}.

The maximal denominator sets and the maximal left localizations of a ring. The
set (Denl(R),⊆) is a poset (partially ordered set). In [4], it is proved that the set max.Denl(R) of
its maximal elements is a non-empty set.

Definition, [4]. An element S of the set max.Denl(R) is called a maximal left denominator set
of the ring R and the ring S−1R is called a maximal left quotient ring of the ring R or a maximal
left localization ring of the ring R. The intersection

lR := l.lrad(R) :=
∩

S∈max.Denl(R)

ass(S) (1)

is called the left localization radical of the ring R, [4]. The elements of the left localization radical
l.lrad(R) are precisely the elements of R that ‘eventually disappear’ under left localizations (i.e.
they are zero under localization at every ‘sufficiently large’ denominator set). The maximal left
quotient rings of a ring will be considered in Section 9. One cannot invert anything new in such
rings (Theorem 9.11).

For a ring R, there is the canonical exact sequence

0 → lR → R
σ
→

∏

S∈max.Denl(R)

S−1R, σ :=
∏

S∈max.Denl(R)

σS , (2)

where σS : R → S−1R, r 7→ r
1 . In general, the left localization radical lR, the prime radical nR

and the Jacobson radical of a ring R: are distinct. In general, even for left Artinian rings lR ̸= nR,
[7].

Characterization of rings R such that R/l.lrad(R) has a semisimple left quotient
ring. Theorem 2.7 characterizes precisely the class of rings that have only finitely many maximal
left denominators sets and all the left localizations at them are simple left Artinian rings.

Theorem 2.7 [6] The following statements are equivalent.

1. The ring R/l has a semisimple left quotient ring Q.

2. (a) |max.Denl(R)| < ∞.

(b) For every S ∈ max.Denl(R), S−1R is a simple left Artinian ring.

Part II

Left Orders in Left Artinian Rings

In Part II, the following notation is fixed (in addition to that at the beginning of Part I):

• n is a prime radical of R and ν is its nilpotency degree (nν ̸= 0 but nν+1 = 0);
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• R := R/n and π : R → R, r 7→ r = r + n;

• C := CR is the set of regular elements of the ring R and Q := C
−1

R is its left quotient ring;

• C′ := π−1(C) := {c ∈ R | c+ n ∈ C} and Q′ := C′−1R (if it exists).

3 Old criteria for a ring to have a left Artinian left quotient

ring

In this section we present some old criteria for a ring to have a left Artinian left quotient ring that
are due to Small (1966), Robson (1967), Tachikawa (1971) and Hajarnavis (1972). The starting
point is Goldie’s Theorem, [12], (1960) that gives an answer to the question: When does a ring
have a semi-simple (Artinian) left quotient ring? Goldie’s Theorem characterizes left orders in
semi-simple rings, it is a criterion of when the left quotient ring of a ring is semi-simple (earlier,
characterizations were given, by Goldie [11] and Lesieur and Croisot [16], of left orders in a simple
Artinian ring).

Let us recall certain properties of left Artinian rings.

Proposition 3.1 (Proposition 3.1, [1]) Let A be a left Artinian ring and r be its radical. Then

1. The radical r of A is a nilpotent ideal.

2. The factor ring A/r is a semi-simple.

3. An A-module M is semi-simple iff rM = 0.

4. There is only a finite number of non-isomorphic simple A-modules.

5. The ring A is a left Noetherian ring.

Definition. A ring R is called a left Goldie ring if it satisfies ACC (the ascending chain
condition) for left annihilators and contains no infinite direct sums of left ideals.

Theorem 3.2 (Goldie’s Theorem, [12]) Let R be a ring. The following statements are equivalent.

1. The ring R has a semi-simple (Artinian) left quotient ring.

2. The ring R is a semiprime left Goldie ring.

Small’s Criterion. Let W be the sum of all the nilpotent ideals of the ring R. If W is a
nilpotent ideal of the ring R then W = n. For a subset X of the ring R, let r(X) := {a ∈ R |Xa =
0} be its right annihilator. Clearly, r(X) is a right ideal of the ring R. If, in addition, X is an
ideal of the ring R then so is r(X).

Theorem 3.3 (Small’s Criterion [21, 22]) Let R be a ring. The following statements are equiva-
lent.

1. The ring R has a left Artinian left quotient ring.

2. (a) R is a left Goldie ring.

(b) W is a nilpotent ideal of R.

(c) For all k ≥ 1, R/(r(W k) ∩W ) is a left Goldie ring.

(d) r +W ∈ CR/W =⇒ r ∈ C (i.e. C′ ⊆ C).
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Robson’s Criterion. A ring R is called n-reflective if, for c ∈ R, c is regular in R iff c + n

is regular in R; equivalently, C′ = C. A ring R is called n-quorite if, given c ∈ C and n ∈ n, there
exist c′ ∈ C and n′ ∈ n such that c′n = n′c. A left ideal I of the ring R is called a C-closed if, for
elements c ∈ C and r ∈ R, cr ∈ I implies r ∈ I. Similarly, a C′-closed right ideal is defined.

Theorem 3.4 (Robson, Theorem 2.10, [20]) Let R be a ring. The following statements are equiv-
alent.

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring R is a left Goldie ring.

(b) n is a nilpotent ideal.

(c) The ring R is n-reflective and n-quorite.

(d) The ring R satisfies ACC on C-closed left ideals.

Hajarnavis’ Criterion. This criterion is close to Small’s one.

Theorem 3.5 (Hajarnavis’ Criterion, [13]) Let R be a ring. The following statements are equiv-
alent.

1. The ring R has a left Artinian left quotient ring.

2. (a) R and R/W are left Goldie rings.

(b) W is a nilpotent ideal of R.

(c) For all k ≥ 1, R/r(W k) has finite left uniform dimension.

(d) r +W ∈ CR/W =⇒ r ∈ C (i.e. C′ ⊆ C).

Tachikawa’s Criterion. Let W be an injective R-module containing the R-module R, F be
the corresponding idempotent topologizing filter

F := {RI ⊆ R | HomR(R/I,W) = 0},

and H be the corresponding localization functor: for an R-module M ,

H(M) := lim
I∈F

HomR(I,M/MF )

where MF := {m ∈ M | I ′m = 0 for some I ′ ∈ F}. Then H(R) is a ring and H(M) is an
H(R)-module.

Theorem 3.6 (Tachikawa’s Criterion, [25]) Let R be a ring. The following statements are equiv-
alent.

1. The ring R has a left Artinian left quotient ring.

2. There exists a faithful, torsionfree, injective left R-module W such that the following condi-
tions are satisfied:

(a) for every left ideal J of H(R) there is a left ideal I of R such that H(I) = J ,

(b) the R-module W satisfies the descending chain condition on annihilators,

(c) the prime radical of the ring R coincides with the set of all elements r ∈ R that anni-
hilate H(V ) where V is an essential R-submodule of W.

