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Abstract 

This is a contribution to the exercise that aims to benchmark and validate the current 

continuum damage and fracture mechanics methodologies used for predicting the 

mechanical behaviour of fibre reinforced plastic composites under complex loadings. 

The paper describes an analytical approach to predict the effect of intra- (matrix 

cracking and splitting) and inter-laminar (delamination) damage on the residual stiffness 

properties of the laminate which can be used in the post-initial failure analysis, taking 

full account of damage mode interaction. The approach is based on a two-dimensional 

shear lag stress analysis and the Equivalent Constraint Model (ECM) of the damaged 

laminate with multiple damaged plies. The application of the approach to predicting 

degraded stiffness properties of a multidirectional laminate with multilayer inter- and 

interlaminar damage is demonstrated for ]0/90/0[  and ]0/90/0[ 8  cross-ply laminates 

made from a specific glass/epoxy system under in-plane uniaxial and biaxial loading 

damaged by transverse and longitudinal matrix cracks and crack-induced transverse and 

longitudinal delamination. 

 

Keywords: A. Polymer-matrix composites (PMCs); B. Matrix cracking; C. Damage 

mechanics; C. Transverse cracking 
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1 INTRODUCTION 

Failure process of fibre-reinforced composite laminates subjected to quasi-static, 

tensile fatigue or thermal loading involves sequential accumulation of intra- and 

interlaminar damage in the form of matrix cracking and delamination. Intralaminar 

matrix cracks parallel to the fibres in the off-axis plies is the first damage mode 

observed. Depending on the laminate stacking sequence, these cracks are either 

arrested at the interface or cause interfacial failure leading to delamination and/or 

cracking in the adjacent layers due to high interlaminar stresses at the interface. 

Development of intra- and interlaminar damage in composite laminates has been the 

subject of numerous studies in the literature, see e.g. our reviews (Kashtalyan and 

Soutis, 2002; 2005). 

Multidirectional laminates subjected to uniaxial or biaxial stresses may still be 

capable of carrying load after first ply failure or initial failure has occurred. In the 

laminate, in-plane shear and normal stresses can be transferred, to some extent, back 

into the damaged lamina via the neighbouring laminae. Owing to this stress transfer 

damaged lamina within the laminate retains certain amount of load-carrying capacity. 

In-situ stiffness of a damaged lamina constrained within the laminate depends on the 

damage configuration and stiffnesses and thicknesses of neighbouring laminae. 

Prediction of the post-initial failure behaviour of a laminate requires accurate 

information regarding the properties of the damaged lamina.  

The post-initial failure models employed in the failure theories can be classified 

into two main groups: (i) models employing sudden reduction in the properties of the 

failed lamina; (ii) models employing a gradual drop in the properties of the failed 

lamina.  
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The five failure theories by Zinoviev (Zinoviev et al, 1998; 2002), Boggetti 

(Bogetti et al, 2004a; 2004b), Tsai (Liu and Tsai, 1998; Kuraishi et al, 2002), Puck 

(Puck and Schürmann, 1998; 2002) and Cuntze (Cuntze and Freund, 2004; Cuntze, 

2004) have been identified as the most reliable by the quantitative assessment 

procedure carried our within the previous WWFE (Kaddour et al, 2004); all five 

incorporate post-initial failure analysis.  

Zinoviev (Zinoviev et al, 1998; 2002) used the maximum stress failure criterion 

with a carefully developed post-failure analysis. Linear elastic stress-strain behaviour 

up to initial failure was assumed but a continuous correction for the effects of change 

of fibre orientation throughout loading was included in the theory. Boggetti (Bogetti et 

al, 2004a; 2004b) used a three-dimensional form of the Maximum Strain failure 

criterion with allowance for non-linear lamina shear stress-strain behaviour and a 

simple progressive failure analysis. Tsai (Liu and Tsai, 1998; Kuraishi et al, 2002) 

employed the well-known Tsai-Wu interactive failure criterion that does not explicitly 

identify failure mechanisms, assumed linear elastic material properties and reduced 

matrix stiffness after initial failure. The theories used by Puck (Puck and Shürmann, 

1998; 2002) and Cuntze (Cuntze and Freund, 2004; Cuntze, 2004) considered three-

dimensional failure mechanisms in some detail and applied non-linear analysis to 

predict progressive failure. Cuntze‘s approach is similar to Puck’s in some respects but 

assumes interaction between failure modes due to probabilistic effects. These two 

theories produced the highest number of accurate predictions (i.e. within 10% of the 

measured values) and captured more general features of the experimental results and 

laminate behaviour in the ranking study than the other theories. 

