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ON THE EXISTENCE OF FOURIER-MUKAI FUNCTORS

ALICE RIZZARDO

Abstract. A theorem by Orlov states that any equivalence F : Db
Coh(X) → Db

Coh(Y ) between

the bounded derived categories of coherent sheaves of two smooth projective varieties X and Y is

isomorphic to a Fourier-Mukai transform ΦE(−) = Rπ2∗(E
L
⊗ Lπ∗

1(−)), where the kernel E is in

Db
Coh(X × Y ). In the case of an exact functor which is not necessarily fully faithful, we compute

some sheaves that play the role of the cohomology sheaves of the kernel, and that are isomorphic to
the latter whenever an isomorphism F ∼= ΦE exists. We then exhibit a class of functors that are not

full or faithful and still satisfy the above result.

1. Introduction

Let X, Y be smooth projective varieties over an algebraically closed field k. Consider an exact
functor

F : Db
Coh(X)→ Db

Coh(Y ).

Orlov proved in [Orl97] that, if F is a fully faithful functor and has a right adjoint, then there exists
an object E ∈ Db

Coh(X ×Y ) such that X is isomorphic to the Fourier-Mukai transform ΦE , defined as

(1) ΦE(−) = Rπ2∗(E
L
⊗ Lπ∗1(−)).

The requirement that F needs to have a right adjoint is actually unnecessary, since by [BVdB03,
Theorem 1.1], every exact functor F : Db

Coh(X) → Db
Coh(Y ) has a left and a right adjoint. (For an

explanation on why this is true, see for example [CS07, Remark 2.1].)
There is evidence that this theorem should generalize to the case where the functor is not full or

faithful. Canonaco and Stellari, in their paper [CS07], partially following Orlov’s proof, give a weaker
condition for the functor for it to be still isomorphic to a Fourier-Mukai functor, i.e. of the form (1)
but not necessarily fully faithful. The condition is in particular satisfied if the functor is full. This is
however a bittersweet result: in fact, in [COS13] together with Orlov they also proved that when X
and Y are smooth projective varieties over a field of characteristic 0, if a functor is full then it is also
faithful.

Although not all functors between bounded derived categories of coherent sheaves on smooth projec-
tive varieties are isomorphic to a Fourier-Mukai functor [RVdB15][RVdB14], given any exact functor F
as above, we compute sheaves Bi on the product X ×Y that are canonically associated to F and that
coincide with the cohomology sheaves of the kernel E whenever F is isomorphic to a Fourier-Mukai
functor ΦE :

Theorem 1.1. Let X, Y be smooth projective varieties over an algebraically closed field k, and F :
Db

Coh(X) → Db
Coh(Y ) an exact functor. There exist sheaves Bi ∈ Coh(X × Y ), with i ∈ Z, all but a

finite number of them equal to zero, such that for every locally free sheaf of finite rank E on X and for
all n ∈ Z there are functorial maps

H i(F (E (n)))→ π2∗(B
i ⊗ π∗1E (n))
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2 ALICE RIZZARDO

which are isomorphisms for n sufficiently high (depending on E ). The sheaves Bi are independent
from the projective embedding.

In particular, if F ∼= ΦE, i.e. F is the Fourier-Mukai transform with kernel E, then H i(E) ∼= Bi

for all i ∈ Z.

We are then able, in a special case, to construct an isomorphism between a class of functors that
are not full or faithful and a Fourier-Mukai transform:

Theorem 1.2. Let X and Y be smooth projective varieties over an algebraically closed field k, with
X of dimension one, and F : Db

Coh(X) → Db
Coh(Y ) an exact functor. Assume that there exists an

integer M such that the sheaves Bi associated to F as in Theorem 1.1 are zero for i 6= M , and that
BM is a direct sum of skyscraper sheaves BM =

⊕t
i=1 k(pi, qi). Let Φ be the Fourier-Mukai transform

associated to the complex given by the sheaf BM placed in degree M , Φ = ΦBM [−M ]. Then there exists
an isomorphism of functors t : F → Φ.

Even when we don’t know how to build a kernel out of the sheaves Bi obtained in Theorem 1.1,
these sheaves turn out to have good properties in their own right. As an example, in section 4 we
show that the analogue of the Cartan-Eilenberg Spectral Sequence converges when the dimension of
X is one.

Notation. From now on, X and Y will be smooth projective varieties over an algebraically closed field
k; π1 and π2 will be the projections X×Y → X and X×Y → Y respectively; F : Db

Coh(X)→ Db
Coh(Y )

will be an exact functor, i.e. an additive functor that commutes with shifts and preserves triangles;
and OX(1) will be a very ample line bundle on X.

Given a morphism π, we will use π∗ and π∗ to indicate pushforward and pullback on coherent
sheaves, whereas pullback and pushforward in the derived category will always be indicated with Lπ∗

and Rπ∗ unless they coincide with the regular pullback and pushforward, in which case both notations
will be used interchangeably.

For a smooth variety X, Coh(X) will be considered as a full subcategory of Db
Coh(X) by associating

to a sheaf the complex given by that sheaf placed in degree zero. Hence we will write F (E ) to indicate
F (E [0]).

Acknowledgements. This paper is derived from part of the author’s PhD thesis. The author thanks
her thesis advisor Aise Johan de Jong for suggesting the problem as well as providing invaluable
guidance over the years. The last draft of this paper was written while at SISSA, in Trieste.

2. Determining the cohomology sheaves of the prospective kernel

Consider an exact functor F : Db
Coh(X)→ Db

Coh(Y ). If we know that F is isomorphic to a Fourier-

Mukai transform ΦE , then we are of course able to compute the cohomology sheaves Bi = H i(E)
corresponding to E. Even if we don’t know what E is, or even if it exists, we are able to compute
some sheaves on X × Y that, if the functor comes from a Fourier-Mukai transform, turn out to be the
cohomology sheaves of the corresponding kernel.

Lemma 2.1. Let X, Y be smooth projective varieties over an algebraically closed field, OX(1) a very
ample invertible sheaf on X.

We define an equivalence relation ∼ on graded Γ∗(OX) ⊗OY -modules M = ⊕kMk by saying that
M ∼ M ′ if there is an integer d such that M≥d ∼= M ′

≥d, where M≥d = ⊕k≥dMk. We say that a

Γ∗(OX)⊗OY -module M is almost coherent if it is equivalent to a coherent Γ∗(OX)⊗OY -module.
There exists an equivalence of categories between the category of coherent sheaves on X×Y and the

category of almost coherent graded Γ∗(OX)⊗OY -modules modulo the equivalence relation ∼.
Moreover, if this correspondence associates a sheaf ⊕Mn on Y to a sheaf B on X × Y , there exists

a functorial map of graded Γ∗(OX)⊗OY -modules

⊕Mn
ψ−→ ⊕π2∗(B ⊗ π∗1OX(n))

which is an isomorphism on the nth graded piece for n sufficiently high.



ON THE EXISTENCE OF FOURIER-MUKAI FUNCTORS 3

Proof. This is a routine application of [Gro61, 3.2.4, 3.3.5, 3.4.3, 3.4.5, 3.3.5.1]. The fact that we get
an isomorphism ⊕Mn → ⊕π2∗(B⊗π∗1OX(n)) in large enough degree can be checked locally and hence
follows by [Ser07, §3.3, Proposition 5, p.258]. �

We now move on to the proof of Theorem 1.1. We will compute the cohomology sheaves Bi by
descending induction on i, and simultaneously show that these are the sheaves satisfying the isomor-
phisms in the statement of the Theorem. The idea of analyzing the cohomology sheaves of the kernel
of a Fourier-Mukai transform has similarly been used in [CS12] to obtain a uniqueness result on these
sheaves.