3. There exists a faithful, torsionfree, injective left R-module W such that the following condi-
tions are satisfied:

(a) the double centralizer Q of W is left Artinian,

(b) W is a cogenerator as a left Q-module,

(c) the prime radical of the ring R is equal to the intersection of R and the radical of Q.

In the proofs of all the criteria (old and new) Goldie’s Theorem is used.
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4 Necessary and sufficient conditions for a ring to have a

left Artinian left quotient ring

The aim of this section is to present Theorem 4.1 which is a new criterion for a ring R to have a
left Artinian left quotient ring. Using Theorem 4.1 and Theorem 4.3 in combination with results
of Small and P. F. Smith, criteria are obtained for a left Noetherian ring R (Corollary 4.4) and
for a commutative ring R (Corollary 4.5) to have left Artinian left quotient ring.

Suppose that a ring R satisfies the condition (a) of Theorem 4.1, i.e. R is a (semiprime) left

Goldie ring. By Goldie’s Theorem, its left quotient ring Q := C
−1

R is a semisimple (Artinian)
ring where C is the set of regular elements of the ring R. The ring R admits the n-adic filtration
(the prime radical filtration):

n0 := R ⊃ n ⊃ · · · ⊃ ni ⊃ · · · (3)

which stops at (ν + 1)’th step if nν ̸= 0 but nν+1 = 0, i.e. ν is the nilpotency degree of the ideal
n. The associated graded algebra

grR = R⊕ n/n2 ⊕ · · · ni/ni+1 ⊕ · · ·

is an N-graded ring and every component ni/ni+1 is an R-bimodule. Recall that C is a left Ore
set in R (by Goldie’s Theorem) and that module means a left module. For each integer i ≥ 1, let

τi := torC(n
i/ni+1) := {u ∈ ni/ni+1 | cu = 0 for some c ∈ C} (4)

be the C-torsion submodule of the left R-module ni/ni+1. Clearly, τi is an R-bimodule. Then the
R-bimodule

fi := (ni/ni+1)/τi (5)

is a C-torsionfree left R-module. There is a unique ideal, say ti, of the ring R such that

ni+1 ⊆ ti ⊆ ni and ti/n
i+1 = τi.

Clearly, fi ≃ ni/ti.

Theorem 4.1 [5] Let R be a ring. The following statements are equivalent.

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring R is a left Goldie ring.

(b) n is a nilpotent ideal.

(c) C′ ⊆ C.

(d) The left R-modules fi, 1 ≤ i ≤ 1, contain no infinite direct sums of nonzero submodules,
and

(e) for every element c ∈ C, the map ·c : fi → fi, f 7→ fc, is an injection; equivalently, if,
for an element a ∈ ni/ni+1, there are elements s, c ∈ C such that sac = 0 then ta = 0
for some element t ∈ C; equivalently, if, for an element a ∈ ni/ni+1, there is an element
c ∈ C such that ac = 0 then ta = 0 for some element t ∈ C.

Let Q be the left quotient ring of R. If one of the equivalent conditions holds then C = C′, C−1n

is the prime radical of the ring Q which is a nilpotent ideal of nilpotency degree ν, and the map
Q/C−1n → Q, c−1r 7→ c−1r, is a ring isomorphism with the inverse c−1r 7→ c−1r.

As an application we obtain a short proof of a known fact of when a commutative Noetherian
ring has an Artinian quotient ring.

Corollary 4.2 Let R be a commutative Noetherian ring. The following statements are equivalent.

1. The ring R has an Artinian quotient ring.
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2. The conditions (c) of Theorem 4.1 holds, i.e. C′ ⊆ C.

3. The associated primes of (0) are the minimal primes of the ring R.

Proof. (1 ⇔ 2) Theorem 4.1.
(2 ⇔ 3) This equivalence was established by Small (Theorem 2.13, [21] and Theorem C, [22]).
(1 ⇔ 3) Robson (Theorem 2.11, [20]). �

For a ring R having a left Artinian left quotient ring Q, Theorem 4.3 provides many examples
of left Ore subsets C′′ ⊆ C such that C′′−1R ≃ Q.

Theorem 4.3 Let R be a ring. The following statements are equivalent.

1. The ring R has a left Artinian left quotient ring Q.

2. The conditions (a), (b), (c’), (d) and (e) hold (see Theorem 4.1) where

(c’) for each element α ∈ C, there exists a regular element c = c(α) ∈ C such that α = c+ n;
equivalently, there exists a submonoid C′′ ⊆ C such that C′′ = C (where C′′ := {c+n | c ∈ C′′}).

If one of the equivalent conditions holds then C′′ is a left Ore set in R, C′′−1R = Q, C′′−1n is
the prime radical of the ring Q which is a nilpotent ideal of nilpotency degree ν, and the map
Q/C′′−1n → Q, c−1r 7→ c−1r, is a ring isomorphism with the inverse c−1r 7→ c−1r where c is any
element of C′′ such that c = c+ n.

As an application we obtain a criterion for a left Noetherian ring to have a left Artinian left
quotient ring.

Corollary 4.4 Let R be a left Noetherian ring. The following two statements are equivalent.

1. The ring R has a left Artinian left quotient ring.

2. C′ ⊆ C.

3. For each element α ∈ C, there exists an element c = c(α) ∈ C such that α = c+ n.

Remark. (1 ⇔ 2) This is due to Small [21].

In case of a commutative but not necessarily Noetherian ring R, there are several criteria when
its quotient ring is an Artinian ring.

Corollary 4.5 Let R be a commutative ring. The following statements are equivalent.

1. The ring R has an Artinian quotient ring.

2. (a) The ring R is a Goldie ring.

(b) n is a nilpotent ideal.

(c) C′ ⊆ C.

(d) The R-modules fi, 1 ≤ i ≤ ν, contain no infinite direct sums of nonzero submodules.

3. (a) The ring R is a Goldie ring.

(b) n is a nilpotent ideal.

(c) For each element α ∈ C, there exists an element c = c(α) ∈ C such that α = c+ n.

(d) The R-modules fi, 1 ≤ i ≤ ν, contain no infinite direct sums of nonzero submodules.

