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A B S T R A C T

In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N2O fluxes
and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is
adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also
the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water
presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement
in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a
worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No differ-
ence in model prediction performance was observed for water run-off, reflecting the closed-system nature of this
variable. Similarly, no difference in model prediction performance was found for N2O fluxes, but here the N2O
predictions were noticeably poor in both cases. Further developmental work, informed by this study's findings, is
proposed to improve model predictions for N2O. Soil moisture results with the spatially distributed version
appeared promising but this promise could not be objectively verified.

1. Introduction

Spatial variability in nutrient and water fluxes at the field scale is a
key source of uncertainty when quantifying nutrient cycling and water
movement in an agricultural system (Rowlings et al., 2012). Run-off
production can be affected by spatial variation of the soil properties, the
geology and the topography (Bell et al., 2009; Herbst et al., 2006),
whilst variation in soil moisture directly affects the spatial character-
istics of plant and ecosystem productivity (Li et al., 2017; Smith et al.,
1997), soil carbon (C) and nitrogen (N) processes (Metcalfe et al., 2007;
Prolingheuer et al., 2014; Rochette et al., 1991), microbial activity,
chemical reaction rates and greenhouse gas (GHG) emissions (Konda
et al., 2010). Thus, accounting for spatial effects in such processes is
essential for understanding nutrient transformations in soil and losses
to water and the air (DeSimone et al., 2010), and for water re-dis-
tribution (Li et al., 2016).

Process-based models can be an efficient tool for simulating spatial
and temporal variations of a given process, including those for soil

water and GHG emissions (Bell et al., 2009; Gala et al., 2011; Tian
et al., 2010), and provide a useful alternative to resource-intensive field
experiments (Jones et al., 2017). Commonly, a grid-based (grid-to-grid)
modelling approach is adopted (Bell et al., 2007; Rathjens et al., 2015),
where the resolution of the spatial discretization is commonly key to its
success (von Gunten et al., 2014; Yu et al., 2011). For example, Dai
et al. (2012) found the grid resolution (in this case, coupled with hy-
drological and biogeochemical models) to play a crucial role in redu-
cing uncertainty of the simulated GHG emissions from wetland water-
sheds. However, there are drawbacks to the use of spatially distributed
process-based models, as by design, they tend to require a large amount
of measured data for their evaluation (Kawamura et al., 2011).

SPACSYS (Soil-Plant-Atmosphere Continuum System) is a process-
based model, that can simulate plant growth and development, soil N
and C cycling, soil water movement and heat transformation at the field
scale (Wu et al., 2007). At this scale, it has been used to predict GHG
emissions, soil C and N stocks, and crop yield without considering
spatial variations in both parameters and outputs (Abalos et al., 2016;
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Perego et al., 2016; Wu et al., 2015; Wu et al., 2016a; Zhang et al.,
2016). This standard (single-point) application of SPACSYS might not
cause large uncertainties in simulation outputs for processes that can be
assumed to be spatially homogeneous at the field scale. However, this
might be seen as a highly naïve assumption, as all (single-point) input
parameters for SPACSYS would unlikely be representative of spatial
variations in soil physical and chemical properties. These are inherently
spatial processes that are often driven by changes in topography and
associated water flow directions. The problem relates to what hydrol-
ogists refer to as the ‘upscaling problem’, where it is not clear how to
aggregate (or average) spatially distributed data, to then use as a single
model input. A related problem is known as the ‘modifiable areal unit
problem’ in geography (Openshaw, 1984), where depending on the
level of aggregation used, different relationships between spatial pro-
cesses will result, often masking complex non-linearities. Thus, except
for cases where input data is very scarce, and an arithmetic mean
provides the only pragmatic option, it is preferable to apply a spatially
distributed model. In this respect, the aim of this study is to adapt
SPACSYS to a spatial form, where hydrological processes coupled with
multiple sets of spatially-indexed input parameters are used in order to
improve the simulation accuracy of soil moisture, water and N2O fluxes,
and biomass productivity.

The North Wyke Farm Platform (NWFP) is a farm-scale research
platform for grassland-based beef and sheep production that was es-
tablished in 2010 in southwest England (Orr et al., 2016). The NWFP
provides three farming systems (farmlets): (i) permanent pasture (not
reseeded for 10+ years), (ii) grass (perennial ryegrass) and white
clover leys and (iii) an improved monoculture grass sward with planned
regular (3–5 years) reseeding. The NWFP is typical of lowland grassland
systems in western regions of the UK. Each farmlet consists of five
hydrologically isolated sub-catchments each comprising approximately
21 ha. Data are collected regularly, for each sub-catchment, on water
run-off and chemistry, precipitation and soil moisture, with GHG
emissions, soil nutrients and soil biology being collected occasionally,
all of which is coupled with detailed farm management records. As
would be expected, the soils of the NWFP display strong spatial het-
erogeneity and should not be taken as homogeneous within a field
(Granger et al., 2017; Harris et al., 2016; Peukert et al., 2016).

