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Abstract 

Background: Colorectal cancer is a common malignancy and one of the leading causes of 

cancer related deaths.  The metabolism of omega fatty acids has been implicated in tumour 

growth and metastasis. 

Methods: This study has characterised the expression of omega fatty acid metabolising 

enzymes CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 using monoclonal antibodies we have 

developed.  Immunohistochemistry was performed on a tissue microarray containing 650 

primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosa.  

Results: The differential expression of CYP4A11 and CYP4F11 showed a strong association 

with survival in both the whole patient cohort (HR=1.203, 95% CI=1.092-1.324, χ2=14.968, 

p=0.001) and in mismatch repair proficient tumours (HR=1.276, 95% CI=1.095-1.488, 

χ2=9.988, p=0.007).  Multivariate analysis revealed that the differential expression of 

CYP4A11 and CYP4F11 was independently prognostic in both the whole patient cohort 

(p = 0.019) and in mismatch repair proficient tumours (p=0.046). 

Conclusions: A significant and independent association has been identified between overall 

survival and the differential expression of CYP4A11 and CYP4F11 in the whole patient 

cohort and in mismatch repair proficient tumours. 
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Introduction 

Colorectal cancer is one of the major contributors to cancer related mortality in the 

developed world (Siegel et al, 2014, Siegel et al, 2016).  The introduction of screening 

programmes and the development of new drugs have improved the survival rate of colorectal 

cancer patients, however the average five-year survival rate remains poor at 55% (Brenner et 

al, 2014).  The characterisation of novel biomarker targets can further improve the survival 

rate since it provides a better understanding of the complex molecular events underpinning 

tumour development, and if clinically validated these biomarkers have potential roles in 

screening, diagnosis, prognosis and monitoring disease progression (Alnabulsi and Murray, 

2016, Coghlin and Murray, 2015). 

The CYP4 cytochrome P450 family of enzymes metabolises omega-3 and omega-6 

fatty acids to biologically active eicosanoids that are implicated in tumour initiation, 

development and progression (Johnson et al, 2015, Yu et al, 2011).  Arachidonic acid, an 

omega-6 fatty acid, is converted by CYP4A11 to 20-hydroxyicosatetraenoic acid (20-HETE) 

which is considered a key modulator in tumours progression, angiogenesis and metastasis 

(Guo et al, 2007, Ljubimov and Grant, 2005).  CYP4F11 is not an efficient metaboliser of 

arachidonic acid compared to CYP4A11, however it is the predominant CYP4 enzyme 

involved in the metabolism of omega 3-fatty acids (Dhar et al, 2008).  The substrate 

specificity is not yet fully characterised for CYP4V2 and CYP4Z1 (Guengerich and Cheng, 

2011).  Despite the recognition of the involvement of omega fatty acids in tumourigenesis, 

the role of the cytochrome P450 enzymes involved in this pathway has received very limited 

attention in cancer biology (Panigrahy et al, 2010).   
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Using monoclonal antibodies we have developed to the cytochrome P450 enzymes 

CYP4A11, CYP4F11, CYP4V2 and CYP4Z1, this study has profiled the expression of these 

enzymes by immunohistochemistry on a tissue microarray containing a large and well-

characterised cohort of colorectal cancers.  The expression profile of each enzyme was 

established by light microscopy using a semi-quantitative scoring system.  The prognostic 

significance of each enzyme was determined by assessing the relationship between their 

expression in tumours and overall survival.   

 

  



5 
 

Materials and methods 

Monoclonal antibody development 

Monoclonal antibodies to CYP4A11, CYP4V2 and CYP4Z1 were developed using 

short synthetic peptides (Murray et al, 1998).  Multiple sequence alignments of the amino 

acid sequences were performed on these enzymes and other CYP4 family members to 

identify regions with the highest amino acid diversity.  To avoid poorly antigenic sequences 

of amino acids (e.g. transmembrane region), a range of bioinformatics tools were used to 

predict and model hydrophilic, accessible and antigenic polypeptide sequences as well as the 

secondary and tertiary structures of each enzyme (Supplementary Materials and Methods S1).  

The amino acid sequences of peptides used to generate the antibodies and their 

location on each enzyme are specified in Supplementary Table S1.  All peptides (Almac 

Sciences Ltd, Edinburgh, UK) were conjugated to ovalbumin for immunisations and to 

bovine serum albumin for the enzyme-linked immunosorbent assay (ELISA) screenings 

(Duncan et al, 1992).  The immunisation via the subcutaneous route, the production of 

hybridomas and the ELISA screenings were carried out as previously described (Brown et al, 

2014, Murray et al, 1996, Murray et al, 1998).  The development of the monoclonal antibody 

to CYP4F11 has been described previously (Kumarakulasingham et al, 2005). 

 

Immunoblotting 

The specificity of the monoclonal antibodies was established by immunoblotting 

using whole cell lysate (human embryonic kidney cells-HEK 293, Novus Biologicals, 

Cambridge, UK) overexpressing the relevant CYP as a positive control and lysates from cells 

containing empty vector as a negative control.  Microsomal fractions prepared from human 

liver tissues (BD Gentest Human Liver Microsomes (HLM) Pooled Male Donors 20 mg/mL 

cat no. 452172, BD Biosciences, Bedford, USA) were also used to carry out immunoblotting 
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validation for each antibody.  The immunoblotting was carried out as described, except that 

the polyvinylidene difluoride membrane was incubated overnight at 4°C with undiluted 

monoclonal antibody (neat hybridoma tissue culture supernatant), and the secondary 

antibody, horseradish-peroxidase-conjugated anti-mouse IgG (Sigma-Aldrich, Dorset, UK), 

was diluted 1/3000 in phosphate buffered saline-Tween-20 (Swan et al, 2016).  When using 

liver microsomes, 30 μg of samples were loaded per lane compared to 5 μg when using 

overexpression lysate.   

 

Patient cohort and colorectal cancer tissue microarray 

The patient cohort was retrospectively acquired from the Grampian Biorepository 

(www.biorepository.nhsgrampian.org).  The cohort is composed of tissue samples from 650 

patients who had undergone surgery for primary colorectal cancers between 1994 and 2009, 

at Aberdeen Royal Infirmary (Aberdeen, UK) which is the principal teaching hospital of NHS 

Grampian.  Patients who had received neoadjuvant chemotherapy and/or radiotherapy were 

excluded.   

Survival time was defined to be the period in whole months from the date of surgery 

to the date of death from any cause (i.e. all-cause mortality).  Survival data on a 6-monthly 

basis was updated from the NHS Grampian electronic patient management system and no 

patients were lost to follow-up.  At the time (March 2012) of the censoring of patient 

outcome data there had been 309 (47.5%) deaths and patients who were still alive were 

censored.  The median survival was 103 months (95% CI=86–120 months), the mean 

survival was 115 months (95% CI=108–123 months) and the median follow-up time, 

calculated by the “reverse Kaplan-Meier” method, was 88 months (95% CI=79–97 months).  

The clinico-pathological characteristics of the patients and their association with survival are 

described in Table 1. 
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Histopathology reporting was in accordance with The Royal College of Pathologists 

UK guidelines for the histopathological reporting of resection specimens of colorectal cancer 

which includes guidance from version 5 of the tumour, node, metastasis (TNM) staging 

system (Williams et al, 2007).   

 Blocks of formalin fixed, paraffin embedded tissue specimens were used to construct 

the tissue microarray as previously described (Brown et al, 2014, O'Dwyer et al, 2011, Swan 

et al, 2016).  The histopathological processing of tissue specimens and the construction of the 

tissue microarray are described in Supplementary Materials and Methods S1  

 

Immunohistochemistry 

 A Dako autostainer (Dako, UK) was used to perform the immunohistochemistry for 

each antibody using the Dako EnVision™ system (Dako, Ely, UK) (Brown et al, 2014, 

Kumarakulasingham et al, 2005).  Antigen retrieval (microwaving in 10mM citrate buffer pH 

6.0 for 20 minutes) was performed for all antibodies except CYP4A11.  The 

immunohistochemistry procedure and the antigen retrieval are described in Supplementary 

Materials and Methods S1.  A semi-quantitative scoring system was used to evaluate the 

intensity of immunostaining of each antibody (Brown et al, 2016, Kumarakulasingham et al, 

2005, O'Dwyer et al, 2011, Swan et al, 2016).  The scoring was conducted independently by 

two observers (RS and GIM) who were unaware of the clinical data and outcome.  The 

assessment of cores was performed using light microscopy (Olympus BX 51, Olympus, 

Southend-on- Sea, Essex, UK).  Simultaneous re-evaluation of the cores by both investigators 

was used to resolve any discrepancies in the scores (< 5% of cases).  
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Assessment of mismatch repair protein (MMR) status 

The status of MMR in the patient cohort was classified as either defective or 

proficient based on the immunohistochemical assessment of MLH1 and MSH2 proteins 

(Brown et al, 2014). 