4. R is a Goldie ring and C′ ⊆ C.

5. R is a Goldie ring and, for each element α ∈ C, there exists an element c = c(α) ∈ C such
that α = c+ n.

10



Proof. (1 ⇔ 2) Theorem 4.1.
(1 ⇔ 3) Theorem 4.3.
(1 ⇔ 4) This is due to P. F. Smith (Theorem 2.11, [13]).
(4 ⇒ 5) Trivial.
(5 ⇒ 4) The condition C′ ⊆ C is equivalent to two conditions: π(C) = C and C + n ⊆ C where

π : R → R, r 7→ r. By statement 5, the first condition is given. Let c ∈ C and n ∈ n. To prove the
second statement we have to show that c + n ∈ C. Notice that n is a nilpotent element and the
ring R is a subring of C−1R. Now, the element c+ n = c(1 + c−1n) is a unit of the ring C−1R (as
a product of two units). Therefore, c+ n ∈ C. �

5 A criterion via associated graded ring

The aim of this section is to give another criterion (Theorem 5.1) for a ring R to have a left
Artinian left quotient ring via its associated graded ring grR with respect to the n-adic filtration.

A multiplicative set S of a ring R is a left denominator set if it is a left Ore set and if rs = 0,
for some elements r ∈ R and s ∈ S, then s′r = 0 for some element s′ ∈ S. For a left denominator
S of the ring R, we can form the ring of fractions S−1R = {s−1 | s ∈ S, r ∈ R}.

Suppose that C is a left denominator set of the associated graded ring grR = R ⊕ n/n2 ⊕ · · ·
with respect to the n-adic filtration. Then the C-torsion ideal of the ring grR,

τ := torC(grR) = ⊕i≥1τi, where τi = torC(n
i/ni+1), (6)

is a homogeneous ideal of the N-graded ring grR. The factor ring

grR/τ = R⊕ f1 ⊕ f2 ⊕ · · · , where fi = (ni/ni+1)/τi, (7)

is an N-graded ring (fifi ⊆ fi+1 for all i, j ≥ 1) and a subring of the localization ring

C
−1

grR ≃ C
−1

(grR/τ) = Q⊕ C
−1

f1 ⊕ C
−1

f2 ⊕ · · ·

which is an N-graded ring.
Suppose, in addition, that the nilpotency degree ν of the prime radical n is finite. Then the

prime radical ngrR/τ of the ring grR/τ is equal to

ngrR/τ = f := ⊕i≥1fi. (8)

It is a nilpotent ideal of nilpotency degree max{i ≥ 1 | fi ̸= 0} ≤ ν.

Theorem 5.1 [5] Let R be a ring. The following statements are equivalent.

1. The ring R has a left Artinian ring left quotient ring Q.

2. The set C is a left denominator set in the ring grR, C
−1

grR is a left Artinian ring, n is a
nilpotent ideal and C′ ⊆ C.

3. The set C is a left denominator set in the ring grR, the left quotient ring Q(grR/τ) of the
ring grR/τ is a left Artinian ring, n is a nilpotent ideal and C′ ⊆ C.

If one of the equivalent conditions holds then grQ ≃ Q(grR/τ) ≃ C
−1

grR where grQ is the
associated graded ring with respect to the prime radical filtration.

6 Criteria similar to Robson’s Criterion

In this section, two criteria similar to Robson’s Criterion are given (Theorem 6.1 and Corollary
6.2): Robson’s Criterion holds where C is replaced by C′ and one of the conditions is changed
accordingly (Theorem 6.1), Corollary 6.2 is a ‘weaker’ version of Theorem 6.1.

The next result shows that in Robson’s Criterion (Theorem 3.4) the condition ‘R is n-reflective’
can be weakened.
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Theorem 6.1 [5] Let R be a ring. The following statements are equivalent.

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring R is a left Goldie ring.

(b) n is a nilpotent ideal.

(c) C′ ⊆ C.

(d) If c ∈ C′ and n ∈ n then there exist elements c1 ∈ C′ and n1 ∈ n such that c1n = n1c.

(e) The ring R satisfies ACC for C′-closed left ideals.

The next corollary shows that the condition (c) in Theorem 6.1 can be weakened.

Corollary 6.2 [5] Let R be a ring. The following statements are equivalent.

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring R is a left Goldie ring.

(b) n is a nilpotent ideal.

(c) There exists a submonoid C′′ of C such that C′′ = C.

(d) If c ∈ C′′ and n ∈ n then there exist elements c1 ∈ C′′ and n1 ∈ n such that c1n = n1c.

(e) The ring R satisfies ACC for C′′-closed left ideals.

If one of the equivalent conditions holds then C′′ is a left Ore set in R, C′′−1R = Q, C′′−1n is
the prime radical of the ring Q which is a nilpotent ideal of nilpotency degree ν, and the map
Q/C′′−1n → Q, c−1r 7→ c−1r, is a ring isomorphism with the inverse c−1r 7→ c−1r where c is any
element of C′′ such that c = c+ n.

7 A left quotient ring of a factor ring

The aim of this section is to present Theorem 7.1 which, for a ring R with a left Artinian left
quotient ring Q and its C-closed ideal I ⊆ n, shows that the factor ring R/I has a left Artinian
left quotient ring Q(R/I).

Theorem 7.1 [5] Let R be a ring with a left Artinian left quotient ring Q, and I be a C-closed
ideal of R such that I ⊆ n. Then

1. The set CR/I of regular elements of the ring R/I is equal to the set {c+ I | c ∈ C}.

2. The ring R/I has a left Artinian left quotient ring Q(R/I), C−1I is an ideal of Q and the
map Q/C−1I → Q(R/I), c−1r + C−1I 7→ (c + I)−1(r + I), is a ring isomorphism with the
inverse (c+ I)−1(r + I) 7→ c−1r + C−1I.

Part III

The Largest Left Quotient Ring of a Ring

We keep the notation of Parts I and II.
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8 The largest denominator sets and the largest left quotient

ring of a ring

For an arbitrary ring R, two fundamental concepts are introduced – the largest regular left Ore
set S0(R) and the largest left quotient ring Ql(R). The group of units Ql(R)∗ of the ring Ql(R) is
found (Theorem 8.3). A criterion of when the ring Ql(R) is a semi-simple ring is given (Theorem
8.4) which is a generalization of Goldie’s Theorem.

In general, the set C of regular elements of a ring R is neither left nor right Ore set of the
ring R and as a result neither left nor right quotient ring (C−1R and RC−1) exists. Remarkably,
there exists the largest regular left Ore set S0 = Sl,0 = Sl,0(R) and the largest regular right Ore
set Sr,0(R) (Theorem 8.1.(2)). This means that the set Sl,0(R) is an Ore set of the ring R that
consists of regular elements (i.e., Sl,0(R) ⊆ C) and contains all the left Ore sets in R that consist
of regular elements. Also, there exists the largest regular (left and right) Ore set Sl,r,0(R) of the
ring R. In general, all the sets C, Sl,0(R), Sr,0(R) and Sl,r,0(R) are distinct, for example, when
R = I1 is the ring of polynomial integro-differential operators [3]. The ring

Ql(R) := Sl,0(R)−1R

(respectively, Qr(R) := RSr,0(R)−1 and Q(R) := Sl,r,0(R)−1R ≃ RSl,r,0(R)−1) is called the
largest left (respectively, right and two-sided) quotient ring of the ring R. In general, the rings
Ql(R), Qr(R) and Q(R) are not isomorphic, for example, when R = I1.

