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Abstract 

We report the microwave-assisted hydrothermal synthesis of bimetallic Pt-Au nanoparticles with 

different Pt/Au mole ratio, and investigate their performance towards the electro-oxidation of 

formic acid. The as-synthesized Pt-Au sol was dispersed on a graphite electrode, without any 

binding agents, which allowed us to control the mass of alloy deposited. Pt-Au alloys showed 

better activity than bulk Pt and/or Pt nanoparticles towards the oxidation of formic acid, as 

evidenced by the decrease in the onset potential and the higher currents in the corresponding 

cyclic voltammograms. The higher activity is due both to atomic-ensemble effects, which lead 

the reaction through the so-called direct pathway with insignificant CO poisoning, and to 

electronic effects, which optimised the interaction between the catalyst surface and the reactive 

intermediate in the direct path. Further insight into the individual contributions of atomic-

ensemble and electronic effects and their effect on the catalytic activity was provided by the 

analysis of galvanostatic potential oscillations. 
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1. Introduction 

Formic acid is an attractive fuel candidate for polymer electrolyte membrane fuel cells 

(PEMFCs) converting liquid fuel due, among other reasons, to its lower crossover diffusion 

through the membrane [1], and its better oxidation kinetics, and also because the onset potential 

for the formic acid oxidation reaction is lower compared to that of other C1 and C2 alcohols, 

such as methanol and ethanol [2]. Although Pt is very active towards the formic acid oxidation 

reaction (FAOR), it is susceptible of being strongly poisoned by intermediate reaction products, 

particularly CO, which has been traditionally explained by the so-called dual-path reaction 
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mechanism [3, 4]. For this reason, alloying of Pt with other metals has been attempted in order to 

improve its catalytic properties.  

A second metal can promote several effects in Pt-bimetallic surfaces [5]. For instance, gold has 

been extensively used to influence the activity and selectivity of Group VIII metals due to its 

intrinsic stability [6-8]. Alloying changes the electronic structure of both metals in the alloy, as 

in the case of Group VIII metals combined with Group IB metals [9]. The resulting changes in 

the adsorption energy of reactants, intermediates and products may result in enhanced reaction 

rates, that can be electrochemically detected by an increase in the current density at low 

potentials [10]. Additionally, alloying can lead to, purely geometric, atomic-ensemble effects, 

that can channel the reaction through one of two or more possible pathways [11, 12]. For 

example, the alloying metal may disrupt sites composed of three contiguous Pt, which have been 

shown to be necessary for the dehydration of formic acid to adsorbed CO [13].  In principle, 

alloying will always give rise to both electronic and atomic-ensemble effects, although their 

weight in the final properties of the alloy will depend on the actual metal employed and on the 

atomic fraction of each material at the surface. However, it is difficult to obtain homogeneous 

and reproducible materials with traditional methods of synthesis.  

The catalytic activity of bimetallic nanoparticles depends both on their composition and their 

structural properties, such as size, shape and morphology, which may be tuned via the synthesis 

method. Due to the potential technologic applications of nanoparticles, systematic studies of their 

physicochemical properties, both intrinsic (like, e.g., their atomic structure), and extrinsic (like, 

e.g., their size and porosity) are required. Classical methods of synthesis involve the reduction of 

metal precursor salts under heating conditions to promote the interdiffusion of the cations inside 

the metal lattice. These processes have slow rates and, consequently, long heating times are 

required. Processes which facilitate the synthesis of these materials by reducing the energy 

consumption and the reaction times are highly desirable. For instance, despite the high 

efficiencies obtained in the synthesis of Au [14-16] and Pt [17] nanomaterials by conventional 

methods, it is still necessary to optimize control over nucleation and growth, to impede 

agglomeration [18] (in order to obtain nanostructured materials with high surface area and good 

electrochemical properties), and to develop cleaner and more efficient processes according to the 

Green Chemistry Principle [19]. Among all modern methods of synthesis, the application of 

microwaves has attracted attention, due to easy handling and sample preparation, as well as to its 

diverse applications in organic synthesis, solid state reactions, and preparation of nanostructured 

materials [20-24]. The fundamental distinctive advantage of the application of microwaves to 

synthesis processes is linked to its high efficiency and low cost, since microwave energy is 

absorbed directly by the reactants instead of being absorbed by the vessel or reactor, like in 

conventional methods. Thus, uniform heating leads to more homogeneous nucleation and shorter 

crystallization times.  Preparation of metastable phases not accessible by conventional methods 

of synthesis has also been reported, [25, 26] although microwave-specific thermal effects, as well 

as microwave non-thermal effects, are still a controversial matter. In this way, microwave-

hydrothermal processes are gaining significance due to the feasibility of controlling the structure 

of the materials and the reaction selectivity by simply controlling temperature, reaction time and 

pressure. In consequence, this is a broad interdisciplinary field that is growing rapid and steadily. 