The only theory identified in Soden et al (2004) as performing well in predicting 
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crack density  was McCartney’s theoretical approach (McCartney, 1998; 2002), which 

used detailed mathematical analysis for reducing stiffness properties of the laminates 

due to matrix cracking in the inner ply of the laminate. In its present form, the theory 

does not take into account the presence and interaction of other damage modes in the 

same and/or the adjacent plies of multidirectional laminates. Comparisons of this 

theory with other approaches are given in Kashtalyan and Soutis (2006) and Zhang et 

al (2006).  

There is a great deal of interest in the validation of failure criteria and this has led 

to two international exercises being coordinated at the present time.  These are the 

Second World-Wide Failure Exercise (WWFE-II), which deals with benchmarking 

triaxial (3D) failure criteria and the Third World-Wide Failure Exercise (WWFE-III), 

which is concerned with benchmarking damage models for fibre reinforced composites, 

see Kaddour et al (2012b, 2012c, 2012d). The WWFE-II has been completed and its 

outcome is fully described by Kaddour and Hinton (2012a).     

This paper is the authors’ contribution to WWFE-III.  It describes one of the 

leading methods of predicting the effect of intra- and inter-laminar damage on the 

stiffness properties of the laminate which can be used in the post-initial failure analysis, 

taking full account of damage mode interaction. The approach is based on the 

Equivalent Constraint Model (ECM) of the damaged laminate. Closed form 

expressions are given for the In-situ Damage Effective Functions which characterise 

degraded stiffness properties of each damaged ply; for a given damaged ply they 

explicitly depend on the damage parameters (matrix crack density and relative 

delamination area) associated with that ply and implicitly on the damage parameters 

associated with other damaged plies. 
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The application of the approach to predict the degraded stiffness properties of 

multidirectional laminate with multilayer inter- and interlaminar damage is shown for 

for ]0/90/0[  and ]0/90/0[ 8  cross-ply laminates made from a glass fibre/LY556 

epoxy material system under uniaxial and biaxial loading damaged by transverse and 

longitudinal matrix cracks and crack-induced transverse and longitudinal delamination. 

The authors have been asked to provide sufficient information in this paper to 

allow readers to reproduce the results if they wished. Consequently, the paper will 

repeat some important details of the analysis that have been already published in the 

literature (Zhang, Fan and Soutis, 1992; Kashtalyan and Soutis, 1999a,b; 2000a-c; 

2001a,b; 2002a,b), Soutis and Kashtalyan (2002) and Kashtalyan and Soutis (2005, 

2006, 2007). 

 

2 EQUIVALENT CONSTRAINT MODEL 

Figure 1 shows a schematic of the cross-ply snm ]90/0[  laminate damaged by 

transverse and longitudinal delaminations growing from the tips of transverse cracks in 

the 90o plies and splits in the 0o plies. Transverse cracks and splits are assumed to be 

spaced uniformly and to span the full thickness and width of the 90o and 0o plies, while 

delaminations were assumed strip-shaped. Spacings between splits and transverse 

cracks are denoted respectively 12s  and 22s , and the length of longitudinal and 

transverse delaminations are denoted 12  and 22 , respectively. A global set of 

Cartesian co-ordinates with the origin in the centre of the laminate is introduced, with 

x1-axis coinciding with the fibre direction in the 90o lamina and x3-axis directed through 

the laminate thickness. The laminate is subjected to general in-plane biaxial tension ( 11σ  

and 22σ ) and shear loading ( 12σ ). 
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In order to analyse in-situ constrain effect on the stiffness of a particular cracked 

lamina, Fan and Zhang (1993) introduced the Equivalent Constraint Model (ECM) of 

the damaged laminate. In the ECM laminate, all the laminae below and above the 

damaged lamina under consideration are replaced with homogeneous layers (I and II) 

having the equivalent constraining effect (Fig. 2). In-plane stiffness properties of the 

equivalent constraint layer can be obtained from the laminated plate theory once their 

stresses and strains are known from micromechanical analysis (Fan and Zhang, 1993). 