Small and Stafford [23] have shown that any (left and right) Noetherian ring R possesses
a uniquely determined set of prime ideals P1, . . . , Pn such that CR = ∩n

i=1C(Pi), an irreducible
intersection, where C(Pi) := {r ∈ R | r+Pi ∈ CR/Pi

}. Michler and Muller [18] mentioned that the
ring R contains a unique maximal (left and right) Ore set of regular elements Sl,r,0(R) and called
the ring Q(R) the total quotient ring of R. For certain Noetherian rings, they described the set
Sl,r,0(R) and the ring Q(R). For the class of affine Noetherian PI-rings, further generalizations
were given by Muller in [19].

Theorem 8.1 [4]

1. For each a ∈ Assl(R), the set Denl(R, a) is an ordered abelian semigroup (S1S2 = S2S1,
and S1 ⊆ S2 implies S1S3 ⊆ S2S3) where the product S1S2 := ⟨S1, S2⟩ is the multiplicative
subsemigroup of (R, ·) generated by S1 and S2.

2. Sa := Sa(R) :=
∪

S∈Denl(R,a) S is the largest element (w.r.t. ⊆) in Denl(R, a). The set Sa

is called the largest left denominator set associated to a.

3. Let Si ∈ Denl(R, a), i ∈ I, where I is an arbitrary non-empty set. Then the set

⟨Si | i ∈ I⟩ :=
∪

∅≠J⊆I,|J|<∞

∏

j∈J

Sj ∈ Denl(R, a) (9)

is the left denominator set generated by the left denominator sets Si, it is the least upper
bound of the set {Si}i∈I in Denl(R, a), i.e. ⟨Si | i ∈ I⟩ =

∨
i∈I Si.

Definition, [3, 4]. For each ideal a ∈ Assl(R), the ring Qa(R) := S−1
a R is called the largest

left quotient ring associated to a. When a = 0, the ring Ql(R) := Ql,0(R) := S−1
0 R is called the

largest left quotient ring of R and S0 = S0(R) is called the largest regular left Ore set of R.

The next obvious corollary shows that Ql(R) is a generalization of the classical left quotient
ring Qcl(R).

Corollary 8.2 1. If the classical left quotient ring Qcl(R) := C−1
R R exists then the set of regular

elements CR of the ring R is the largest regular left Ore set and Ql(R) = Qcl(R).

2. Let R1, . . . , Rn be rings. Then Ql(
∏n

i=1 Ri) ≃
∏n

i=1 Ql(Ri).
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Proof. It is obvious. �

The group of units Ql(R)∗ of Ql(R). For a ring R and its largest left quotient ring Ql(R),
Theorem 8.3 is used in the proof of Theorem 8.4 and gives answers to the following natural
questions:

• What is S0(Ql(R))?

• What is S0(Ql(R)) ∩R?

• What is the group Ql(R)∗ of units of the ring Ql(R)?

• Is the natural inclusion Ql(R) ⊆ Ql(Ql(R)) an equality?

Theorem 8.3 [4]

1. S0(Ql(R)) = Ql(R)∗ and S0(Ql(R)) ∩R = S0(R).

2. Ql(R)∗ = ⟨S0(R), S0(R)−1⟩, i.e. the group of units of the ring Ql(R) is generated by the
sets S0(R) and S0(R)−1 := {s−1 | s ∈ S0(R)}.

3. Ql(R)∗ = {s−1t | s, t ∈ S0(R)}.

4. Ql(Ql(R)) = Ql(R).

Necessary and sufficient conditions for Ql(R) to be a semi-simple ring. A ring Q is
called a ring of quotients if every element c ∈ CQ is invertible. A subring R of a ring of quotients
Q is called a left order in Q if CR is a left Ore set and C−1

R R = Q. A ring R has finite left rank
(i.e. finite left uniform dimension) if there are no infinite direct sums of nonzero left ideals in R.

The next theorem gives an answer to the question of when Ql(R) is a semi-simple ring. The
answer is iff Qcl(R) is a semi-simple ring.

Theorem 8.4 [4] The following properties of a ring R are equivalent.

1. Ql(R) is a semi-simple ring.

2. Qcl(R) exists and is a semi-simple ring.

3. R is a left order in a semi-simple ring.

4. R has finite left rank, satisfies the ascending chain condition on left annihilators and is a
semi-prime ring.

5. A left ideal of R is essential iff it contains a regular element.

If one of the equivalent conditions hold then S0(R) = CR and Ql(R) = Qcl(R).

Remark. Goldie’s Theorem states that 2 ⇔ 3 ⇔ 4 ⇔ 5.

The next corollary gives an interesting criterion of when the classical quotient ring Qcl(R) =
C−1
R R exists.

Corollary 8.5 [4] If the ring Ql(R) is a left Artinian ring then S0(R) = CR and Qcl(R) = Ql(R).

Proposition 8.6 (Proposition 11.6, [24]; [15]) Let A be a subring of a ring B. If M is a finitely
generated flat A-module such that B ⊗A M is a projective B-module then M is a projective A-
module.

Corollary 8.7 If there exists a finitely generated flat R-module M which is not projective then
the ring Ql(R) is not a semi-simple ring.

Proof. If Ql(R) were a semi-simple ring then Ql(R)⊗RM would be a projective Ql(R)-module,
and so M would be a projective R-module, by Proposition 8.6, a contradiction. �
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9 The maximal left quotient rings of a ring

In this section, a new class of rings, the class of left localization maximal rings, is introduced. It
is proved that, for an arbitrary ring R, the set of maximal elements of the poset (Denl(R),⊆)
is a non-empty set (Lemma 9.6.(2)), and therefore the set of maximal left quotient rings of the
ring R is a non-empty set. A criterion is given (Theorem 9.11) for a left quotient ring of a ring
to be a maximal left quotient ring of the ring. Many results on denominator sets are given. In
particular, for each denominator set S ∈ Denl(R, a), connections are established between the left
denominator sets Denl(R, a), Denl(R/a, 0) and Denl(S

−1R, 0). All the results in this section are
taken from [4] where one can also find their proofs.

Proposition 9.1 1. For each ring A ∈ Locl(R, a) where a ∈ Assl(R), the set Denl(R, a, A) :=
{S ∈ Denl(R, a) |S−1R = A} is an ordered submonoid of Denl(R, a), and

2. S(R, a, A) :=
∪

S∈Denl(R,a,A) S is its largest element. In particular, S0(R) = S(R, 0, Ql(R)).