Proof of Theorem 1.1. Recall that by [BVdB03, Theorem 1.1] F has a left and right adjoint. Hence

by [Orl97, Lemma 2.4], we can assume that F is bounded, i.e. that F (F ) ∈ D[M,N ]
coh (Y ) for all coherent

sheaves F on X; in particular, Hi(F (E )) = 0 for all i /∈ [M,N ] and all locally free sheaves E of finite

rank on X. Therefore we can take Bi = 0 for i /∈ [M,N ].
We will proceed by descending induction on the cohomology degree i. Assume we found the sheaves

BN ,BN−1, . . . ,Bi+1 satisfying the conclusions of the Theorem and let us compute the sheaf Bi. To
do this we will proceed in two steps: first we will construct sheaves Bi

E for all locally free sheaves E
of finite rank, as well as maps

H i(F (E (n)))→ π2∗(B
i
E ⊗ π∗1OX(n))

that are isomorphisms for n sufficiently high, depending on E and i. Then we will show that

Bi
E = Bi

OX
⊗ π∗1E .

For the first step, the key is showing that the sheaf
⊕

n>n0
H i(F (E (n))) on Y is finitely generated

for each n0 as a Γ∗(X,OX) ⊗ OY -module. To do this, proceed as follows: let s be an integer such
that we have a surjection O⊕sX → OX(1). Let E be a locally free sheaf of finite rank on X. Then
by tensoring the map above with E and twisting by n we have a short exact sequence of locally free
sheaves

0→ K(n)→ E⊕s(n)→ E (n+ 1)→ 0.

Hence
0→ π∗1(K(n))→ π∗1(E (n)⊕s)→ π∗1(E (n+ 1))→ 0

is also a short exact sequence of locally free sheaves, and tensoring with Bi+1 will yield another short
exact sequence:

0→ Bi+1 ⊗ π∗1K(n)→ Bi+1 ⊗ π∗1E⊕s → Bi+1 ⊗ π∗1E (n+ 1)→ 0.

Moreover, since π∗1OX(1) is very ample with respect to X × Y → Y , for n high enough (depending on
K) the pushforward to Y will still be exact:

0→ π2∗(B
i+1 ⊗ π∗1K(n))→ π2∗(B

i+1 ⊗ π∗1OX(n)⊕s)→ π2∗(B
i+1 ⊗ π∗1OX(n+ 1))→ 0.

Hence we get a commutative diagram

H i+1(F (K(n)))

��

// H i+1(F (E (n)⊕s)) //

��

H i+1(F (E (n+ 1)))

��
0 // π2∗(B

i+1 ⊗ π∗1K(n)) // π2∗(B
i+1 ⊗ π∗1E (n)⊕s) // π2∗(B

i+1 ⊗ π∗1E (n+ 1)) // 0

and for n high enough depending on K and E , the vertical arrows are isomorphisms by the induction
hypothesis; therefore the top sequence is also exact. Hence, moving down to the ith cohomology
sheaves, for n sufficiently high we also get a surjection

H i(F (E (n)))⊕s →H i(F (E (n+ 1)))→ 0.

Since each H i(F (E (n))) is coherent, this is enough to conclude that the sheaf

(2)
⊕
n>n0

H i(F (E (n)))
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is finitely generated for each n0 as a Γ∗(X,OX) ⊗ OY -module, where the Γ∗(X,OX)-action comes
from the action of Γ∗(X,OX) on ⊕E (n) which gives a corresponding action on ⊕F (E (n)) and hence
on ⊕H i(F (E (n))). By Lemma 2.1 then, the sheaf

⊕
n>n0

H i(F (E (n))) on Y corresponds to a sheaf

Bi
E on X × Y such that the functorial map

H i(F (E (n)))
ψ−→ π2∗(B

i
E ⊗ π∗1OX(n))

is an isomorphisms for n sufficiently high.
Now consider the functor

B : Vect(X)→ Coh(X × Y )

E 7→ Bi
E

from the category of locally free sheaves of finite rank on X to the category of coherent sheaves on
X × Y . The functor B is additive and right exact. In fact, given two coherent sheaves E1 and E2,⊕

n

H i(F ((E1 + E2)(n))) =
⊕
n

H i(F (E1(n)))⊕
⊕
n

H i(F (E2(n)))

hence the functor is additive. Moreover, given a short exact sequence of finite rank locally free sheaves
0 → E1 → E2 → E3 → 0, we get a triangle F (E1) → F (E2) → F (E3) hence for n � 0 we have (by
induction hypothesis)

H i+1(F (E1(n)) //

��

H i+1(F (E2(n))) //

��

H i+1(F (E3(n)))

��
0 // π2∗(B

i+1 ⊗ π∗1E1(n)) // π2∗(B
i+1 ⊗ π∗1E2(n)) // π2∗(B

i+1 ⊗ π∗1E3(n)) // 0

and for n sufficiently high, all of the vertical maps are isomorphisms hence the top sequence is also
exact for n high, say n > n0.

Hence moving down to the ith cohomology sheaves we get an exact sequence of Γ∗(OX) ⊗ OY -
modules

(3)
⊕
n>n0

H i(F (E1(n)))→
⊕
n>n0

H i(F (E2(n)))→
⊕
n>n0

H i(F (E3(n)))→ 0

and so (by the equivalence of categories) get

Bi
E1
→ Bi

E2
→ Bi

E3
→ 0

hence the functor B is right exact on the full subcategory of locally free sheaves of finite rank.
Moreover, for every n, for m� 0 (depending on n) we have

H i(F (E (n)(m))) = π2∗(B
i
E (n) ⊗ π∗1OX(m))

but also

H i(F (E (n)(m))) = H i(F (E (n+m)))

= π2∗(B
i
E ⊗ π∗1OX(n+m))

= π2∗((B
i
E ⊗ π∗1OX(n))⊗ π∗1OX(m)),

hence it follows from the equivalence of categories that

Bi
E (n) = Bi

E ⊗OX(n).

Now let E be a locally free sheaf of finite rank on X. Then there exists a sequence

⊕OX(bj)→ ⊕OX(ak)→ E → 0,

therefore since the functor B is right exact we get

Bi
⊕OX(bj) → Bi

⊕OX(ak) → Bi
E → 0.
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Since B is additive and compatible with twists, we can write

⊕Bi
OX
⊗ π∗1OX(bj)→ ⊕Bi

OX
⊗ π∗1OX(ak)→ Bi

E → 0

hence

(4) Bi
E = Bi

OX
⊗ π∗1E

and the theorem follows by taking Bi = Bi
OX

. Since there is a finite number of steps in the induction,
we can find an n0 such that for n > n0 the maps

(5) H i(F (E (n)))→ π2∗(B
i
E ⊗ π∗1OX(n))

are isomorphisms for all i.
We will now show that the Bi’s do not depend on a choice of a very ample line bundle OX(1) on

X. Let L1,L2 be two very ample line bundles on X and we will denote by Bi(L1) and Bi(L2) the
corresponding coherent sheaves on X × Y . Then by (4) and (5), for n sufficiently high we have an
isomorphism

H i(F (E ⊗L ⊗ni )) ∼= π2∗(B
i(Li)⊗ π∗1E ⊗ π∗1L ⊗ni )

for i = 1, 2. It follows that

H i(F (L ⊗n1 ⊗L ⊗n2 ) ∼= π2∗(B
i(L1)⊗ π∗1L ⊗n1 ⊗ π∗1L ⊗n2 )

H i(F (L ⊗n1 ⊗L ⊗n2 ) ∼= π2∗(B
i(L2)⊗ π∗1L ⊗n1 ⊗ π∗1L ⊗n2 )

hence by the equivalence of categories of Lemma 2.1 for the line bundle π∗1(L1 ⊗L2), which is also
very ample with respect to the projection to Y , we obtain that Bi(L1) = Bi(L2).

In the case where F ∼= ΦE , a Fourier-Mukai transform with kernel E, we have the following:

H i(ΦE(OX(n))) = H i(Rπ2∗(E
L
⊗ Lπ∗1OX(n))) ∼=

∼= H i(π2∗(E ⊗ π∗1OX(n))) ∼=
∼= π2∗(H

i(E ⊗ π∗1OX(n))) ∼=
∼= π2∗(H

i(E)⊗ π∗1OX(n))

where for the second equality we used the fact that, π∗1OX(1) is very ample with respect to X×Y → Y .
Therefore, by Lemma 2.1 the sheaf⊕

n≥n0

H i(ΦE(OX(n))) ∼=
⊕
n≥n0

π2∗(H
i(E)⊗ π∗1OX(n))

corresponds by the equivalence of categories to the sheaf H i(E) on X × Y . �

While Theorem 1.1 gives a map H i(F (E (n))) → π2∗(B
i ⊗ π∗1E (n)) for all vector bundles E and

all n ∈ Z, in general it is only an isomorphism for n sufficiently large. In the case of the first M such
that H M (F (E )) is nonzero for some locally free sheaf of finite rank E we can actually say more:

Proposition 2.2. In the situation of Theorem 1.1, assume F (E ) ∈ D
[M,N ]
Coh (Y ) for all locally free

sheaves E of finite rank on X. Then the maps

H M (F (E ))→ π2∗(B
M ⊗ π∗1E )

are isomorphisms for all locally free sheaves E of finite rank.