 

Data analysis and statistics 

The data was entered into an Excel 2013 spreadsheet before being analysed using 

IBM SPSS version 24 for Windows 7™ (IBM, Portsmouth, UK).  The following statistical 

tests were used; Mann-Whitney U test, Wilcoxon signed rank test, chi-squared test, Kaplan-

Meier survival analysis, log-rank test and Cox multivariate analysis (variables entered as 

categorical variables) including the calculation of hazard ratios and 95% CIs.  A probability 

value of p≤0.05 was regarded as statistically significant.  The survival analysis of the 

different patients groups was conducted using the log rank test.  The scores for each protein 

were dichotomised using the following cut-off points; negative staining versus positive 

staining, negative and weak staining versus moderate and strong staining and strong staining 

versus negative/weak/ moderate staining.  Further details of data analysis and statistics are 

provided in Supplementary Materials and Methods S1. 

 

Ethics 

The use of colorectal tissue samples in this study was approved by the Grampian 

Biorepository scientific access group committee (Tissue request No. 0002).  No written 

consent was required from patients for the use of formalin fixed wax embedded tissue 

samples in the colorectal cancer tissue microarray. 
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Results 

Monoclonal antibodies  

During the hybridoma production, sequential ELISA screenings (immunogenic 

peptide specific to each enzyme) were used to determine the specificity of the monoclonal 

antibodies towards CYP4A11, CYP4V2 and CYP4Z1 (Duncan et al, 1992).  Furthermore, 

immunoblotting showed a band migrating at the expected molecular weight for each antibody 

while no band was detected in the negative controls (Supplementary Figure S1).  The 

specificity of the antibody to CYP4F11 was confirmed previously (Kumarakulasingham et al, 

2005). 

 

Immunohistochemistry 

CYP4A11, CYP4F11 and CYP4V2 antibodies showed immunoreactivity in normal 

colonic epithelium, primary colorectal tumours and lymph node metastasis, while CYP4Z1 

showed immunoreactivity only in a very small proportion of primary tumours.  The 

immunostaining was exclusively localised to the cytoplasm of the cells (Supplementary 

Figure S2).  Intra-tumour heterogeneity was not observed in either primary or metastatic 

colorectal tumours. 

There was a significant increase in the intensity of immunostaining in primary 

tumours compared to normal colonic mucosa for CYP4A11 (p<0.001), CYP4F11 (p<0.001) 

and CYP4V2 (p<0.001) (Table 2; Supplementary Figure S3).  In contrast, a significant 

decrease in the expression of CYP4A11 (p=0.007), CYP4F11 (p<0.001) and CYP4V2 

(p<0.001) was observed in lymph node metastasis compared with all primary tumours.  There 

was also a significant decrease in the expression of CYP4A11 (p=0.002), CYP4F11 

(p<0.001) and CYP4V2 (p<0.001) in lymph node metastasis compared to their corresponding 

primary Dukes C tumours. 
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Relationship with pathological parameters 

The relationships between the main pathological parameters and the expression of 

CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 are summarised in Supplementary Tables S2A, 

B and C.  Both CYP4A11 (χ2=13.148, p=0.041) and CYP4V2 (χ2=24.474, p<0.001) showed 

significant associations with Dukes stage, but only CYP4V2 displayed a significant 

relationship with tumour stage (χ2=17.837, p=0.037).  The expression of CYP4A11 was 

significantly associated with tumour site (χ2=15.703, p=0.015).  CYP4F11 also showed 

significant associations with tumour site (χ2=20.947, p=0.002), tumour differentiation 

(χ2=8.5552, p=0.036) and MMR status (χ2=13.441, p=0.004).   

 

Survival analysis 

Whole patient cohort 

Different cut-off points of the immunostaining scores were used to investigate the 

association between the expression of CYP4A11, CYP4F11 and CYP4V2 and overall 

survival (Supplementary Table S3).  The expression of CYP4A11 showed a consistent and 

significant association with overall survival (Figure 1).  Overall, increasing intensity of 

CYP4A11 immunostaining was significantly associated with poorer outcome (HR=1.135, 

95% CI=1.032-1.249, χ2 =9.080, p=0.028).  When each level of the intensity groups of 

CYP4A11 expression was considered independently using one reference group (negative 

expression), strong CYP4A11 immunostaining was significantly associated with poorer 

outcome (HR=1.541, 95% CI=1.144-2.077, χ2 =8.006, p=0.005) (Supplementary Table S4).  

 The median survival was 137 months (95% CI undefined) and the mean was 132 

months (95% CI = 117-147 months) for CYP4A11 negative tumours (n = 175), whereas the 
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median survival was 75 months (95% CI=58-91 months) and the mean was 96 months (95% 

CI=84-109 months) for CYP4A11 strong expression tumours (n = 197).  

Immunoreactivity for CYP4A11 was significantly associated with poorer prognosis 

(HR=1.346, 95% CI=1.032-1.756, χ2 =4.881, p=0.027) when compared with CYP4A11 

negative tumours.  For CYP4A11 positive tumours (n=450) the median survival was 88 

months (95% CI = 71-104 months) and the mean was 105 months (95% CI = 96-114 months), 

compared to a median of 137 (95% CI undefined) and a mean of 132 months (95% CI = 117-

147 months) for CYP4A11 negative tumours (n=175).  Comparing strong CYP4A11 

expressing tumours with negative/weak/moderate expressing tumours also showed a 

significant association with survival (HR = 1.379, 95% CI = 1.089–1.746, χ2 = 7.234, p = 0.007).  

The median survival was 113 months (95% CI = 89-136 months) and the mean was 124 

months (95% CI = 114-134 months) for negative/weak/moderate CYP4A11 immunostaining 

tumours (n = 428), whereas the median survival was 75 months (95% CI = 58-91 months) and 

the mean was 96 months (95% CI = 84-109 months) for strong CYP4A11 immunostaining 

tumours (n = 197).   

Exploratory analysis of CYP4 enzyme expression showed there was a significant 

association between the differential (combined) expression of CYP4A11 and CYP4F11 and 

survival (Supplementary table S5).  Therefore, a new variable, based on the differential 

expression of CYP4A11 and CYP4F11, was created to stratify tumours into three groups; 

CYP4A11 greater than CYP4F11 (CYP4A11>CYP4F11), CYP4A11 equal to CYP4F11 

(CYP4A11=CYP4F11) and CYP4A11 less than CYP4F11 (CYP4A11<CYP4F11).  Overall 

survival was significantly associated with the expression profiles of CYP4A11>CYP4F11, 

CYP4A11=CYP4F11 and CYP4A11<CYP4F11 groups (HR=1.311, 95% CI=1.140-1.506, 

χ2=14.968, p=0.001) (Figure 2).  When each level of the differential expression groups was 

considered independently using pairwise comparisons and one reference group 
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(CYP4A11<CYP4F11), both CYP4A11>CYP4F11 (HR=1.733, 95% CI=1.306-2.300, 

χ2=14.405, p=<0.001) and CYP4A11=CYP4F11 (HR=1.432, 95% CI=1.064-1.928, χ2=5.425, 

p=0.020) were significantly associated with poorer outcome (Supplementary Table S6).  The 

mean survival was 137 months (95% CI= 124-151 months) (median survival undefined) for 

the CYP4A11<CYP4F11 group (n=214), the median survival was 95 months (95% CI=72-

117 months) and the mean was 102 months (95% CI=90-114 months) for the 

CYP4A11=CYP4F11 group (n=185), while the median survival was 75 months (95% CI=60-

89 months) and the mean survival was 94 months (95% CI=81-106 months) for 

CYP4A11>CYP4F11 group (n=217). 

The associations between the expression of CYP4A11, CYP4F11, CYP4V2 and 

CYP4Z1 and overall survival in relation to different tumour sites, Dukes stage and extramural 

venous invasion (EMVI) are shown in Supplementary Tables S7, S8, S9 and S10. 

 

MMR proficient cohort 

There was a significant association between the expression of CYP4A11 and overall 

survival in MMR proficient tumours (HR=1.156, 95% CI=1.040-1.286, χ2=11.221, p=0.011) 

(Figure 3; Supplementary Table S11).  When each level of the intensity groups of CYP4A11 

expression was considered separately using pairwise comparisons and one reference group 

(negative expression), strong CYP4A11 immunoreactivity was significantly associated with 

poorer prognosis (HR=1.644, 95% CI=1.183-2.284, χ2=8.626, p=0.003) (Supplementary 

Table S4).  When comparing strong CYP4A11 expressing tumours with 

negative/weak/moderate expressing tumours the strong expression of CYP4A11 showed a 

significant association with worse survival (HR=1.491, 95% CI=1.152-1.929, χ2=9.404, 

p=0.002).  The positive expression of CYP4A11 was also significantly associated with poorer 
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outcome when positive CYP4A11 expressing tumours were compared with negative 

CYP4A11 expressing tumours (HR=1.375, 95% CI=1.022-1.851, χ2=4.485, p=0.034).   

