
 Martinello, M., Liberato, A., Farhadi Beldachi, A., Kondepu, K., Gomes, R.,
Villaca, R., ... Simeonidou, D. (2018). Programmable residues defined
networks for edge data centres. In 2017 13th International Conference on
Network and Service Management (CNSM 2017) : Proceedings of a meeting
held 26-30 November 2017, Tokyo, Japan (pp. 117-125). Institute of
Electrical and Electronics Engineers (IEEE).
https://doi.org/10.23919/CNSM.2017.8255987

Peer reviewed version

Link to published version (if available):
10.23919/CNSM.2017.8255987

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/8255987/ . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.23919/CNSM.2017.8255987
https://doi.org/10.23919/CNSM.2017.8255987
https://research-information.bris.ac.uk/en/publications/programmable-residues-defined-networks-for-edge-data-centres(d2f312fc-031c-4a84-864c-5cb676c001e6).html
https://research-information.bris.ac.uk/en/publications/programmable-residues-defined-networks-for-edge-data-centres(d2f312fc-031c-4a84-864c-5cb676c001e6).html

Programmable Residues Defined Networks
for Edge Data Centres

Magnos Martinello∗, Alextian B. Liberato∗, Arash Farhadi Beldachi†, Koteswararao Kondepu†,
Roberta L. Gomes∗, Rodolfo Villaca∗, Moisés R. N. Ribeiro∗, Yan Yan†, Emilio Hugues-Salas†, Dimitra Simeonidou†

∗Informatics Dept, Federal University of Espirito Santo, Brazil,
Emails: {magnos.martinello, alextian.liberato, roberta.gomes, rodolfo.villaca, moises.ribeiro}@ufes.br

†High Performance Networks Group, University of Bristol, Bristol, United Kingdom,
Emails: {arash.beldachi, k.kondepu, yan.yan, e.huguessalas, dimitra.simeonidou}@bristol.ac.uk

Abstract—Edge Data Centres (EDC) are often managed by
a single administrative entity with logically centralized control.
The architectural split of control and data planes and the new
control plane abstractions have been touted as Software-Defined
Networking (SDN), where the OpenFlow protocol is one common
choice for the standardized programmatic interface to data plane
devices. However, in the design of an SDN architecture, there is no
clear distinction between functional network parts such as core
and edge elements. It means that all switches require to support
lookups over hundreds of bits with complex actions that have to
be specified by multiple tables. In this paper, we propose a new
programmable architecture for EDC networks, named Residues
Defined Networks (RDN). In RDN, a controller defines a network
policy (e.g. connectivity protection) setting flow entries at the
edges. Based on these entries, the edge switches assign route-
IDs to flows. A route is defined as the remainder of the division
(Residue) between a route-ID and a set of switch-IDs within
RDN core. In case of failures, emergency routes are compactly
encoded as programmable residues forwarding paths written into
the packets. RDN scalability is evaluated considering 2-tier Clos
topologies which cover mostly EDC deployments supporting up to
2304 servers. A RDN proof-of-concept prototype is implemented
in Mininet for network emulation. Also, to increase the accuracy
on latency measures, we implement RDN in NetFPGA that
is validated in a testbed with 10Gbps Ethernet boards. RDN
offers ultra-fast failure recovery (sub-milliseconds carrier grade),
achieves low latency with RDN switching time per hop (≈ 0.6µs)
and no jitter within the RDN core.

I. INTRODUCTION

Current networks have evolved toward complex systems that
are widely agreed to be expensive, complicate to manage and
susceptible to vendor lock-in. Although the network research
community has focused on “clean-slate” designs of the overall
Internet architecture, there is an urgent set of problems that
remain in the design of the underlying network infrastructure.

The network infrastructure is composed essentially by two
components [1]: (i) the underlying hardware representing the
networking data plane and (ii) the software that controls the
overall behavior of the network, representing the control plane.
The Software Defined Networking (SDN) fundamental point
is to decouple the networking data plane from the control
plane; the latter holds the network intelligent decisions while
the former merely hosts executive tasks based on tables to
process incoming flows.

However, in the design of an SDN architecture, there is no
clear distinction between the functional network parts such as
core and edge elements. In fact, an OpenFlow (the common
standard for SDN) enabled switch is clearly far from a simple
design, requiring to support lookups over hundreds of bits with
complex actions that have to be specified by multiple tables
[2]. Moreover, there is no decoupling between the routing
and the network policy, when an SDN controller decides the
functions a flow needs, it also decides the path the flow has
to go through and the setup states on all the intermediate
switches.

We propose the concept of programmable Residues Defined
Networks (RDN). We argue that the decoupling between
edge and core switches builds foundational blocks towards a
pragmatic SDN design pattern. Although this idea of designing
a network pushing the complexity to the network edge and
keeping the core extremely simple (e.g. fabric model [1]) is
not new in the network community, there is a real need to im-
plement SDN design patterns to evolve the SDN architecture.

Thus, we advance the state-of-art demonstrating the fea-
sibility of RDN through a programmable resilient routing
approach. Differently from previous works (e.g. MPLS), the
network core is designed by exploiting special mathematical
properties from Residue Number System (RNS) [3]. Our focus
is to provide a protection mechanism along the entire route
with an extremely fast failure reaction by using programmable
residues forwarding paths. A route between a pair of hosts in
the RDN is defined as the remainder of the division between a
route-ID and a set of local switch-IDs on the path. Emergency
routes are similarly defined, but they are compactly encoded
using one single route-ID. As soon as a core switch detects a
link failure, it triggers an emergence route precomputed into
the packets that lead the packets to their destination.

The proposed RDN protection mechanism allows tableless
switches to reroute packets directly at the data plane as a faster
alternative to controller-based route restoration. The source
routing approach simplifies the forwarding task in every switch
that processes packets based on simple modulo operation,
rather than a routing entry per potential destination.