This paper reports the synthesis, using microwave-assisted hydrothermal synthesis, of Pt-Au 

nano-alloys with high electrocatalytic activity for the FAOR. 

2.1 Chemicals 
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All solutions were prepared using analytical grade reagents (purchased from Aldrich in the 

purest commercially available grade) and Milli-Q water (18.2 MΩ cm, Millipore). Solutions 

were degassed using nitrogen (99%, White Martins) and all measurements were carried out at 

room temperature. 

2. Experimental 

2.2 Instrumentation 

All electrochemical experiments were performed with an Autolab PGSTAT302 electrochemical 

workstation (Eco Chemie) in a three-compartment electrochemical glass cell. The working 

electrode was a highly porous graphite electrode and the auxiliary electrode was a platinum wire. 

All potentials are reported versus the reversible hydrogen electrode (RHE). Synthesis of 

nanoparticles was performed in a microwave reactor Monowave 400 (Anton Paar). Scanning 

electron microscopy (SEM) images were obtained with a Supra-35 ZEISS FESEM system. 

Transmission electron microscopy with high resolution (HR-TEM) was performed with a Tecnai 

G2, FEI microscope. X-ray diffraction data were obtained using a Shimadzu diffractometer 

model XRD-6000, electrode voltage 30 kV, Cu Kα radiation, in θ–2θ mode, at 1° s−1. XPS data 

from the nanoparticles and the corresponding electrodes were recorded with a nine channeltron 

Phoibos-150 hemispherical analyzer (specs) under a vacuum better than 1x10-9 mbar using Mg 

Kα radiation and a constant pass energy of 20 eV. The binding energy scale was referenced to 

the C 1s signal of the adventitious carbon layer which was set at 284.6 eV. 

2.3 Nanoparticles synthesis and working electrode preparation 

Pt-Au nanoalloys were synthesized by chemical reduction of the precursor salts (hydrogen 

hexachloroplatinate (IV) hydrate (H2PtCl6·6H2O) and hydrogen tetrachloroaurate (III) trihydrate 

(HAuCl4·3H2O)) with trisodium citrate dehydrate (Na3C6H5O7, TSC) under microwave 

radiation, controlling the [PtCl6]
2- and [AuCl4]

- ratios in order to obtain Pt, Pt3Au, PtAu, PtAu3 

and PtAu9 nanoparticles. All reagents were added to the microwave reactor, without any 

previous treatment, and were heated at 150°C for 6 minutes (10 bar). The obtained sol was 

centrifuged and washed several times with deionized water and dried at 60°C. 1 mg of the 

nanoparticles was dispersed in ethanol, dropped on the graphite electrode and dried at 100°C. 

The as-prepared electrodes were activated by cyclic voltammetry in 0.5 M H2SO4 until a quasi 

steady-state was reached. For the CO stripping measurements, CO was adsorbed at 0.3 V for 20 

min and the adsorbed CO was oxidized at a scan rate of 20 mV s-1 after eliminating the dissolved 

CO from the solution with N2 for 30 min. Successive scans were carried out to verify the absence 

of CO in solution. The electrochemical active surface area (EASA) of platinum was calculated 

from the hydrogen adsorption/desorption charge assuming a charge of 210 C cm-2 for a 

monolayer of adsorbed hydrogen, and compared with the charge of CO stripping, assuming a 

charge of 420 C cm-2 for a monolayer of adsorbed CO. 

3. Results and Discussion 

3.1 Structural characterization: SEM, HR-TEM and XRD  

Structural parameters are crucial in determining the reactivity of the nanoparticles, as they affect 

both electronic and geometric effects [5]. Therefore, a deep characterization of all these 

parameters may lead us to a better understanding of their catalytic performance. Electronic 

effects can be described based on the energy distribution of the d band density of states (DOS), 

and all other effects can be explained by geometric factors. We have performed SEM, HR-TEM 
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and XRD measurements in order to study the correlation between the lattice parameters and the 

electronic structure, as examined with XPS (see below), in these systems. Figure 1 shows the 

SEM (A-E), HR-TEM (F-J) and the selected-area electron diffraction (SAED) pattern for the Pt, 