There was also a significant association between the differential expression of 

CYP4A11 and CYP4F11 and survival in MMR proficient tumours (HR=1.276, 95% 

CI=1.05-1.488, χ2=9.988, p=0.007) (Figure 2).  When each level of the intensity groups was 

considered independently using pairwise comparisons and one reference group 

(CYP4A11<CYP4F11), CYP4A11>CYP4F11 expressing tumours were significantly 

associated with poorer outcome (HR=1.629, 95% CI=1.199-2.214, χ2=9.261, p=0.002) 

(Supplementary Table S6).  The median survival was 75 months (95% CI=85-121 months) 

and the mean was 97 months (95% CI=83-111 months) for CYP4A11>CYP4F11 expressing 

tumours (n=181).  While, the mean survival was 137 months (95% CI=123-151 months) 

(median survival undefined) for CYP4A11<CYP4F11 expressing tumours (n=186).   

 

MMR deficient cohort 

 The lack of expression of CYP4F11 was significantly associated with worse overall 

survival compared with CYP4F11 positive tumours (HR=0.479, 95% CI=0.241-0.952, 

χ2=4.682, p=0.03) (Supplementary Table S11; Supplementary Figure S4).  The median 

survival was 28 (95% CI=21-34 months) and the mean was 49 months (95% CI =28 –70 

months) for CYP4F11 negative tumours (n=16) compared with a median of 114 (95% CI=78-

149 months) and a mean of 104 months (95% CI= 84-123 months) for CYP4F11 positive 

tumours (n=77).  

Overall, the association between survival and the differential expression of CYP4A11 

and CYP4F11 just failed to reach the threshold for statistical significance in MMR deficient 

cohort (HR=1.433, 95% CI=0.993-2.067, χ2=5.676, p=0.059) (Figure 2).  When each level of 

the intensity groups was considered independently using pairwise comparisons and one 



14 
 

reference group (CYP4A11<CYP4F11), both CYP4A11>CYP4F11 expressing tumours 

(HR=1.733, 95% CI=1.306-2.300, χ2=14.405, p=<0.001) and CYP4A11=CYP4F11 

expressing tumours (HR=1.432, 95% CI=1.064-1.928, χ2=5.425, p=0.020) were significantly 

associated with poorer outcome (Supplementary Table S6).   

 

Multivariate analysis 

To evaluate the prognostic value of the differential expression of CYP4A11 and 

CYP4F11 (as a single variable) in relation to established prognostic parameters multivariate 

analysis was performed using “Forward Stepwise: Conditional LR” Cox regression method.  

The model showed there was a significant and independent prognostic value of using the 

differential expression of CYP4A11 and CYP4F11 in the whole patient cohort (p=0.019) and 

in MMR proficient tumours (p=0.046) (Table 3; Supplementary Tables S12 and S13).  The 

differential expression was also a significant independent prognostic indicator in a 

multivariate analysis using only parameters that would be available at the time of biopsy in 

both the whole patient cohort (p=0.001) and in MMR proficient tumours (p=0.006) 

(Supplementary Table S14).   
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Discussion 

The rise in incidence and the poor survival rate makes colorectal cancer a major 

health burden in the developed world (Brenner et al, 2014, Siegel et al, 2014, Siegel et al, 

2016).  There is still urgent need to identify and validate biomarkers of colorectal cancer that 

can play a role in clinical practice (Alnabulsi and Murray, 2016). 

In this study, we have produced monoclonal antibodies to P450 enzymes CYP4A11, 

CYP4V2 and CYP4Z1 using short synthetic peptides that are specific to the targets of 

interest.  The antibody for CYP4F11 was generated in a previous study (Kumarakulasingham 

et al, 2005).  The antibodies were used to profile the expression of each enzyme by 

immunohistochemistry which was performed on a well-characterised colorectal cancer tissue 

microarray. 

The cytochrome P450 superfamily is classified into families, subfamilies and 

individual forms according to sequence homology and substrate specificity (Almira Correia 

et al, 2011, Fleming, 2011, Spector, 2009).  Members of CYP1, CYP2 and CYP3 families are 

the major xenobiotic metabolising enzymes whose roles in cancer have been extensively 

studied (Murray et al, 1991, Murray et al, 1993, Murray et al, 1999, Murray et al, 2001, 

Murray et al, 2010, Rodriguez-Antona et al, 2010, Stenstedt et al, 2012, Xu et al, 2012).  The 

CYP4 and higher numbered families are involved in the metabolism of a diverse range of 

endogenous compounds including eicosanoids, fatty acids, steroids and vitamins (Arnold et 

al, 2010, Fleming, 2011, Guengerich and Cheng, 2011, Niwa et al, 2011, Panigrahy et al, 

2010, Spector, 2009).  The role of CYP4 family and higher numbered families is not well 

studied in tumour biology with the exception of those CYPs involved in sex hormone 

metabolism in relation to breast and prostate cancer (Brueggemeier et al, 2005, Leroux, 2005, 

Stein et al, 2012).  Therefore, this study aimed to examine the role of the main CYP4 family 
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enzymes in colorectal cancer by characterising the expression of these enzymes using a large 

and well-characterised patient cohort. 

This study revealed there was a significant increase in the expression of CYP4A11 in 

primary colorectal tumours compared to normal colonic mucosa and the increased expression 

was significantly associated with poorer prognosis.  Consistent with our finding, an 

upregulation of CYP4A11 was demonstrated by a cDNA microarray-bioinformatics analysis 

of 10 colorectal tumours and their corresponding normal tissues (Yeh et al, 2006).  

Furthermore, the overexpression of CYP4A11 has been linked to rise in 20-HETE levels and 

upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinases-9 

(MMP-9) in non-small cell lung cancer (Yu et al, 2011).  Both VEGF and MMP-9 are strong 

promoters of tumour invasion and metastasis (Brown and Murray, 2015, Goel and Mercurio, 

2013, Yu et al, 2011).  Previous research also showed that using selective inhibitors to 

downregulate the expression of CYP4A11 in cell lines and animal models resulted in a 

decrease in tumour growth, angiogenesis and metastasis of non-small cell lung cancer, renal 

adenocarcinoma and glioma (Alexanian et al, 2009, Guo et al, 2008, Yu et al, 2011).  Our 

data has shown CYP4A11 is overexpressed in colorectal cancer, therefore CYP4A11 may be 

a relevant therapeutic target in this type of cancer. 

Comparing primary colorectal tumours to normal colonic mucosa also showed there 

was a significant increase in the expression of CYP4F11 which is a novel finding. In recent 

research, CYP4F11 expressed in cell lines (non-small cell lung cancer) converted oxalamides 

and benzothiazoles into stearoyl CoA desaturase (SCD) inhibitors (Theodoropoulos et al, 

2016). SCD is emerging as a therapeutic target in cancer and therefore, colorectal tumours 

with high CYP4F11 expression may be a valid target for SCD targeted therapy.  

The differential expression of CYP4A11 and CYP4F11 emerged as the best 

prognostic marker in this study.  The distinct prognostic impact of the differential expression 
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of CYP4A11 and CYP4F11 may be explained by differences in the enzymes substrates 

(Supplementary Figure S5).  CYP4A11 converts arachidonic acid to metabolites that promote 

tumour growth and metastasis, while CYP4F11 metabolises omega 3-fatty acids to 

eicosanoids that inhibit tumour development and progression (Barone et al, 2014, Dhar et al, 

2008, Gelsomino et al, 2013, Kalsotra and Strobel, 2006, Larsson et al, 2004).  The 

differential expression of CYP4A11 and CYP4F11 was independently prognostic in 

multivariate analysis using the main prognostic parameters and also when only using 

information available at the time of biopsy diagnosis of colorectal cancer.  Therefore, this 

biomarker combination could be a useful risk stratification tool especially if only tumour 

biopsies are available at the time of initial treatment decisions, which is a likely scenario 

considering colorectal cancer, especially rectal cancer, is moving towards neoadjuvant 

therapy followed by either observational follow-up or salvage surgery (Garcia-Aguilar et al, 

2015). 

The expression of each enzyme based on MMR status was also evaluated in this study 

since this represents a major pathway in colorectal cancer (Boland and Goel, 2010, 

Geiersbach and Samowitz, 2011, Kim and Kim, 2014).  Tumours lacking MMR proteins are 

already considered a distinct subgroup when dealing with prognosis and treatment of 

colorectal cancer (Hewish et al, 2010).  MMR proficient tumours represent the majority of 

colorectal cancer cases with a significantly worse prognosis than MMR deficient tumours.  

Furthermore, novel promising treatments such as those targeting immune checkpoints have 

shown that MMR proficient tumours are less responsive compared to MMR deficient 

tumours (Le et al, 2015).  Therefore, it is of particular interest to identify biomarkers for 

MMR proficient tumours.  In this study, the differential expression of CYP4A11 and 

CYP4F11 was significantly associated with prognosis in MMR proficient tumours, and more 

importantly both enzymes are actionable targets. 
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 This study also found the expression of CYP4A11, CYP4F11 and CYP4V2 were 

significantly reduced in lymph node metastasis compared with their corresponding primary 

tumours.  This provides further evidence to the concept that the phenotype of cancer cells is 

defined by their exposure to/ and interaction with different microenvironment factors during 

their migration and within the metastatic site (Brown and Murray, 2015, Klein et al, 2012, 

Maman and Witz, 2013, Witz, 2008).  The interrelationship between cancer cells and non-

cancer cells within the microenvironment is increasingly acknowledged as a major factor in 

determining and understanding metastasis (Coghlin and Murray, 2010, Coghlin and Murray, 

2014, McKay et al, 2000).  The variation in the phenotypic expression between primary and 

metastatic tumours raises further doubts over the effectiveness of existing metastatic 

treatment models that is based on phenotypic assessment of primary tumour specimens.   