3. Let Si ∈ Denl(R, a, A), i ∈ I, where I is an arbitrary non-empty set. Then ⟨Si | i ∈ I⟩ ∈
Denl(R, a, A) (see (9)). Moreover, ⟨Si | i ∈ I⟩ is the least upper bound of the set {Si}i∈I in
Denl(R, a, A) and in Denl(R, a).

The next lemma establishes relations between denominator sets of a ring and its factor rings.

Lemma 9.2 1. Let S ∈ Denl(R, a), b be an ideal of the ring R such b ⊆ a, and π : R → R/b,
a 7→ a = a+ b. Then π(S) ∈ Denl(R/b, a/b) and S−1R ≃ π(S)−1(R/b).

2. Let S1, S2 ∈ Denl(R) and S1 ⊆ S2. Then

(a) a1 := ass(S1) ⊆ a2 := ass(S2); there is the R-ring homomorphism ϕ : S−1
1 R → S−1

2 R,
s−1a 7→ s−1a; and ker(ϕ) = S−1

1 (a2/a1).

(b) Let π1 : R → R/a1, a 7→ a = a + a1, and S̃2 be the multiplicative submonoid of

(S−1
1 (R/a1), ·) generated by π1(S2) and π1(S1)

−1 = {s−1 | s ∈ S1}. Then π1(S2), S̃2 ∈

Denl(S
−1
1 R,S−1

1 (a2/a1)) and S̃−1
2 (S−1

1 R) ≃ π1(S2)
−1(S−1

1 R) ≃ S−1
2 R.

Denominator sets of a ring and its localizations. The set (Locl(R, a),→) is a poset
where A1 → A2 if A1 = S−1

1 R and A2 = S−1
2 R for some denominator sets S1, S2 ∈ Denl(R, a)

with S1 ⊆ S2, and A1 → A2 is the map in Lemma 9.2.(2a). If (S′
1, S

′
2) is another such a pair then,

by Proposition 9.1.(1),

A1 = S−1
1 R = S′−1

1 R = (S1S
′
1)

−1R → A2 = S−1
2 R = S′−1

2 R = (S2S
′
2)

−1R;

S1S
′
1, S2S

′
2 ∈ Denl(R, a) with S1S

′
1 ⊆ S2S

′
2.

In the same way, the poset (Locl(R),→) is defined, i.e. A1 → A2 if there exists S1, S2 ∈
Denl(R) such that S1 ⊆ S2, A1 = S−1

1 R and A2 = S−1
2 R, A1 → A2 stands for the map ϕ :

S−1
1 R → S−1

2 R (Lemma 9.2.(2a)). The map

(·)−1R : Denl(R) → Locl(R), S 7→ S−1R, (10)

is an epimorphism from the poset (Denl(R),⊆) to (Locl(R),→). For each ideal a ∈ Assl(R), it
induces the epimorphism between the posets (Denl(R, a),⊆) and (Locl(R, a),→),

(·)−1R : Denl(R, a) → Locl(R, a), S 7→ S−1R. (11)

The sets Denl(R) and Locl(R) are the disjoint unions

Denl(R) =
⊔

a∈Assl(R)

Denl(R, a), Locl(R) =
⊔

a∈Assl(R)

Locl(R, a). (12)
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For each ideal a ∈ Assl(R), the set Denl(R, a) is the disjoint union

Denl(R, a)) =
⊔

A∈Locl(R,a))

Denl(R, a, A). (13)

Let LDenl(R, a) := {S(R, a, A) |A ∈ Locl(R, a)}, see Proposition 9.1.(2). The map

(·)−1R : LDenl(R, a) → Locl(R, a), S 7→ S−1R, (14)

is an isomorphism of posets.

For a left denominator set S ∈ Denl(R, a), there are natural ring homomorphisms

R → R/a → S−1R.

Lemma 9.3 and Proposition 9.4 establish connections between the left denominator sets Denl(R, a),
Denl(R/a, 0) and Denl(S

−1R, 0).
Let S, T ∈ Denl(R). The denominator set T is called S-saturated if sr ∈ T , for some s ∈ S

and r ∈ R, then r ∈ T , and if r′s′ ∈ T , for some s′ ∈ S and r′ ∈ R, then r′ ∈ T .

Lemma 9.3 Let S ∈ Denl(R, a), π : R → R/a, a 7→ a+ a, and σ : R → S−1R, r 7→ r/1.

1. Let T ∈ Denl(S
−1R, 0) be such that π(S), π(S)−1 ⊆ T . Then T ′ := σ−1(T ) ∈ Denl(R, a), T ′

is S-saturated, T = {s−1t′ | s ∈ S, t′ ∈ T ′}, and S−1R ⊆ T ′−1R = T−1R.

2. π−1(S0(R/a)) = Sa(R), π(Sa(R)) = S0(R/a)) and Qa(R) = Sa(R)−1R = Ql(R/a).

For S1, S2 ∈ Denl(R) such that S1 ⊆ S2,

[S1, S2] := {T ∈ Denl(R) |S1 ⊆ T ⊆ S2}

is an interval in the posed Denl(R). If, in addition, S1, S2 ∈ Denl(R, a) then [S1, S2] ⊆ Denl(R, a)
since S1 ⊆ S ⊆ S2 implies a = ass(S1) ⊆ ass(S) ⊆ ass(S2) = a, i.e. ass(S) = a. The next
proposition establishes connections between various sets of left denominator sets of the ring R,
some of its factor rings and localizations.

Proposition 9.4 Let S ∈ Denl(R, a); π : R → R/a, a → a = a + a; σ : R → S−1R, r → r/1;
G := ⟨π(S), π(S)−1⟩ ⊆ (S−1R)∗ (i.e. G is the subgroup of the group (S−1R)∗ of units of the ring
S−1R generated by π(S)±1).

1. Let [σ−1(G), Sa(R)]S−com := {S1 ∈ [σ−1(G), Sa(R)] |σ−1(Gπ(S1)) = S1} and [G,S0(S
−1R)] :=

{T ∈ Denl(S
−1R, 0) |G ⊆ T ⊆ S0(S

−1R)}. Then the map

[σ−1(G), Sa(R)]S−com → [G,S0(S
−1R)], S1 7→ S̃1 := Gπ(S1),

is an isomorphism of posets and abelian monoids with the inverse map T 7→ σ−1(T ) where
Gπ(S1) is the multiplicative monoid generated by G and π(S1) in S−1R. In particular,

Gπ(Sa(R)) = S0(S
−1R), Sa(R) = σ−1(S0(S

−1R)), Sa(R)−1R = Ql(R/a),

the monoid [σ−1(G), Sa(R)]S−com is a complete lattice (since [G,S0(S
−1R)] is a complete

lattice, as an interval of the complete lattice Denl(S
−1R, 0), [4]), and the map S1 7→ S̃1 is a

lattice isomorphism.