Theoretically, ECM does not impose any restrictions onto the laminate lay-up, and the 

approach was applied to analysis of cross-ply laminates by Kashtalyan and Soutis 

(1999a,b, 2000a,b) and quasi-isotropic laminate with matrix cracking in all but °0  

layers by Zhang and Herrmann (1999). 

Application of the ECM approach to cross-ply laminate damaged by transverse and 

longitudinal matrix cracks and transverse and longitudinal crack-induced delaminations 

is schematically shown in Fig. 3. Instead of considering the damaged laminate 

configuration shown on Fig. 1, the following two ECMs are analysed instead. In ECM1 

(Fig. 3a), the 0o lamina (layer 1) contains damage explicitly, while 90o lamina (layer 2), 

damaged by transverse cracking and transverse delaminations, is replaced with the 

homogeneous layer with reduced stiffness. Likewise, in ECM2 (Fig. 3b), the 90o lamina 

(layer 2) is damaged explicitly, while the split 0o lamina is replaced with the 

homogeneous layer with reduced stiffness. All the quantities associated with the 0o 

lamina (layer 1) will be henceforth denoted by a sub- or superscript (1), whereas those 

associated with the 90o lamina (layer 2) with a sub- or superscript (2).  

The reduced stiffness properties of the µ th layer ( 2,1=µ ) damaged by transverse 

cracking and transverse delaminations (if 2=µ ) or splitting and longitudinal 
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delamination (if 1=µ ) can be calculated from the laminated plate theory, provided 

stresses and strains in the explicitly damaged µ th layer are known from the analysis of 

the µECM  (i.e. ECM1 if 1=µ  and ECM2 if 2=µ ). The reduced elastic properties of 

the equivalently constraining layer µκκ ≠,  required in the analysis of the µECM  are 

supposed to be determined from the analysis of the κECM . Thus, the problems for 

ECM1 and ECM2 are inter-related, damage coupling effect is included in the residual 

stiffness analysis. 

 

3 STRESS ANALYSIS 

Due to the periodicity of damage configuration in the µECM , only their 

representative segments (Fig. 3), containing either a pair of splits or a single transverse 

crack as well as two strip-shaped delaminations, need to be considered. As the 

representative segments are symmetric with respect to the mid-plane and their material 

and geometry are noteworthy uniform in direction perpendicular to the 30xxµ  plane, the 

analysis can be further restricted to one quarter of the representative segments. The 

representative segments of ECM1 and ECM2 can be segregated into perfectly bonded 

( µµµ sx << ) regions and locally delaminated ( 2,1, =< µµµ x ) regions, with no 

frictional contact between the layers in the latter. 

In the perfectly bonded regions ( µµµ sx << ) of the µECM , stresses can be 

determined from the equilibrium equations (Kashtalyan and Soutis, 2000a) 

2,12,12,1,0 )1(~ 
)(

),( ====−+ kj
hdx

d

k

jkk
j µ

τ
σ

µ
µ
µ

µ

    (1) 

 9 



Here )(µτ j  are the peak shear stresses at the (0/90) interface of the µECM  in the 30xxµ  

plane; 2,1,,~ ),( =qpk
pq
µσ  are the in-plane microstresses in the kth layer of the µECM , i.e. 

the stresses averaged across the thickness of the kth layer and the width of the µECM  as 

indicated below (Kashtalyan and Soutis, 2000a) 

2,1,,
2

1~
3

),(),( == ∫ ∫ qpdxdx
hw

kh w
k

k
pq

k

k
pq

µ

µ

µ

µ σσ       (2) 

In the locally delaminated region ( µµ ≤x ) of the µECM , the in-plane microstresses in 

the explicitly damaged µ th layer vanish, i.e. 