Pt3Au, PtAu, PtAu3 and PtAu9 nanoparticles, respectively. All samples (Figure 1 A-E) show 

small nanoparticles with similar size distributions. Clearly, aggregation of the nanoparticles 

increased with gold content. As shown by the HR-TEM images and the corresponding SAED 

patterns, all nanoparticles show hexagonal shape and high crystallinity, with predominantly 

(111) facets (inset), which we attribute to a combination of the experimental conditions and 

synthesis method employed. [27-29] The measured distances between two adjacent atomic rows 

for Pt nanoparticles was approximately 0.23 nm, which are characteristic of the separation 

between (111) planes of fcc Pt. Increasing the gold content led to an increase of defects. It was 

not possible to determine changes in the crystal lattice spacing related to the increase in the gold 

content, because the lattice parameters for platinum and gold (3.920 Å and 4.080 Å, respectively) 

are very close to each other.  

 

The XRD pattern of the nanoparticles is shown in Figure S1. All XRD peaks could be indexed as 

face centered cubic (fcc) structure, and no peaks corresponding to other phases were detected. 

The sharp peaks indicate good crystallinity and the wide peaks, in combination with the HR-

TEM analysis, could be attributed to small crystallite sizes. The average crystallite of the pure Pt 

nanoparticles was calculated from the peak width (FWHM) using Scherrer’s equation, yielding 

an average size of 2 nm, in good agreement with the TEM analysis. Due to the limitations 

associated to the use of Scherrer’s equation [30, 31] in bimetallic systems, we did not calculate 

the crystallite size for the PtAu alloys. We just can infer that the size of the nanoparticles slightly 

increased with the gold content as shown by the HR-TEM images. In the case of Pt NPs, the 

peaks at 2θ values 39.8°, 46.3°, 67.5°, 81.5° and 85.7° were attributed to the Pt (111), Pt (200), 

Pt (220), Pt (311), and Pt (222) planes of the fcc structure, respectively. Increasing the gold 

content in the nanoparticles led to a shift to lower angles of the corresponding peaks, which 

could be correlated to a good alloy formation. Peaks in the XRD pattern, compared to those of 

Pt, are shifted to lower 2θ as the bimetallic particles are formed. This can be indexed to an 

increase in the d-spacing crystal structure and expansion of the lattice constant as a result of 

incorporation of (larger) Au atoms into the Pt fcc lattice [32, 33]. The lattice constant values, 

calculated using Bragg´s equation, for the different particles were 2.2749 Å (Pt); 2.3085 Å 

(Pt3Au); 2.320 Å (PtAu); 2.3315 Å (PtAu3) and 2.3432 Å (PtAu9). These numbers fall between 

those of pure Pt and pure Au, confirming the formation of an alloy. 

 

3.2 Chemical State Analysis from XPS and cyclic voltammetry 

Surface composition of an alloy catalyst might be different to that of the bulk due to segregation. 

Thus, the chemical composition of the surface is an important parameter that will control at the 

end the reactivity of the catalyst. For this reason a deep surface characterization becomes 

necessary. Surface characterization of the particles was carried out by XPS and cyclic 

voltammetry.  

Figure S2 shows the Au 4f and Pt 4f spectra recorded for each one of the materials considered in 

this paper. Because of the close vicinity of the Au 4f and Pt 4f spectral regions, the X-ray 

satellites corresponding to the Au 4f signal overlap with the Pt 4f5/2 core level peak. These 
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satellites were carefully subtracted from the spectra using software tools [34], otherwise the area 

of the Pt 4f peaks could be overestimated and therefore would lead to unrealistic Au/Pt atomic 

ratios. After satellite removal and background subtraction using the Shirley method [35], the 

spectral areas were obtained by peak integration and the Au/Pt atomic ratios calculated using the 

Multiquant XPS package software [36]. The results obtained are collected in Table 1. The data 

show that the Pt/Au atomic ratios are, in all cases, larger than the expected nominal values. This 

suggests that the surface of the nanoparticles is enriched in Pt. This enrichment appears to be 

larger for larger Pt contents. Inspection of Table 1 clearly shows that the binding energy of the Pt 

4f7/2 core level decreases with increasing Au content in the electrodes (up to 0.7 eV from pure Pt 

to PtAu9). This is an indication of the occurrence of Au-Pt alloying, which takes place at a 

greater extent for larger Au contents [37].  This must be the consequence of charge transfer 

between Pt and Au due to their different electronegativities [37-39], i.e., of an electronic effect. 