2. Consider the interval [G∩(R/a), S0(R/a)] in Denl(R/a, 0). Let [G∩(R/a), S0(R/a)]G−com :=
{T ∈ [G∩(R/a), S0(R/a)] |GT∩(R/a) = T}. Then [G∩(R/a), S0(R/a)]G−com ⊆ Denl(S

−1R, 0)
and the map

[G ∩ (R/a), S0(R/a)]G−com → [G,S0(S
−1R)], T 7→ GT,

is an isomorphism of posets and abelian monoids with the inverse map T ′ 7→ T ′∩(R/a) where
GT is the product in Denl(S

−1R, 0). In particular, the monoid [G ∩ (R/a), S0(R/a)]G−com

is a complete lattice.
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3. The map

[σ−1(G), Sa(R)]S−com → [G ∩ (R/a), S0(R/a)]G−com, S1 7→ Gπ(S1) ∩ (R/a),

is an isomorphism of posets and abelian monoids with the inverse map S′ 7→ σ−1(GS′).

The maximal left quotient rings of a ring.

Lemma 9.5 Let S1 ⊆ S2 ⊆ · · · ⊆ Si ⊆ · · · be an ascending chain in Denl(R), ai := ass(Si),
S :=

∪
i≥1 Si. Then a1 ⊆ a2 ⊆ · · · ⊆ ai ⊆ · · · is the ascending chain in Assl(R), S ∈ Denl(R, a)

where a :=
∪

i≥1 ai, S
−1R = inj limS−1

i R where S−1
1 R → S−1

2 R → · · · → S−1
i R → · · · (Lemma

9.2.(2a)).

Proof. By Lemma 9.2.(2a), S ∈ Denl(R, a). For each number i = 1, 2, . . ., define the ring
homomorphisms φi : S

−1
i R → S−1R, s−1r 7→ s−1r, and νi : S

−1
i R → S−1

i+1R, s−1r 7→ s−1r. Then

φi = φi+1νi for all i. Hence, there is the ring homomorphism φ : inj limS−1
i R → S−1R which is a

surjection since S =
∪

i≥1 Si and has kernel 0 since a =
∪

i≥1 ai, i.e. φ is an isomorphism. �

Consider the poset (Denl(R),⊆). For each element S ∈ Denl(R), let [S, ·) := {S′ ∈ Denl(R) |S ⊆
S′}.

Lemma 9.6 1. For each element S ∈ Denl(R), there exists a maximal element in the poset
([S, ·),⊆).

2. The set (max.Denl(R),⊆) of maximal elements of the poset (Denl(R),⊆) is a non-empty
set.

Proof. 1. Statement 1 follows from Lemma 9.5 and Zorn’s Lemma.
2. Statement 2 follows from statement 1 and the fact that the set max.Denl(R) is the set of

maximal elements of the poset [{1}, ·) = Denl(R). �

Definition. An element S of the set max.Denl(R) is called a maximal left denominator set of
the ring R and the ring S−1R is called a maximal left quotient ring (or a maximal left localization)
of the ring R.

Let max.Assl(R) be the set of maximal elements of the poset (Assl(R),⊆). It is a subset of
the set

ass.max.Denl(R) := {ass(S) |S ∈ max.Denl(R)} (15)

which is a non-empty set, by Lemma 9.6.(2). In fact, these two sets are equal.

Proposition 9.7 max.Assl(R) = ass.max.Denl(R) ̸= ∅.

Let max.Locl(R) be the set of maximal elements of the poset (Locl(R),→). By the very
definition of Locl(R) and by Lemma 9.3.(2),

max.Locl(R) = {S−1R |S ∈ max.Denl(R)} = {Ql(R/a) | a ∈ ass.max.Denl(R)}. (16)

Proposition 9.8 Let a ∈ Assl(R), Q := Qa(R), Q∗ be the group of units of the ring Q and
σ : R → Qa(R), r 7→ r

1 . Let T ∈ Denl(Q, b) where b ∈ Assl(Q) and Q∗T be the multiplicative
sub-semigroup of (Q, ·) generated by Q∗ and T . Then

1. Q∗T ∈ Denl(Q, b).

2. If, in addition, Q∗ ⊆ T (eg, Q∗T from statement 1) then
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(a) T ′ := σ−1(T ) ∈ Denl(R, b′) where b′ := σ−1(b) ⊇ a, Sa(R) ⊆ T ′, T = Q∗σ(T ′) (i.e.
the monoid T is generated by Q∗ and σ(T ′)) and T ′−1R = T−1Q (i.e. the natural ring
monomorphism T ′−1R → T−1Q, t−1r 7→ t−1r, is an isomorphism).

(b) Sa(R) ⊆ Sb′(R) and Sb′(R) = σ−1(Sb(Q)).

(c) Qb′(R) = Ql(Q/b), i.e. the natural ring monomorphism Qb′(R) → Ql(Q/b), t−1r 7→
t−1r, is an isomorphism.

The next theorem describes various properties of the maximal left quotient rings of a ring, in
particular, their groups of units and their largest left quotient rings.

Theorem 9.9 Let S ∈ max.Denl(R), A = S−1R, A∗ be the group of units of the ring A; a :=
ass(S), πa : R → R/a, a 7→ a+ a, and σa : R → A, r 7→ r

1 . Then

1. S = Sa(R), S = π−1
a (S0(R/a)), πa(S) = S0(R/a) and A = S0(R/a)−1R/a = Ql(R/a).

2. S0(A) = A∗ and S0(A) ∩ (R/a) = S0(R/a).

3. S = σ−1
a (A∗).

4. A∗ = ⟨πa(S), πa(S)
−1⟩, i.e. the group of units of the ring A is generated by the sets πa(S)

and π−1
a (S) := {πa(s)

−1 | s ∈ S}.

5. A∗ = {πa(s)
−1πa(t) | s, t ∈ S}.

6. Ql(A) = A and Assl(A) = {0}. In particular, if T ∈ Denl(A, 0) then T ⊆ A∗.

The next theorem is a criterion of when a ring A ∈ Locl(R, a) is equal to Qa(R).

Theorem 9.10 Let A ∈ Locl(R, a), i.e. A = S−1R for some S ∈ Denl(R, a). Then A = Qa(R)
iff Ql(A) = A.

Left localization maximal rings. We introduce a new class of rings, the left localization
maximal rings, which turn out to be precisely the class of maximal left quotient rings of all rings.
As a result, we have a characterization of the maximal left quotient rings of a ring (Theorem 9.11).

Definition. A ring A is called a left localization maximal ring if A = Ql(A) and Assl(A) = {0}.
A ring A is called a right localization maximal ring if A = Qr(A) and Assr(A) = {0}. A ring A
which is a left and right localization maximal ring is called a left and right localization maximal
ring (i.e. Ql(A) = A = Qr(A) and Assl(A) = Assr(A) = {0}).