RDN approach is topology independent and since an Edge
Data Centre (EDC) is often managed by a single administrative

1113

src host dst host

75

RDN ControllerStep I

Step II

3 3

Step III

Step IV

Data plane 5Control plane EdgeCore

Step VI
Step V

Primary Route Id Emergency Route Id

0

12

00

0

1

1

1 2

2

2

33

PRI ERI

PACKET PACKET

(a)

1113

src host dst host

75

Step I

Step IV

Data plane 5Control plane EdgeCore

Step III Step V

Primary Route Id Emergency Route Id

3 3 0

12

00

0

1

1

1 2

2

2

33
Step II

PRI ERI

PACKET
Step VI

PACKET

RDN Controller

(b)
Figure 1. Architecture Design of Programmable Residues Defined Networks: (a) routing system, (b) fast failure reaction.

entity [4], it leads to the adoption of a logically centralized
controller that makes programmable decisions within the EDC.
In this work, we carry out a RDN scalability analysis consid-
ering topologies as a design reference based on 2-tier Clos
networks which cover the majority of EDC deployments and
support thousands of physical servers [5].

For experimental evaluation, a RDN prototype was imple-
mented in Mininet emulated environment. Also, RDN core
switches were implemented in NetFPGA devices to increase
the accuracy on latency measures. The experimental results
obtained from real testbed point out to ultra-fast failure re-
action (sub-milliseconds carrier grade), achieving low latency
with RDN switching time per hop (≈ 0.6µs) and no jitter
within the RDN core.

II. PROGRAMMABLE RESIDUES DEFINED NETWORK

Figure 1 shows our architecture design. Building upon
the principles of SDN, the proposed architecture makes a
clear separation of the edge and core switches to form two
foundational blocks towards a pragmatic SDN design pattern.
This separation allows to push the complexity to the network
edge while keeping the core extremely simple.

RDN introduces an explicit distinction between the RDN
Controller, the network edge and core switches. The RDN
Controller is a central entity in charge of (i) selecting the
network routes, (ii) computing their specific route-IDs, and
(iii) sending these identifications to the edge switches. As the
RDN Controller knows the network topology, which is dis-
covered by using e.g. Link Layer Discovery Protocol (LLDP),
this component is able to (i) define the policy assigning
functions (e.g. route protection) to specific flows installing
their states at the edge switches, and to (ii) calculate all route
identifications (route-IDs) between each pair of hosts (or even
virtual machines).

Route-IDs are actually sent to the edge switches by the RDN
Controller that installs per-flow states in OpenFlow enabled
switches. Such a fine-grained control enables the edge switches
to map specific fields of the packets into route-IDs. Either
a reactive or a proactive approach can be used here. In the
first case, the rules are installed when the ingress edge switch
forwards the packet to the RDN Controller via packet in
requesting the route mapping. In the second case, the RDN

Controller pre-computes the route and installs in advance the
incoming per-flow state via flow mod for a route end-to-end
between the source and the destination.

When packets enter the core network, ingress edge switches
inspect them and then, based on the flow-table rules, they
embed route-IDs into packets (e.g OpenFlow action to write
from a MAC address fields to route-IDs). Route-IDs are
later removed from packets at egress edge switches (e.g.
rewriting route-IDs to original mac-addresses). It is important
to notice that edge functionality can be built on software,
i.e., in vSwitchs. The vSwitch occupies a unique position in
the networking stack as it can easily modify packets without
requiring any changes to customer VMs or transport layers.
Functionality built into the vSwitch can be made aware of the
underlying hardware offload features presented by the NIC and
Operating System.

Concerning the RDN core switches, these are actually
built just to deliver packets to the destination simply using
the remainder of the division of route-IDs and its own ID.
RDN route-IDs have meaning only within the core and are
completely decoupled from the host protocol (e.g. IPv4, IPv6
or MAC).

A. Routing based on Tableless Residues Switches
Let us suppose that src host in Figure 1 wishes to commu-

nicate with dst host through an intra-domain network operator
that supports a programmable RDN architecture. The network
architecture is split between RDN Controller, edge and core
switches. For the core switches, the idea is to replace the
traditional lookup table operation by tableless switches that
operate only using residues operations, i.e. remainder of the
division. The core switches are assigned to co-prime numbers
that are in this example {5, 7, 11, 13}. Thus, in order to
establish the communication between the pair of hosts, the
RDN Controller needs to calculate what is the number (route-
ID) for which the modulo operations results will lead the
packets to their destination.

By using a routing algorithm, the RDN Controller selects
an end-to-end path across the network according to the EDC
policies, as presented in Figure 1(a) (Step I). For instance, it
chooses the route to be set through the switches S = {13, 5, 7}
composing what we call the Primary Route. In this case, the

switches’ output ports are P = {2, 0, 0}. Then, it computes
a Primary Route Identification (PRI), e.g. PRI = 210. The
RDN Controller sends the route-ID to the edge switches which
then install the respective flow-table rule(s). Subsequently, the
ingress edge switch is responsible for embedding PRI into
each packet (e.g. into one of its header fields) coming from
src host to dst host (Step II).

Once the packet has entered into the core, at every switch
the packet arrives to, the remainder of the division (denoted as
< a >b≡ a modulo b) between the packet’s PRI (R = 210)
and the respective switch-ID is computed in order to define the
appropriate output port to forward it. Thus, as shown in Figure
1(a), when S13 receives a packet with route-ID (R = 210), it
forwards the packet to port < 210 >13= 2 (Step III); then, S5

forwards it to port < 210 >5= 0 (Step IV); after, S7 forwards
it to port < 210 >7= 0 (Step V), reaching the egress edge
switch that removes the route-ID from the packet (Step VI)
and delivers it to dst host (as can be seen in Figure 1(a)).

