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Abstract 

 

CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked 

Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain 

isoform is a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated 

region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and 

little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, 

such as rat. In this study we characterise, both bioinformatically and experimentally, the rat 

Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites 

and UTRs are described, confirming the presence of four distinct transcript isoforms. The 

predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human 

hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across 

all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for 

studies into its protein products and provides a reference for the development of molecular 

therapies for testing in rat models of CDKL5 disorder. 
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1. Introduction 

 

CDKL5 deficiency (Mendelian Inheritance in Man, MIM: 300203) is a rare, X-linked genetic 

disorder that results in early onset seizures and neurodevelopmental impairment. A range of 

phenotypes are associated with the disorder, and are a result of mutations in the Cyclin-

Dependent Kinase-Like 5 gene, CDKL5, located on the X-chromosome (Xp22.13) 

(Kalscheuer et al., 2003; Fehr et al., 2013). Early-onset seizures are common, and 

phenotypes may also include other features, such as stereotypic hand movements, severe 

psychomotor impairment, general hypotonia and visual impairments (Kalscheuer et al., 

2003; Tao et al., 2004; Artuso et al., 2010; Intusoma et al., 2011; Moseley et al., 2012). 

Many of these features, such as impaired motor control, altered behaviour, abnormal eye 

tracking and general hypoactivity are recapitulated in the two Cdkl5 knockout (KO) mouse 

models that have been reported (Wang et al., 2012; Amendola et al., 2014). However, 

spontaneous infantile seizures, a defining feature of the disorder in patients, are not 

observed in mice. Rats offer an alternative model in the study of neurodevelopmental 

disorders, and recent work using a rat model of Fragile X Syndrome has allowed a number 

of key aspects of the disorder to be investigated, such as complex cognitive and social 

functions (Till et al., 2015). These biological and technical advantages, coupled with the fact 

that mice fail to recapitulate the spontaneous seizures that define CDKL5 disorder, suggests 

that the development of another rodent and larger species models of CDKL5 disorder may 

be beneficial to the field. In advance of this however, it is important to assess differences in 

the Cdkl5 gene between species.  

 

In a recent study we characterised the structure of the human CDKL5 and mouse Cdkl5 

genes, identifying a number of transcript isoforms resulting from alternative splicing (Hector 

et al., 2016). In the rat, two different transcript isoforms have been identified to date; 

CDKL5a and CDKL5b (GenBank accession numbers FJ807484 and GU351881, 
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respectively) (Chen et al., 2010). Although these transcripts were thought to be expressed 

primarily in the brain, neither is orthologous to the predominant brain isoform of CDKL5 in 

human and mouse, a large 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-

UTR. At present the rat Cdkl5 gene structure, transcript set and protein isoforms are not fully 

understood. In this study we sought to characterise the gene structure of Cdkl5 in rat using 

bioinformatic analyses and molecular methods, to identify all transcript isoforms and the 

predicted suite of resultant protein isoforms, and to compare rat Cdkl5 with its human and 

mouse orthologues.  
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2. Materials and Methods 

2.1 RNA-seq data analysis 

 

Bioinformatic and molecular analyses were performed as described previously to investigate 

the transcript isoforms of rat Cdkl5 (Hector et al., 2016). In brief, RNA-seq datasets were 

analysed (rat brain GEO sample ID’s GSM1020666, GSM1020675 and GSM1020684; rat 

testis GEO sample ID’s GSM1020674, GSM1020683, GSM1020692 (Merkin et al., 2012)) 

and mapped to the rat genome using the STAR read aligner, version 2.4.2a.  

 

2.2 RNA isolation 

 

Rat total RNA was isolated from tissues obtained from 3 month old wild-type male Sprague 

Dawley rats using the RNeasy Lipid Tissue Kit (Qiagen). Animal samples were collected in 

accordance with the European Communities Council Directive (86/609/EEC) and with the 

terms of a project license under the UK Scientific Procedures Act (1986). The quality and 

quantity of isolated RNA was analysed using the RNA 6000 kit on a 2100 Bioanalyzer 

(Agilent). 