In summary, CYP4A11, CYP4F11 and CYP4V2 are overexpressed in colorectal 

cancer, the increased expression of CYP4A11 is associated with poorer prognosis in both the 

total patient cohort and in MMR proficient tumours, while the expression of CYP4F11 is 

associated with better outcome in MMR deficient tumours.  The differential expression of 

CYP4A11 and CYP4F11, which was independently prognostic in both the whole patient 

cohort and in MMR proficient tumours, could provide the basis for a risk stratification tool in 

colorectal cancer.  Furthermore, both enzymes are actionable drug targets and therefore could 

have therapeutic applications in colorectal cancer. 
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Figure legends 

 

Figure 1. 

The overall relationship between the expression of CYP4A11 and survival in the whole 

patient cohort using different cut-off points: negative versus weak versus moderate versus 

strong (A, further details of median survival times of individual groups, p-values and hazard 

ratios are found in Table S4), strong versus negative/weak/moderate (B), positive expression 

versus negative expression (C) and negative and weak versus moderate and strong (D).  

 

Figure 2. 

The overall relationship between the differential expression of CYP4A11 and CYP4F11 and 

survival in the whole patient cohort (A), in MMR proficient tumours (B) and in MMR 

deficient tumours (C). Further details of median survival times of individual groups, p-values 

and hazard ratios are found in Table S6 

 

Figure 3. 

The relationship between the expression of CYP4A11 and survival in MMR proficient 

tumours using different cut-off points: negative versus weak versus moderate versus strong 

(A, further details of median survival times of individual groups, p-values and hazard ratios 

are found in Table S4), strong versus negative/weak/moderate (B) and positive expression 

versus negative expression (C). 



Table 1.  Clinico-pathological characteristics of all patients, their tumours and the 

relationship of each variable with overall survival. 

Characteristic Number Percentage Relationship with survival 

Sex 

Male 340 52.3 χ2= 0.027, p=0.870 

Female 310 47.7  

Age 

<70 305 46.9 χ2=29.213, p<0.001 

≥70 345 53.1  

Screen detected 

Yes 52 8 χ2=16.381, p<0.001 

No 598 92  

Tumour site 

Proximal colon 261 40.2 Proximal v distal, χ2= 8.418, p=0.004 

Distal colon 245 37.7 Distal v rectal, χ2= 0.906, p=0.341 

Rectum 144 22.2 Colon v rectum, χ2=0.098, p=0.754 

Tumour differentiation 

Well/moderate 600 92.3 χ2=0.976, p=0.323 

Poor 50 7.7  

Extra-mural venous invasion 

Present 140 21.5 χ2=100.946, p<0.001 

Absent 510 78.5  

Microsatellite instability status 

Defective 96 15.2 χ2=2.848, p=0.091 

Intact 536 84.8  

pT stage 

T1 30 4.6 T1 v T2, χ2=0.382, p=0.536 

T2 114 17.5 T2 v T3, χ2=24.739, p<0.001 

T3 411 63.2 T3 v T4, χ2=30.159, p<0.001 

T4 95 14.6  

pN stage 

N0 364 56 N0 v N1, χ2=54.071, p<0.001 

N1 177 27.2 N1 v N2, χ2=17.636, p<0.001 

N2 109 16.8  

Dukes stage 

A 120 18.5 A v B, χ2=5.059, p=0.025 

B 244 37.5 B v C, χ2=65.510, p<0.001 

C 286 44  

Significant values are highlighted in bold. 

 



Table 2.  Comparison of the expression of CYP4’s in normal colonic mucosa, primary colorectal cancer and lymph node metastasis. 

 

 

 

 

 

 

 

 

 

Evaluation of normal colonic epithelium versus primary tumour samples for immunoreactivity (Mann-Whitney U test, ↑=increased in tumour, 
↓=decreased in tumour, =no change between tumour and normal) and evaluation of primary Dukes C colorectal tumour samples and their 
corresponding metastasis samples for immunoreactivity (Wilcoxon signed rank sum test, ↑=increased in lymph node metastasis, ↓=decreased in 
lymph node metastasis, -=no change between primary and metastatic tumour).  Significant values are highlighted in bold. 
 

 Immunoreactivity 

(p value, normal 

versus primary 

tumour) 

Change in 

expression in 

tumour 

Immunoreactivity (p 

value, primary 

tumour versus lymph 

node metastasis) 

Change in 

expression in 

lymph node 

Immunoreactivity (p 

value, paired primary 

Dukes C tumour versus 

lymph node metastasis) 

Change in 

expression in 

lymph node 

CYP4A11 p<0.001 ↑ p=0.007 ↓ p=0.002 ↓ 

CYP4F11 p<0.001 ↑ p<0.001 ↓ p<0.001 ↓ 

CYP4V2 p<0.001 ↑ p<0.001 ↓ p<0.001 ↓ 

CYP4Z1 p=0.303 - p=0.028 ↓ p=0.083 - 



Table 3.  The final multivariate model showing the significance of the differential expression of CYP4A11 and CYP4F11 in multivariate 

analysis for the whole patient cohort and MMR proficient tumours. 

 Whole patient cohort MMR proficient tumours 

 Wald value p-value Hazard ratio (95% CI) Wald value p-value Hazard ratio (95% CI) 

Age (< 70 v ≥ 70) 31.115 <0.001 1.982 (1.554-2.529) 25.568 <0.001 1.993 (1.526-2.604) 

EMVI (present v absent) 38.825 <0.001 2.278 (1.758-2.951) 29.637 <0.001 2.245 (1.678-3.004) 

Dukes stage (Av B v C) 53.435 <0.001 2.826 (0.762- 4.191) 35.144 <0.001 2.622 (0.785-3.961) 

Differential expression of CYP4A11 and 

CYP4F11 (CYP4A11>CYP4F11 v 

CYP4A11=CYP4F11 v CYP4A11<CYP4F11) 

5.515 0.019 1.186 (1.029-1.368) 3.983 0.046 1.173 (1.003-1.371) 

 Significant values are highlighted in bold.  Details of the intermediate steps and omnibus tests of model coefficients are shown in 
Supplementary Tables S12 and S13. 



CYP4A11 neg 

CYP4A11 weak 

CYP4A11 mod 

CYP4A11 strong 

HR=1.135, 95%CI=1.032-1.249, χ2=9.080, p=0.028  

Number at risk 
CYP4A11 neg        175       105        75        25        0        0 

CYP4A11 weak       129        79        28         7        0        0 

CYP4A11 mod        124        65        23         7        0        0 

CYP4A11 strong     197        97        35     11        0        0 

CYP4A11 neg 

CYP4A11 weak/mod/strong 

HR=1.346, 95%CI=1.032-1.756, χ2=4.881, p=0.027  

Number at risk 
CYP4A11 neg                175       105       51        15         2         0               

CYP4A11 weak/mod/strong    450       249       88        27         0         0     

  

CYP4A11 neg/weak 

CYP4A11 mod/strong 

HR=1.235, 95%CI=0.983-1.552, χ2=3.315, p=0.069  

Number at risk 
CYP4A11 neg/weak       304        191       80        23        2         0 

CYP4A11 mod/strong     321     163       59        19        0         0 

CYP4A11 neg/weak/mod 

CYP4A11 strong 

HR=1.379, 95%CI=1.089-1.746, χ2=7.234, p=0.007  

Number at risk 
CYP4A11 neg/weak/mod  428       257       103       31         2         0 

CYP4A11 strong        197        97        35       11         0         0  

A 

B 

C 

D 



HR=1.203, 95%CI=1.092-1.324, χ2=14.968, p=0.001  

CY4A11<CYP4F11 

CY4A11=CYP4F11 

CY4A11>CYP4F11 

Number at risk 
CYP4A11<CYP4F11     214        140       67         21        3         0   

CYP4A11=CYP4F11     185        107       42         12        0         0  

CYP4A11>CYP4F11     217        103       29          9        1         0   

HR=1.276, 95%CI=1.095-1.488, χ2=9.988, p=0.007  

CY4A11<CYP4F11 

CY4A11=CYP4F11 

CY4A11>CYP4F11 

Number at risk 
CYP4A11<CYP4F11     186        120       53        17        2          0 

CYP4A11=CYP4F11     148         94       35         9        0          0  

CYP4A11>CYP4F11     181         87       25         9        1          0  

HR=1.433, 95%CI=0.993-2.067, χ2=5.676, p=0.059  

CY4A11<CYP4F11 

CY4A11=CYP4F11 

CY4A11>CYP4F11 

Number at risk 
CYP4A11<CYP4F11      23         17        11         3        0         0 