B. Programmable Residues Resilient Routing
In the case of link failure, one traditional approach is

route restoration. It consists on notifying the controller,
which recalculates the route excluding the faulty link from
the available paths. The problem is how to react quickly after
a failure detection, avoiding the latency to communicate with
the controller. A typical mechanism for fast failure reaction
is route protection through packets deflection. Deflection
routing techniques are conceptually simple and allow every
switch to independently decide which packets to forward to
any available link [6].

Deflection routing is a probabilistic routing technique that
may form transient loops [6]. To overcome this drawback, our
approach offers deterministic resilient routing with network
protection mechanism along the whole route. Our fast failure
reaction mechanism uses an Emergency Route Identification
(ERI). ERI is computed so as to represent a set of switches
necessary to bypass a failure in the primary route, reducing
the number of bits required to safeguard the end-to-end path.

To illustrate this concept, consider the scenario shown in
Fig 1(b). As in the previous scenario, src wishes to commu-
nicate with dst. So, steps I, II and III are repeated. However,
in this case, there is a failure link between S5 and S7. Before
packet forwarding, the switch S5 checks the connection link.
As it is not available, the switch must overwrite the current
PRI with the ERI. Notice that, as part of the Step I, the
RDN Controller has calculated the ERI as a unique value that
composes a protection route for the whole primary route. In
this example, we have ERI = 1716, which sets the switches
S = {13, 5, 7, 11} (with their output ports P = {0, 1, 1, 0})
as the protection route.

Then, using the overwritten PRI, S5 calculates again the
remain of the division in order to properly forward the packet.
In this example, using route-ID (R = 1716), S5 forwards
packet to port < 1716 >5= 1 (Step IV). When S11 receives
a packet with route-ID (R = 1716), it forwards the packet to
port < 1716 >11= 0 (Step V). Note that S11 is unaware of

the re-routing, it works just like an ordinary packet forwarding.
Eventually, the packet reaches the egress edge switch, which
removes the route-ID from the packet (Step VI) and delivers
it to dst host.

As previously mentioned, this approach allows fast recovery
for the whole primary route. For example, if a failure occurs
in the link between S13 and S5 instead, S13 executes Step
IV, thus, overwriting PRI and forwarding the packet to port
< 1716 >13= 0. Then, S11 forwards it to the edge switch
(Step V). But if the failure occurs in the link between S7 and
the edge switch, then S7 executes Step IV, using route-ID
(R = 1716) to forward the packet to its port < 1716 >7=
1 (Step IV), allowing the packet to reach S11, which then
forwards it to the edge switch.

It is worth mentioning that the RDN architecture does not
really require core switches to be SDN enabled. The modulo
operation and replacing PRI by ERI are in fact the key
functions to be supported. Nevertheless, SDN would enable
core switches to notify failures to controllers or to support a
dynamic switch-IDs registration and reconfiguration.

C. Encoding the Primary and Emergency Routes
The RDN architecture is underpinned by the concept of

“programmable” packets. Both Primary and Emergency routes
are in fact programmed into each packet. When a RDN switch
receives a packet, it only needs to know its own switch-ID and
to read the packet’s route-ID in order to determine where it
should send the packet to. At each switch, the output port is
the result of the modulo operation between the route-ID and
the respective switch-ID. This is possible due to the properties
of the RNS.

Let S be a set S = {s1, s2, . . . , sN} of the N switch-
IDs on the desired path, in which all elements are pairwise
co-prime numbers. Let P be a set of outgoing ports P =
{p1, p2, . . . , pN}, where pi is the outgoing port for the packet
at the switch si.

Let M be

M =
∏
i∈S

si (1)

A number R ∈ N|0 ≤ R < M can be represented by a
residue set given a basis modulo set S:

R
RNS−→ {p1, p2, . . . , pN}S (2)

, where

pi = R modulo si (3)

The RDN Controller must find out the value of R (the
explicit route-ID), given a modulo set S (the switch-IDs), and
its RNS representation P (the switch output ports).

The Chinese Remainder Theorem [7] states that it is possi-
ble to reconstruct R through its residues in a RNS as follows:

R =<
∑
i∈S

pi ·Mi · Li >M (4)

where

< a >b ≡ a modulo b (5)

Mi =
M

si
(6)

Li = < M−1i >si (7)

Eq. (7) means that Li is the modular multiplicative inverse of
Mi. In other words, Li is an integer number such that:

< Li ·Mi >si= 1 (8)

Returning to the example of this section, the computation
of PRI from src to dst is obtained as follows:

switches = {s1, s2, s3} = {13, 5, 7}
ports = {p1, p2, p3} = {2, 0, 0}
M = 13 · 5 · 7 = 455
M1 = 35,M2 = 91,M3 = 65
L1 =< M−11 >s1=< 35−1 >13= 3
L2 =< 91−1 >5= 1, L3 =< 65−1 >7= 4
R =< L1 ·M1 · p1 + L2 ·M2 · p2 + L3 ·M3 · p3 >M

R =< 210 + 0 + 0 >455= 210
With the ERI, the route-ID is computed as follows:

switches = {13, 5, 7, 11}
ports = {0, 1, 1, 0}
M = 13 · 5 · 7 · 11 = 5005
M1 = 385,M2 = 1001,M3 = 715,M4 = 455
L1 =< 385−1 >13= 5, L2 =< 1001−1 >5= 1
L3 =< 715−1 >7= 1, L4 =< 455−1 >11= 3
R =< 0 + 1001 + 715 + 0 >5005= 1716

It can be noticed in Eq. (4) that the route-ID does not
depend on the order of the switches, as the finite summation
is commutative. And this is also true for the output port
computation (Eq. 3). This property is particularly interesting
for computing the ERI. To do so, the RDN Controller needs
to consider an alternative route for each possible link failure
in the primary route. For example, back to Fig. 1(a), where
the primary route is S = {13, 5, 7}, the alternative routes
are S = {13, 11}, S = {13, 5, 11} and S = {13, 5, 7, 11},
for failures on the links S13→S5, S5→S7 and S7→dst,
respectively. The RDN Controller aggregates these routes into
the resulting S = {13, 5, 7, 11}. Thus the ERI is computed
simply considering the switches from the primary route and the
additional switches composing the alternative routes, but using
different port IDs for each switch. Due to this aggregation, the
size of S is bounded by the number of switches, and not by
the number of alternative routes.