As we mentioned in the proof of Theorem 1.1, the assumption that F (E ) ∈ D[M,N ]
Coh (Y ) for all locally

free sheaves E of finite rank on X isn’t actually restrictive because of [Orl97, Lemma 2.4].
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Proof. Assume we have an immersion X ↪→ Pdk. Choose sections s1, . . . , sd+1 of OX(1) such that the
corresponding hyperplanes have empty intersection. Then for any m ∈ N we have short exact sequence

0→ OX
(sm1 ,...,s

m
d+1)

−−−−−−−−→ OX(m)d+1 → Km → 0,

where Km is a locally free sheaf on X.
Let E be any coherent locally free sheaf. Then by tensoring the above short exact sequence with E

we get

0→ E → E (m)⊕(d+1) → Km ⊗ E → 0

and so

0 // H M (F (E )) //

��

H M (F (E (m)d+1)) //

��

H M (F (Km ⊗ E ))

��
0 // π2∗(B

M ⊗ π∗1E ) // π2∗(B
M ⊗ π∗1E (m)d+1) // π2∗(B

M ⊗ π∗1(Km ⊗ E )).

Let m be high enough so that the center map is an isomorphism (this is possible by Theorem 1.1).
Then the map on the left must be injective. Thus we showed: for every locally free sheaf E of finite
rank, the map H M (F (E ))→ π2∗(B

M ⊗ π∗1E ) is injective.
Now let us go back to the diagram above. By what we just showed, the map on the right

H M (F (Km ⊗ E ))→ π2∗(B
M ⊗ π∗1(Km ⊗ E )) is injective. Hence we have

0 // H M (F (E )) //
� _

��

H M (F (E (m)d+1)) //

∼=
��

H M (F (Km ⊗ E ))� _

��
0 // π2∗(B

M ⊗ π∗1E ) // π2∗(B
M ⊗ π∗1E (m)d+1) // π2∗(B

M ⊗ π∗1(Km ⊗ E ))

then by the 5 Lemma the left arrow is an isomorphism, i.e.

H M (F (E ))
∼=−→ π2∗(B

M ⊗ π∗1E ). �

This proposition in particular implies that if F (E ) ∈ D
[M,N ]
Coh (Y ) for all locally free sheaves E of

finite rank on X, and there is at least one E such that H M (F (E )) 6= 0, then necessarily BM 6= 0.
Similarly to Proposition 2.2, we also have a stronger result than the one in Theorem 1.1 for the

largest N ′ such that Bi 6= 0. In this case, the map H N ′(F (E (n)) → π2∗(B
N ′ ⊗ π∗1E (n)) can be

constructed for all coherent sheaves on X instead of just the locally free ones:

Proposition 2.3. In the situation of Theorem 1.1, let N ′ be the largest i such that Bi 6= 0. Then for
all n ∈ Z, for any coherent sheaf F we have a map

H N ′(F (F (n)))→ π2∗(B
N ′ ⊗ π∗1F (n))

which is an isomorphism for n sufficiently high.

Proof. First of all, notice that for any coherent sheaf F on X we have H N ′+1(F (F (n))) = 0 for n� 0.
In fact, let N ′′ be maximal such that there exists a coherent sheaf F and a sequence ni → ∞ with
H N ′′(F (F (ni))) 6= 0 for all i (N ′′ exists because F is bounded). Then consider a short exact sequence
0→ G → E → F → 0 with E locally free. If N ′′ > N ′, for ni high enough by Theorem 1.1 we will have
H N ′′(F (E (ni))) = π2∗(BN ′′ ⊗ π∗1(E (ni))) = 0 since BN ′′ = 0, and similarly H N ′′+1(F (E (ni))) = 0;

hence H N ′′+1(F (G (ni))) = H N ′′(F (F (ni))) 6= 0, obtaining a contradiction.
Now we will repeat the argument of Theorem 1.1 just for N ′: in this case the argument can be

applied to all coherent sheaves instead of just the locally free ones. First of all, take an integer s such
that there exists a surjection O⊕sX → OX(1). By tensoring with F (n) we get a short exact sequence
of coherent sheaves 0→ K(n)→ F⊕s(n)→ F (n+ 1)→ 0 and hence for n� 0 we get

H N ′(F (F (n)))⊕s →H N ′(F (F (n+ 1)))→ 0
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since H N ′+1(F (K(n))) = 0. As in (2) this gives us a BN ′

F and a map

H N ′(F (F (n)))→ π2∗(B
N ′

F ⊗ π∗1(OX(n)))

which is an isomorphism for n big.
Now let us consider an exact sequence E1 → E2 → F → 0 with Ei locally free of finite rank. Since

E1 is locally free, H N ′+1(F (E1(n))) = 0 for n� 0 and the exact sequence

H N ′(F (E1(n)))→H N ′(F (E2(n)))→H N ′(F (F (n)))→ 0

gives us a an exact sequence as in (3)

BN ′

E1
→ BN ′

E2
→ BN ′

F → 0,

therefore we can conclude that BN ′

F = BN ′ ⊗ π∗1(F ) for any coherent sheaf F . �

3. A special case

In this section we will give an example of a class of exact functors F : Db
Coh(X) → Db

Coh(Y ) for

which we can always find an object E ∈ Db
Coh(X × Y ) and an equivalence F ∼= ΦE . The sheaves Bi

will be the ones defined as in Theorem 1.1.
In what follows we will take dim(X) to be equal to one, and all but one of the Bi’s to be equal

to zero. Note that under these hypotheses we obtain an isomorphism F (F ) ∼= ΦE(F ) for all objects
F ∈ Db

Coh(X): this follows from Theorem 1.1 and the fact that locally free coherent sheaves supported
in degree zero are a one-step generator for the whole derived category Db

coh(X), i.e. the smallest full
subcategory containing locally free coherent sheaves supported in degree zero and closed under finite
direct sums, direct summands and shifts, and the operation of taking at most one cone is precisely
Db

coh(X). However, there is no guarantee that the isomorphism F (F ) ∼= ΦE(F ) will be functorial.
Before we proceed to find an isomorphism of functors, we need to show that we can obtain an iso-

morphism on the cohomology sheaves. The following proposition gives a description of the cohomology
sheaves of F (F ) for any F coherent, without needing to twist by some high n as we did in Theorem
1.1.

Proposition 3.1. Let X, Y be smooth projective varieties over an algebraically closed field, with X of
dimension one, let F : Db

Coh(X)→ Db
Coh(Y ) an exact functor, and assume that the sheaves Bi defined

as in Theorem 1.1 are zero for i 6= M . Assume also that BM is a coherent sheaf supported at finitely
many points of X × Y .

Then for any coherent sheaf F on X we have H i(F (F )) = 0 for i 6= M,M − 1 and for any locally
free sheaf E of finite rank we have H i(F (E )) = 0 for i 6= M .

Moreover, for each coherent sheaf F on X there is a functorial isomorphism

H M (F (F ))
∼=−→ π2∗(B

M ⊗ π∗1F ).

Proof. Consider any torsion sheaf Q. Then we have a short exact sequence of coherent sheaves 0 →
E ′ → E → Q → 0 with E ,E ′ locally free. Twist E and E ′ by n � 0 so that H i(F (E ′(n))) =
H i(F (E (n))) = 0 for i 6= M . Since 0 → E ′(n) → E (n) → Q → 0 is still an exact sequence, from the
long exact sequence on cohomology we can conclude that H i(F (Q)) = 0 for all i 6= M,M − 1.