2,1,,0~ ),( == µσ µµ
µ jj           (3) 

The in-plane microstresses are related to the total stresses ijσ  applied to the laminate by 

the following equilibrium equations (Kashtalyan and Soutis, 2000a) 

21
)2,()1,( /2,1,,)1(~~ hhjiijijij ==+=+ χσχσσχ µµ      (4) 

It is assumed that both the explicitly damaged and the equivalently constraining 

laminae in the µECM  are homogeneous orthotropic, and their constitutive equations, in 

terms of the in-plane microstresses and microstrains, can be written as (Kashtalyan and 

Soutis, 2000a) 
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where ]ˆ[ )(µQ  denotes the in-plane stiffness matrix of the explicitly damaged µ th layer 

(a circumflex (^) is used for representing the elastic properties of the undamaged 

material), and µκκ ≠],[ )(Q  denotes the in-plane stiffness matrix of the homogeneous 

orthotropic material of the equivalently constraining κ th layer. The in-plane constitutive 

equations can also be written in terms of strains as (Kashtalyan and Soutis, 2000a) 
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where ]ˆ[ )(µS , µκκ ≠],[ )(S  denote the in-plane compliance matrices of the explicitly 

damaged µ th layer and equivalently constraining κ th layer, respectively.  

In order to determine the in-plane microstresses in the perfectly bonded region from 

the equilibrium equations, Eq. (1), the interface shear stresses )(µτ j  are expressed in 

terms of in-plane displacements 2,1,),( =ju k
j
µ . Here, it is assumed that the out-of-plane 

shear stresses 2,1,),(
3 =jk

j
µσ  vary linearly with 3x , which corresponds to a parabolic 

variation of the in-plane displacements. Besides that, it is assumed that in the 0o-lamina 

linear variation of the out-of-plane shear stresses 2,1,)1,(
3 =jj
µσ , is restricted to the 

region of about one ply thickness (i.e. the nominal thickness of the pre-preg used to 

make the laminate). We assume that all layers of the laminate have thicknesses in the 

multiples of the nominal ply thickness. For laminates with thick 0o-layer this appears to 

offer a more reasonable description of the cracked laminate behaviour. For such 

laminates it was shown (Berthelot, 1997), by means of the finite element analysis, that 
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the assumption of parabolic variation of the in-plane displacements across the thickness 

of the whole 0o-layer provides a very poor approximation to the distribution of the 

longitudinal stress across the laminate thickness. This approximation becomes even 

poorer as the transverse crack density increases. Thus, here the out-of-plane shear 

stresses are assumed to vary as follows (Kashtalyan and Soutis, 2000a) 
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where sh  is the thickness of the shear layer, sm  is the number of plies in the shear 

layer, and t is the ply thickness. After some mathematical calculations and equation 

rearrangements (see Appendix A), the interface shear stresses are obtained as 

(Kashtalyan and Soutis, 2000a) 

)~~( )2,()1,()()( µµµµτ jjjj uuK −=           (8) 

where the shear lag parameters jK  are functions of ply properties (Kashtalyan and 

Soutis, 2000a) 
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3 ==
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= jhh
GhGh
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K s
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j h
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Here, 2,1,ˆ )(
3 =kG k

j  are the out-of-plane shear moduli of the kth layer. As the presence of 

aligned microcracks does not affect the value of the out-of-plane shear moduli (this fact 

is emphasised by marking them with a circumflex (^)), the shear lag parameters jK  are 

the same for ECM1 and ECM2. 

The equilibrium equations, Eq. (1), along with expressions for the interface shear 

stresses, Eq. (8), the laminate equilibrium equations, Eq. (4), and constitutive equations, 

Eq. (6), provide a full set of equations, which are required for determining the in-plane 
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microstresses 2,1,~ ),( =µσ µµ
µ jj  in the perfectly bonded regions of the representative 

segment of the µECM . For instance, )1,1(
11

~σ  can be found from the following set of 8 

equations with respect to 8 variables (Kashtalyan and Soutis, 2000a) 
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After some rearrangement, this and other similar sets of equations can be reduced to the 

single differential equations (Kashtalyan and Soutis, 2000a) 
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where )(
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1 ,,,, µµµµµ ΩΩΩLL  are the laminate constants depending on the layer 

compliances µκκµ ≠,,ˆ )()(
ijij SS , shear lag parameters jK  and the layer thickness ratio 