CYP4A11=CYP4F11      33         11         6         2        0         0 

CYP4A11>CYP4F11      33         15         5         1        0         0   

B 

A 

C 



CYP4A11 neg 

CYP4A11 weak 

CYP4A11 strong 

CYP4A11 mod 

HR=1.156, 95%CI=1.040-1.286, χ2=11.221, p=0.011  

Number at risk  
CYP4A11 neg    144        89        39        12        1         0 

CYP4A11 weak   107        74        24         7        0         0 

CYP4A11 mod     99        55        20         5        0         0 

CYP4A11 strong 173       85        28         9        0         0       

CYP4A11 neg 

CYP4A11 weak/mod/strong 

HR=1.375, 95%CI=1.022-1.851, χ2=4.485, p=0.034  

Number at risk 
CYP4A11 neg             144       89        39        12         1         0    

CYP4A11 weak/mod/strong 379      216        74        23      0         0  

CYP4A11 neg/weak/mod 

CYP4A11 strong 

HR=1.491, 95%CI=1.152-1.929, χ2=9.404, p=0.002  

Number at risk 
CYP4A11 neg/weak/mod  350        220       84        26         1        0 

CYP4A11 strong   173         85       28         9         0        0     

A 

C 

B 
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Supplementary information 

 

Materials and methods S1 

 

Monoclonal antibodies 

 Multiple sequence alignments were performed using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). To avoid undesirable regions such as 

transmembrane regions and signal peptides, the secondary and tertiary structures of proteins 

were predicted using tools such as http://wlab.ethz.ch/protter/start/ 

and http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index.  The B cell epitope 

prediction software available at (http://tools.immuneepitope.org/bcell/) predicts polypeptide 

stretches of amino acids that are accessible, flexible, and hydrophilic.  Furthermore, BLAST 

against UniProtKB 'Complete database' (http://web.expasy.org/blast/) was performed to 

ensure that the selected peptides are unique to the targets of interest.  Finally, Vertebrate 

Antibodies Ltd utilised its own optimized computer algorithm to select the ideal peptides to 

ensure antigenicity. 

 

The histopathological processing of tissues specimens  

 All specimens were received fresh in the diagnostic histopathology laboratory.  The 

specimens were fixed in 10% neutral buffered formalin for at least 48 hours at room 

temperature after they were opened along the anti-mesenteric border proximal (distal to the 

tumour when appropriate) and washed in cold water.  Representative tissue blocks were 

embedded in wax and sections were then stained with haematoxylin and eosin for 

histopathological diagnosis.  The sections were also stained with elastic haematoxylin and 

eosin to permit further assessment of extramural venous invasion when required.  The mean 

lymph node yield for all tumours in this study was 14.29 lymph nodes per tumour and for 

node negative tumours the mean lymph node yield was 15.07. 

  

Construction of colorectal cancer tissue microarray  

 The tissue microarray was constructed using 50 normal colon mucosal samples which 

were acquired from at least 10 cm distant from the tumour, 650 primary and 285 metastatic 

colorectal cancer samples.  Tumours were from patients had undergone elective surgery for 

primary colorectal cancer in the following periods; 1994-1998 (n=99), 1999-2003 (n=198) 

and 2004-2009 (n=353).  The metastases were all from tumour involved lymph nodes of the 

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://wlab.ethz.ch/protter/start/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://tools.immuneepitope.org/bcell/
http://web.expasy.org/blast/
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Dukes C cases.  All the cases were reviewed and areas of tissue to be sampled were first 

identified and marked on the appropriate haematoxylin and eosin stained slide by an expert 

consultant gastro-intestinal pathologist (GIM).  Two cores measuring 1mm in diameter were 

taken from these areas of the corresponding wax embedded block and placed in a recipient 

paraffin block.  

 

Immunohistochemistry procedure  

 The tissue microarray sections were dewaxed in xylene for a minimum of 10 minutes 

and rehydrated by immersion in decreasing ethanol concentrations.  Antigen retrieval was 

performed when required and it consisted of heating the sections by microwaving (800W) for 

20 minutes.  During the microwaving, the sections were fully immersed in citrate buffer (pH 

6.0).  The slides were incubated with undiluted primary antibody for 60 minutes at room 

temperature.  After being washed twice with buffer (Dako) the sections were blocked with 

peroxidase for 7 minutes which was followed by two buffer washes.  Thereafter peroxidase-

polymer labelled goat anti-mouse secondary antibody (Envision, Dako) was applied for 30 

minutes at room temperature and followed by further two washes with buffer.  Then the 

diaminobenzidine substrate was applied for 7 minutes to reveal sites of peroxidase activity.  

The sections were washed in water, immersed in copper sulphate for 2 minutes 

counterstained with haematoxylin for 10 seconds, and placed in Scott’s tap water substitute 

for 2 minutes.  Finally dehydrated in increasing ethanol concentrations, immersed in a xylene 

and mounted.  As a negative control antibody diluent was used to replace the primary 

monoclonal antibody.  Normal liver tissue known to express all the enzymes was used as a 

positive control. 

 

Data analysis and statistics    

 Biomarkers were first assessed separately using Kaplan-Meier (log rank test) and Cox 

regression univariate analysis to determine the best risk classifier among individual CYP4 

markers. Duke’s stage and extramural venous are the main prognostic parameters currently 

used in CRC to risk stratify patients to different subgroups and therefore new prognostic 

biomarkers need to be examined in relation to these parameters to determine if the 

relationship is specific to one subgroup.  The anatomical site of primary colorectal cancer is 

also an important factor which affects the initial assessment, treatment and prognosis.  

Furthermore, colon (proximal and distal) and rectum differ in terms of their embryological 

origin, anatomy and may have distinct molecular profiles.  
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Furthermore, Kaplan-Meier survival analysis (stratified by other CYP4) was used to 

examine the overall relationship of the expression of CYP4 enzymes with outcome.  The aim 

of this analysis was to determine the prognostic value of using a combination of CYP4 

markers.   

 Key measurements used to determine the best prognostic marker include; the ability 

to distinguish between low and high risk groups (Kaplan-Meier plot), variations between risk 

groups (mean or median survival), chi-square value, p-value and hazard ratio with 95% 

confidence intervals.   

 A multivariate Cox’s proportional hazard model “Forward Stepwise: Conditional LR” 

was used to determine the prognostic significance of CYP4 markers.  The model included 

only established prognostic parameters and biomarkers with the best risk classification.   
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Results S1 

 

Survival analysis in colon cancers 

 There was a significant association between the intensity of CYP4A11 

immunostaining and overall survival in colon cancers (HR=1.153, 95% CI=1.033-1.287, 

χ2=10.084, p=0.018) (Supplementary Figure S6).  When each level of the intensity groups of 

CYP4A11 expression was considered separately using pairwise comparisons and one 

reference group (negative expression), strong intensity of CYP4A11 immunostaining was 

associated with poorer outcome (HR=1.640, 95% CI=1.168-2.302, χ2=7.953, p=0.005) 

(Supplementary Table S15).  Comparing strong CYP4A11 expressing tumours with 

negative/weak/moderate CYP4A11 expressing tumours also showed a significant association 

with survival (HR=1.494, 95% CI=1.135-1.967, χ2=8.354, p=0.004).  Similarly, the 

immunoreactivity of CYP4A11 was significantly associated with survival when CYP4A11 

negative tumours were compared with CYP4A11 positive tumours (HR=1.354, 95% 

CI=1.005-1.824, χ2=4.045, p=0.044).  The expression of CYP4A11 was independently 

prognostic (p=0.017) when using only parameters available at time of biopsy (Supplementary 

Table S16C). 
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Table S1.  Peptide sequences used as immunogens to generate monoclonal antibodies. 

 

Enzyme Hybridoma clone Peptide sequence Amino acid location 

CYP4A11 M25-P2A10 KNGIHLRLR 499 – 507 

CYP4F11 F21 P6 F5 RVEPLGANSQ 514 – 524 

CYP4V2 M29P3B10 KREELGLEGQ 495 – 504 

CYP4Z1 N7P2G5*D8 KLAPDHSRPP 473 – 483 
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Table S2.  The relationship between the expression of each cytochrome P450 and individual pathological parameter. 