Example. Let A be a simple ring. Then Ql(A) is a left localization maximal ring and Qr(A) is
a right localization maximal ring.

Example. A division ring is a (left and right) localization maximal ring. More generally,
a simple Artinian algebra (i.e. the matrix algebra over a division ring) is a (left and right)
localization maximal ring.

The next theorem is a criterion of when a left quotient ring of a ring is a maximal left quotient
ring of the ring.

Theorem 9.11 Let a ring A be a left localization of a ring R, i.e. A ∈ Locl(R, a) for some
a ∈ Assl(R). Then A ∈ max.Locl(R) iff Ql(A) = A and Assl(A) = {0}, i.e. A is a left localization
maximal ring.

Proof. (⇒) Theorem 9.9.(6).
(⇐) Proposition 9.8. �
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Theorem 9.12 Let S ∈ max.Denl(R), A = S−1R, a = ass(S) and σa : R → A, r 7→ r
1 . Then the

following statements are equivalent.

1. A is a semi-simple ring.

2. Qcl(R/a) exists and is a semi-simple ring.

If one of these conditions holds then A = Qcl(R) and S = σ−1
a (Qcl(R)∗).

Proof. 1. Since A = Ql(R/a) and S = σ−1
a (A∗), by Theorem 9.9.(1,3), the results follow from

Theorem 8.4. �

Remark. All the results/definitions of the present section are left-sided. The analogous re-
sults/definitions are true for right-sided and two-sided versions (see [4], for details). In Section
10, left, right and two-sided (i.e., left and right) versions of results are given for some classes
of rings. In the two-sided definitions, the subscript ‘l’ in the corresponding left-sided versions
is dropped. For example, S0(R) means the largest regular (left and right) Ore set of a ring R,
Q(R) := S0(R)−1R is the largest (left and right) quotient ring of a ring R, etc.

10 Examples

In this section, the largest (left; right; left and right) quotient ring and the maximal (left; right; left
and right) quotient rings are found for the following rings: the endomorphism algebra EndK(V )
of an infinite dimensional vector space with countable basis, semi-prime Goldie rings, the algebra
I1 of polynomial integro-differential operators, and Noetherian commutative rings. The proofs of
all the results of the present section can be found in [4].

The endomorphism algebra EndK(V ) of an infinite dimensional vector space V with
countable basis. For a vector space V , let

F = F(V ) := {ϕ ∈ EndK(V ) | dimK(ker(ϕ)) < ∞, dimK(coker(ϕ)) < ∞}

be the set of Fredholm linear maps/operators in V .

Theorem 10.1 Let V be an infinite dimensional vector space with countable basis, R := EndK(V )
and C := {ϕ ∈ R | dimK(im(ϕ)) < ∞} be the ideal of compact operators of R (this is the only
proper ideal of R). Then

1. Assl(R) = Assr(R) = Ass(R) = {0, C}.

2. Sl,0(R) = Sr,0(R) = S0(R) = AutK(V ) and Ql(R) = Qr(R) = Q(R) = R.

3. Sl,C(R) = Sr,C(R) = SC(R) = F and Ql,C(R) = Qr,C(R) = QC(R) = R/C.

4. max.Assl(R) = max.Assr(R) = max.Ass(R) = {C}.

5. R/C is a localization maximal ring and a left (resp. right; left and right) localization maximal
ring.

Semi-prime Goldie rings. Recall that a ring R is called a left Goldie ring if R has finite
left uniform dimension and R satisfies ACC on left annihilators. A right Goldie ring is similarly
defined. A left and right Goldie ring is called a Goldie ring. The reader is referred to the books
[14], [17] and [24] for more details.

Corollary 10.2 Let R be a prime Goldie ring and CR be the set of regular elements of R. Then
Ass(R) = {0}, S0(R) = CR, Q0(R) = Qcl(R) is the only maximal localization of the ring R.
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Let R be a semi-prime Goldie ring which is not a prime ring and CR be its set of regular
elements. Let Min(R) = {p1, . . . , ps} be the set of minimal primes of the ring R. By Goldie’s
Theorem, Qcl(R) := C−1

R R ≃ RC−1
R ≃

∏s
i=1 Ri is the direct product of simple Artinian rings Ri

(i.e. Ri is a matrix ring over a division ring). The ring R can be identified with its image under the
ring monomorphism σ : R → Qcl(R), r 7→ r/1. For each non-empty set I of the set {1, . . . , s}, let
RI :=

∏
i∈I Ri and CI := {1, . . . , s}\I. For each i = 1, . . . , s, pi = σ−1(

∏s
i ̸=j=1 Rj) = σ−1(RCi) =

R∩RCi (Proposition 3.2.2, [17]). Let R∗
i be the group of units of the ring Ri. Then R∗

I =
∏

i∈I R
∗
i

is the group of units of the ring RI . A subset A of a set B is called a proper subset of B if A ̸= ∅, B.

Theorem 10.3 Let R be a semi-prime Goldie ring which is not a prime ring and {p1, . . . , ps} be
the set of its minimal prime ideals. Then

1. Ass(R) := {0} ∪ {a(I) :=
∩

i∈CI pi = R ∩RI | ∅ $ I $ {1, . . . , s}} where CI = {1, . . . , s}\I.

2. For each proper subset I of {1, . . . , s}, Sa(I)(R) = σ−1(R∗
CI × RI) = R ∩ R∗

CI × RI and
Qa(I)(R) = Qcl(R)/RI ≃ RCI .

3. S0(R) = CR ⊆ Sa(R) for all a ∈ Ass(R).

4. Sa(I)(R) ⊆ Sa(J)(R) iff I ⊆ J where I and J are proper subsets of {1, . . . , s}.

5. If I and J are proper subsets of {1, . . . , s} such that I ⊆ J then, by statement 4 and
the universal property of localization, there is the unique ring homomorphism Qa(I)(R) =∏

i∈CI Ri → Qa(J)(R) =
∏

j∈CJ Rj which is necessarily the projection onto
∏

j∈CJ Rj in∏
i∈CI Ri.

6. max.Ass(R) = {pi, | i = 1, . . . , s}, {Qpi
(R) = Ri | i = 1, . . . , s} is the set of maximal localiza-

tions of the ring R and ass(Qpi
(R)) = 0 for all i = 1, . . . , s.

The algebra I1 of polynomial integro-differential operators. Let us collect some facts
for the algebra I1 which are necessary to understand the results of this subsection, in particular,
Theorem 10.5 and Proposition 10.6. For the details the reader is referred to [2] or [3]. Throughout,

• K is a field of characteristic zero and K∗ is its group of units;

• P1 := K[x] is a polynomial algebra in one variable x over K;

• ∂ := d
dx ;

• EndK(P1) is the algebra of all K-linear maps from P1 to P1, and AutK(P1) is its group of
units (i.e. the group of all the invertible linear maps from P1 to P1);

• the subalgebras A1 := K⟨x, ∂⟩ and I1 := K⟨x, ∂,
∫
⟩ of EndK(P1) are called the (first)

Weyl algebra and the algebra of polynomial integro-differential operators respectively where∫
: P1 → P1, p 7→

∫
p dx, is the integration, i.e.