III. RDN IMPLEMENTATION

For validation purposes, a RDN prototype was implemented
and experimentally evaluated. In this prototype, the RDN
Controller was developed as an application on top of Ryu [8].
Regarding the edge switches, OpenFlow 1.3 enabled switches
were used in the Mininet [9] emulation platform.

For the core switches, two prototypes of RDN forwarding
mechanism were implemented in two different platforms:
• Open vSwitch [10] (OvS), modifying its version 2.5, in

the Mininet;

• Field-Programmable Gate Array (FPGA) hardware using
the NetFPGA-SUME platform.

A. RDN on Open vSwitch and Mininet Platform

When a packet arrives at the ingress switch, the packet
is sent to the RDN Controller which selects the primary
and emergency routes among all pre-calculated paths between
the source and destination. Then, the RDN Controller sends
messages (OF messages) to install the necessary rules at the
ingress and egress switches.

Table I details the flow rules installed at the edges switches
with the corresponding actions for setting a flow between host
src and host dst, as previously illustrated in Figure 1(a). In the
ingress edge switch, the OpenFlow rule includes an action to
add the route-IDs to packets’ headers, and an action to forward
the packets to the core network. Notice that in this prototype,
MAC address fields have been used to embed PRI and ERI
into packets’ headers. So, in the egress edge switch, the rule
includes an action to rewrite the original MAC addresses, and
an action to forward the packets to the dst host. Flow entries
at the edge switches are based on the destination IP address
(plus optional VLAN or tenant identifiers).

In terms of modifications to OvS, we present the pseudo-
code 1 taken from xlate ff group function. Actually, we take
advantage of the OF1.3 Fast Failover [11] structure for the core
switches (line 1). Thus, when the switch receives a packet,
it checks if the port is available, then PRI is used (line 3).
However, if the switch port is not available, the core switch
checks if PRI is different from ERI (line 6). If it is the case, it
replaces PRI by ERI (line 7). From now on, the new route-ID
is used to bypass the failed link. For the subsequent switches
along the route, they just keep doing the modulo operation
until the packets reach the edge. Only if a second failure
occurs, then the packets will be forwarded to the controller
(line 9).

Pseudocode 1 Forwarding packets within core switches
1: function XLATE RW GROUP(struct xlate ctx . . .)
2: . . .
3: if bucket then . Primary route available
4: send pkt next hop
5: else . Replaces the primary route
6: if MAC DST != MAC SRC then
7: copy(MAC SRC to MAC DST)

. Call xlate rw group with new MAC DST
8: else
9: send pkt to Centre Control

10: return -1
11: end function

B. RDN Implementation on FGPA Platform
Fig. 2(a) shows the RDN router architecture with four input

and output ports implemented on NetFPGA-SUME platform.
Here, the RDN FPGA-based router supports wormhole (WH)
routing [12] which is a packet switching technique to reduce
buffer space and latency. In WH switching, packets arriving at
the input port are routed immediately to the output port as soon
as the port is free. In this scenario, switch allocator is used
to set the output ports based on route-ID (i.e., PRI or ERI)

Table I
FLOW TABLE ENTRIES IN THE EDGE SWITCHES.

Flows Direction Edge switches Match Action

Ingress MAC DST: 00:00:00:00:00:02 and
MAC SRC: 00:00:00:00:00:01

SetField(eth dst=00:00:00:00:00:D2,
eth src=00:00:00:00:06:B4), output = 4Forward

Flow Egress MAC SRC: 00:00:00:00:06:B4 and
IP DST: 10.0.0.2

SetField(eth dst=00:00:00:00:00:01,
eth src=00:00:00:00:00:02), output = 1

Ingress MAC DST: 00:00:00:00:00:01 and
MAC SRC: 00:00:00:00:00:02

SetField(eth dst=00:00:00:00:01:6F,
eth src=00:00:00:00:06:28), output = 4Backward

Flow Egress MAC SRC: 00:00:00:00:06:28 and
IP DST: 10.0.0.1

SetField(eth dst= 00:00:00:00:00:02,
eth src= 00:00:00:00:00:01), output = 5

Input Ports

Input 3 Parser

Crossbar switch

Output 3

Switch Allocator

Input 2 Parser Output 2

Input 1 Parser Output 1

Input 0 Parser Output 0

(a) (b)
Figure 2. (a) router architecture, (b) Experimental testbed setup 10Gbps.

Layer 2 Header Layer 3 Header Layer 4 Header Route IDs

PRI ERI
6 Bytes 6 Bytes

30 Bytes

Figure 3. Header format for FPGA experiments.

extracted from the packets by input ports parsers. Note that
10Gbps Ethernet MAC and PCS/PMA module blocks (Xilinx
IP cores) are not represented in Fig. 2(a).

The experimental setup is shown in Fig. 2(b). It comprises
4 NetFPGA-SUME boards to evaluate the core network in
the proposed programmable RDN architecture, as previously
illustrated in Fig. 1. Each SUME FPGA board supports 4
optical small-form factor pluggable (SFP+) transceivers at
10Gbps line rate. Moreover, each board is configured to
perform the steps described in Sec. II based on the received
PRI or ERI value within each packet, with the corresponding
defined switch co-prime value. As it is also shown in Fig. 2(b),
two different Anritsu traffic analyzers (MD1230B, MT1100A)
were used to generate and monitor the traffic. The considered
traffic analyzers perform the edge switch operations (i.e.,
ingress and egress) on the programmable packet.