It is well-known that the Pt 4f and Au 4f core level peaks corresponding to platinum and gold 

metals are asymmetric, and that an exponential tail is required to adequately fit their 

corresponding spectra. In this paper we have fitted the Pt 4f and Au 4f core levels of pure Pt and 

Au metals using such an exponential tail, and the obtained value together with the rest of 

parameters, except the position and the area (line width, Lorentzian/Gaussian mixing ratio), have 

been fixed to fit the spectra of all the electrode series. This fitting procedure revealed the 

presence in PtAu3 and PtAu9 of a contribution with a binding energy around 72 eV, characteristic 

of Pt2+ (Table 1) [40], which could have been undetected/misestimated if all these parameters 

had been left to vary freely.   The appearance of Pt2+ in gold-rich nanoparticles may be ascribed 

to a competition for the reducing agent, for which gold is expected to have higher affinity, during 

the synthesis procedure. Taken together, the XPS results suggest a situation in which the 

catalysts correspond either to a Pt-Au alloy covered by Pt islands or by a Pt-Au alloy completely 

covered by a thin Pt layer. In the terminology employed in ref [38] we would have a partially 

alloyed/partially phase segregated type of material. In some of the samples the outer part of the 

platinum islands/layer would be oxidized to Pt2+. 

 

Figure 2 shows the voltammetric response of the graphite-supported Pt nanoparticles and the Pt-

Au alloys, performed in aqueous 0.5 M H2SO4 solution. The currents were normalised to the Pt 

electrochemical active surface area (EASA), as calculated from the hydrogen 

adsorption/desorption charge. All graphs show the Hupd-region between 0 V and 0.4 V; the 

double layer region until oxide formation between 0.4 and 0.8 V, and the Pt oxide formation at E 

> 0.8 V, all of them typical voltammetric features of polycrystalline Pt. In addition, in Au-

containing nanoparticles Au oxide formation occurs at E > 1.25 V. Oxide reduction peaks for Pt 

(peak I) and Au (peak II) appear during the reverse scan, exhibiting different intensities 

according to the Pt/Au mole ratio. In general, the CVs correspond to the weighted sum of those 

corresponding to pure Pt and pure Au surfaces, a clear evidence of the presence of both Pt and 

Au on the surface, although the platinum oxide reduction peak in Pt/Au alloys appears at slightly 

more negative potentials than in pure platinum. This is an indication of changes in the electronic 

structure of surface Pt, in good agreement with previous work [5, 8-10, 39, 41] and the XPS 

results above. The negative shift (in the order of 10-30 mV) of the platinum oxide reduction peak 

reveals a stronger bond between Pt and oxygen with increasing gold content. This can be 

attributed to a shift of the d-band centre to higher energies (closer to the Fermi level), leading to 

stronger bonding with adsorbates like oxygen or CO (see below). The potential of the gold oxide 
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reduction peak remained constant regardless of the Au content, again in good agreement with the 

absence of significant variations of the binding energy of the Au 4f7/2 XPS peak (see above). 

3.3 CO stripping 

The activity of an electrocatalyst towards the oxidation of methanol and/or formic acid is closely 

related to its tendency to form COads and/or its ability to oxidise it once formed, both of which 

are influenced by both the surface composition and structure. Figure 3 shows the CO-stripping 

CVs of the different materials synthesised (current normalized to the EASA). Increasing the gold 

content in the alloy shifts the COads-stripping peak positively. A similar behaviour has been 

previously reported, and explained by the existence of electronic interactions between Pt and Au 

[8, 10, 42]. Pedersen and co-authors calculated the chemisorption energy of CO on Pt-Au alloys 

as a function of the alloying degree and the d-band energy center [8] and found higher CO 

binding energy for lower Pt contents. This is consistent with the modification of the electronic 

structure of Pt upon alloying also suggested by XPS and the voltammetric characterization of the 

materials. 

The platinum EASA was calculated from the CO stripping peak for comparison with that 

obtained from Hads and similar values were obtained. 