21 / hh=χ . In detail, they are presented in Appendix B. Given the stress-free boundary 

conditions at the crack/split surfaces, solutions to Eqs. (11) are (Kashtalyan and Soutis, 

2000a) 
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where µs  is crack/split half-spacing and µ  is crack/split tip delamination half-length 

(Figs. 1, 3). Once the in-plane microstresses, Eq. (12), in the explicitly damaged µ th 

layer of the µECM  are known, the laminate macrostresses can be found as (Kashtalyan 

and Soutis, 2000a) 

∫
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1           (13) 

The reduced stiffness properties of the layer µ , damaged by transverse cracking or 

splitting and delaminations, can be determined by applying the laminate plate theory to 

the µECM  after replacing the explicitly damaged layer with an equivalent 

homogeneous one. The constitutive equations for the homogeneous layer equivalent to 

the explicitly damaged µ th layer are (Kashtalyan and Soutis, 2000a) 

}]{[}{ ),()(),( µµµµµ εσ Q=           (14) 

Where in order to satisfy compatability the macrostrains are assumed to be (Kashtalyan 

and Soutis, 2000a) 

6,2,1,,~
2
1 ),(),(),( =≠=== ∫

−

jdx
s

s

s
jjjj µκεεεε

µ

µ

µ
κµ

µ

κµµµ     (15) 

 

4 STIFFNESS OF A DAMAGED LAMINA 

The in-plane reduced stiffness matrix ][ )(µQ  of the homogeneous layer equivalent to the 

µ th layer of the µECM  is (Kashtalyan and Soutis, 2000a) 

][]ˆ[][ )()()( µµµ RQQ −=           (16) 
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The In-situ Damage Effective Functions )(
66

)(
22 , µµ ΛΛ  introduced in (Fan and Zhang, 

1993) can be expressed in terms of macrostresses and macrostrains in the µ th layer of 

the µECM  as (Kashtalyan and Soutis, 2000a) 

)1,1(
2

)1(
12

)1,1(
1

)1(
11

)1,1(
11)1(

22 ˆˆ1
εε

σ
QQ +

−=Λ         (18a) 

)2,2(
2

)2(
22

)2,2(
1

)2(
12

)2,2(
22)2(

22 ˆˆ1
εε

σ
QQ +

−=Λ         (18b) 

),(
6

)(
66

),(
12)(

66 ˆ1
µµµ

µµ
µ

ε
σ

Q
−=Λ          (18c) 

On substituting macrostresses, calculated from Eqs. (13), and macrostrains, calculated 

from Eq. (15), into Eq. (18), the closed form expressions for IDEFs are obtained. They 

represent )(
66

)(
22 , µµ ΛΛ  as functions of relative cracking/splitting density µµµ shDµc /= , 

relative delamination area µµµ sDld /= , the layer compliances µκκµ ≠,,ˆ )()(
ijij SS , shear 

lag parameters jK  and the layer thickness ratio χ  (Kashtalyan and Soutis, 2000a) 

),,,ˆ,,( )()()()( χκµ
µµ

µµ
jijij

ldµχ
qqqq KSSDDΛ=Λ       (19) 

 15 



In detail, the closed form expressions for the IDEFs for the µ th layer of the µECM  are 

(Kashtalyan and Soutis, 2000a) 
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where the constants 2,1,, )()( =iii
µµ αλ  (Appendix C) depend solely on the layer 

compliances µκκµ ≠,,ˆ )()(
ijij SS , shear lag parameters jK  and the layer thickness ratio χ . 

The modified compliances µκκ ≠,)(
ijS  of the equivalently constraining' κ th layer of the 

µECM  are determined from the analysis of the κECM  and therefore are functions of 

the IDEFs )(
66

)(
22 , κκ ΛΛ . Thus, the IDEFs for the µ th layer depend implicitly on the 

damage parameters κκκκκκ /,/ hDshD ldmc ==  associated with the κ th layer. 