Fig. 3 shows the extended high-level packet header format
used in this experimental setup. Instead of using MAC address
fields for embedding PRI and ERI, here we insert the route-
IDs from the 31st byte in order to make it evident that the
RDN architecture is actually protocol agnostic. In this case, it
is necessary to wait for 30 bytes to be received (which takes
4 clock cycles in FPGA logic, i.e. 25.6ns) to be able to read
the route-IDs and to compute the modulo operation.

IV. VALIDATION METHODOLOGY

The validation methodology is structured in two parts. The
first part (described in Sec. IV-A) consists of an analytical
evaluation of the RDN scalability for EDC topology design.

The main goal is to analyze how many bits are needed for
RDN encoding with regards to different fan-outs of 2-tier Clos
networks topologies that cover mostly EDC deployments [5].

The second part (described in Sec. IV-B, IV-C, IV-D) is
devoted to experimental results using our RDN prototype
implemented both in the network emulation environment and
using the NetFPGA platform. The main evaluation goals in-
clude (i) the impact of fast failure reaction on TCP throughput,
(ii) a comparison of failure recovery time, and (iii) RDN
latency measures in netFPGA with ultra-fast failure reaction.

A. RDN Scalability for EDC Topology Design
Assuming that Ethernet standard at the core is essentially

for framing purposes, we have analyzed the RDN scalability
for EDC network topologies considering it as a design choice
embedding PRI and ERI into the 48 bits destination and source
MAC addresses, respectively.

As PRI and ERI are embedded in the packet (e.g. into
header fields), its bit length affects the packet overhead.
The maximum number of bits required by route-IDs can be
computed as follows:

bit length(R) = dlog2(M − 1)e (9)

Eq. (9) states that the higher the value of M , the larger the
maximum required bit length. Remember that M is the mul-
tiplication of the switch-IDs along the primary and alternative
routes. Therefore, as more switches are used to build the route,
more bits are required to represent the route-IDs (PRI and
ERI). This constraint should be considered for implementation
purposes. Notice that in the case of ERI, the gain resulting
from the aggregation of alternative routes (described in Sec.
II-C) is now evident, as it ends up by limiting the number of
factors of M.

Since the multi-stage Clos networks are topologies com-
monly found in enterprise datacentres supporting tens of

11

23 29 31 37

13 17 19

Primary Route Id Emergency Route Id

S
p

in
e

L
e
a
f

host1 host16

0 1 2 3

4 5 6
7

0 1
3

0 1 2
3

4
5

3

4
5

Figure 4. Example of RDN Architecture for EDC 2-tier Clos topology.

Table II
NUMBER OF BITS FOR DIFFERENT CONFIGURATIONS OF 2-TIER CLOS

NETWORKS.

2-tier setting Ports Physical Hosts PRI ERI

Spine = 06 Leaf = 06
24 108 19 31
48 252 20 33
96 540 22 36

Spine = 12 Leaf = 12
24 144 22 35
48 432 23 37
96 1008 24 39

Spine = 16 Leaf = 16
24 128 23 36
48 512 23 39
96 1280 25 40

Spine = 24 Leaf = 24 48 576 25 41
96 1728 26 43

Spine = 36 Leaf = 36 48 432 27 44
96 2160 27 45

Spine = 48 Leaf = 48 96 2304 29 47

thousands of physical servers [5], our focus in this analysis
is on EDC based on 2-tier Clos networks. For example, in a
2-tier Clos network with v spine switches, the RDN controller
can easily allocate v disjoint routes (load balancing and traffic
engineering) by having each route through a unique spine
switch [13].

Fig. 4 shows the RDN architecture for EDC 2-tier Clos
topology. For sake of clarification, we removed the RDN
Controller. Every switch is identified with its own ID, where
its ID must be greater than the number of switch ports
(modulo operation constraint). The src is host1 and the dst is
host16. PRI is set using the switches S = {11, 23, 19} with
out ports P = {4, 3, 3} and ERI is set using the switches
S = {11, 29, 19, 23, 13} with out ports P = {5, 3, 3, 1, 5}.

If a failure happens at the link between S11 and S23, S11

will use port 5 (ERI), then S11→S29, S29→S19 and S19→dst,
which corresponds to one of the emergency routes coded by
ERI (S = {11, 29, 19}). If a failure occurs at the link between
S23 and S19 , S23 will use port 1, then S23→S13, S13→S29,
S29→S19 and S19→dst which corresponds to another emer-
gency route coded by ERI (S = {11, 23, 13, 29, 19}). Clearly,
there is an aggregation gain for computing ERI if different
emergency routes are composed by common switches, such
as in this example (S19 and S29).

We use Eq. 9 to compute the maximum bit length of PRI
and ERI. For instance, PRI is set using S = {11, 23, 19}, and
ERI is set using S = {11, 23, 19, 13, 29}. Thus, PRI and ERI
need 13 and 21 bits to be encoded, respectively.

In Table II, we present an analysis of the RDN scalability
for different EDC 2-tier Clos topologies (with different fan-
outs). Assuming the protection of the entire route and how
many bits we need for encoding it, this analysis shows that
it is possible to achieve a network with up to 96 switches
(96 ports per switch), where the maximum lengths for both

PRI and ERI fit in the 48 bits destination and source MAC
addresses.
B. Impact of Fast Failure Reaction on TCP Throughput

In order to evaluate the efficiency of the recovery process to
link failures, we select different recovery techniques including
reactive/proactive protection mechanisms. Our aim is to eval-
uate the granularity of failure recovery time and its impact on
the TCP throughput. The experiments are carried out in the
emulated environment where the network topology illustrated
by fig. 4 was implemented. During the experiments, links are
disconnected using the Linux ifdown command.

The failure recovery mechanisms considered for this anal-
ysis are the following:
• Reactive: The controller waits for a switch link failure

notification; after notification, it updates the flow table
rules for all the switches that belong to the selected path;
This is a restoration baseline case.

• OpenFlow1.3 Fast Failover [14] (FF): The controller
installs FF entries in the switches 11 and 23; but in the
case of failure a new entry should be added to switches
29 and 13 via controller.