Runoff, soil moisture, GHGs and plant biomass are frequently cited

as major indicators for understanding the soil-plant-atmosphere eco-
system. Thus, this study has a focus on simulating these particular in-
dicators across one (permanent pasture) field of the NWFP using stan-
dard and spatially distributed versions of the SPACSYS model. In
addition to a potential for improving simulation accuracy, the outputs
of the spatially distributed version can complement and enhance
ground-based field surveys that are often costly to conduct, especially
with any temporal regularity. We adopt a grid-to-grid approach for the
spatial adaptation, which accounts for the spatial characteristics in the
field's hydrological processes, and in turn, the field's soil and topo-
graphic properties for run-off production and nutrient cycling.

The aim for this study is to demonstrate the potential of the spatially
distributed version of the SPACSYS model to provide more accurate
simulations than that found in the standard version, which in turn
should provide an improved understanding of the spatial dynamics of C
and N processes. In particular, this study will: (1) specify, validate and
compare the two versions of SPACSYS using measured water runoff, soil
moisture, soil N2O emissions and herbage biomass; and (2) apply (grid-
to-grid) SPACSYS to simulate those indicators that display promising
validation results in (1), at the within-field scale across annual time
periods.

2. Materials and methods

2.1. Field site description

The NWFP is located in the southwest of England (50°46′10″N,
3°54′05″W), whose objective is to act as a test-bed for agricultural
models, making particular use of its fine-resolution temporal data (e.g.
water flow and chemistry data). The monitoring system of the NWFP is
unique in both scale and scope for a managed land-based capability. It
brings together several technologies that enable the effect of temperate
grassland farming systems to be studied in detail. Rigorous data man-
agement, quality control and validation provide the basis for accurate
assessments of the losses and gains between increased agricultural
production and the provision of ecosystem services, at any given time
interval, for each of the three farmlets. Data generated from the NWFP
are freely available from http://www.rothamsted.ac.uk/farmplatform.

To evaluate the SPACSYS models, measured data from one

Fig. 1. The NWFP study field with observation points and si-
mulation grids, together with key features for runoff production
and routing scheme for the grid-to-grid SPACSYS model. (For
interpretation of the references to colour in this figure, the
reader is referred to the web version of this article.)
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permanent pasture sub-catchment were used - in this case a single field,
called Dairy North (1.78 ha in size) (Fig. 1). This field slopes down-
wards from a south to north direction, to a water flume in its northern
corner that captures the field's water run-off, aided via a system of
French drains that was constructed along the edges of the sub-catch-
ment (800-mm deep trenches that contain a perforated drainage pipe
backfilled to the surface with 20–50 mm clean granite, carbonate-free,
stone chips).

2.2. The SPACSYS model: description and modification

The SPACSYS model is a process-based model with a daily time step.
Briefly, the main processes concerning plant growth are assimilation,
respiration, water and N uptake, partitioning of photosynthate and N,
N-fixation for legume plants and root growth. The Richards equation for
water potential is used to simulate water and heat fluxes. Water flow
from the soil profile to a drainage pipe is estimated when the ground
water table is above the bottom level of the pipe and the soil below the
ground water table is saturated. Moreover, N cycling coupled with C
cycling in the model covers the transformation processes for organic
matter and inorganic N plus a biological-based component for the de-
nitrification process that can estimate N gaseous emissions. Within a
given simulation, N2O is emitted during nitrification and denitrifica-
tion. Nitrification rate is estimated based on ammonium and nitrate
contents in the soil, soil temperature and moisture, and soil acidity.
Denitrification is simulated through an approach based on microbial
activity (Wu et al., 2015). Gas emission rates are proportional to NO,
N2O and N2 contents near the soil surface and adjusted by a reduction
function which depends on soil gas diffusion rate, that in turn depends
on air-filled porosity, soil temperature and soil texture. Therefore,
SPACSYS incorporates functions for simulating plant development and
growth, water and N uptake, soil C and N cycling, GHG (e.g. CO2 and
N2O) emissions, and water redistribution. Details of the SPACSYS model
have been reported elsewhere (Wu et al., 2007; Wu et al., 2015; Wu
et al., 2016a), thus only those modifications related to this study, are
presented here.