The IDEFs for both layers form a system of simultaneous nonlinear algebraic 

equations (Kashtalyan and Soutis, 2000a) 

6,2),),,ˆ,,(,ˆ,,( )2()2(
22

)2()1(
11

)1()1( =ΛΛ=Λ qSDDSSDD qqij
ldmc

ijij
ldmc

qqqq c    (21a) 

6,2),),,ˆ,,(,ˆ,,( )1()1(
11

)1()2(
22

)2()2( =ΛΛ=Λ qSDDSSDD qqij
ldmc

ijij
ldmc

qqqq c    (21b) 

This system is solved computationally in FORTRAN by a direct iterative procedure. It 

is carried out in such a way that the newly calculated IDEFs )(µ
qqΛ  are used to evaluate 

the reduced stiffnesses of the equivalently constraining κ th layer repeatedly until the 

difference between two iterative steps meets the prescribed accuracy. Consequently, all 
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four IDEFs 2,16,2,)( ==Λ kqk
qq  are determined as functions of damage parameters 

ldldmcmc DDDD 2121 ,,, . If interactions between damage modes in different laminae are 

neglected, IDEFs associated with the µ th layer will depend only on damaged 

parameters for that layer. 

Verification of the ECM/2-D shear lag approach in absence of delaminations induced 

by transverse cracking and splitting was carried out in (Kashtalyan and Soutis, 1999b; 

2000b; Katerelos et al, 2008). After comparison with other existing models (Hashin, 

1987; Tsai and Daniel, 1992; Henaff-Gardin et al, 1996) describing stiffness reduction 

of CFRP and GFRP cross-ply laminates due to transverse cracking and splitting, the 

following conclusions were reached in (Kashtalyan and Soutis, 2000b). As far as the 

reduction of the Young's modulus is concerned, the new approach is in very good 

agreement with other models. Its predictions are closer to the lower bound established in 

(Hashin, 1987) than the results (Henaff-Gardin et al, 1996) based on the model (Henaff-

Gardin et al, 1996). For the Poisson's ratio, the ECM/2-D shear lag approach predictions 

are close to those of (Henaff-Gardin et al, 1996), although for small values of the 

damage parameter (relative crack/split spacing) the reduction predicted by the ECM/2-D 

shear lag approach is greater than (Henaff-Gardin et al, 1996). Predictions based on the 

variational approach Hashin (1987) are far away from these results. The shear modulus 

reduction ratio predicted by Tsai and Daniel (1992) is, in the most of cases, within 10% 

of the ECM/2-D shear lag approach value. It is worth mentioning here that the model of 

Tsai and Daniel (1992) and the present ECM/2-D shear lag approach yield exactly the 

same analytical expression for the shear modulus reduction ratio due to transverse 

cracking, if the thickness of the shear layer in the ECM/2-D shear lag approach is taken 

equal to that of the 0o lamina, i.e. if 1hhs =  (Kashtalyan and Soutis, 2000b): 
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For transverse cracking combined with splitting, Tsai and Daniel (1992) suggested a 

semi-empirical expression for the shear modulus reduction ratio based on the 

"superposition" of solutions for a single set of cracks as (Kashtalyan and Soutis, 2000b) 
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The value of the shear modulus reduction ratio obtained by Tsai and Daniel (1992) 

using the finite difference iteration appeared to be within 1% of the value given by Eq. 

(23). The present ECM/2-D shear lag model, if the interaction between transverse 

cracks and splits is neglected and the shear layer has the thickness of the 0o lamina, 

yields an expression (Kashtalyan and Soutis, 2000b) 
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              (24) 

It may be seen from Eqs. (23) and (24) that the two expressions differ by the 

underlined terms and GG ρρ ≤* . In absence of splitting )0( 1 =mcD  they are both 

reduced to Eq. (22). In some cases, though, the error of the semi-empirical expression, 

Eq. (23) suggested by Tsai and Daniel (1992) can be as big as 20%. The ECM/2-D 

shear lag approach is in good agreement with the results presented in (Henaff-Gardin et 

al, 1996) for the shear modulus reduction. 