Now consider a locally free sheaf E of finite rank on X. Let n̄ be large enough so that we know
H i(F (E (n̄))) = 0 for all i 6= M . Then we have a short exact sequence 0→ E (n̄−1)→ E (n̄)→ T → 0
where T is a torsion sheaf. A portion of the long exact sequence in cohomology gives

H i−1(F (T ))→H i(F (E (n̄− 1)))→H i(F (E (n̄)))

and H i−1(F (T )) = H i(F (E (n̄))) = 0 for i 6= M,M+1 hence H i(F (E (n̄−1))) = 0 for i 6= M,M+1.
By descending induction on n we then obtain that H i(F (E (n))) = 0 for all n and i 6= M,M + 1. We
will show at the end of the proof that H M+1(F (E )) = 0.

By Proposition 2.3 we know that for any coherent sheaf F on X we have a functorial map

H M (F (F ))→ π2∗(B
M ⊗ π∗1F )



8 ALICE RIZZARDO

which is an isomorphism by Proposition 2.2 if F is locally free (notice that the hypotheses of 2.2 are
satisfied by the first part of this Proposition). Moreover we also know, again by Proposition 2.3, that
for any coherent sheaf F the map

H M (F (F (n)))
∼=−→ π2∗(B

M ⊗ π∗1F (n))

is an isomorphism for n sufficiently high. But if F is a torsion sheaf F (n) ∼= F , so we get that

H M (F (F ))
∼=−→ π2∗(B

M ⊗ π∗1F )

is also an isomorphism for torsion sheaves, and hence it is always an isomorphism since any coherent
sheaf on X is the direct sum of a locally free part and a torsion part.

Now let us show that H M+1(F (E )) = 0 for a locally free sheaf E : using again the short exact
sequence 0→ E (n̄− 1)→ E (n̄)→ T → 0, we obtain a diagram

H M (F (E (n̄))) //

∼=
��

H M (F (T )) //

∼=
��

H M+1(F (E (n̄− 1))) //

��

H M+1(F (E (n̄))) = 0

π2∗(B
M ⊗ π∗1E (n̄)) // π2∗(B

M ⊗ π∗1T ) // 0

where the bottom sequence is right exact because π2∗ is exact when applied to a sequence of flasque
sheaves, which is the case here by the way we chose our BM . By the five lemma it follows that
H M+1(F (E (n̄− 1))) = 0. So we can again proceed by descending induction on n. �

Thanks to Proposition 3.1 we can now get an isomorphism of the δ-functors obtained by first
applying the two functors F and ΦBM [−M ] and then taking their cohomology:

Proposition 3.2. In the setting of Proposition 3.1, let Φ be the Fourier-Mukai transform associated
to the complex given by the sheaf BM placed in degree M , Φ = ΦBM [−M ].

Then there is an isomorphism of δ-functors

H i(F (·))
∼=−→H i(Φ(·))

on the category of coherent sheaves on X, which gives an isomorphism of functors F → Φ for the full
subcategory of Db

Coh(X) consisting of locally free sheaves placed in degree zero.

Proof. The fact that there is a functorial isomorphism

H M (F (·))
∼=−→H M (Φ(·))

on the category of coherent sheaves onX follows immediately from Proposition 3.1 given that H M (Φ(F )) =

π2∗(B
M ⊗ π∗1F ) since pushforward is exact for flasque sheaves.

Moreover, for any locally free sheaf of finite rank E , since the only nonzero cohomology sheaf of
F (E ) is in degree M ,

F (E ) = H M (F (E ))[−M ]
∼=−→H M (Φ(E ))[−M ] =

= π2∗(B
M ⊗ π∗1E )[−M ] = Rπ2∗(B

M [−M ]
L
⊗ Lπ∗1E ) = Φ(E ),

where the third equality follows again by Proposition 3.1. This gives the isomorphism of functors on
the full subcategory of Db

Coh(X) of locally free sheaves placed in degree zero.
Let us now construct the isomorphism

H M−1(F (·))
∼=−→H M−1(Φ(·)).

Consider a coherent sheaf Q on X which is not locally free. Then there is a short exact sequence
of coherent sheaves 0 → E1 → E2 → Q → 0 where E1 and E2 are locally free. We get a long exact
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sequence on cohomology

0 // H M−1(F (Q)) // H M (F (E1)) //

��

H M (F (E2))

��
0 // H M−1(Φ(Q)) // H M (Φ(E1)) // H M (Φ(E2))

so we get an isomorphism H M−1(F (Q)) → H M−1(Φ(Q)). We still need to show that this map is
functorial and that it does not depend on the choice of a short exact sequence. Consider a map Q→ T
of coherent sheaves. Then we can construct two short exact sequences

0 // E1
//

��

E2
//

��

Q //

��

0

0 // H1
// H2

// T // 0

with E2,E1,H2 and H1 locally free of finite rank. Then we get the following diagram on cohomology:

(6)

0 H M−1(Φ(Q)) H M (Φ(E1)) H M (Φ(E2))

0 H M−1(F (Q)) H M (F (E1)) H M (F (E2))

0 H M−1(Φ(T )) H M (Φ(H1)) H M (Φ(H2))

0 H M−1(F (T )) H M (F (H1)) H M (F (H2))

where all but possibly the leftmost shaded squares commute, hence the leftmost shaded square will
also commute. This shows functoriality.

To show that the maps we chose do not depend on the choice of a short exact sequence, notice that
given two short exact sequences 0 → E1 → E2 → Q → 0 and 0 → H1 → H2 → Q → 0 there is a
short exact sequence 0→ C → E2 ⊕H2 → Q→ 0 mapping to both of them. So we just need to prove
this statement for two short exact sequences with maps between them. But then we are again in the
situation of diagram (6), where T = Q and the two rightmost maps in the diagram are the identity.
So this follows again from the commutativity of the leftmost shaded square.

Finally, since by Proposition 3.1 we have H i(F (F )) = 0 for i 6= M − 1,M , all that is left to show
is that for every short exact sequence 0→H1 →H2 → Q→ 0 the diagram

H M−1(F (Q)) //

��

H M (F (H1))

��
H M−1(Φ(Q)) // H M (Φ(H1))
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is commutative. This follows immediately by the construction when H1 and H2 are locally free.
Otherwise, construct a diagram

0 // E1
//

��

E2
//

��

Q // 0

0 // H1
// H2

// Q // 0

with E2,E1 locally free of finite rank. Then we get a diagram as in (6) with T = Q and where
everything commutes except possibly for the bottom leftmost square, but that follows immediately
since the leftmost vertical arrow is the identity. �

We are now ready to tackle the task of getting an isomorphism between the two functors in our
special case. We will now assume that HM is a direct sum of skyscraper sheaves. We will proceed as
follows: we will first find an isomorphism for the subcategory of Db

Coh(X) given by sheaves placed in
degree zero. The isomorphism on the whole derived category will then follow by the technical Lemma
3.7.

Theorem 3.3. Let X and Y be smooth projective varieties over an algebraically closed field, with X of
dimension one, F : Db

Coh(X)→ Db
Coh(Y ) an exact functor. Assume that the corresponding Bi defined

in Theorem 1.1 are zero for i 6= M , and that BM is a skyscraper sheaf supported at a finite number
of points, BM =

⊕t
j=1 k(pi, qi). Let Φ be the Fourier-Mukai transform associated to the sheaf BM

placed in degree M . Let τ be the full subcategory of coherent sheaves placed in degree 0. Then there
exists an isomorphism of exact functors t : F (·)|τ → Φ(·)|τ .

Before we prove the theorem, let us prove two technical lemmas that we will use in the proof.

Lemma 3.4. Let X be a projective variety, OX(1) be a very ample invertible sheaf on X. Consider a
surjective map α : ⊕nOX → Q where Q is a coherent sheaf on X. Then there exists an integer h(α)
such that for all i ≤ −h(α) and for any map β : OX(i) → Q there exists a map γ : OX(i) → ⊕nOX
making the following diagram commute:

OX(i)
γ //

β
""

⊕
nOX

α
{{

Q

Proof. We have a short exact sequence

0→ Ker(α)→ ⊕nOX → Q→ 0.

Twist by OX(−i) to get

0→ Ker(α)(−i)→ ⊕nOX(−i)→ Q(−i)→ 0.