The standard version of the SPACSYS model is only able to simulate
isolated fields (single-point) which does not consider topographic or
spatial connectivity between fields or within the field itself. In the

single-point version, water flow is assumed as being homogeneous
across the field and only a single set of input parameters is required to
characterise the whole field, i.e. it could be viewed as an input para-
meter set relating only to the centre grid cell E4 in Fig. 1. For this study,
our concern is within-field variability, where we consider the water
flow (i.e. topographical) characteristics as depicted in Fig. 1. Here the
SPACSYS model is adapted to a grid-based form (grid-to-grid), where
the topographical inter-connections of the field's water flow and nu-
trient pathways are accounted for. At each time step, the simulations
start from those grid-cells that have no upstream input. Soil water and
nutrients out of a grid-cell through surface runoff and drainage flow is
passed to its recipient grid-cell as input before the simulation for the
grid-cell starts at the time step.

For the spatially distributed simulation framework, 30 grid-cells
within the field were taken via points on a 25 × 25 m grid. This grid
resolution is chosen as it matches the highest spatial resolution of the
model evaluation data (i.e. the biomass data, detailed below); it is also a
common grid resolution for many sampling campaigns conducted in
this NWFP field. The runoff-production schemes for the grid-to-grid
formulation required gridded estimates of average terrain slope in each
grid-cell, as implemented in ESRI ArcGIS (http://www.esri.com). To
simplify the simulation conditions, it was assumed that each grid-cell
can drain in only one of eight possible flow directions and each grid-cell
can receive only one upstream grid cell, as detailed in Fig. 1. In total,
there were nine water flow lines. All water simulations from each flow
line are summed to compare with the single measured water flow at the
flume. The field or sub-catchment is a closed system and in this respect
the grid-to-grid simulations only need to be summed.

2.3. Measured data for model inputs

Soil physical and chemical properties of the field (bulk density (BD),
soil organic matter (SOM), total organic carbon (TOC), total organic
nitrogen (TON) and pH), used as an input to SPACSYS, were based on a
NWFP-wide soil survey conducted in 2012 (Peukert et al., 2016) where
samples in Dairy North were only taken on a coarse 50 m grid which
yielded only six samples (Fig. 1). These six samples are co-located with
six points of the 25 × 25m grid for this study. For the spatially dis-
tributed SPACSYS model, the five measured properties at these six sites
were assigned to the remaining 24 of 30 sites, following simple nearest
neighbour rules (see Fig. 1 and Table 1), i.e. without any form of dis-
tance weighted spatial interpolation, but still assuming a (user-defined)
level of spatial dependence. It is unfortunate that the spatial resolution
of this measured data is so coarse, where ideally the soils data would
have been measured at all 30 sites. For the standard SPACSYS model,
the simple arithmetic mean of BD, SOM, TOC, TON and pH was used in
each case. Thus, the standard model assumes no within-field variability
of these soils characteristics. Other soil physical properties were esti-
mated with pedotransfer functions (PTFs) (Saxton et al., 1986) based on
soil texture presented in the soil survey (Harrod and Hogan, 2008). Soil
profiles were divided into eight layers for each grid with the thickness
from the top to the bottom: 0.1, 0.1, 0.1, 0.4, 0.6, 0.15 and 0.2 m.

Table 1
Soil physical and chemical properties at 6 points in Dairy North measured in 2012.

Sample ID Simulation IDs applied
to

BD
g cm−3

SOM
g kg−1

TOC
g kg−1

TON
g kg−1

pH

1 E1, F1, G1 0.94 117.40 53.49 6.18 5.76
2 D2, B3, C3, D3 0.88 129.80 60.03 6.64 5.81
3 E2, F2, G2, E3, F3, G3 0.94 126.93 65.89 6.85 5.86
4 H2, H3, H4 0.92 117.71 57.97 6.13 5.91
5 B4, C4, D4, C5, D5, D6 0.94 129.56 57.05 6.74 5.68
6 E4, F4, G4, E5, F5, G5,

E6, F6
0.89 126.24 58.39 6.78 5.69

Fig. 2. Number of sheep heads, field management, and fer-
tilizer applications in the field.
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Both versions of SPACSYS, use the same field and grass management
(e.g. fertilizer application dates, start/end of grazing periods, livestock
density, and cutting dates) inputs, as shown in Fig. 2. These data were
interpreted from the extensive farm records for the NWFP experiment.
Daily grass/forage intake and excretion of animals in the field were
quantified following Wu et al. (2016a). Daily meteorological data over
the simulation period were obtained from an automatic official MET
office weather station together with a collocated automatic NWFP
weather station, where the latter could only provide data from 2013
onwards. Both weather stations are 450 m from the centre of the study
field and thus the meteorological data are safely considered re-
presentative of it. Again, both versions of SPACSYS used the same
meteorological data. Thus, in summary, only the soil physical and
chemical properties of the field varied spatially as inputs.