 

2.3 RT-PCR and Quantitative RT-PCR 

 

Total RNA was reverse transcribed using Superscript III (Life Technologies), according to 

the manufacturer’s protocol, in 20 μl reactions containing 200 ng of RNA template and 1 μM 

random hexamers. Reactions were then incubated with 2 units of RNaseH (Life 

Technologies) at 37°C for 20 min). End-point PCR was performed using Maxima Hot Start 

Green (Thermo Scientific), according to the manufacturer’s protocol, in 50 μl reactions 

containing 500 nM gene-specific primers, and products visualised on agarose gels. PCR 

was performed under the following cycling conditions: an initial denaturation at 95°C for 2 
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min, then 35 cycles of 95°C for 30 s, 58°C for 30 s and 72°C for 60 s, followed by a final 

extension of 72°C for 7 min. SYBR Green PCR reactions were carried out using the 

PerfeCTa SYBR kit (Quanta Bioscience), according to the manufacturer’s protocol, in 20 μl 

reactions using 1/20th of the first-strand synthesis reaction and 300 nM gene-specific 

primers. PCR was performed under the following cycling conditions on an Mx3005P 

thermocycler (Agilent Technologies): an initial denaturation at 95°C for 30 s, then 40 cycles 

of 95°C for 10 s and 60°C for 60 s, followed by a dissociation curve. Appropriate controls 

were included as recommended by the MIQE guidelines. The primers used in this study are 

provided in Figure S1. 

 

2.4 Rapid amplification of cDNA ends (RACE) 

 

Rapid Amplification of cDNA Ends was performed using the 3’-RACE & 5’-RACE System for 

Rapid Amplification of cDNA ends (Life Technologies), according to the manufacturer’s 

protocol. PCR amplicons were cloned using the TOPO TA Cloning Kit (Life Technologies), 

individual colonies were grown in L-Broth, and plasmids were purified using the PureYield 

Plasmid Miniprep System (Promega) and then sequenced (Source BioScience). Sequence 

comparisons were performed using BLASTN (http://blast.ncbi.nlm.nih.gov/). 

  



7 
 

3. Results 

 

3.1. Rat Cdkl5 transcript isoforms 

 

In order to identify all Cdkl5 splicing events, rat tissue-specific RNA-seq datasets were 

analysed and sensitive alignment tools were used to detect reads mapping across all 

potential splice junctions. To validate these exon boundaries and splice junctions 

experimentally, RT-PCR was used to generate products spanning multiple exons and PCR 

products sequenced. Using this approach, 23 discrete exons were detected, including two 

novel exons at the 5’ end of the gene, 1a and 1b (Fig. 1). Exon boundaries and cryptic splice 

sites were confirmed, and the composition of each specific isoform was elucidated, so 

isoform-specific RT-PCR assays could be designed (design details are provided in Fig. S1). 

Combined, the RNA-seq and RT-PCR data confirmed the existence of four distinct transcript 

isoforms containing distinct protein-coding regions (Fig. 1A, Table 1). In accordance with 

new nomenclature recommendations (Hector et al., 2016), we have named these rCdkl5_1, 

rCdkl5_2, rCdkl5_9, and rCdkl5_10. The composition of each transcript, the exon 

boundaries and chromosomal sequence coordinates are detailed in Table 2.  

 

RNA-seq analysis also predicted two rare transcripts containing additional exons that were 

detected and confirmed by sequencing of RT-PCR amplicons (data not shown). Mammalian 

Cdkl5 is unusual in having an embedded gene, Gja6, located within one of its introns and 

transcribed in the same direction, and one of these additional rCdkl5 transcripts incorporates 

a 125 bp portion of exon 2 of Gja6. The second rare transcript incorporates a 117 bp exon, 

located in rCdkl5 intron 12, which is predicted to be part of a Long Interspersed Nuclear 

Element-1 (LINE-1) retrotransposon (analysis was carried out using BLASTN and 

RepeatMasker: http://www.repeatmasker.org/). As such, it was concluded that both of these 

rare transcripts resulted from aberrant splicing events and they were excluded from further 
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analysis. In addition, no rat orthologues of hCDKL5_3 and hCDKL5_4 were identified. The 

cryptic splice donor site in exon 11 used by these human isoforms, and present in the rat 

genomic sequence, is absent in mouse due to a single nucleotide difference. Despite its 

presence in rat, however, we found no evidence, either by RNA-seq analysis or by RT-PCR, 

that it is ever utilised. 