 

3.4 Catalytic Activity Towards the Electrooxidation of Formic Acid 

3.4.1. Cyclic Voltammetry in HCOOH-containing acidic solutions 

It has been previously reported that increasing the Au content in PtAu alloys leads to a decrease 

in the formic acid oxidation activity due to a diminution in available active Pt atoms, together 

with a negative shift of the onset potential due to less CO poisoning, attributed to atomic-

ensemble effects [10, 43-45]. The effect of gold content on the catalytic activity of our materials 

for the FAOR was studied by cyclic voltammetry in solutions containing 0.05 M FA and 0.5 M 

H2SO4. The results are presented in Figure 4. The CV profile of pure Pt nanoparticles in the 

presence of formic acid is characteristic of the dual pathway mechanism [46]. The first anodic 

peak (peak I, ~0.65 V)  in the positive-going scan corresponds to the direct oxidation of FA 

through the dehydrogenation pathway, and the second peak (peak II, ~0.95 V) results from the 

stripping of adsorbed CO (a catalytic poison) and the consequent increase in the rate of formic 

acid oxidation [46]. Anodic peaks in the negative-going scan appeared as a consequence of the 

reduction of surface oxides (~0.8 V and ~0.55 V), which provides active sites for formic acid 

oxidation. Increasing the amount of Au content in the alloy causes: (i) a negative shift of the 

onset potential of the FAO reaction; and (ii) an increase of the anodic peak corresponding to the 

FA oxidation via the dehydrogenation (direct) pathway, indicating that the dehydration (indirect) 

pathway is substantially suppressed. 

Pt and Pt3Au nanoparticles showed higher peak currents in the second oxidation peak of the 

positive-going scan than in the first one, implying a high degree of CO poisoning. Moreover, Pt 

and Pt3Au nanoparticles showed large hysteresis between the anodic and cathodic sweeps, also a 

clear indication of CO poisoning. The peak current of the second peak in the positive-going scan 

decreased, and the hysteresis became less pronounced, with increasing gold content, both 

becoming almost negligible for PtAu3. This is clear evidence of decreasing CO poisoning with 

increasing Au content, which would become negligible for a Pt/Au ratio 1:3. Taking into account 

the CO-stripping results reported above, this must be attributed to a gradual suppression with 
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increasing Au content of the formation of COads on Pt, due to the associated gradual decrease in 

the number of atomic ensembles containing a minimum of three contiguous Pt atoms on the 

surface of the nanoparticles. 

Table 2 lists the onset overpotential (η) for the different materials prepared, calculated as the 

potential at which the oxidation current exceeds by 5% the baseline current (labelled with * on 

the CV plot), and taking into account that the equilibrium potential for the oxidation of formic 

acid at the concentration used (0.05 M HCOOH) is 0.038 V vs. RHE. From pure Pt to PtAu3 the 

overpotential decreases with increasing gold content by more than 200 mV, again suggesting a 

higher catalytic activity of these particles towards the FAOR. PtAu3 nanoparticles also showed a 

higher activity for the direct path per surface Pt atom (i.e., higher oxidation currents when 

normalized by the Pt EASA). Both the lower onset potential and the higher current density 

(EASA-normalized) for the direct path can be attributed to (i) a stronger interaction of surface Pt 

atoms at the surface of PtAu3 with the intermediate in the direct path  [47, 48], which decreases 

the potential at which the reactive intermediate starts adsorbing and brings the adsorption energy 

of this intermediate closer to the optimum for catalysis (an electronic effect); (ii) Pt-ensembles 

on PtAu3 too small to adsorb Hupd, but big enough for the FAOR, since the FAOR may occur in a 

Pt-Au site but Hupd adsorption requires pure Pt sites surrounded by two or more Pt atoms [49] (an 

atomic-ensemble effect); and (iii) both. XPS, CV and CO-stripping voltammetry showed clear 

evidence of an electronic effect on the Pt atoms at the surface of the alloys, but the current results 

do not throw any light about possible additional contributions from atomic-ensemble effects to 

the observed higher activity of PtAu3 for the direct path of the FAOR. 

The catalytic performance of our materials per Pt mass towards the FAOR was found to be 

similar to that of other PtAu nanoparticles prepared by other methods [50].  

Figure S3 shows the CVs corresponding to the oxidation of formic acid normalized to the mass 

of platinum for each electrode. Pt-mass normalized currents are smaller for Pt3Au than for pure 

Pt nanoparticles, which can be attributed to the presence on the surface of this material of less 

active Au atoms. On the contrary, for PtAu and PtAu3 nanoparticles the Pt-mass normalized 

current is clearly higher than in the case of pure Pt nanoparticles. The current normalized by the 

EASA is similar in pure Pt and PtAu3 alloys, and smaller in the case of Pt3Au and PtAu, as 

shown in Figure 4 and discussed above. Consequently, the higher Pt-mass normalized currents 

observed with PtAu and PtAu3 must be largely due to a better utilization of the Pt atoms in the 

nanoparticles. This agrees with the XPS analysis above, which showed Pt surface segregation.  