2.4. Measured data for model evaluation

For model evaluation, the two versions of SPACSYS were run for the
selected periods between October 2011 to December 2015, depending
on data availability at the time of this research. The following data sets
were used to evaluate the resultant simulations: temporal-only water
flux data, temporal-only soil moisture data, (intermittent) spatio-tem-
poral N2O emissions and a relatively coarse-resolution spatial-only data
set of herbage biomass. Thus, at this stage it needs to be stressed that
model evaluation is often somewhat compromised by sparse temporal
or sparse spatial availability of the measured data. This tends to reflect
a resource issue, where the ideal spatio-temporal data sets are too ex-
pensive to collect.

Data for water fluxes and soil moisture are at a high 15-minute
resolution. Water fluxes from the field are measured through a com-
bination of primary and secondary flow devices at the field's flume site
(see Fig. 1). The primary device is an H-type flume (TRACOM Inc.,
Georgia, USA) where flow rate can be determined by a known re-
lationship (rating curve) against the height of the water at a single
specific location in the flume. A secondary flow measurement device
(4230 bubbler flow meter, Teledyne ISCO, New England, USA) is then
used to measure the water height within the flume and convert this
measurement to a flow or discharge rate. Soil moisture is measured at a
centrally-located soil moisture station of the study field (see Fig. 1), via
a combination soil moisture probe which measures soil moisture
through capacitance at depths of 10, 20 and 30 cm. Here we only used
the 10 cm data because the soil moisture was more sensitive in surface
soil compared with subsoil, and more importantly, measured data at 20
and 30 cm was known to be unreliable. Because the SPACSYS model
currently only generates daily outputs, soil moisture and water flux
data sets were processed into a daily form. This temporal resolution is
not ideal as time steps less than 1 h should be preferred (Mertens et al.,
2002), but is not considered a serious problem for a model comparison
focused study, such as that presented here.

For N2O emissions, daily data from June to November 2015 was
measured using the Li-Cor Automated Soil Gas Flux System (LI-COR
Inc., Nebraska, USA) with a set of 12 chambers that took gas samples
sequentially. To include the effect of grazing in the measurements, the
full 12-chamber set was moved to one of four pre-set locations in the
field (see Fig. 1) every two weeks, apart from the last move, where it
remained until the end of the sampling campaign. Once the chambers
were moved from a pre-set location, sheep grazed that area until the
next time the chambers were brought back. Opaque long-term Licor
chambers (LI8100-104) were used to measure gas fluxes, with the 12
chambers connected to a Licor LI8100A gas analyser via a LI8150
multiplexer. In addition, an INNOVA 1412 photoacoustic gas monitor
was used to measure N2O, being plumbed in parallel to the LI8100A
exhaust line to the multiplexer. Measurement frequency from the Licor
analyser was one per second, and approximately 120 s from the IN-
NOVA analyser. Each chamber was closed for 16 min to allow for suf-
ficient measurements of N2O concentrations to be able to estimate the

emissions, and to leave enough time before and after each closure for
flushing the lines. It took under 4 h to go around all the 12 chambers,
which means that in 24 h each chamber measured six times. The N2O
data were pre-processed into daily fluxes using the SoilFluxPro software
from Licor. Observe there is no model evaluation opportunity for soil
moisture at any of the four N2O data locations, as they do not collocate
with the soil moisture station (Fig. 1). This is unfortunate given that
antecedent soil moisture history can have an effect on N2O emissions
(Bergstermann et al., 2011).

Ground herbage biomass was available in a spatial form at 25 of the
30 sites of the 25 × 25 m grid, i.e. each grid-cell centre, excluding five
sites on the field's boundaries, marked in red in Fig. 1. These data were
collected as part of a larger sampling campaign conducted on 9th June
2015 using clippers and the dry-weight of each biomass sample was
recorded.