A. CYP4A11 

Pathological parameter Number (percent) of patients in each group Chi-square  p-value 

Bowel screening programme detected Yes=49 (7.8%)  
No=576 (92.2%) 3.673 0.299 

Colon or rectum Colon=485 (77.6%)  
Rectum=140 (22.4%) 13.487 0.004 

Tumour site 
Proximal colon=246 (39.4%)  
Distal colon=239 (38.2%)  
Rectum=140 (22.4%) 

15.703 0.015 

Tumour differentiation Well/moderate=577 (92.3%) 
Poor=48 (7.7%)  3.816 0.282 

EMVI Absent=489 (78.2%)  
Present=136 (21.8%) 5.911 0.116 

MMR status Intact=523 (85.3%) 
Defective=90 (14.7%)  2.303 0.512 

Tumour stage 

T1=29 (4.6%)  
T2=112 (18%)  
T3=390 (62.4%)  
T4=94 (15%) 

15.585 0.076 

Nodal stage 
N0=348 (55.7%) 
N1=169 (27%)  
N2=108 (17.3%) 

9.852 0.131 

Dukes stage 
A=117 (18.7%)  
B=231 (37%)  
C=277 (44.3%) 

13.148 0.041 

Number (percent) of patients classified by the level of CYP4A11 expression; negative= 175 (28%), weak=129 (20.7%), moderate=124 (19.8%) 
and strong=197 (31.5%).  Significant values are highlighted in bold. 
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B. CYP4F11  

 
Pathological parameter Number (percent) of patients in each group Chi-square  p-value 

Bowel screening programme detected Yes=580 (92.1%) 
No=50 (7.9%)   0.486 0.922 

Colon or rectum Colon=490 (77.8%)  
Rectum=140 (22.2%) 17.026 0.001 

Tumour site 
Proximal colon=254 (40.3%)  
Distal colon=236 (37.5%)  
Rectum=140 (22.2%) 

20.947 0.002 

Tumour differentiation Well/moderate=580 (92.1%) 
Poor=50 (7.9%)  8.552 0.036 

EMVI Absent=493 (78.3%)  
Present=137 (21.7%) 7.563 0.056 

MMR status Intact=523 (84.9%) 
Defective=93 (15.1%)  13.441 0.004 

Tumour stage 

T1=30 (4.8%)  
T2=113 (17.9%)  
T3=392 (62.2%)  
T4=95 (15.1%) 

11.008 0.275 

Nodal stage 
N0=355 (56.3%)  
N1=168 (26.7%)  
N2=107 (17%) 

10.656 0.100 

Dukes stage 
A=119 (18.9%)  
B=236 (37.5%)  
C=275 (43.6%) 

10.517 0.104 

Number (percent) of patients classified by the level of CYP4F11 expression; negative=53 (8.4%), weak=247 (39.2%), moderate=236 (37.5%) 
and strong=94 (14.9%).  Significant values are highlighted in bold. 
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C. CYP4V2 

Pathological parameter Number (percent) of patients in each group Chi-square  p-value 

Bowel screening programme detected Yes=49 (7.8%)  
No=576 (92.2%) 4.644   0.200 

Colon or rectum Colon=486 (77.8%)  
Rectum=139 (22.2%) 0.975   0.807 

Tumour site 
Proximal colon=250 (40%)  
Distal colon=236 (37.8%)  
Rectum=139 (22.2%) 

11.965   0.063 

Tumour differentiation Well/moderate=575 (92%) 
Poor=50 (8%)  1.759   0.616 

EMVI Absent=490 (78.4%)  
Present=135 (21.6%) 3.174   0.365 

MMR status Intact=519 (84.8%) 
Defective=93 (15.2%)  7.231   0.065 

Tumour stage 

T1=30 (4.8%)  
T2=113 (18.1%)  
T3=389 (62.2%)  
T4=93 (14.9%) 

17.837   0.037 

Nodal stage 
N0=353 (56.5%)  
N1=165 (26.4%)  
N2=107 (17.1%) 

2.205   0.900 

Dukes stage 
A=119 (19.1%) 
B=234 (37.4%)  
C=272 (43.5%) 

24.474 <0.001 

Number (percent) of patients classified by the level of CYP4V2 expression; negative=336 (59.5%), weak=219 (35%), moderate=28 (4.5%) and 
strong=6 (1%).  Significant values are highlighted in bold. 
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Table S3.  The relationship between the expression of each cytochrome P450 and survival using different cut-off points for the intensity of the 

immunostaining. 

Significant values are highlighted in bold.   
 

 

 

 

CYP4A11 

Negative=175 (28%)  
Weak=129 (20.7%)  
Moderate=124 (19.8%)  
Strong=197 (31.5%) 

Negative=175 (28%)  
Weak/moderate /strong=450 (71.2%) 

Negative/weak=304 (48.7%)  
Moderate/strong=321 (51.3%) 

Strong=197 (31.5%)  
Negative/weak/moderate=428 (68.5%) 

 
χ2=9.080, p=0.028 
 

 
χ2=4.881, p=0.027 
 

χ2=3.315, p=0.069 χ2=7.234, p=0.007 

CYP4F11 
 

Negative=53 (8.4%)  
Weak=247 (39.2%), 
Moderate=236 (37.5%)  
Strong=94 (14.9%) 

Negative=53 (8.4%)  
Weak/moderate/strong=577 (91.6%) 

Negative/weak=300 (47.6%) 
Moderate/strong=330 (52.4%) 

Strong=94 (14.9%)  
Negative/weak/moderate=536 (85.1%) 

 
χ2=3.411, p=0.333 
 

 
χ2=2.054, p=0.152 
 

 
χ2=1.376, p=0.241 
 

 
χ2=1.697, p=0.193 
 

CYP4V2 
 

Negative=372 (59.5%)  
Weak=219 (35%) 
Moderate=28 (4.5%)  
Strong=6 (1%) 

Negative=372 (59.5%) 
Weak/moderate/strong=253 (40.5%) 

Negative/weak=591 (94.5%) 
Moderate/strong=34 (5.5%) 

Strong=6 (1%)  
Negative/weak/moderate=619 (99%) 

 
χ2=2.339, p=0.505 
 

 
χ2=0.093, p=0.761 
 

 
χ2=1.656, p=0.198 
 

 
χ2=0.014, p=0.907 
 

CYP4Z1 - - - - 
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Table S4.  The association between the expression of CYP4A11 and survival in the whole patient cohort and in MMR proficient tumours. 

CYP4A11 
categories 

Number (percent) 
of patients in each 
group 

Mean and median survival in months Pairwise comparisons: negative expression as a 
reference group 

Mean (95% CI) Median (95% CI) Chi-square p-value  Hazard ratio (95% CI) 
Whole cohort 

Negative 175 (28%) 132 (117-147) 137 (undefined) - - - 

Weak 129 (20.7%) 104 (90-119) 95 (63-126) 1.892 0.169 1.277 (0.912-1.789) 

Moderate 124 (19.8%) 106 (93-119) 115 (79-151) 0.305 0.581 1.127 (0.790-1.608) 

Strong 197 (31.5%) 96 (83-109) 75 (58-91) 8.006 0.005 1.541 (1.144-2.077) 

MMR proficient tumours 

Negative 144 (27.5%) 134 (118-151) 137 (undefined) - - - 

Weak 107 (20.5%) 105 (90-121) 95 (67-122) 1.823 0.177 1.298 (0.893-1.887) 

Moderate 99 (18.9%) 111 (97-126) 125 (90-159) 0.014 0.905 1.045 (0.695-1.571) 

Strong 173 (33.1%) 96 (82-109) 74 (57-91) 8.626 0.003 1.644 (1.183-2.284) 

Significant values are highlighted in bold.  When the cumulative survival proportion of patients was more than half the group, the median 
survival and/or its 95% confidence interval were undefined by SPSS.
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Table S5.  The relationship between the expression of CYP4A11 and CYP4F11 and survival in the whole cohort. 

 

A. The relationship between the expression of CYP4A11 and survival in the whole patient cohort stratified by CYP4F11. 

 CYP4F11   CYP4A11  
Number (percent) of 
patients in each group 

Mean and median survival in months 
Chi-square  p-value Hazard ratio (95% CI) 

Mean (95% CI) Median (95% CI) 

Negative 
Negative 28 (55%) 86 957-115) 53 (9-97) 

5.668 0.017 1.385 (1.057-1.815) 
Positive 23 (45%) 84 (57-111) 93 (26-160) 

Positive 
Negative 147 (26%) 139 (123-155)  Undefined 

Positive 418 (74%) 107 (97-116) 89 (71-107) 

Significant values are highlighted in bold.  When the cumulative survival proportion of patients was more than half the group, the median 
survival and/or its 95% confidence interval were undefined by SPSS. 
 
 
 

B. The relationship between the expression of CYP4F11 and survival in the whole patient cohort stratified by CYP4A11. 

CYP4A11   CYP4F11  
Number (percent) of 
patients in each group 

Mean and median survival in months 
Chi-square  p-value Hazard ratio (95% CI) 

Mean (95% CI) Median (95% CI) 

Negative 
Negative 28 (16%)  86 (57-115) 53 (9-97) 

4.844 0.028 0.657 (0.450-0.959) 
Positive 147 (84%) 139 (123-155) Undefined 

Positive 
Negative 23 (5.2%) 84 (57-111)  93 (26-160) 

Positive 418 (84.8%) 107 (97-116)  89 (71-107) 

Significant values are highlighted in bold.  When the cumulative survival proportion of patients was more than half the group, the median 
survival and/or its 95% confidence interval were undefined by SPSS. 
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Table S6.  The relationship between the differential expression of CYP4A11 and CYP4F11 and survival in the whole patient cohort, in MMR 

proficient tumours and in MMR deficient tumours. 