3.4.2. Galvanostatic oscillations during the FAOR 

As in the case of most small organic molecules [51] the electro-oxidation of formic acid is 

known to undergo kinetic instabilities under some conditions [52, 53]. Understanding non-linear 

dynamics in these systems can provide meaningful mechanistic and/or kinetic information.  

Figure 5 displays galvanostatic experiments using distinct applied currents. Previous 

galvanodynamic sweeps were used to normalize the oscillatory region, in order to ensure 

comparable conditions. In all cases, oscillations drift spontaneously until the limit cycle collides 
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with the fixed point corresponding to the oxygen evolution reaction, where the electrode 

potential would jump to very high values if a cut-off at 1.0 V were not applied. 

Oscillations in the electro-oxidation of formic acid and other small organic molecules are 

generally attributed to the oscillating surface coverage of adsorbed species, like reactants, 

oxygenated species, poisoning intermediates and anions from the supporting electrolyte [54]. 

The applied current is sustained essentially by the electro-oxidation of formic acid through the 

dehydrogenation pathway [55] and, at the same time, COads can be formed by dehydration of 

formic acid, blocking surface sites but not contributing to the total current. Due to this surface 

poisoning, the potential needs to increase in order to sustain the applied current, and it continues 

increasing until the formation of oxygenated species via water oxidation becomes possible. 

These oxygenated species, whose coverage increase with increasing potential, assist the 

oxidation of COads via a Langmuir-Hinshelwood step, whose rate is itself also potential 

dependent, because it involves an electron transfer. This behaviour can be observed in the 

chronopotentiometric profile of the formic acid oxidation, especially on Pt bulk electrodes [52, 

53]. 

Since the oscillations on the Pt NPs show a well-known profile and expectable parameters, we 

have used them as reference for comparison with the gold-alloyed nanoparticles. Figure 5 reveals 

the great impact of alloying with Au, shown in the increase of the amplitude and the decrease in 

the number of cycles with increasing gold content, until the complete absence of oscillations in 

PtAu3 nanoparticles. General parameters, like frequency, amplitude and length of the oscillating 

region (SOSC), are highlighted in Table 3: 

Interestingly, Pt and Pt3Au nanoparticles sustain oscillations with very similar frequency and 

number of cycles. However, no induction period before the emergence of oscillations exists in 

the case of Pt3Au, while In the case of Pt nanoparticles, the induction period until the first cycle 

is around 3000 s. PtAu nanoparticles showed a different behaviour, with oscillations starting 

after ~1500 s. The induction period is the time needed for the system to reach the proper 

configuration for the emergence of oscillations, and also carries some random aspects. Longer 

induction periods are associated to less susceptibility to generate oscillations. 

On PtAu nanoparticles the lower potential limit is about 100 mV less positive than that for pure 

Pt and Pt3Au catalysts, in good agreement with the lower onset overpotential observed in the 

corresponding CV (Figure 4). The absence of potential oscillations in the experimental 

conditions investigated for the PtAu3 and PtAu9 nanoparticles is clearly due to the absence of CO 

poisoning on these materials, and related to the increasing presence of gold. 

The rate of potential change during an oscillation, dE/dt, calculated by differentiating one 

oscillation cycle from minimum to minimum, is shown as a function of the potential in Figure 

S4. dE/dt corresponds to the rate of deactivation (rising slope) and subsequent reactivation 

(decreasing slope) of the surface. At the lower potential limit the rate of deactivation is almost 

zero. In this potential region the observed deactivation must be due to the formation of COad, and 

the low rate of surface poisoning observed is in good agreement with the well-known fact that, 

despite not involving any net electron transfer, HCOOH dehydration on Pt follows an 

electrochemical mechanism [56-58]. As a consequence, the rate of COad formation is potential 

dependent and goes through a maximum [57-59]. The lower potential limit of the oscillation 

cycle is more positive than that at which the rate of dehydration of formic acid can be expected 

to be maximum,[58, 59] hence the low deactivation rate. 
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The slow increase in the potential required to sustain the applied current due to the slow surface 

poisoning by COads will eventually lead to the formation of adsorbed oxygenated species and 

surface oxides, which are necessary for the oxidation of COads, but also inactive in the direct path 

of formic acid oxidation. Initially, the latter effect dominates, and the rate of surface deactivation 

increases slowly with increasing potential until a maximum is reached, after which the rate of 