2.5. Statistical analyses for model evaluation

To evaluate the performance of the single-point and grid-to-grid
SPACSYS models, a subset of the statistical diagnostics suggested by
Smith et al. (1997) were used to compare the simulation outputs against
the measured data. Here we define the error as measured minus simulated
data. For the temporal-only evaluations (all except herbage biomass),
standard goodness of fit model diagnostics of: (a) mean error (ME, over-
prediction, −∞ < ME < +∞, under-prediction), (b) root mean
squared error (RMSE, 0 (optimal) ≤ RMSE < +∞), (c) mean absolute
error (MAE, optimum, 0 (optimal) ≤ MAE < +∞), (d) relative error
(RE), (e) modelling efficiency (EF, −∞ < EF < 1 (optimal), where
negative EF values indicate that the mean of the measured data is a
better predictor then the model results (Smith et al., 1997)), (f) corre-
lation coefficient (r) between the measured and simulated data
(−1≤ r≤ 1) and (g) coefficient of determination (CD) were used for
model evaluation. For the spatial-only evaluation (i.e. herbage bio-
mass), the R2 from a linear regression fit is used. Observe that although
RMSE and MAE relay similar accuracy characteristics, MAE is more
resistant to high outlying errors.

3. Results

3.1. Model evaluation

3.1.1. Water fluxes
Daily simulated water fluxes from the single-point and grid-to-grid

models were compared with the measured data at the water flume for
the period of 1/10/2012 to 31/12/2015 (Panels A and B of Fig. 3). The
corresponding prediction errors (measured minus simulated) are given in
Panel D of Fig. 3. The overall accuracy of each model's performance is
given by the statistical diagnostics (Table 2). In general, the simulations
for water flux appear broadly accurate from both single-point and grid-
to-grid simulations, where most observed peak flow events were iden-
tified. However, both models under-predict the water fluxes to some
degree during high rainfall periods, whilst both models over-predict at
low flows. This behaviour is much more apparent for the grid-to-grid
simulation, especially with respect to under-prediction at high flows.
The grid-to-grid simulations are also smoother than the single-point
simulations (i.e. the dynamic simulated curve of water fluxes showed a
smaller amplitude with the grid-to-grid simulation). Overall this implies
that the implementation of the grid-to-grid simulation has little effect
on the performance of SPACSYS on modelling the dynamics of water
flux, resulting in a low sensitivity and weak identifiability. The statis-
tical diagnostics (Table 2), confirms the tendency for the single-point
simulation to describe the measured data marginally better than the
grid-to-grid simulation.

3.1.2. Soil moisture
Daily simulations of soil moisture generated from the two versions

Y. Liu et al. Geoderma 315 (2018) 49–58

52



Fig. 3. Comparison of measured and simulated water fluxes for
the single-point (A) and grid-to-grid simulations (B), together
with precipitation (C), and prediction errors (D).

Table 2
Statistical analysis of SPACSYS's performance on dynamics of water fluxes for the single-
point and grid-to-grid simulations.

Criteria Single-point simulation Grid-to-grid simulation

ME −0.98 −0.91
RMSE 2.62 2.75
MAE 1.26 1.32
RE −865.12 −1283.11
EF 0.50 0.28
r 0.75 0.59
CD 0.93 0.80

Fig. 4. Temporal comparison of measured (circle) and simulated
(line) soil moisture from the single-point and grid-to-grid models
(A) and spatial comparison of ME values from the single-point and
grid-to-grid models (B). For the spatial presentation, the results at
the five incomplete grid cells (from Fig. 1) are not shown.

Table 3
Statistical analysis of SPACSYS's performance on dynamics of soil moisture for all grid-to-
grid simulations, grid-to-grid simulations at grid points E4 and F4 only, and the single-
point simulation.