A map β : OX(i) → Q is the same thing as a map OX → Q(−i), hence as an element β(−i) ∈
H0(X,Q(−i)). By Serre vanishing, there exists an h(α) ≥ 0 such that H1(X,Ker(α)(−i)) = 0 for all
i ≤ −h(α). Hence β(−i) lifts to a section γ(−i) of H0(X,⊕nOX(−i)). Twist down by i to get the
desired map γ : OX(i)→ ⊕nOX . �

Lemma 3.5. Let X be a smooth projective variety over an algebraically closed field, let p1, . . . , pt ∈ X
and let E be a locally free sheaf of rank r generated by global sections. Then there exist an open set U
containing p1, . . . , pt and global sections s1, . . . , sr of E that generate the stalk Ep at each point p ∈ U .

Proof. Assume we found s1, . . . , sn ∈ Γ(X,E ) that are linearly independent at each stalk at p1, . . . , pt
so that we have

O⊕nX → E
f−→ Q→ 0

ej 7→ sj .
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Let us find a global section of E such that its image in Q doesn’t vanish at p1, . . . , pt. Let ui ∈ Γ(X,E )
such that f(ui) doesn’t vanish at pi (we can do this because f is surjective on stalks and E is generated
by global sections). Then u1, . . . , ut form a sub-vector space V of Γ(X,E ) of dimension l for some l
and, for each i, dim({u ∈ V : f(u)(pi) = 0}) ≤ l − 1. Hence

{u ∈ V : f(u)(pi) = 0 for some i} =
⋃
i

{u ∈ V : f(u)(pi) = 0}

is a union of subsets of dimension less or equal to l − 1 and hence it is strictly contained in V since
our field of definition is infinite (because it is algebraically closed). So we can find a section sn+1 in
V such that f(sn+1) doesn’t vanish at any of the pj . Then s1, . . . , sn+1 are linearly independent at
each pj as sections of E . We can keep doing this as long as rk Q > 0. Then the sections s1, . . . , sr will
generate the stalk Ep at each point p in an open set U containing p1, . . . , pt. �

Proof of Theorem 3.3. It is actually more natural to construct the inverse isomorphism s : F (·)|τ →
Φ(·)|τ .

We will first construct the isomorphism on objects, starting with the subcategories of coherent
sheaves on X given by locally free sheaves and torsion sheaves. This will a priori involve making
non-canonical choices, but as it later turns out, the choices we are making are actually unique. Then
we will prove that the isomorphisms are compatible with morphisms and this will allow us to define
said isomorphism on a general coherent sheaf. Lastly, we will show that the given isomorphisms induce
maps of triangles when applied to a short exact sequence of sheaves.

I. On the subcategory of locally free sheaves: Let E be a locally free sheaf of finite rank on
X. Then by Proposition 3.2 there is a functorial isomorphism s(E ) : Φ(E )→ F (E ).

II. On torsion sheaves: Consider a torsion sheaf Q on X. Pick a short exact sequence 0 →
K → O⊕nX

α−→ Q→ 0, with K a locally free sheaf. Then we have a diagram

Φ(K) //

s(K)qis

��

Φ(O⊕nX ) //

s(O⊕n
X )qis

��

Φ(Q)

��
F (K) // F (O⊕nX ) // F (Q)

hence there exists a dotted arrow Φ(Q) → F (Q) which is a quasi-isomorphism (this dotted arrow
is not necessarily unique). Choose one such arrow and call it s(Q). Notice that s(Q) will induce
on cohomology the maps that we found in Proposition 3.2: for the M th cohomohogy this follows
because H M (O⊕nX ) → H M (Q) is surjective and the functoriality for locally free sheaves, and the
maps H M−1(Φ(Q))→H M (Φ(K)) and H M−1(F (Q))→H M (F (K)) are injective.

III. s(−) is compatible with maps β : E → Q, E locally free, Q torsion: First of all we will
prove the following: for any map β : OX(i)→ Q, the diagram

Φ(OX(i))

s(OX(i))

��

Φ(β) // Φ(Q)

s(Q)

��
F (OX(i))

F (β) // F (Q)

commutes. Consider first the case where i ≤ −h(α) where h(α) is defined as in Lemma 3.4, and α is
as in II. By Lemma 3.4, for every map β : OX(i)→ Q with i ≤ −h(α) we have a diagram

OX(i) //

β
""

⊕
nOX

α
{{

Q
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By applying the functors F and Φ we obtain the following diagram:

Φ(OX(i))
Φ(β) //

vv

��

Φ(Q)

idvv s(Q)

��

Φ(O⊕nX )
Φ(α)

//

��

Φ(Q)

s(Q)

��

F (OX(i))
F (β) //

vv

F (Q)

idvv
F (O⊕nX )

F (δ)
// F (Q)

and the front square commutes because of how we chose s(Q) in II, hence the back square will also
commute.

Now let i > −h(α) and consider β : OX(i) → Q. Then pick any map γ : OX(−h(α)) → OX(i)

such that γ is an isomorphism on an open set containing p1, . . . , pt, where BM =
⊕t

j=1 k(pi, qi) (one

such map is multiplication by a polynomial that does not vanish at the pi’s). Then the map Φ(γ) :
Φ(OX(−h(α)))→ Φ(OX(i)) is an isomorphism: in fact the map π∗1(γ) : π∗1(OX(−h(α)))→ π∗1(OX(i))
is an isomorphism on an open set containing (p1, q1), . . . , (pt, qt) and hence we will get an isomorphism
when tensoring with a sheaf supported at (p1, q1), . . . , (pt, qt). By letting δ = β ◦ γ once again we get
a diagram

Φ(OX(i))
Φ(β) //

��

Φ(Q)

��

Φ(OX(−h(α)))
Φ(δ)

//

��

Φ(γ)

55

Φ(Q)

��

id

55

F (OX(i))
F (β) // F (Q)

F (OX(−h(α)))
F (δ)

//

55

F (Q)
id

55

since Φ(γ) is a quasi-isomorphism and the front square is commutative, the back square will also
commute.

Now consider any map β : E → Q with E locally free and Q torsion. Let m be such that E (m) is
generated by global sections, and let r = rkE . By Lemma 3.5 we can find s1, . . . , sr global sections
of E (m) that are linearly independent at each stalk of an open set U containing p1, . . . , pt. Then the
corresponding map

⊕
rOX → E (m) is injective and it is an isomorphism on U . Twisting down by m

we get a map γ :
⊕

rOX(−m)→ E which is an isomorphism on U . By letting δ = β ◦ γ we get again
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a diagram like the above one,

Φ(E )
Φ(β) //

��

66
Φ(γ)

Φ(Q)

s(Q)

��

Φ(
⊕

rOX(−m)) ∼=
⊕

r Φ(OX(−m))
Φ(δ)

//

��

Φ(Q)

s(Q)

��

id

77

F (E )
F (β) //

77 F (Q)

F (
⊕

rOX(−m)) ∼=
⊕

r F (OX(−m))
F (δ)

// F (Q)

id

77

and since Φ(γ) is a quasi-isomorphism and the front square commutes, the back square will also
commute.

IV. s(−) is compatible with maps η : Q → T , Q and T torsion: We need to show that for
any map between torsion sheaves Q→ T , the corresponding diagram

Φ(Q)
Φ(η) //

s(Q)

��

Φ(T )

s(T )

��
F (Q)

F (η) // F (T )

is commutative. This will also prove that our choice of s(Q) is canonical. To do this, consider a locally
free sheaf E =

⊕
rOX with a surjection f : E → Q. For consistency we will represent this situation

with a square diagram as before

E
η◦f //

f

��

T

id

��
Q

η // T

Then we get the following diagram:

Φ(Q)
Φ(η) //

��

Φ(T )

��

Φ(E )
Φ(η◦f)

//

��

Φ(f)

77

Φ(T )

��

id

77

F (Q)
F (η) // F (T )

F (E )
F (η◦f)

//

77

F (T )

id

77

where the front square commutes by III. Hence the back square will also commute after pre-composing
with the map Φ(E ) → Φ(Q). But then we can conclude that the back square also commutes: in fact
it commutes on cohomology because of Proposition 3.2, so we can apply Lemma 3.6 below.