CO stripping significantly increases, and the rate of deactivation decreases again and becomes 

zero at the positive limit of the potential oscillation. At this point, CO stripping becomes 

dominant and dE/dt becomes negative. As the potential decreases, the rate of reduction of surface 

oxygenated species increases, and so does the rate of surface reactivation, until a maximum is 

reached, after which it decreases and becomes zero at the lower potential limit, when the cycle 

starts again. The increase in the oscillation amplitude with increasing proportion of Au is due to 

the shift to more negative and positive potentials of the Pt oxide reduction and the oxidation of 

adsorbed CO, respectively. Also to be noted is the shift to more positive potentials of the 

potential of fastest deactivation, and the increase of the magnitude of dE/dt with increasing Au 

content, the latter effect being more intense in the reactivation loop. Both effects are due to the 

slower rate of formation of COads, and the resulting lower degree of CO poisoning, brought about 

by alloying Pt with Au. The spontaneous drift of the oscillations to more positive potentials, and 

their eventual fading, reflects surface deactivation [60-62] due to atomic place exchange at the 

catalyst surface as a consequence of platinum oxidation [46, 63].  

The trends observed with increasing Au content in Pt/Au alloy nanoparticles are exactly the 

opposite to those observed in previous experiments on tin-modified platinum, in which the 

duration of the oscillations was considerably extended [64, 65], and the upper limit of the 

oscillations gradually decreased with time. Both observations were attributed to the fact that tin 

provides oxygenated species for the oxidation of adsorbed CO at lower potentials than platinum 

(bifunctional mechanism), preventing the oxidation and consequent deactivation of the latter. 

The results reported here are, hence, a clear indication that the improved catalytic activity of 

Pt/Au alloy nanoparticles is not due to a bifunctional mechanism (as was to be expected, as Au is 

the only metal which is more stable in its reduced than in its oxidised state). 

A deep analysis of the oscillations provides further insight into the roles and consequences of 

both atomic-ensemble effects and electronic effects. On one side, increasing the amount of Au 

decreases the number of atomic ensembles on which HCOOH can be dehydrated to COads, 

decreasing the rate (and extension) of CO poisoning. This explains both the wider potential range 

in which dE/dt is low with Pt3Au and PtAu, and the faster reactivation of the surface on these 

nanoparticles (Figure S4). On the other side, increasing the amount of Au also shifts positively 

the potential at which CO is oxidized, as well as that at which Pt oxide is reduced, explaining the 

more positive potential at which the maximum dE/dt is reached with Pt3Au and PtAu. This will 

also increase the degree of oxidation of Pt, which explains the faster vanishing of the oscillations 

with increasing gold content.  

3.5 Stability tests 

Fuel-cells must not only be active and efficient, but stable over prolonged use. The long-term 

performance of the nanoparticles was explored by chronopotentiometry at the current of the 

voltammetric anodic maximum for each electrode in 0.5 M H2SO4 + 0.05 HCOOH (Figure S5). 

The potential remained practically constant after 3 days for Pt and Pt3Au and a decay of less than 

100 mV was found in particles with higher gold content. There are no evidences of a decrease in 

activity due to surface poisoning or loss of material, revealing that the as-synthesized 
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nanoparticles are stable and graphite a suitable support for practical applications in direct formic 

acid fuel cells.  

4. Conclusions 

Bimetallic alloy nanoparticles with different Pt:Au molar ratios were synthesized by a 

microwave- assisted hydrothermal route, and investigated for the electrocatalytic oxidation of 

formic acid. Results obtained from ex-situ XPS, cyclic voltammetry and COads stripping show a 

marked electronic interaction between Pt and Au. Oxidation of COads on Pt-Au particles with 

high gold content was shifted positively over 200 mV. Higher oxidation currents for the direct 

path of the FAOR and lower onset potentials with increasing Au content were attributed to this 

electronic effect, which leads to an improved interaction between the intermediate in the direct 

path and the Pt atoms on the surface of the catalyst. On the other hand, the decrease in poisoning 

by adsorbed CO with increasing gold content is due to blocking of the dehydration of formic acid 

through an atomic-ensemble effect. Voltammetric experiments showed that PtAu3 nanoparticles 

performed best for the FAOR at low overpotentials. Further insight into the role of electronic and 

atomic-ensemble effects in improving the catalytic activity of Pt/Au alloy nanoparticles was 

obtained from an analysis of kinetic instabilities. Galvanostatic potential oscillations emerge, in 

some cases after an induction period, on Pt, Pt3Au and PtAu nanoparticles, but are absent on 