 

5 RESULTS AND DISCUSSION 
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In this section, the ECM/2-D shear lag approach is applied to predicting degraded 

stiffness properties of ]0/90/0[  and ]0/90/0[ 8  cross-ply laminates under biaxial 

loading damaged by transverse and longitudinal matrix cracks. The laminates 

correspond to those of Test Cases (3) and (4) provided by the organisers of the exercise. 

Kaddour et al (2012c). Stiffness properties of a glass/LY556 material system used in the 

calculations are as follows: longitudinal modulus 1E =45.6 GPa, transverse modulus 

2E =16.2 GPa, in-plane shear modulus 12G =5.83 GPa, through-thickness shear modulus 

23G =5.7 GPa, major Poisson’s ratio 12ν =0.278, though-thickness Poisson’s ratio 

23ν =0.4, ply thickness 0.125 mm. The layers thicknesses 1h  and 2h  are determined 

from the laminate lay-up, thickness of the shear layer is taken as ths = .  

Stiffness degradation in cross-ply laminate due to different damage modes and their 

combinations is examined below. All results given below were obtained taking into 

account the interaction between damage modes in the adjacent layers. Up to 12 

iterations are required to solve a set of simultaneous non-linear equations, Eqs. (21) 

with accuracy of 910− . The number of iterations increases along with the crack density 

and relative delamination area. 

Figure 4 shows stiffness degradation in ]0/90/0[  and ]0/90/0[ 8  laminates as the 

function of the transverse crack density 2C  in the °90  layer. Longitudinal Young’ 

modulus, shear modulus and major Poisson’s ratio are normalised by their values in the 

undamaged state. As can be seen from Fig. 4a and 4b, all these properties undergo 

degradation as the matrix crack density increases, with Poisson’s ratio appearing to be 

the most affected by transverse cracking. The thickness of the °90  layers play an 

important role, since the thicker the °90  layer, the bigger reduction is observed. 
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Transverse ply thickness and the thickness ratio of °90  layer to constraining °0  or θ±  

layers are the important parameters controlling resistance to matrix cracking. Zhang, 

Fan and Soutis (1992b) proposed to use a resistance curve, analogous to the R-curve 

concept of classical fracture mechanics, as a measure of the composite resistance to 

crack initiation and growth 

))exp(1(),(),( 0IC
mc

R
mc

R
mc RDGGGDGDG −−+==σ     (25) 

where G  is the strain energy release rate associated with matrix cracking, RG  is the 

laminate resistance to matrix cracking, ICG  is the critical energy release rate for damage 

nucleation, and 0G  and R  are laminate constants. Parameters ICG , 0G  and R  are not 

independent of stacking sequence, but remain constant as long the thickness ratio of the 

constraining layer to °90  remains the same. 

When a cross-ply laminate is subjected to biaxial loading matrix cracking may occur 

concurrently in both plies leading to formation of transverse and longitudinal matrix 

cracks. The combined effect of these cracks on stiffness properties of ]0/90/0[  

laminate is shown in Fig. 5 for the case when the longitudinal and transverse crack 

densities are equal. 

In cross-ply laminates with thick °90  layer subjected to uniaxial loading strip-shaped 

delaminations begin to initiate and grow from the tips of matrix cracks at the °° 90/0  

interface. The effect of these delaminations on stiffness properties of ]0/90/0[ 8  

laminate is shown in Fig. 6 as a function of relative delamination area. Transverse crack 

density is taken as 2 cracks/cm, and the values of normalised stiffness properties for 

02 =D  correspond to stiffness degradation due to matrix cracking without 

delamination.   It can be seen from Fig. 6 that crack-tip delamination contributes 
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significantly to stiffness degradation of the laminate, and therefore has to be taken into 

account in the post-initial failure models. 

 

The results from the current method have been compared by Kaddour et al (2012d) with 

those obtained from other damage models. The comparison has shown that damage 

modelling is still an immature subject and further work is needed in order to incorporate 

the various damage modes into a single tool for a potential use by designers.  