V. On a general coherent sheaf on X: Let F be any coherent sheaf on X. Then we have a
decomposition F ∼= FT ⊕FF where FT is the canonical summand consisting of the torsion part of
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F and FF corresponds to the torsion-free part (this summand is not canonical). Then define s(F ) =
s(FT ) ⊕ s(FF ). We need to show that this map doesn’t depend on the choice of the decomposition.
So consider two such decompositions F ∼= FT ⊕FF and F ∼= FT ⊕F ′F and call s(F ) and s′(F )
respectively the two induced maps on Φ(F ). Then the identity F → F induces a map α : FF →
F ′F ⊕FT , and by I. and III. the following diagram is commutative:

Φ(FF ) //

��

Φ(F ′F )⊕ Φ(FT )

s(F ′F )

��
s(FT )

��
F (FF ) // F (F ′F )⊕ F (FT )

whereas the diagram for the torsion part is clearly commutative because the induced maps are just
the identity. Hence every square in the following diagram is commutative:

Φ(F )
∼= //

s(F)

��

id

**
Φ(FT )⊕ Φ(FF )

s(FT )

��
s(FF )

��

id⊕Φ(α)// Φ(FT )⊕ Φ(F ′F )

s(FT )

��
s(F ′F )

��

∼= // Φ(F )

s′(F)

��
F (F )

∼= //

id

44F (FT )⊕ F (FF )
id⊕F (α)// F (FT )⊕ F (F ′F )

∼= // F (F ).

It follows that the external rectangle commutes, which proves precisely that s(F ) = s′(F ).
VI. s(−) is compatible with any maps F → G , for F and G coherent sheaves: Given a

map f : F → G , write F = FF ⊕FT and G = GF ⊕ GT . Then s will be compatible with Φ(f) and
F (f) because it is compatible with the maps FF → GF , FF → GT , and FT → GT .

VII. s(−) is compatible with triangles of the type 0 → E1 → E2 → F → 0 for E1 and
E2 locally free: We have to show that given a short exact sequence of coherent sheaves on X,
0→ E1 → E2 → F → 0, the maps s(E1), s(E2) and s(F ) give a morphism of triangles

(7)

Φ(E1) //

s(E1)

��

Φ(E2) //

s(E2)

��

Φ(F ) //

s(F)

��

Φ(E1)[1]

s(E1)[1]

��
F (E1) // F (E2) // F (F ) // F (E1)[1],

i.e. we need to prove that the rightmost square is commutative. First of all we will analyze the
map Φ(E2) → Φ(F ). We know that Φ(E2) is supported in degree M , whereas Φ(F ) is supported in
degrees M and M −1: hence, by [Dol60, Satz 4.7], as a complex we have Φ(F ) ∼= H M (Φ(F ))[−M ]⊕
H M−1(Φ(F ))[−M + 1] (in a non-canonical way). The situation looks as follows:

Φ(E2) //

**

H M (Φ(F ))[−M ]

**
⊕

H M−1(Φ(F ))[−M + 1] // Φ(E1)[1].

We will now show that the induced maps Φ(E2)→H M−1(Φ(F ))[−M+1], as well as H M (Φ(F ))[−M ]→
Φ(E1)[1], are zero in Db

Coh(Y ) for some choice of a decomposition Φ(F ) ∼= H M−1(Φ(F ))[−M + 1]⊕
H M (Φ(F ))[−M ]. In fact, consider a locally free resolution of π∗1F , F̄−1 → F̄0. Then the map
E2 → F induces an actual map of complexes π∗1C → [F̄−1 → F̄0] since p∗1B is locally free, hence an
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actual map of complexes

(π∗1E2 ⊗BM )[−M ] // (F̄0 ⊗BM )[−M ]

(F̄−1 ⊗BM )[−M + 1].

OO

Now, since these complexes are direct sums of complexes of vector spaces over k(pi, qi), we can write
the complex on the right as a direct sum of its cohomology groups and get a map of complexes

(π∗1E2 ⊗BM )[−M ] // (H M (π∗1(F )
L
⊗ BM ))[−M ]

⊕

(H M−1(π∗1(F )
L
⊗ BM ))[−M + 1],

and by pushing forward to Y we get a map of complexes

Φ(E2) // π2∗(H M (π∗1(F )
L
⊗ BM ))[−M ] ∼= H M (Φ(F ))[−M ]

⊕

π2∗(H M−1(π∗1(F )
L
⊗ BM ))[−M + 1] ∼= H M−1(Φ(F ))[−M + 1].

This proves precisely that the map Φ(E2)→H M−1(φ(F ))[−M + 1] is zero (π2∗ is exact here because
the sheaves are flasque). For the second map we can reason as follows: since the map Φ(E2) →
H M−1(φ(F ))[−M + 1] is zero, and we know that Φ(E2) → Φ(E1)[1] is zero, it follows that the
composition Φ(E2)→H M (Φ(F ))[−M ]→ Φ(E1)[1] is also zero. Hence the result follows if the map

Hom(H M (Φ(F ))[−M ],Φ(E1)[1])→ Hom(Φ(E2),Φ(E1)[1])

is injective, i.e. the map

Ext1(H M (Φ(F )),H M (Φ(E1)))→ Ext1(H M (Φ(E2)),H M (Φ(E1)))

is injective.
To show this we claim that, for any coherent sheaf G on X, H M (Φ(G )) is a direct sum of (degree

one) skyscraper sheaves supported at the qi’s. This is clear for locally free sheaves and for torsion
sheaves supported away from the pi’s. Let us check it for a torsion sheave G supported at pi. Since
G ∼= ⊕OX,pi/mnpi we can assume we have just one such summand. Then we have a short exact sequence

0→ OX(−npi)→ OX → G → 0

and hence π∗1(G ) = [OX×Y (−(npi×Y ))→ OX×Y ] and π∗1(G )⊗BM = [k(pi, qi)
0−→ k(pi, qi)] and since

those are flasque sheaves we have H M (Φ(G )) = k(qi). This proves the claim.
In particular, the surjection H M (Φ(E2))→H M (Φ(F )) is split and hence the map

Ext1(H M (Φ(F )),H M (Φ(E1)))→ Ext1(H M (Φ(E2)),H M (Φ(E1)))

is injective.
We’re finally ready to show that

Φ(F ) //

��

Φ(E1)[1]

��
F (F ) // F (E1)[1]
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commutes. To do this, take the same decomposition Φ(F ) ∼= H M−1(Φ(F ))[−M+1]⊕H M (Φ(F ))[−M ]
as above. We will show that the two diagrams

H M (Φ(F ))[−M ] //

��

Φ(E1)[1]

��
F (F ) // F (E1)[1]

and H M−1(Φ(F ))[−M + 1] //

��

Φ(E1)[1]

��
F (F ) // F (E1)[1]

are both commutative.
Notice that the composition Φ(E2) → Φ(F ) → F (F ) → F (E1)[1] is zero, because we already

know that the central square in (7) commutes, and F (E2) → F (F ) → F (E1)[1] is zero. Moreover,
since Φ(E2) → H M−1(Φ(F ))[−M + 1] is the zero map, this means that the composition Φ(E2) →
H M (Φ(F ))[−M ] → F (F ) → F (E1)[1] is zero. Since we already know that on objects we have an
isomorphism F (·) ∼= Φ(·), by the same computation as above we get that

Hom(H M (Φ(F ))[−M ], F (E1)[1])→ Hom(Φ(E2), F (E1)[1])

is again injective hence the composition H M (Φ(F ))[−M ] → F (F ) → F (E1)[1] is zero. In the same
way, we know that H M (Φ(F ))[−M ] → Φ(E1) → F (E1)[1] is also zero. This shows that the first
square commutes.

To show that the second square above is commutative, we just need to show that the square

H M−1(Φ(F ))[−M + 1] //

��

Φ(E1)[1]

��
H M−1(F (F ))[−M + 1] // F (E1)[1]

is commutative. But this follows from Proposition 3.2.
VIII. s(−) is compatible with triangles of the type 0→ F → G →H → 0 for any F and

G : in this situation we can find F ′, G ′ locally free and a diagram

0 // F ′ //

a

��

G ′ //

b

��

H // 0

0 // F // G // H // 0.