Criteria Grid-to-grid simulation E4 F4 Single-point simulation

ME −8.09 to −1.04 −2.74 −1.06 −1.01
RMSE 5.90–11.20 6.29 5.95 5.93
MAE 3.77–8.44 4.13 3.81 3.79
RE −39.79 to −9.14 −15.43 −11.18 −11.67
EF 0.28–0.50 0.44 0.47 0.47
r 0.65–0.85 0.85 0.84 0.84
CD 0.80–0.93 0.83 0.84 0.84
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of the SPACSYS model are compared to measured daily data for the
two-year period 1st October 2011 to 30th September 2013 in terms of
the temporal patterns (Panel A in Fig. 4). Simulations from a transect
from E5 to E1 from the grid-to-grid model are shown that traverses key
changes in topography, and is assumed to similarly traverse key
changes in soil moisture. Given the nature of the field's topography, it is
expected that soil moisture simulations would be generally lower in the
southern part of the field, which should be the driest part, whilst si-
mulations would be generally higher in the northern part of the field,
which should be the wettest. The statistical accuracy of the grid-to-grid
simulations at grid points E4 and F4 are shown in comparison to the
accuracy range for all the grid points from the grid-to-grid model, and
to the single-point model (Table 3). Thus, on average, simulations from
the single-point model perform similarly to those outputted from the
grid-to-grid model for grid points E4 and F4 (i.e. the grid points closest
to the soil moisture station (see Fig. 1)). In an overall sense, the soil
moisture simulations all tend to over-predict, as the MEs (calculated
from measured soil moisture at the central location minus each simu-
lation in turn) are always negative in Table 3. The broad temporal
trends in the measured soil moisture are accounted for with the simu-
lations, especially when the soil is approaching saturation. However,
there are large discrepancies between the measured and simulated soil
moisture data during dry periods. Temporally, these simulations also
display both under- and over-predictions in relation to the centrally-
located measurements. Here, over-prediction from the grid-to-grid
model tends to be much lower in the southern, driest part of the field
(e.g., by grid point E5), whilst much higher in the northern, wettest part
of the field (e.g., by grid point E1). Therefore, it is assumed that the
simulation with the grid-to-grid model can quantify spatial variation of
soil moisture, at least in a relative sense. Of course, this finding is not
proven as we have no spatially measured soil moisture to objectively
evaluate the grid-to-grid simulations against, and in this respect the
spatial ME's in Panel B of Fig. 4 are only given for a visual impression of
the potential of the grid-to-grid SPACSYS model. Again, all spatial ME's
are negative, reflecting a consistent over-prediction of soil moisture.

3.1.3. N2O emissions
The single-point and grid-to-grid simulated daily N2O emissions (for

grid points D5, F3, F5 and G4 only – which are closest to the four N2O
sampling locations, see Fig. 1) are temporally compared to measured
N2O data (Fig. 5). As N2O emissions were measured at each of four
locations in an interval rota, the measured N2O data is somewhat
compromised both spatially and temporally, where the N2O simulations
are never a full match to that measured in both space and time. Given
this caveat, the daily simulations from both versions of SPACSYS do not
appear to capture the seasonal fluctuations of N2O emissions well, al-
though the N2O emission peak during 19–28th September is captured.
Furthermore, both simulations, suggested N2O emission peaks when
they did not exist in the measurements, for example, the simulated N2O
emission peaks on 30th July. Tentatively, the grid-to-grid simulations
appear to better account for fertilizer applications than the single-point
simulations. Table 4 provides the statistical accuracy of the two
SPACSYS models for predicting N2O at grid points D5, F3, F5 and G4,
where both models perform in a similar manner. The expected im-
provement with the grid-to-grid model is not apparent and is a likely
reflection of having only four sampling sites available, which are also a
poor representation of the field. The small sample evaluation sizes at
grid points F5 and G4 are also a likely mitigating factor. The overall
accuracy of each model's N2O performance suggests the single-point
simulation to describe the measured data slightly better than the grid-
to-grid simulations. However, and importantly, both models predict
poorly as negative EF values are commonly found (except at grid point
D5), indicating that the mean of the measurements would be a better
predictor than either of the models. This result is not unexpected as it
can be hugely challenging to predict daily N2O emissions due to its
inherently high variability.

3.1.4. Herbage biomass
Grid-to-grid simulations are compared with measured biomass va-

lues in the scatterplot (Panel A in Fig. 6), where the measured values
ranged from 342 to 719 g m−2. The grid-to-grid simulations tend to
agree well with the measured data (Panel B in Fig. 6), with an
R2 = 0.58, that is clearly adversely influenced by an unusually low
biomass prediction of around 580 g m−2 coupled with an unusually
high biomass prediction of around 500 g m−2. Observe that a single-
point simulation would only provide an average biomass prediction for

Fig. 5. Comparison of measured (circle) and simulated (line)
N2O emissions from the single-point and grid-to-grid simula-
tions at grid points D5, F3, F5 and G4 (panels A to D, re-
spectively). The vertical lines at the bottom indicate the dates
when fertilizer was applied.
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the whole field. In this respect, predictions would be exactly same at all
25 sites, yielding no spatial detail and a poorer R2 value to that found
with the grid-to-grid approach.