PtAu3 and PtAu9, confirming the absence of CO poisoning in the latter materials.  Nanoparticles 

with equal amounts of Pt and Au show the highest dE/dt, indicating fast deactivation and 

reactivation processes. Atomic ensemble effects explain the wider potential range in which dE/dt 

is low for Pt3Au and PtAu, as well as the faster reactivation of the surface, while electronic 

effects explain the more positive potential at which the maximum dE/dt is reached with Pt3Au 

and PtAu, as compared with Pt. This shows the potential of analysing kinetic instabilities as a 

complementary approach in electrocatalysis research. All electrodes showed good catalytic 

performance for long periods of time, with no evidence of poisoning or mass loss. 

Our results yield relevant information about the effect of both electronic and ensemble effects in 

the catalytic activity of Pt/Au nanoparticles and, therefore, towards the design of more efficient 

and durable electrocatalysts.  
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Figure Caption 

 

Figure 1. (A-E) SEM images of Pt (A) and Pt/Au 3/1 (B), 1/1 (C), 1/3 (D) and 1/9 (E) 

nanoparticles; (F-J) HR-TEM images of Pt (F) and Pt/Au 3/1 (G), 1/1 (H), 1/3 (I) and 1/9 (J) 

nanoparticles. The corresponding SAED patterns are shown below each of the HR-TEM images. 
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Figure 2. Cyclic voltammograms of graphite-supported catalysts, recorded in 0.5 M H2SO4 at 50 

mV s-1. Currents were normalized to the Pt electrochemical active surface area, as determined 

from the charge in the Hupd region. 
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Figure 3. COads-stripping voltammograms on Pt (black); Pt3Au (red); PtAu (blue); PtAu3 (green) 

and PtAu9 (pink) electrodes in 0.5 M H2SO4, at 20 mV s-1. Current densities are referred to the Pt 

EASA as obtained from the charge in the Hupd region. 
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Figure 4. Cyclic voltammograms at 50 mV s-1 of Pt and Pt-Au nanoparticles supported on 

graphite in 0.05 M HCOOH and 0.5 M H2SO4. The figures in the upper right corner of the 

graphs indicate the Pt/Au ratio of the nanoparticles. 
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Figure 5. Potential time-series for the oxidation of formic acid on Pt (A), Pt3Au (B); PtAu (C), 

PtAu3 (D), and PtAu9 (E) nanoparticles in 0.5 M H2SO4 + 0.2 M HCOOH. Applied currents: 3.9 

mA (A); 4.3 mA (B); 12.8 mA (C); 2.7 mA (D); 1.5 mA (E). 
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B.E. (eV)  

Pt 4f7/2 

B.E. (eV) Au 

4f7/2 

Pt/Au  

atomic ratio 

 Pt0 Pt2+   

Pt 71.6 - - - 

Pt3Au 71.5 - 84.1 5.56 

PtAu 71.4 - 84.1 1.75 

PtAu3 71.3 72.6 84.2 0.39 

PtAu9 70.9 72.2 84.1 0.14 

 

Table 1. Pt 4f7/2 and Au 4f7/2 binding energies of the different species found and Au/Pt atomic 

ratio obtained by XPS. 
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Pt/Au 1/0 3/1 1/1 1/3 1/9 

η / V (RHE) 0.445 0.348 0.258 0.218 0.297 

Table 2. Estimated values of the corrected onset-overpotential for all the electrodes (0.05 M 

HCOOH and 0.5 M H2SO4, 25°C). 
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Pt/Au 1/0 3/1 1/1 1/3 1/9 

Amplitude (lower and 

upper limit of the 

oscillations) / V 

0.27 

(0.54-0.81) 

0.32 

(0.54-0.86) 

0.43 

(0.44-0.87) 
- - 

Frequency / mHz 3.9 4.8 2.4 - - 

SOSC (S) / s 
5200 

(7900) 

4600 

(4600) 

1700 

(3400) 
- (570) - (270) 

Number of Cycles 19 18 5 0 0 

Min/Max  dE/dt / mV s-1 -4.0/5.4 -8.3/22 -150/360 - - 

Table 3. Parameters of the oscillations reported in Figure 5. SOSC corresponds to the duration of 

the oscillatory region, and S is the time window for the whole evolution before the abrupt 

potential increase. dE/dt was obtained as the time derivative of the time series in Figure 5.  

 