 

3.2. Expression of Cdkl5 in adult tissues and across brain regions 

 

rCdkl5_1 and rCdkl5_2 are the major isoforms detected in the rat brain and are orthologous 

to human and mouse isoforms _1 and _2, respectively (Fig. 1B, Table 1). RT-PCR and 

quantitative RT-PCR were performed to assess transcript expression across a range of 

tissues. rCdkl5_1 is expressed most abundantly within the brain, but is also detected in all of 

the adult tissues tested, showing a similar pattern of expression to that of the mouse, and 

human (Fig. 2) (Hector et al., 2016). rCdkl5_2, which incorporates the highly conserved exon 

17, is also expressed primarily in the brain, but can only be detected at lower levels in some 

other peripheral tissues (Fig. 2). This also reflects the pattern of expression seen in mouse 

and human (Hector et al., 2016). Of the two isoforms expressed in the brain, rCdkl5_1 is the 

major isoform, as detected by qRT-PCR (Fig. 3) and RNA-seq. rCdkl5_1 is expressed at 

different levels across different brain regions, with the highest levels detected in the 

neocortex (Fig. 3). In contrast, rCdkl5_2 displayed lower but consistent levels of expression 

across the different brain regions, with modestly elevated levels only in the neocortex (Fig. 

3). Analysis by qRT-PCR indicates that levels of rCdkl5_2 constitute approximately 20% of 

Cdkl5 transcripts in the cerebellum and brain stem, but only 5% in the hippocampus, 

neocortex and striatum (Fig. 3). Analysis of read count data in RNA-seq datasets estimates 

that transcripts incorporating exon 17 (rCdkl5_2) constitute approximately 10% of Cdkl5 

transcripts expressed in whole brain (Fig. S2). 

 

3.3. Analysis of 5’ and 3’ regions of Cdkl5 transcripts 
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The coding regions of rCdkl5_9 and rCdkl5_10 are not orthologous to human or mouse 

isoforms, due to the use of species-specific exons at the 3’ end of the gene (exons 20 and 

21; Fig. 1B). The composition of the 3’-ends of these transcripts had been reported in a 

previous study by Chen et al. (Chen et al., 2010) (where they were known as CDKL5a and 

CDKL5b), and are confirmed in this study by 3’-RACE (Fig. 4A). This results in 3’-UTRs of 

208 and 162 bases, respectively. 3’-RACE was also used to characterise the 3’-UTRs of 

rCdkl5_1 and rCdkl5_2. Both of these transcripts were shown to use the same canonical 

polyadenylation signal identified in human and mouse (Hector et al., 2016), located 6.8 kb 

downstream of the stop codon in exon 19 (Fig. 4A). This yields transcripts of approximately 

9.9 and 10 kb in the rat, respectively. A minority of transcripts in the brain were also found to 

use a more proximal, non-canonical (TATAAA) polyadenylation signal which lies 23 bp 

upstream of a polyadenylation site at position 35726228 (RGSC 6.0/rn6 genomic reference 

sequence coordinates). This results in a 3’-UTR of 843 bases. 

 

At the 5’ end of the gene, 5’-RACE was used to characterise the TSSs and their 

contributions to transcript isoforms rCdkl5_1 and _2 (Fig. 4B). The major TSS (mapped to 

position 35536407 at the 5’-end of exon 1; rn6, as above) is the same as that identified in 

orthologous human and mouse transcripts (Hector et al., 2016), resulting in a highly 

conserved 5’-UTR of approximately 260 bases. Isoforms rCdkl5_9 and _10, which are 

predominantly expressed in testis in the adult, use alternative first exons, primarily exon 1a 

but also 1b (situated approximately 15 kb downstream of exon 1a) (Fig. 4B). Exon 1a is 

orthologous to mouse exon 1a and highly conserved; exon 1b, however, is not and evidence 

from BLAST analysis suggests this to be novel and specific to rat. For exon 1a, a number of 