• Full proactive: FF rules are installed configuring all the
switches to have an emergency route to protect the flow
of a failure in any link of the entire route. This is the
upper bound scenario on failure recovery time.

• RDN: Flows are installed only at edge switches. Core
switches react to a link failure just by replacing PRI
by ERI in each packet. Output ports are then computed
according to the modulo operation of the ERI, steering
the flow through the emergency route.

Fig. 6 presents the TCP throughput results (rate at 1 Gbps)
for a failure in the S11→S23 link (see fig. 4) for the different
failure recovery mechanisms. Clearly, the worst case scenario
is the reactive recovery, as it depends on the communication
with the control plane, resulting in the poorest TCP perfor-
mance. Despite the reduction on failure recovery time by
the OF Fast Failover, TCP throughput is drastically affected
because the route had not been entirely protected. Moreover,
although fast failover is an interesting local protection mech-
anism, there is additional burden to the administrators who
have to add specific entries at every switch along the route,
for both forward and backward flows.

In contrast, the Full proactive leads to a significant reduction
on recovery time, keeping the performance of TCP throughput.
It is clear that RDN has provided the same TCP performance
as Full proactive protection mechanism, but with much less
complexity, since there is no need to add flow entries in every
switch along the route. This result has shown that (i) using
packet rewrite actions at edge switches (insert and remove PRI
and ERI) and (ii) triggering emergency routing only by the
switch which has detected its local link failure, enable RDN
to offer equivalent carrier grade on failure recovery time.

C. Failure Recovery Time
In order to compare the failure recovery time, we evaluate

the full proactive mechanism versus RDN protection. To

Traffic Analyzer

(Transmitter)

5

7

11

13
Primary path
Emergencial path

Traffic Analyzer

(Receiver)

(a)

5

7

11

13

Traffic Analyzer

(Transmitter)

Traffic Analyzer

(Receiver)

(b)

5

7

11

13

Traffic Analyzer

(Transmitter)

Traffic Analyzer

(Receiver)

(c)
Figure 5. Topology full mesh with 4 core switches: (a) without failure (3 hops); (b) link failure S5 to S7 (3 hops) and (c) link failure S7 to S11 (4 hops).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t

(M
b
it

s/
se

c)

Time (in seconds)

Reactive

Fast Failover

Full proactive

RDN

Figure 6. Analysis of TCP throughput in Mbps for recovery time with
different techniques and 95% confidence intervals.

measure network with micro-second grade accuracy, we used
a tool named Metherxis [15]. A workload is configured to send
a traffic at rate of 100Mbps during 30 seconds from host 1 to
host 16 for 30 rounds. The time-stamped packets were stored
in file for posterior analysis. A link failure is injected to the
link between the switches 11 and 23 with ifdown command.

Figure 7 shows the recovery time for full proactive pro-
tection versus RDN protection in the emulated environment.
As can be seen, although there is a larger variability on full
proactive than RDN, both techniques are able to provide simi-
lar recovery time guarantees (sub-milliseconds, around 550µs).
They can be considered equivalent statistically speaking.

However, RDN does not dependent on the flow table occu-
pation. For instance, to ensure a flow protection it is necessary
to install 4 OpenFlow rules in each core switch (2 rules to
forward and 2 rules to backward flow). Taking the example of
the HP ProVision 10Gbps Ethernet switch [16], [17], which
supports 1500 flows in TCAM, just 375 flows could be fully
protected. Beyond that, the flow rules will be stored out of the
TCAM in slower memories (SRAM), significantly impacting
the latency variability [18]. On the other hand, RDN reduces
packet forwarding state by embedding the route information
in the packet itself. This limits micro-flow state to the edge
switches, eliminating the need to maintain any micro-flow state
in the core switches.

D. RDN Low Latency and Fast Failure Reaction
In order to improve the accuracy on latency measures, a

RDN prototype has been implemented in FPGA platform.
Each FPGA is composed by 4 Ethernet interfaces of 10G
(see Fig. 2(b)) and the validation scenario used is a full
mesh topology as shown in Fig. 5. Due to the limitation
on the number of FPGA cards (4), only the core network is
considered in our testbed with and without link failure.

 0

100

 200

 300

400

500

600

700

800

Full proactive RDN

R
e

c
o

v
e

ry
 T

im
e

 (
µ

s
)

Figure 7. Recovery time for Full proactive protection versus RDN.

Fig. 9(a) shows the latency measurements as a function of
the number of hops in the core network. To get the exact
latency contribution of each hop, we have to subtract the
0.5µs measured in the traffic analyzer Back-to-Back (B2B)
port connection (programmable packet length of 1500 bytes)
from the total cumulative latency. Thus, the average latency
for one RND switch is around 0.6µs. Figure 8 presents screen-
shots from the traffic analyzer displaying latency measures for
experiment runs with one and two hops. Fig.9(a) complements
the latency measures showing the latency values to 3 hops
(≈ 2.3µs). An important observation is that the latency
variability (jitter) is in order of tens of nanoseconds and can
be considered as no jitter. It shows a potential packet-switched
network with circuit switching guarantees.

For the cases of link failures depicted in Fig. 5(b)(c), there
are two different cases with 3 and 4 hops, respectively. Note
that there is no link failure detection mechanism implemented
internally in the FPGA. It would be necessary to use additional
components (e.g. power meters) in order to detect the link
failure. Instead, we have decided to emulate link failures with
a special programmable packet. Along with PRI and ERI
(previously shown in Fig. 3), an additional 1 byte field is used
to carry the ID of the switch which will emulate the link
failure. Upon receiving this special packet, the switch whose
ID matches the switch-ID carried by the packet (e.g., 5 as in
the example shown in Fig. 5(b)) triggers the emergency route
configuration by overwriting PRI with ERI in the received
packet. In this case, the switch where the link failure is
emulated introduces a delay of 25.6ns (4 clock cycles) to
perform the overwriting process.