 

6 CONCLUSIONS 

Although the approach described in this paper has not attempted to predict ultimate 

laminate failure, it does present a methodology for predicting degraded stiffness 

properties of the laminae and hence the laminate, in the case when there are various 

kinds of intra- and interlaminar damage interacting with each other are present in the 

same and/or adjacent plies of the laminate. The approach is based on the Equivalent 

Constraint Model (ECM) of the damaged laminate and takes into account damage mode 

interaction. Our predictions show that the effect of longitudinal matrix cracking is more 

pronounced on the Poisson’s ratio than on the shear modulus; however the reduction in 

the shear modulus due to transverse delamination is the most significant when compared 

to the reduction observed in the axial or transverse elastic moduli. 

Theoretically, ECM does not impose any restrictions onto the laminate lay-up, and the 

approach based on ECM was successfully applied to the prediction of degraded stiffness 

properties due to matrix cracking in all but °0  layers of quasi-isotropic laminates, 

similar to those used in Test Cases (6)-(8) of the present exercise (Zhang and Herrmann, 

1999). It should be noted that for the model to be applied the type, location and amount 
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of damage present need to be specified. For this accurate and reliable structural health 

monitoring (SHM) techniques are urgently required, see Soutis and coworkers, 2000, 

2005, 2010. Also the triggering of resin cracking and delamination could be delayed to 

higher applied loads if tougher resin systems are employed, Jumahat et al., 2010.  
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APPENDICES 

A. Assuming that 2,1,0
2
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, the out-of-plane constitutive 

equations are 
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where )(
3

ˆ k
jG  are the out-of-plane shear moduli of the kth layer. As was already noted, 

these elastic constants are not undergoing reduction due to matrix cracking. For the 

inner layer, substitution of Eq. (7) into Eq. (A1) and repeated integration with respect to 

3x  across the layer thickness yield 
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For the outer layer, substitution of Eq. (7) into Eq. (A1) and integration with respect to 

3x  across the thickness of the shear layer leads to  
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On integrating Eq. (A3) across the thickness of the shear layer again, we obtain 
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uu

j

sj

hxjj µ
τ µ
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where )1,(µ
ju  are the displacements averaged across the thickness of the shear layer. In 

the part of the outer layer 1232 hhxhh s +≤≤+ , free from the out-of-plane shear, the 

displacements )1,(µ
ju
 are constant across the thickness and can be found from Eq. (A3) by 

putting shhx += 23  as 
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The displacements, averaged across the whole thickness of the outer layer are then 
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Finally, the continuity of displacements at the interface due to the perfect bonding 

between the layers in the considered region should be taken into account, i.e. 

2323

)1,()1,(

hxjhxj uu
==

= µµ           (A7) 

Combining Eqs. (A2) and (A4–A7) yields Eq. (8) for the interface shear stresses )(µτ j , 

with the shear lag parameters jK  given by Eq. (9). 
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21 , KK  are the shear lag parameters, Eq. (12). 
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FIGURE CAPTIONS 

FIGURE 1. Cross-ply laminate damaged by transverse and longitudinal matrix cracks 

and transverse and longitudinal crack-induced delaminations. 

FIGURE 2. Equivalent Constraint Model (ECM) of a damaged laminate: a) initial 

laminate; b) ECMk. 

FIGURE 3. Representative segments of the two equivalent constraint models: a) 

ECM1; b) ECM2. 

FIGURE 4. Normalised stiffness properties of glass/epoxy cross-ply laminates as a 

function of transverse crack density in the °90  layer: a) ]0/90/0[  laminate; b) 

]0/90/0[ 8  laminate. No damage in the °0  layer (uniaxial tensile loading, static or 

fatigue). 

FIGURE 5. Normalised stiffness properties of glass/epoxy ]0/90/0[ cross-ply laminate 

as a function of transverse crack density in the °90  layer, equal to longitudinal crack 

density (equi-biaxial tensile static or fatigue loading). 

FIGURE 6. Normalised stiffness properties of glass/epoxy ]0/90/0[ 8 cross-ply 

laminate as a function of transverse delamination area. Transverse crack density 2 

cracks/cm (uniaxial tensile loading). 
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	where  is the thickness of the shear layer,  is the number of plies in the shear layer, and t is the ply thickness. After some mathematical calculations and equation rearrangements (see Appendix A), the interface shear stresses are obtained as (Kashta...
	In detail, the closed form expressions for the IDEFs for the th layer of the  are (Kashtalyan and Soutis, 2000a)