∫
: xn 7→ xn+1

n+1 for all n ∈ N.

The algebra I1 is neither left nor right Noetherian and not a domain. Moreover, it contains infinite
direct sums of nonzero left and right ideals, [2].

The algebra I1 is generated by the elements ∂, H := ∂x and
∫

(since x =
∫
H) that satisfy

the defining relations (Proposition 2.2, [2]):

∂

∫
= 1, [H,

∫
] =

∫
, [H, ∂] = −∂, H(1−

∫
∂) = (1−

∫
∂)H = 1−

∫
∂.

The elements of the algebra I1,

eij :=

∫ i

∂j −

∫ i+1

∂j+1, i, j ∈ N, (17)
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satisfy the relations eijekl = δjkeil where δjk is the Kronecker delta function. Notice that eij =∫ i
e00∂

j .
The algebra I1 =

⊕
i∈Z

I1,i is a Z-graded algebra (I1,iI1,j ⊆ I1,i+j for all i, j ∈ Z) where

I1,i =





D1

∫ i
=

∫ i
D1 if i > 0,

D1 if i = 0,

∂|i|D1 = D1∂
|i| if i < 0,

(18)

the algebra D1 := K[H]
⊕⊕

i∈N
Keii is a commutative non-Noetherian subalgebra of I1, Heii =

eiiH = (i + 1)eii for i ∈ N (notice that
⊕

i∈N
Keii is the direct sum of non-zero ideals of D1);

(
∫ i

D1)D1
≃ D1,

∫ i
d 7→ d; D1

(D1∂
i) ≃ D1, d∂

i 7→ d, for all i ≥ 0 since ∂i
∫ i

= 1. Notice that

the maps ·
∫ i

: D1 → D1

∫ i
, d 7→ d

∫ i
, and ∂i· : D1 → ∂iD1, d 7→ ∂id, have the same kernel⊕i−1

j=0 Kejj .
Each element a of the algebra I1 is the unique finite sum

a =
∑

i>0

a−i∂
i + a0 +

∑

i>0

∫ i

ai +
∑

i,j∈N

λijeij (19)

where ak ∈ K[H] and λij ∈ K. This is the canonical form of the polynomial integro-differential
operator [2]. The algebra I1 has the only proper ideal

F =
⊕

i,j∈N

Keij ≃ M∞(K) and F 2 = F.

The factor algebra I1/F is canonically isomorphic to the skew Laurent polynomial algebra B1 :=
K[H][∂, ∂−1; τ ], τ(H) = H + 1, via ∂ 7→ ∂,

∫
7→ ∂−1, H 7→ H (where ∂±1α = τ±1(α)∂±1 for all

elements α ∈ K[H]). The algebra B1 is canonically isomorphic to the (left and right) localization
A1,∂ of the Weyl algebra A1 at the powers of the element ∂ (notice that x = ∂−1H). Therefore,
they have common skew field of fractions, Frac(A1) = Frac(B1), the first Weyl skew field.

The algebra I1 admits the involution ∗ over the field K:

∂∗ =

∫
,

∫ ∗

= ∂ and H∗ = H,

i.e. it is a K-algebra anti-isomorphism ((ab)∗ = b∗a∗) such that a∗∗ = a. Therefore, the algebra
I1 is self-dual, i.e. it is isomorphic to its opposite algebra Iop1 . As a result, the left and right
properties of the algebra I1 are the same. Clearly, e∗ij = eji for all i, j ∈ N, and so F ∗ = F .

The next theorem describes the largest regular left and right Ore sets and the largest left and
right quotient rings of the algebra I1.

Theorem 10.4 (Theorem 9.7, [3])

1. Sr,0(I1) = I1
∩
AutK(K[x]) and the largest regular right quotient ring Qr(I1) of I1 is the

subalgebra of EndK(K[x]) generated by I1 and Sr,0(I1)−1 := {s−1 | s ∈ Sr,0(I1)}.

2. Sl,0(I1) = Sr,0(I1)∗ and Sl,0(I1) ̸= Sr,0(I1).

3. The rings Ql(I1) and Qr(I1) are not isomorphic.

The next theorem describes the largest regular (two-sided) Ore set and the largest (two-sided)
quotient ring of the algebra I1. These objects are tiny comparing with their one-sided counterparts.

Theorem 10.5 Let M := (K[H] + F )
∩
AutK(K[x]). Then

1. S0(I1) = Sl,0(I1)
∩
Sr,0(I1), S0(I1) is a proper subset of the sets Sl,0(I1) and Sr,0(I1), and

S0(I1)∗ = S0(I1) where ∗ is the involution of the algebra I1.
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2. Sl,0(I1)
∩

Sr,0(I1) = M and M is the set of regular elements of the algebra K[H] + F .

3. Let M0 := D1

∩
AutK(K[x]). Then M0 ⊆ M, M = M0(1 + F )∗ = (1 + F )∗M0 and

M0

∩
(1 + F )∗ = (1 + F0)

∗ where F0 :=
⊕

i∈N
Keii.

4. M0 is the set of regular elements of the commutative (non-Noetherian) algebra D1; D1 =
M0(1 + F0)

⨿
F0 = M0 ∪ {0} + F0, Qcl(D1) := M−1

0 D1 = M−1
0 M0(1 + F0)

⨿
F0 =

M−1
0 M0 ∪ {0}+ F0.

5. Q(I1) = S0(I1)−1I1 =
∑

i∈Z
Qcl(D1)vi+F =

∑
i∈Z

(M−1
0 M0∪{0})vi+F =

∑
i∈Z

viQcl(D1)+

F =
∑

i∈Z
vi(M

−1
0 M0∪{0})+F where Qcl(D1) is the classical ring of fractions of the com-

mutative ring D1 and

vi :=





∫ i
if i ≥ 1,

1 if i = 0,

∂|i| if i ≤ −1.

6. Q(I1) $ Ql(I1) and Q(I1) $ Qr(I1).

Proposition 10.6 1. Assl(I1) = Assr(I1) = Ass(I1) = {0, F} and max.Assl(I1) = max.Assr(I1) =
max.Ass(I1) = {F}.

2. Sl,F (I1) = Sr,F (I1) = SF (I1) = I1\F and Ql,F (I1) = Qr,F (I1) = QF (I1) = Frac(B1) =
Frac(A1).

3. max.Denl(I1) = max.Denr(I1) = max.Den(I1) = {I1\F}.
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