 
Differential expression of 
CYPA11 and CYP4F11 

Number (percent) 
of patients in each 
group 

Mean and median survival in months Pairwise comparisons: CYP4F11>CYP4A11 as 
a reference group 

Mean (95% CI) Median (95% CI) Chi-square p-value Hazard ratio (95% CI) 
Whole cohort 

CYP4A11< CYP4F11 214 (34.8%) 137 (124-151) Undefined) - - - 

CYP4A11=CYP4F11 185 (30%) 102 (91-114) 95 (72-117) 5.425   0.020 1.432 (1.064-1.928) 

CYP4A11>CYP4F11 217 (35.2%) 94 (82-107) 75 (60-89) 14.405 <0.001 1.733 (1.306-2.300) 

MMR proficient tumours 

CYP4A11< CYP4F11 186 (36.1%) 137 (123-152) Undefined) - - - 

CYP4A11=CYP4F11 148 (28.7%) 106 (84-112) 107 (83-131) 2.070   0.150 1.275 (0.918-1.770) 

CYP4A11>CYP4F11 181 (35.2%) 97 (110-128) 75 (85-121) 9.261   0.002 1.629 (1.199-2.214) 

MMR deficient tumours 

CYP4A11< CYP4F11 23 (25.8%) 133 (101-166) 153 (102-204) - - - 

CYP4A11=CYP4F11 33 (37.1%) 82 (56-109) 41 (25-56) 4.782   0.029 2.507 (1.098-5.725) 

CYP4A11>CYP4F11 33 (37.1%) 76 (54-98) 75 (25-124) 4.973   0.026 2.390 (1.036-5.511) 

Significant values are highlighted in bold.  When the cumulative survival proportion of patients was more than half the group, the median 
survival and/or its 95% confidence interval were undefined by SPSS.      
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Table S7.  The relationship of the expression of each cytochrome P450 and survival using individual cut-off points for immunostaining intensity 

with groups stratified by proximal and distal colon cancers. 

Significant values are highlighted in bold.  Numbers (percent) of patients classified by the level of each CYP4 expression are given in Table S3. 

 

 

 

Number (percent) of 
patients in each 
group 

 

Negative versus weak 
versus moderate versus 
strong 

Negative versus weak, 
moderate and strong 

Negative and weak 
versus moderate and 
strong 

Strong versus 
negative, weak and 
moderate 

Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value 

CYP4A11 

Proximal    246 (50.7%) 3.455 0.327 1.598 0.206 0.180 0.671 1.456 0.228 

Distal    239 (49.3%) 7.764 0.051 2.128 0.145 3.299 0.069 7.545 0.006 

CYP4F11 

Proximal  254 (51.8%) 1.983 0.576 1.752 0.186 0.826 0.363 0.090 0.764 

Distal  236 (48.2%) 1.241 0.743 0.119 0.730 0.093 0.761 1.137 0.286 

CYP4V2 

Proximal  250 (51.5%) 1.209 0.751 0.100 0.752 1.167 0.280 0.054 0.817 

Distal  236 (48.5%) 1.154 0.764 0.153 0.696 1.055 0.304 0.425 0.514 

CYP4Z1 

Proximal  - - - - - - - - - 

Distal  - - - - - - - - - 
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Table S8.  The relationship of the expression of each cytochrome P450 and survival using individual cut-off points for immunostaining intensity 

with groups stratified by individual Dukes stage. 

Significant values are highlighted in bold.  Numbers (percent) of patients classified by the level of each CYP4 expression are given in Table S3. 

 

Number (percent) 
of patients in each 
group 

Negative versus weak 
versus moderate versus 
strong 

Negative versus weak, 
moderate and strong 

Negative and weak 
versus moderate and 
strong 

Strong versus negative, 
weak and moderate 

Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value 

CYP4A11 
Dukes A  117 (18.7%) 4.358   0.225 3.884 0.049 3.239 0.072 1.179 0.278 

Dukes B  231 (37%) 2.369   0.499 0.574 0.448 0.011 0.918 1.152 0.283 

Dukes C  277 (44.3%) 1.448   0.694 0.001 0.977 0.220 0.639 1.175 0.278 

CYP4F11 

Dukes A  119 (18.9%) 0.591   0.899 0.132 0.717 0.077 0.782 0.503 0.478 

Dukes B  236 (37.5%) 1.434   0.698 0.463 0.496 0.132 0.717 0.580 0.446 

Dukes C 275 (43.6%) 2.478   0.479 0.956 0.328 1.796 0.180 1.361 0.243 

CYP4V2 

Dukes A  119 (19.1%) 17.752 <0.001 6.895 0.009 4.966 0.026 0.113 0.737 

Dukes B  234 (37.4%) 0.772   0.856 0.511 0.475 0.406 0.524 0.066 0.797 

Dukes C  272 (43.5%) 2.257   0.521 0.536 0.464 1.495 0.221 0.000 0.992 

CYP4Z1 
Dukes A  - - - - - - - - - 
Dukes B  - - - - - - - - - 
Dukes C  - - - - - - - - - 
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Table S9.  The relationship of the expression of each cytochrome P450 and survival using individual cut-off points for immunostaining intensity 

 with groups stratified by EMVI status. 

Significant values are highlighted in bold.  Numbers (percent) of patients classified by the level of each CYP4 expression are given in Table S3. 

 

 

Number (percent) 
of patients in each 
group 

Negative versus weak 
versus moderate versus 
strong 

Negative versus weak, 
moderate and strong 

Negative and weak 
versus moderate and 
strong 

Strong versus negative, 
weak and moderate 

Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value 

CYP4A11  

Present 136 (21.8%) 2.474 0.480 0.113 0.737 0.006 0.937 1.207 0.272 

Absent 489 (78.2%) 3.983 0.263 1.863 0.175 2.572 0.109 3.609 0.057 

CYP4F11  

Present 137 (21.7%) 1.983 0.576 1.752 0.186 0.826 0.363 0.090 0.764 

Absent 493 (78.3%) 1.241 0.743 0.119 0.730 0.093 0.761 1.137 0.286 

CYP4V2  

Present 135 (21.6%) 4.226 0.238 0.071 0.790 1.239 0.266 0.081 0.776 

Absent 490 (78.4%) 3.609 0.307 1.533 0.216 1.182 0.277 0.050 0.823 

CYP4Z1 

Present - - - - - - - - - 

Absent - - - - - - - - - 
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Table S10.  The relationship between the expression of each cytochrome P450 and survival using individual cut-off points for immunostaining 

intensity with groups stratified by tumour site (colon versus rectum). 

 

Significant values are highlighted in bold.  Numbers (percent) of patients classified by the level of each CYP4 expression are given in Table S3. 

 

Number (percent) 
of patients in each 
group 

Negative versus weak 
versus moderate versus 
strong 

Negative versus weak, 
moderate and strong 

Negative and weak 
versus moderate and 
strong 

Strong versus 
negative, weak and 
moderate 

Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value 

CYP4A11   

Colon 485 (77.6%) 10.084 0.018 4.045 0.044 2.689 0.101 8.354 0.004 

Rectum 140 (22.4%) 1.093 0.779 0.918 0.338 0.863 0.353 0.204 0.651 

CYP4F11   

Colon 490 (77.8%) 2.677 0.444 2.083 0.149 0.693 0.405 0.917 0.338 

Rectum 140 (22.2%) 1.061 0.787 0.001 0.978 0.631 0.427 0.756 0.384 

CYP4V2   

Colon 486 (77.6%) 0.913 0.822 0.081 0.776 0.855 0.355 0.018 0.895 

Rectum 140 (22.4%) 3.507 0.320 1.292 0.256 0.850 0.356 0.030 0.862 

CYP4Z1 

Colon - - - - - - - - - 

Rectum - - - - - - - - - 
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Table S11.  The relationship between the expression of each cytochrome P450 and survival using different cut-off points for immunostaining 

intensity with groups stratified by MMR protein status. 

Significant values are highlighted in bold.  Numbers (percent) of patients classified by the level of each CYP expression are given in Table S3

 

Number (percent) 
of patients in each 
group 

Negative versus weak 
versus moderate versus 
strong 

Negative versus weak, 
moderate and strong 

Negative and weak 
versus moderate and 
strong 

Strong versus negative, 
weak and moderate 

Chi-square p-value Chi-square p-value Chi-square p-value Chi-square p-value 

CYP4A11   

Defective 90 (14.7%) 0.512 0.916 0.397 0.529 0.054 0.817 0.000 0.948 

Proficient 523 (85.3%) 11.221 0.011 4.485 0.034 3.085 0.079 9.404 0.002 

CYP4F11   

Defective 93 (15.1%) 5.232 0.156 4.682 0.030 1.463 0.226 0.005 0.944 

Proficient 523 (84.9%) 1.493 0.684 0.051 0.822 0.168 0.682 1.475 0.225 

CYP4V2   

Defective 93 (15.2%) 0.711 0.871 0.103 0.749 0.160 0.689 0.410 0.522 

Proficient 519 (84.8%) 2.261 0.520 0.000 0.997 1.539 0.215 0.041 0.839 

CYP4Z1 

Defective - - - - - - - - - 

Proficient - - - - - - - - - 
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Table S12.  Details of the intermediate calculations and omnibus tests of model coefficients leading to the final multivariate model in the whole 

patient cohort (Cox regression, method: “Forward Stepwise: Conditional LR”). 