Figure 9(b) shows how fast is the failure reaction as it just
consists of replacing PRI by ERI and recomputing the modulo
from ERI to steer the packets to the emergency port. The
latency is around 2.33µs for 3 hops and 2.93µs for 4 hops.
An important remark is that for the latency measured within
the RDN core, we do not consider the failure detection time

(a) (b)
Figure 8. RDN core switch latency from Traffic Analyzer without failure:
(a) 1 hop and (b) 2 hops.

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

B2B 1 hop 2 hops 3 hops

L
a
te

n
c
y
 (

µ
s
)

(a)

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

3 hops 4 hops

L
a
te

n
c
y
 (

µ
s
)

(b)
Figure 9. RDN core switch latency: (a) no failure and (b) with failure.

contribution to the latency, thus the measured latency is clearly
a pure failure reaction time.

V. RELATED WORK

There have been many proposals in the literature to make
forwarding decisions based on flat tags or labels including
MPLS [19], VLANs [20] and SDN-based architectures [21],
[22], [23]. MPLS [19] is a well-known source-routing protocol
that forwards packets by writing and matching on labels
attached to packets. Unlike RDN that is tableless in the core,
MPLS tags instruct the packet to travel hop-by-hop along a
label-switched path (LSP) with LDP1 forwarding tables. RDN
allows to steer a flow through any path and service chain while
maintaining per-flow state only at the edge nodes.

Path Switching [22] proposes an alternative to MPLS for
source routing which has the advantage of encoding forward-
ing information in a fixed amount of existing space in the
packet headers. However, there is only a high-level proof-of-
concept with no experimental validation or testbed deployment
so that it lacks evidence of its viability.

Segment routing (SR) [24] is a proposal in which packets
can be forwarded using SR forwarding tables and segment-IDs
attached to packets. An ordered list of segments is encoded as
a stack of labels. For packets processing, SR requires to rewrite
the segment-ID using pop operations per SR node (top of the
stack is considered the active segment-ID), whereas MPLS
performs label swaps where the tag is swapped out for a new
tag. In contrast, RDN computes a simple modulo operation
without swapping or pop operations per node in the core.

A second bunch of work has been dedicated to fast failure
reaction within network-controlled routing. In table III, we
present an analysis of failure recovery time including a list
of protocols that provide protection mechanisms. One of the
reasons for recovery times being greater than 50ms is the
long time to update distributed tables. Thanks to the simplicity
of replacing PRI by ERI triggered only by the switch where

1Label Distribution Protocol

Table III
RECOVERY TIME WITH PROTECTION MECHANISMS [25].

Network Convergence
Protocol >250 ms Sub 250 ms 50 - 150 ms ≈550µs

STP (802.1D) X
RSTP (802.1w) X
MSTP (802.1s) X
RPVST+ X
EtherChannel (LACP
802.3ad) X

Flex Links X
MPLS Fast Reroute [26] X
RDN X

the failure is detected, RDN allows ultra-fast failure recovery
without table updates or additional control messages.

Finally, in our previous work KAR [27], the resilient routing
relies on deflection guided mechanism to drive the packets to
their destination under the presence of link failure. However, to
define a full protection path along the entire route, the length
of the bits required to support guided deflections can increase
considerably. RDN has extended it to support deterministic
routing with programmable protection, but also differs funda-
mentally on the alternative paths encoding. Rather than using
guided deflections, RDN relies on two segments (route-IDs)
allowing to protect the entire route. Also, as suggested by our
FPGA prototype implementation, RDN is easily supported in
hardware-based devices. There is no need of a new protocol
as it may be implemented by reusing the existing header fields
to compactly encode the path attached to packets.

VI. CONCLUSION
In this paper, we introduce the concept of programmable

Residues Defined Networks (RDN). Programmability in this
context refers to the ability to program core switches routing
decisions without relying on forwarding states. RDN’s main
argument is that the decoupling between the edge and core
switches brings foundational blocks towards a pragmatic SDN
design pattern. Our contributions are on (i) the design of
RDN architecture for EDC to evolve the SDN architecture
and on (ii) demonstrating the RDN feasibility through realistic
implementations and testbed deployment validation. To the
best of the authors’ knowledge, this is the first implementation
of a programmable residues core network fabric in NetFPGA,
in contrast to purely conceptual proposals [1], [22].

RDN is network topology independent and has shown its
potential benefits in EDC built as tier-2 Clos topologies.
Results in our testbed show that RDN achieves low latency
with switching time per hop (≈ 0.6µs) and no jitter within the
RDN core. In a RDN domain, a network policy can be defined,
e.g. service connectivity protection, and the RDN controller is
able to instruct the edge nodes in a programmable way to
protect the flows. RDN offers carrier grade protection with
ultra-fast failure recovery (sub-milliseconds).

As future work, we intend to devote efforts in the application
of RDN for convergent networks tailored to cloud infrastruc-
tures [28], [29] as an enabler for 5G Networks.

ACKNOWLEDGMENTS

This research has been supported by grants from CNPq, CAPES,
FAPES, CTIC, and from European Union’s Horizon 2020 under grant
agreement no. 688941 (FUTEBOL), and EP/L020009/1 (TOUCAN).

REFERENCES

[1] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: A
retrospective on evolving sdn,” in Proceedings of the First Workshop
on Hot Topics in Software Defined Networks, ser. HotSDN ’12.
New York, NY, USA: ACM, 2012, pp. 85–90. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342459

[2] C. Trois, M. D. D. Fabro, L. C. E. de Bona, and M. Martinello, “A
survey on sdn programming languages: Toward a taxonomy,” IEEE
Communications Surveys Tutorials, vol. 18, no. 4, pp. 2687–2712,
Fourthquarter 2016.

[3] H. L. Garner, “The residue number system,” Transactions on Electronic
Computers, pp. 140 – 147, june 1959.