3.1.5. Summary
The results can be summarised as follows: (A) SPACSYS in both

model forms can predict water run-off reasonably accurately, but where
there is no advantage to applying the grid-to-grid form over the single-
point version; (B) SPACSYS in grid-to-grid form, does not predict soil
moisture better than that found from SPACSYS in single-point form, but
where both models tend to over-prediction rather than under-predic-
tion; (C) SPACSYS in both model forms poorly predicts N2O emissions;
(D) SPACSYS in a grid-to-grid form out-performs its single-point version
for predicting herbage biomass. Given these results, we choose to only
simulate annual soil moisture and biomass at the within-field scale
using the grid-to-grid SPACSYS formulation. Soil moisture is chosen
given the perceived potential in simulating this data using the grid-to-
grid form, as we have not proven an increased accuracy in this respect.

3.2. Simulated annual spatial distributions of soil moisture and herbage
biomass

3.2.1. Soil moisture
The simulated annual average soil moisture distributions for 2012

through to 2015, at the 25 grid points are shown in Fig. 7. As the field
slopes downwards from its southern to northern corners, soil moisture
tends to be greater in the north. For example, a soil moisture prediction
of nearly 35% is found at grid point F1. In contrast, the driest predic-
tions were at grid points C5, D5, D6 and E6, where elevation is at its
lowest. Thus, there is a clear spatial trend in the soil moisture simula-
tions driven by the field's topography. The annual average soil moisture
across the field is simulated to range from 35% to 38% in 2012, from
32% to 35% in 2013, from 32% to 35% in 2014, and from 31% to 34%
in 2015.

3.2.2. Herbage biomass
Simulated annual average biomass behaves in a fairly predictable

manner, where the spatial characteristics of the simulations are broadly
similar year on year, with high levels of predicted biomass at the C3,
E2, E3, G2 and G5 grid points, and low levels predicted at the B4, C4,
D3, F2 and H3 grid points (Fig. 8). The highest biomass predictions
always occur at C3 and E3 grid points, located in the middle of the field,
ranging from 225 to 435 g m−2. Simulations across the field ranged
from 109 to 330 g m−2 in 2012, from 100 to 249 g m−2 in 2013, from
161 to 342 g m−2 in 2014, and from 256 to 435 g m−2 in 2015.

4. Discussion

Clearly model performance is not only dependent on choosing be-
tween a single-point and grid-to-grid formulation of the SPACSYS
model. There are uncertainties in the input parameters. For example,
the soils data only covers six points of a 1.8 ha field, ensuring the grid-
to-grid model is not well-informed in this respect and some key para-
meters are estimated with PTFs. Future work, using higher resolution
soils data would likely address this (e.g. Kawamura et al., 2011). There
are also issues with the poor spatio-temporal representability of the
measured data, especially for the soil moisture and N2O model eva-
luations (which also included long periods of missing data). Future,
fully-coherent spatio-temporal sampling campaigns could seek to ad-
dress this, and in doing so, the grid-to-grid formulation of SPACSYS
would be more objectively evaluated. Observe that this study had little
to no influence on the collection of measured data sets, as they were
often collected for different research purposes than that studied here.
The quality of the data collected is however considered high due to
stringent quality controls.

For water fluxes, the single-point SPACSYS model can be preferred
reflecting the ‘closed system’ nature of this output (i.e., all water run-off
drains to a single flume via the NWFP drainage system). There was,
however, a certain over-prediction of water discharge, although most

Table 4
Statistical analysis of SPACSYS's performance on dynamics of N2O emissions for grid-to-grid simulations at grid points D5, F3, F5 and G4 only, and the single-point simulation.

Criteria Total
n = 158

D5
n = 37

F3
n= 84

F5
n = 19

G4
n = 18

Grid-to-grid Single Grid-to-grid Single Grid-to-grid Single Grid-to-grid Single Grid-to-grid Single

ME (×10−3) 0.7 1.0 −0.5 −0.6 1.7 2.4 0.3 0.2 −0.2 2.5
RMSE (×10−3) 7.0 7.0 7.0 7.0 8.0 7.5 5.0 5.2 4.2 3.0
MAE (×10−3) 4.0 4.0 4.0 4.0 6.0 5.0 3.1 3.1 2.9 2.6
RE 17.2 3.1 6.7 0.5 −34.5 −16.1 5.5 2.5 −9.9 66.5
EF −0.4 −0.2 0.4 0.4 −1.3 −1.0 −20.2 −22.5 −5.3 −2.2
r 0.47 0.49 0.73 0.74 0.26 0.23 0.02 0.03 0.31 0.34
CD 0.62 0.74 0.85 0.84 0.49 0.68 0.05 0.04 0.15 0.42