Then we get

Φ(F ) // Φ(G ) // Φ(H )
Φ(δ) // Φ(F )[1]

s(F)[1]

yy

Φ(F ′) //

��

OO

Φ(G ′) //

��

OO

Φ(H )
Φ(δ′) //

s(C) 	

��

	

Φ(F ′)[1]

s(F ′)[1] 	

��

Φ(a)[1]

OO

F (F ′) //

��

F (G ′) //

��

F (H )
F (δ′)//

	

F (F ′)[1]

F (a)[1]

��
F (F ) // F (G ) // F (H )

F (δ) // F (F )[1]



ON THE EXISTENCE OF FOURIER-MUKAI FUNCTORS 17

where the top and bottom right squares commute because Φ and F are functors, the middle right
square by part VII, and the semi-circle, which is

Φ(F ′)[1]
Φ(a)[1] //

s(F ′)[1]

��

Φ(F )[1]

s(F)[1]

��
F (F ′)[1]

F (a)[1] // F (F )[1]

by part III since F ′ is locally free. Therefore the boundary maps commute:

Φ(H )
Φ(δ) //

s(H )

��

Φ(F )[1]

s(F)[1]

��
F (H )

F (δ) // F (F )[1],

because

s(F )[1] ◦ Φ(δ) = s(F )[1] ◦ Φ(a)[1] ◦ Φ(δ′) = F (a)[1] ◦ s(F ′)[1] ◦ Φ(δ′)

= F (a)[1] ◦ F (δ′) ◦ s(C) = F (δ) ◦ s(C). �

Lemma 3.6. In the setup of Theorem 3.3, let Q, T be two torsion coherent sheaves on X. Consider
a coherent sheaf E on X with a surjection E → Q. Consider a map

ξ : Φ(Q)→ F (T )

that induces the zero map on all cohomology groups. If the composition Φ(E )→ Φ(Q)→ F (T ) is zero,
then it follows that the map ξ is zero.

Proof. We know that

Φ(Q) = Rπ2∗(B
M [−M ]

L
⊗ π∗1Q)

= Rπ2∗(Tor1(BM , π∗1Q)[−M + 1]⊕ (BM ⊗ π∗1Q)[−M ]

= π2∗(Tor1(BM , π∗1Q))[−M + 1]⊕ π2∗(B
M ⊗ π∗1Q)[−M ]

(since BM is supported at a finite number of points and hence is flasque). Moreover, we know that
F (T ) is isomorphic to Φ(T ) by part III. of Theorem 3.3, so we also know that

F (T ) ∼= π2∗(Tor1(BM , π∗1T ))[−M + 1]⊕ π2∗(B
M ⊗ π∗1T )[−M ]

Fix two isomorphisms as above. Now if we know that the given map Φ(Q) → F (T ) is zero on
cohomology, the map can be represented by a map

π2∗(B
M ⊗ π∗1Q)[−M ]→ π2∗(Tor1(BM , π∗1T ))[−M + 1]

i.e. an element of Ext1(π2∗(B
M ⊗ π∗1Q), π2∗(Tor1(BM , π∗1T ))). Then it suffices to show that the map

Ext1(π2∗(B
M ⊗ π∗1Q), π2∗(Tor1(BM , π∗1T )))→ Ext1(π2∗(B

M ⊗ π∗1E ), π2∗(Tor1(BM , π∗1T )))

is injective.
But since E surjects onto Q, we have a surjection π2∗(π

∗
1(E )⊗BM )→ π2∗(π

∗
1(Q)⊗BM ) and both

of these sheaves are skyscraper sheaves of degree one supported at the points q1, . . . , qt, hence this is
a surjection of vector spaces and therefore it splits. Hence the map on Ext1 above is injective. �

To complete the proof of Theorem 1.2 we still need to extend the isomorphism to the whole derived
category Db

Coh(X). This is straightforward in our case of dim(X) = 1 thanks to the following:

Lemma 3.7. Let X, Y be smooth projective varieties with dim(X) = 1. Consider two exact functors
F,Φ : Db

Coh(X)→ Db
Coh(Y ), and assume that there exists an isomorphism of exact functors t : F → Φ

on the full subcategory of Db
Coh(X) given by coherent sheaves on X placed in degree zero. Then t

extends to an isomorphism of exact functors on the whole Db
Coh(X).
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Proof. Consider a complex C• ∈ Db
Coh(X). Then by [Dol60, Satz 4.7] C• ∼= ⊕Hi(C•)[−i], in a non-

canonical way. Choose one such isomorphism for each C•. By Theorem 3.3, since both functors are
compatible with shifting, we immediately get an isomorphism t(C•) : F (C•)→ Φ(C•).

Now consider a map C• → D•. This is the same as a map ⊕Hi(C•)[−i]→ ⊕Hi(D•)[−i], and again
since the two functors are compatible with shifting, and X has dimension 1, it is enough to show that
t(−) is compatible with maps F → G and F → G [1], where F and G are sheaves. The first case
follows from the fact that t is an isomorphism of exact functors on Coh(X). A map α : F → G [1]
corresponds to an element in Ext1(F ,G ) so we have a short exact sequence

0→ G →H → F → 0

and by Theorem 3.3 we get an isomorphism of triangles

F (G ) //

t(G )

��

F (H ) //

t(H )

��

F (F )

t(F)

��

F (α) // F (G )[1]

t(G )[1]

��
Φ(G ) // Φ(H ) // Φ(F )

Φ(α) // Φ(G )[1]

hence t is compatible with α. The fact that t is compatible with triangles is immediate. �

Proof of Theorem 1.2. This follows immediately from Theorem 3.3 and Lemma 3.7. �

Remark 3.8. Notice that any functor satisfying the hypotheses of Theorem 1.2 will not be full and
will not satisfy

HomDb
Coh(Y )(F (F ,G [j])) = 0 if j < 0

for all F ,G ∈ OX (take for example F to be supported at one of the pi’s). Hence Theorem 1.2 gives
a class of functors that are Fourier-Mukai but do not satisfy the hypotheses of [CS07, Theorem 1.1].

4. A Spectral Sequence

Even when we don’t know how to build a kernel out of the sheaves Bi that we constructed in
Theorem 1.1, these sheaves still satisfy some good properties. As an example, we will show that under
the same hypotheses of Theorem 1.1 the analogue of the Cartan-Eilenberg Spectral Sequence converges
when the dimension of X is one, whereas the sequence of low degree terms is exact for any X, Y .

Let X, Y be smooth projective varieties over an algebraically closed field, and consider a Fourier-
Mukai functor ΦE with E ∈ Db

Coh(X × Y ) (we remind the reader that a Fourier-Mukai functor is
not necessarily an equivalence) . Then for each locally free sheaf E ∈ Coh(X) the Cartan-Eilenberg
Spectral Sequence gives

Epq2 = Rpπ2∗(H
q(E)⊗ π∗1E )⇒H p+q(ΦE(E ))

Now consider an exact functor F : Db
Coh(X) → Db

Coh(Y ). Suppose we computed the cohomology

sheaves Bi of the prospective kernel in Db
Coh(X ×Y ) as in Theorem 1.1. Then we can replace H q(E)

with Bq in the above and set

Epq2 = Rpπ2∗(B
q ⊗ π∗1E )

for any locally free sheaf E on X. The corresponding sequence of low degree terms is exact:

Proposition 4.1. Let X, Y be smooth projective varieties over an algebraically closed field k, F :

Db
Coh(X)→ Db

Coh(Y ) an exact functor. Assume that F (E ) ∈ D[M,N ]
Coh (Y ) for all locally free sheaves E

of finite rank on X. Let Bi be the sheaves computed in Theorem 1.1. Then for any locally free sheaf
E of finite rank on X the following sequence is exact:

(8)
0→ R1π2∗(B

M ⊗ π∗1E )→H M+1(F (E ))→

→ π2∗(B
M+1 ⊗ π∗1E )→ R2π2∗(B

M ⊗ π∗1E )→H M+2(F (E ))
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Proof. Assume that there is an embedding X → Pdk. Then for every m > 0 we have a short exact

sequence 0→ OX → OX(m)⊕(d+1) → Km → 0, where Km is a locally free sheaf.
Let E be a locally free sheaf of finite rank on X. Then by tensoring the sequence above with E we

get a short exact sequence

(9) 0→ E → E (m)⊕(d+1) → Km ⊗ E → 0.