 

Step 

-2 Log 

Likelihood 

Overall (score) Change from previous step Change from previous block 

Chi-square p-value Chi-square p-value Chi-square p-value 

1a 3359.217 105.103 <0.001 99.401 <0.001 99.401 <0.001 

2b 3326.576 154.375 <0.001 32.642 <0.001 132.043 <0.001 

3c 3291.934 187.809 <0.001 34.642 <0.001 166.684 <0.001 

4d 3286.356 194.243 <0.001 5.578   0.018 172.262 <0.001 

a. Variable entered at step number 1: Dukes stage (A v B v C). 
b. Variable entered at step number 2: EMVI (present v absent). 
c. Variable entered at step number 3: age at Surgery (< 70 v ≥ 70). 
d. Variable entered at step number 4: differential expression of CY4A11 and CYP4F11 (CYP4A11>CYP4F11 v CYP4A11=CYP4F11 v 
CYP4A11<CYP4F11). 
The summary of the final multivariate model is shown in Table 3. 
Significant values are highlighted in bold.   
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Table S13.  The intermediate steps and omnibus tests of model coefficients leading to the final multivariate prognostic model in mismatch repair 

proficient tumours (Cox regression, method: “Forward Stepwise: Conditional LR”). 

 

Step 

-2 Log 

Likelihood 

Overall (score) Change from previous step Change from previous block 

Chi-square p-value Chi-square p-value Chi-square P-value 

1a 2672.051 79.187 <0.001 60.993 <0.001 60.993 <0.001 

2b 2638.138 113.667 <0.001 33.913 <0.001 94.906 <0.001 

3c 2609.881 140.816 <0.001 28.258 <0.001 123.164 <0.001 

4d 2605.872 145.222 <0.001 4.008   0.045 127.172 <0.001 

a. Variable entered at step number 1: Dukes stage (A v B v C). 
b. Variable entered at step number 2: EMVI (present v absent). 
c. Variable entered at step number 3: age at Surgery (< 70 v ≥ 70). 
d. Variable entered at step number 4: differential expression of CY4A11 and CYP4F11 (CYP4A11>CYP4F11 v CYP4A11=CYP4F11 v 
CYP4A11<CYP4F11). 
The summary of the final multivariate model is shown in Table 3. 
Significant values are highlighted in bold.   
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Table S14.  The significance of the differential expression of CYP4A11 and CYP4F11 in multivariate analysis for the whole patient cohort and 

MMR proficient tumours including only parameters that would be available at biopsy. 

 Significant values are highlighted in bold.               

 

 

 

 

 

 

 

 Whole patient cohort Mismatch repair proficient tumours 

Variable Wald value p-value Hazard ratio (95% CI) Wald value p-value Hazard ratio (95% CI) 

Age (< 70 v ≥ 70) 25.585 <0.001 1.881 (1.472-2.403) 22.787 <0.001 1.926 (1.472-2.521) 

Gender (male v Female) 0.364   0.546 0.931 (0.738-1.174) 0.234   0.629 0.939 (0.726-1.213) 

Tumour site (colon v rectum) 0.114   0.735 0.954 (0.726-1.253) 0.262   0.609 0.926 (0.692-1.241) 

Tumour differentiation (well/moderate v poor) 0.017   0.895 1.029 (0.674-1.572) 2.023   0.155 0.653 (0.362-1.175) 

Differential expression of CYP4A11 and 

CYP4F11 (CYP4A11>CYP4F11 v 

CYP4A11=CYP4F11 v CYP4A11<CYP4F11) 

12.039   0.001 1.281 (1.114-1.474) 7.454   0.006 1.240 (1.063-1.448) 
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Table S15.The association between the expression of CYP4A11 and survival in colon cancer. 

CYP4A11 
categories 

Number (percent) 
of patients  

Mean and median survival in months Pairwise comparisons: negative expression as a 
reference group 

Mean (95% CI) Median (95% CI) Chi-square p-value Hazard ratio  (95% CI) 

Negative 146 (30.1%) 128 (113-144) 137 (undefined) - - - 

Weak 109 (22.5%) 103 (87-119) 95 (65-125) 1.710 0.191 1.285 (0.886-1.863) 

Moderate 89 (18.3%) 108 (92-125) 125 (82-167) 0.015 0.904 1.038 (0.683-1.578) 

Strong 141 (29.1%) 95 (79-110) 69 (52-85) 7.953 0.005 1.640 (1.168-2.302) 

Significant values are highlighted in bold.  When the cumulative survival proportion of patients was more than half the group, the median 
survival and/or its 95% confidence interval were undefined by SPSS. 
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Table S16.  Multi-variate analysis of CYP4A11 using only parameters that would be 

available at biopsy in the whole patient cohort, in MMR proficient tumours and in colon 

cancers. 

A. whole patient cohort 

Variable Wald value p-value Hazard ratio (95% CI) 

Age at Surgery (< 70 v ≥ 70) 23.422 <0.001 1.830 (1.433-2.337) 

Gender (male v female) 0.042 0.837 0.976 (0.773-1.232) 

Tumour site (Colon vs rectum) 0.066 0.798 0.965 (0.732-1.271) 

Tumour differentiation (Well/moderate v 

poor) 

0.225 0.635 0.896 (0.571-1.408) 

MSI status (proficient v deficient) 1.320 0.251 1.202 (0.878-1.647) 

CYP4A11 (strong v negative/weak/moderate) 6.306 0.012 1.361 (1.070-1.730) 

Significant values are highlighted in bold. 

 

B. MMR proficient tumours 

Variable Wald value p-value Hazard ratio (95% CI) 

Age at Surgery (< 70 v ≥ 70) 22.711 <0.001 1.909 (1.463-2.490) 

Gender (male v female) 0.072 0.789 0.966 (0.749-1.245) 

Tumour site (Colon v rectum) 0.147 0.701 0.945 (0.707-1.263) 

Tumour differentiation (Well/moderate v 

poor) 
2.120 0.145 0.646 (0.359-1.163) 

CYP4A11 (strong v negative/weak/moderate) 7.168 0.007 1.427 (1.100-1.852) 

Significant values are highlighted in bold. 

 

C. Colon cancer cases 

Variable Wald value p-value Hazard ratio (95% CI) 

Age at Surgery (< 70 v ≥ 70) 18.479 <0.001 1.881 (1.410-2.509) 

Gender (male v female) 0.066 0.797 0.966 (0.741-1.259) 

Tumour differentiation (Well/moderate v 

poor) 
0.417 0.518 0.851 (0.522-1.388) 

MSI status (proficient v deficient) 2.131 0.144 1.286 (0.917-1.802) 

CYP4A11 (strong v negative/weak/moderate) 5.668 0.017 1.403 (1.062-1.853) 

  Significant values are highlighted in bold.
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Figure S1 

Immunoblots of (59.3 kDa), CYP4V2 (60.7 kDa) and CYP4Z1 (59 kDa) monoclonal 

antibodies.  A. The left hand lane (-) of each panel contains empty vector cell lysate while the 

right hand lane (+) of each panel contains lysate prepared from cells overexpressing the 

relevant protein.  Five micrograms of each lysate was loaded per lane. 

 

 

 

 

 

 

 

 

 

 

 

 

Immunoblots of CYP4A11 (59.3 kDa), CYP4V2 (60.7 kDa) and CYP4Z1 (59 kDa) 

monoclonal antibodies.  B. microsomal fractions prepared from human liver tissues were 

used.  Thirty micrograms of microsomes was loaded per lane.
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Figure S2. 

Photomicrographs of CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 in normal colonic 

mucosa, primary colorectal cancer and metastatic colorectal cancer. 
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Figure S3. 

The frequency distribution of the intensity of expression of CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 in normal colonic mucosa, primary 

colorectal cancer and lymph node metastasis. 
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Figure S4.  

The relationship between the expression of CYP4F11 and survival in MMR defective tumours. 
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Figure S5. 

The prognostic impact of the differential expression of CYP4A11 and CYP4F11 in colorectal 

cancer.  A. The metabolism of arachidonic acid by CYP4A11 is the dominant pathway in 

tumours with CYP4A11 > CYP4F11 expression ratio.  These tumours will have worse 

prognosis since the metabolism of 20-HETE promotes the production of VEGF and MMP9.  

B. The metabolism of omega-3 fatty acids is the dominant pathway in tumours with the 

CYP4A11 < CYP4F11 expression ratio.  These tumours will have better prognosis since the 

production of VEGF and MMPs is inhibited by the metabolism of omega-3 fatty acids. 
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Figure S6. 

The relationship between the expression of CYP4A11 and survival in colon cancers using 

different cut-off points: negative versus weak versus moderate versus strong (A), strong 

versus negative/weak/moderate (B) and positive expression versus negative expression (C). 
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