TSSs were identified, clustering between positions 35554473 and 35554494 (rn6), yielding 

transcripts with a 5’-UTR of approximately 360 bases. The major TSS in exon 1b mapped to 

position 35570401 (rn6), yielding a 5’-UTR of 223 bases. Although three different initial 

exons are utilised (1, 1a and 1b), all transcripts subsequently splice from these exons to 
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exon 2. This results in a 167 base region of 5’-UTR, immediately upstream of the ATG start 

codon, that is conserved in all rat Cdkl5 transcripts (Fig. 4B). 
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4. Discussion 

 

In this study we demonstrate a greater diversity in rat Cdkl5 transcripts than previously 

realised by identifying and validating all splicing events that occur across a diverse panel of 

tissues. After elucidating all common and rare splicing events, the majority of the rat Cdkl5 

coding region was found to be orthologous and well-conserved with human and mouse, 

particularly with mouse (Fig. 1). The diversity arises from alternative first exon usage and 

alternative splicing to species-specific exons at the 3’ end of the gene (Fig. 1). 

 

In total, four different coding transcript isoforms in rat Cdkl5 were identified and 

characterised, and named accordingly with the new nomenclature proposed in our previous 

study (Hector et al., 2016). The predominant brain isoform is rCdkl5_1, which is orthologous 

with the human and mouse isoforms hCDKL5_1 and mCdkl5_1, respectively. The TSS, exon 

composition, 3’-UTR, polyadenylation signal and site are all well conserved. This contrasts 

with previous reports, where CDKL5a and CDKL5b were thought to be the major brain 

isoforms in rat (Chen et al., 2010). The anti-Cdkl5 antibody used in that study is able to 

detect all four isoforms identified in this study, so it is possible that the isoforms detected in 

the brain by western blot were rCdkl5_1 and rCdkl5_2 and not rCdkl5_9 and rCdkl5_10. Our 

analysis indicates that rCdkl5_9 and rCdkl5_10 are in fact predominantly expressed in the 

testis, in a similar pattern to hCDKL5_5 in human, and mCdkl5_6, mCdkl5_7 and mCdkl5_8 

in mouse. The C-terminal exons in rCdkl5_9 and rCdkl5_10 (named exons 20 and 21) are 

not clearly orthologous to any conserved human, mouse or other mammalian genomic 

sequence downstream of the conserved exon 19, according to analysis using BLAST, and it 

appears that they are specific to rat. The presence of exon 17 in rCdkl5_2 accounts for the 

only difference between this isoform and rCdkl5_1. The inclusion of this exon adds 41 amino 

acids to the protein, but although this exon is extremely well conserved between human, 

mouse and rat, it contains no identified functional elements. 
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It is apparent that the putative catalytic region of CDKL5, a highly conserved 

serine/threonine kinase domain in the N-terminal half of the protein, is preserved in all known 

CDKL5 isoforms in rat, mouse and human (Hector et al., 2016). The large 3’-UTR (> 6.6 kb) 

of the major brain isoforms, encoded by exon 19, is also well conserved between human, rat 

and mouse. Although a number of conserved putative miRNA binding sites in the 3’-UTR 

can be identified using bioinformatics tools, little else is known about its function. Long 3’-

UTRs have been associated with the dendritic trafficking of mRNAs, such as BDNF (An et 

al., 2008), and it is possible that the long 3’-UTR of Cdkl5 plays a similar function, as mouse 

Cdkl5 mRNA has been predicted to have a role in local Cdkl5 synthesis at the dendrites in 

the adult brain (La Montanara et al., 2015). 

 

Species-specific diversity is found in the C-terminal region of CDKL5, in coding regions from 

exons downstream of the highly conserved exon 19. These exons are found in regions of 

low genomic sequence conservation between rat, mouse and human, and are present only 

in transcript isoforms that are expressed predominantly in testis (Fig. 1b). This C-terminal 

region was originally implicated in the regulation of CDKL5 subcellular distribution (Rusconi 

et al., 2008); however, more recent studies have downplayed the role of these exons in 

pathogenicity, and therefore function (Diebold et al., 2014). 