Choose m high enough so that R1π2∗(BM⊗π∗1(E (m))) = 0 and that H M+1(F (E (m))) ∼= π2∗(BM+1⊗
π∗1E (m)). By applying the functor F and then taking cohomology we get a long exact sequence

0→H M (F (E ))→H M (F (E (m)))⊕(d+1) →H M (F (Km ⊗ E ))→H M+1(F (E ))→ . . .

By Proposition 2.2, for any locally free sheaf of finite rank F we have a functorial isomorphism

H M (F (F ))
∼=−→ π2∗(B

M ⊗ π∗1F ).

Moreover, by Theorem 1.1 we also have a map H M+1(F (E ))→ π2∗(BM+1 ⊗ π∗1E ). Then we get the
following diagram:

(10)

H M (F (E (m)))⊕(d+1) //

∼=

��

H M (F (Km ⊗ E )) //

∼=

��

H M+1(F (E )) //

��

H M+1(F (E (m)))⊕(d+1)

∼=
��

0 // π2∗(BM+1 ⊗ π∗1(E )) // π2∗(BM+1 ⊗ π∗1E (m)⊕(d+1))

π2∗(BM ⊗ π∗1E (m)⊕(d+1)) // π2∗(BM ⊗ π∗1(Km ⊗ E )) // R1π2∗(BM ⊗ π∗1E ) // 0

By chasing diagram (10), we obtain a map

R1π2∗(B
M ⊗ π∗1E )→H M+1(F (E )),

and we also obtain that the sequence

0→ R1π2∗(B
M ⊗ π∗1E )→H M+1(F (E ))→ π2∗(B

M+1 ⊗ π∗1E )

is exact. This is the first part of our sequence.
Now since the sequence above is exact for any E locally free sheaf of finite rank on X, it will also

be exact for Km ⊗ E . So we have the following diagram:

0

��
R1π2∗(B

M ⊗ π∗1(Km ⊗ E ))

��
. . . // H M+1(F (E )) //

��

H M+1(F (E (m)))⊕(d+1) //

∼=��

H M+1(F (Km ⊗ E ))

��

// . . .

. . . // π2∗(B
M+1 ⊗ π∗1E ) // π2∗(B

M+1 ⊗ π∗1E (m)⊕(d+1)) // π2∗(B
M+1 ⊗ π∗1(Km ⊗ E )) // . . .

by diagram chasing we get a map

π2∗(B
M+1 ⊗ π∗1E )→ R1π2∗(B

M ⊗ π∗1(Km ⊗ E ))

This has an obvious map to H M+2(F (E )) given by the composition

R1π2∗(B
M ⊗ π∗1(Km ⊗ E ))→H M+1(F (Km ⊗ E ))→H M+2(F (E ))

but since R1π2∗(B
M ⊗ π∗1E (m)) = R2π2∗(B

M ⊗ π∗1E (m)) = 0, we know that

R1π2∗(B
M ⊗ π∗1(Km ⊗ E )) ∼= R2π2∗(B

M ⊗ π∗1E )

this gives the second part of our sequence,

π2∗(B
M+1 ⊗ π∗1E )→ R2π2∗(B

M ⊗ π∗1E )→H M+2(F (E ))

Exactness of the whole sequence again follows by diagram chasing. �
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Proposition 4.2. In the setting of Proposition 4.1, assume dim(X) = 1. Then for all locally free
sheaves of finite rank E on X there is a spectral sequence

Epq2 = Rpπ2∗(B
q ⊗ π∗1E )⇒H p+q(F (E ))

Proof. Since dim X = 1, the only nonzero terms of the spectral sequence are E0,q
2 and E1,q

2 . Therefore
all the differentials are zero and to show that the spectral sequence converges we need to show:

• There exists a map E1,q−1
2 = R1π2∗(B

q−1 ⊗ π∗1E ) ↪→H q(F (E ))

• E0,q
2 = π2∗(B

q ⊗ π∗1E ) ∼= H q(F (E ))/R1π2∗(B
q−1 ⊗ π∗1E ).

Since dim X = 1 we have R2π2∗(B
q ⊗ π∗1E ) = 0. Therefore the exact sequence (8) of Proposition

4.1 becomes a short exact sequence

(11) 0→ R1π2∗(B
M ⊗ π∗1E )→H M+1(F (E ))→ π2∗(B

M+1 ⊗ π∗1E )→ 0.

Choose m high enough so that Rpπ2∗(Bq ⊗ π∗1(E (m))) = 0 for all q and all p > 0 (this can be done
because for m high enough π∗1OX(1) is very ample with respect to X × Y → Y ), and such that

H i(F (E (m))) ∼= π2∗(B
i⊗π∗1E (m)) for all i (this can be done by Theorem 1.1). Then using the short

exact sequence (9)

0→ E → E (m)⊕(d+1) → Km ⊗ E → 0,

we get a long exact sequence

0 = R1π2∗(B
i ⊗ π∗1(E (m)⊕d+1))→ R1π2∗(B

i ⊗ π∗1(E ⊗Km))→ R2π2∗(B
i ⊗ π∗1E ) = 0

hence R1π2∗(B
i ⊗ π∗1(E ⊗Km)) = 0 for all i.

Now assume by induction that we get the same short exact sequence as (11) starting with BM+n−1

for any locally free sheaf of finite rank E :

0→ R1π2∗(B
M+n−1 ⊗ π∗1E )→H M+n(F (E ))→ π2∗(B

M+n ⊗ π∗1E )→ 0

then the same exact sequence will hold if we substitute E with Km ⊗ E , since Km is also locally free:

0→ R1π2∗(B
M+n−1 ⊗ π∗1(Km ⊗ E ))→H M+n(F (Km ⊗ E ))→ π2∗(B

M+n ⊗ π∗1(Km ⊗ E ))→ 0.

But since R1π2∗(B
i ⊗ π∗1(E ⊗Km)) = 0 this gives an isomorphism

H M+n(F (Km ⊗ E )) ∼= π2∗(B
M+n ⊗ π∗1(Km ⊗ E )).

Using the short exact sequence (9) and Theorem 1.1, we get the following diagram:

(12)

. . . // H M+n(F (Km ⊗ E )) //

∼=

��

H M+n+1(F (E )) //

��

. . .

0 // π2∗(B
M+n+1 ⊗ π∗1E ) // . . .

. . . // π2∗(B
M+n ⊗ π∗1(Km ⊗ E )) // R1π2∗(B

M+n ⊗ π∗1E ) // 0

and from this we get a sequence

(13) 0→ R1π2∗(B
M+n ⊗ π∗1E )→H M+n+1(F (E ))→ π2∗(B

M+n+1 ⊗ π∗1E ),

which is exact by chasing diagram (12). Again, we also have the corresponding exact sequence for the
locally free sheaf Km ⊗ E :

0→ R1π2∗(B
M+n ⊗ π∗1(Km ⊗ E ))→H M+n+1(F (Km ⊗ E ))→ π2∗(B

M+n+1 ⊗ π∗1(Km ⊗ E ))
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and the first term of the sequence is zero, i.e. the map H M+n+1(F (Km ⊗ E )) → π2∗(B
M+n+1 ⊗

π∗1(Km ⊗ E )) is injective. This is reflected in the following diagram:

. . . // H M+n+1(F (E )) //

��

H M+n+1(F (E (m)))⊕(d+1)

∼=
��

// H M+n+1(F (Km ⊗ E )) //
� _

��

. . .

0 // π2∗(B
M+n+1 ⊗ π∗1E ) // π2∗(B

M+n+1 ⊗ π∗1E (m)⊕(d+1)) // π2∗(B
M+n+1 ⊗ π∗1(Km ⊗ E )) // . . .

By diagram chasing this tells us that the map

H M+n+1(F (E ))→ π2∗(B
M+n+1 ⊗ π∗1E )

is actually surjective, hence (13) becomes a short exact sequence, and this completes the proof. �
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