[4] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 267–280. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879175

[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: Distributed congestion-aware load balancing for datacenters,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 503–514.
[Online]. Available: http://doi.acm.org/10.1145/2619239.2626316

[6] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp.
159–170, Aug. 2006.

[7] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem: Appli-
cations in Computing, Coding, Cryptography. River Edge, NJ, USA:
World Scientific Publishing Co., Inc., 1996.

[8] P. T. RYU, “Ryu sdn framework using openflow 1.3,” http://osrg.github.
io/ryu-book/en/Ryubook.pdf, Feb. 2014.

[9] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[10] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker, “Extending Networking into the Virtualization Layer.” in
8th ACM Workshop on Hot Topics inNetworks, vol. VIII. ACM, 2009,
p. 6. [Online]. Available: http://www.icsi.berkeley.edu/pubs/networking/
extendingnetworking09.pdf

[11] J. Oostenbrink, N. L. M. van Adrichem, and F. A. Kuipers, “Fast
failover of multicast sessions in software-defined networks,” CoRR, vol.
abs/1701.08182, 2017. [Online]. Available: http://arxiv.org/abs/1701.
08182

[12] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques
in direct networks,” Computer, vol. 26, no. 2, pp. 62–76, Feb 1993.

[13] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,”
in Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM ’15. New York,
NY, USA: ACM, 2015, pp. 465–478. [Online]. Available: http:
//doi.acm.org/10.1145/2785956.2787507

[14] N. L. M. v. Adrichem, B. J. v. Asten, and F. A. Kuipers, “Fast
recovery in software-defined networks,” in Proceedings of the 2014
Third European Workshop on Software Defined Networks, ser. EWSDN
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 61–66.
[Online]. Available: http://dx.doi.org/10.1109/EWSDN.2014.13

[15] D. R. Mafioletti, A. B. Liberatto, R. d. S. Villaça, C. K. Dominicini,
M. Martinello, and M. R. N. Ribeiro, “Latency measurement as a
virtualized network function using metherxis,” SIGCOMM Comput.
Commun. Rev., vol. 46, no. 4, pp. 14–16, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/3027947.3027950

[16] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: Scalable
ethernet for data centers,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 49–60.
[Online]. Available: http://doi.acm.org/10.1145/2413176.2413183

[17] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow macs:
Scalable label-switching for commodity ethernet,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 157–162.
[Online]. Available: http://doi.acm.org/10.1145/2620728.2620758

[18] F. Long, Z. Sun, Z. Zhang, H. Chen, and L. Liao, “Research on tcam-
based openflow switch platform,” in 2012 International Conference on
Systems and Informatics (ICSAI2012), May 2012, pp. 1218–1221.

[19] E. Rosen, A. Viswanathan, and R. Callon, “RFC 3031: Multiprotocol
Label Switching Architecture,” IETF, Tech. Rep., 2001. [Online].
Available: www.ietf.org/rfc/rfc3031.txt

[20] “Ieee standard for local and metropolitan area networks - virtual bridged
local area networks amendment 12: Forwarding and queuing enhance-
ments for time-sensitive streams,” IEEE Std 802.1Qav-2009 (Amendment
to IEEE Std 802.1Q-2005), pp. C1–72, Jan 2009.

[21] R. M. Ramos, M. Martinello, and C. E. Rothenberg, “Slickflow: Resilient
source routing in data center networks unlocked by openflow,” IEEE
Conference on Local Computer Networks, pp. 01–08, 2013.

[22] A. Hari, T. V. Lakshman, and G. Wilfong, “Path switching:
Reduced-state flow handling in sdn using path information,” in
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’15. New York,
NY, USA: ACM, 2015, pp. 36:1–36:7. [Online]. Available: http:
//doi.acm.org/10.1145/2716281.2836121

[23] R. MacDavid, R. Birkner, O. Rottenstreich, A. Gupta, N. Feamster,
and J. Rexford, “Concise encoding of flow attributes in sdn switches,”
in Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: ACM, 2017, pp. 48–60. [Online]. Available:
http://doi.acm.org/10.1145/3050220.3050227

[24] E. C. Filsfils, E. S. Previdi, I. C. Systems, B. Decraene,
S. Litkowski, Orange, R. Shakir, and J. Communications,
“Segment Routing Architecture,” Network Working Group,
Internet-Draft Segment Routing Architecture draft-ietf-spring-
segment-routing-09, 2016, standards Track. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-spring-segment-routing-09

[25] C. Cisco, “Deploying the resilient ethernet protocol (rep) in
a converged plantwide ethernet system (cpwe) design guide,” 2015.
[Online]. Available: http://literature.rockwellautomation.com/idc/groups/
literature/documents/td/enet-td005 -en-p.pdf

[26] G. Swallow, P. Pan, and A. Atlas, “RSVP-TE fast reroute,” RFC 4090,
http://www.ietf.org/rfc/rfc4090.txt, May 2005.

[27] R. R. Gomes, A. B. Liberato, C. K. Dominicini, M. R. N. Ribeiro, and
M. Martinello, “Kar: Key-for-any-route, a resilient routing system,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshop (DSN-W), June 2016, pp. 120–127.

[28] M. Channegowda, R. Nejabati, and D. Simeonidou, “Software-defined
optical networks technology and infrastructure: Enabling software-
defined optical network operations [invited],” Journal of Optical Com-
munications and Networking, vol. 5, no. 10, pp. A274–A282, 2013.

[29] J. Blendin, D. Herrmann, M. Wichtlhuber, M. Gunkel, F. Wissel, and
D. Hausheer, “Enabling efficient multi-layer repair in elastic optical
networks by gradually superimposing SDN,” in 12th International
Conference on Network and Service Management, CNSM 2016,
Montreal, QC, Canada, October 31 - Nov. 4, 2016, 2016, pp. 118–126.
[Online]. Available: https://doi.org/10.1109/CNSM.2016.7818407