 

Characterising the complexity of Cdkl5 transcripts in more species will aid the understanding 

of CDKL5 biology in novel animal models as well as facilitating the development of effective, 

isoform-specific antibodies, the lack of which hampers current research. Careful 

consideration of this transcript complexity will also be required to inform the development of 

gene- and protein-based therapies for CDKL5 disorders.  
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Fig. 1. Rat Cdkl5 gene and transcript isoforms. A. Diagram depicting the structure of the rat 

Cdkl5 gene and the exon composition of the four different coding isoforms. Angled lines 

linking exons indicate splicing events. Exon 1a or 1b may act as the initial exon in rCdkl5_9 

or rCdkl5_10, but these transcripts are otherwise identical. Asterisks next to exon numbers 

indicate where differences are found between different transcript isoforms. Dotted lines 

within exons indicate alternative splice sites. Introns and the 3’-UTR portion of exon 19 are 

not drawn to scale. B. Comparison of human, mouse and rat CDKL5 gene structures. 
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Fig. 2. CDKL5 isoform expression in rat tissues. (A) RT-PCR and (B) quantitative RT-PCR 

analysis of Cdkl5 isoforms in a panel of adult tissues. Comparative expression levels of 

isoforms as revealed by 2-Ct analysis of quantitative RT-PCR. All values are shown relative 

to the rCdkl5_1 brain sample. All qRT-PCR assays were normalised to Hprt. Data plotted are 

mean ± standard error of the mean. Each data point represents two biological replicates 

analysed as technical triplicates. 
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Fig. 3. Cdkl5 expression levels in brain regions. Comparative expression levels of the two 

isoforms as revealed by 2-Ct analysis of quantitative RT-PCR. All values are shown relative 

to the rCdkl5_1 cerebellum sample. All qRT-PCR assays were normalised to -actin. Data 

plotted are mean ± standard error of the mean. Each data point represents three biological 

replicates analysed as technical triplicates. 
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Fig. 4. RNA-seq and 5’ and 3’-RACE mapping of rat Cdkl5 transcripts. A. Upper panels: 

RNA-seq data from brain (red) and testis (blue) datasets show reads mapping to the 3’ end 

of Cdkl5; (the y-axis indicates read count across the analysed region). Indicative numbers of 

RNA-seq reads spanning each exon junction are also shown, indicated by values and dotted 
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lines joining exon boundaries. Middle panels: the exon composition and splicing patterns at 

the 3’ end of each rat isoform is shown. Coding regions are indicated by green colouring and 

5’-UTRs by black colouring. Lower panel: sequences around each of the three 

polyadenylation signals and sites (pA) are shown; each was confirmed by sequencing of 3’-

RACE mapping. B. Upper panels: RNA-seq data from brain and testis datasets show reads 

mapping to the 5’ end of Cdkl5; exon boundary-spanning red counts are also shown, as in A, 

above. Middle panels: boxes representing each exon at the 5’ end of the gene are shown, 

aligned with those in the upper panels. Transcription Start Sites (TSSs) and splice events 

upstream of exon 2 are indicated. Colouring as in A, above. Lower panel: exonic sequences 

for each first exon are shown. TSSs, confirmed by sequencing of 5’-RACE products, are 

indicated by boxes; the major TSS is indicated by a solid box, minor TSSs are indicated by 

hatched boxes.  
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Table 1. Summary of rCdkl5 nomenclature. The new proposed nomenclature of rCdkl5 

isoforms, former names, equivalent Ensembl transcript model and coding region sizes. The 

descriptive name indicates, in addition to the major coding isoform, the variable exon usage 

associated with each transcript: ∆ indicates that an exon is not used; s indicates that the 

short form of the exon is used, where an alternative splice site is present. 
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Table 2. Summary of rCdkl5 transcript isoforms. Exon numbers, sizes and co-ordinates for 

the rat Cdkl5 gene (RGSC 6.0/rn6 assembly). Exon composition of each transcript isoform is 

indicated. Starting coordinates for the main TSS of each initial exon are italicised; 

coordinates of polyadenylation sites in each terminal exon are underlined. Hatched boxes 

indicate exons that contain multiple splice sites.  
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Fig. S1. Primer locations and sequences. PCR Primer pairs specific for each Cdkl5 isoform 

are listed, and the diagrams indicate the coverage of the resultant amplicons. 
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Fig. S2. RNA-seq data from brain and testis datasets show reads mapping to exons 16, 17 

and 18. All reads contributing to these data span a maximum of two exons. 

 

 

 

 

 

 