Fig. 6. Comparison of measured and si-
mulated ground herbage biomass using the
single-point and grid-to-grid simulations.
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measured peak flow events were identified. Water fluxes generated
from the grid-to-grid approach also showed less sensitivity to heavy or
persistent rainfall events compared to the single-point simulation. This
could be due to grid size and water pathways. When an uneven, sloping
field is divided into small enough grid cells, the slopes tend to zero, and
thus the slope effect on water fluxes can be negligible (Bell et al., 2007;
Kuo et al., 1999). Consequently, the grid-to-grid simulation for water
fluxes in this study might be relatively un-affected by the slope of the
field. At the same time, water flux is modelled ‘immediately’ in the
single-point simulations, whilst water flow from the grid-to-grid

simulations needs to go through multiple points until finally arriving at
the outlet. Hence, this can lead to a smooth flux without the sharp peaks
of the measured data. Future work on spatially-adapting the SPACSYS
model should investigate further in this respect. Another possible
reason to cause the discrepancies between simulated and measured
water flux data might be the temporal step. In the model, daily weather
data were used in the simulations based on the simulation time step of
the model, which could smooth precipitation intensity, and in turn,
reduce water fluxes.

For soil moisture, this study cannot provide a definitive result, due

Fig. 7. The spatial distributions of simulated annual
average soil moisture within Dairy North. The results
at the five incomplete grid cells (from Fig. 1) are not
shown.

Fig. 8. The spatial distributions of simu-
lated annual average ground biomass
within Dairy North. The results at the five
incomplete grid cells (from Fig. 1) are not
shown.
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to an absence of evaluation data in the spatial dimension. Our study
does however, allude to the grid-to-grid formulation providing rea-
sonably accurate soil moisture spatial predictions. Intuitively, these
results are promising and are important in that soil moisture inherently
varies both spatially and temporally (Longchamps et al., 2015; Shen
et al., 2016), where topography can be key drivers of this variation
(Gala et al., 2011).

For N2O emissions, there was no apparent evidence that the grid-to-
grid simulations performed better than the single-point simulations and
both approaches performed poorly. Both SPACSYS formulations missed
identifying some measured N2O emission peaks, whilst they both si-
mulated peaks that were not measured, an effect that has been similarly
reported in (Zhang et al., 2016). Some seasonal fluctuations of the
measured N2O were captured, however. This disappointing model
performance can be attributed to many inter-linked factors, one con-
cerns the awkward manner in which the N2O emissions were measured,
which inherently compromised the model evaluation (as already dis-
cussed above). The other mitigating factor is that N2O is notoriously
difficult to accurately predict, as it is inherently variable both spatially
and temporally and at a range of different scales (Chen et al., 2012;
DeSimone et al., 2010; Perego et al., 2016; van der Weerden et al.,
2014; Xiong et al., 2015). Furthermore, the N2O process is dependent
on the spatio-temporal processes of soil moisture, temperature and
dissolved C (Wu et al., 2016b; Yao et al., 2010), and also on added
mineral N by fertilization or organic N from animal excretion, which for
the latter is unlikely to be uniformly distributed across the field
(Cardenas et al., 2010). Thus, these complex inter-dependencies for
N2O all need to be reliably accounted for. Future work should seek to
develop this.

The SPACSYS model in a grid-to-grid form clearly provides rea-
sonably accurate spatial predictions of plant productivity, yielding an
improvement on that found with the single-point, standard model. This
outcome is important as spatial variation in herbage biomass is always
expected – variation that tends to be associated with heterogeneities in
water and nutrients in the soil (Serrano et al., 2016). Herbage biomass
is also controlled by field management practices, especially the time,
length and number of animals in the field (Kaufmann et al., 2013).
Thus, accounting for such spatial characteristics when simulating bio-
mass is an advance.

5. Conclusions

This study has demonstrated that a spatially distributed version of
SPACSYS can provide a worthy improvement in accuracy over the
standard version for biomass productivity. The resulting simulations
provide spatial detail, which can help in our understanding of nutrient
cycling, water movement and plant growth within a permanent pasture
field. No difference in model prediction performance was observed for
water run-off, reflecting the closed-system nature of this variable;
whilst the simulation results for N2O were disappointingly poor, re-
gardless of the SPACSYS formulation used. The soil moisture results
with the spatially distributed version could not be objectively verified,
but intuitively the simulations appeared promising as they closely fol-
lowed the study field's topography.

Next steps in this research are to investigate simulating across finer
spatial grids for a number of NWFP fields, and to simulate at a higher
15-minute resolution (as the measured NWFP data allow this), rather
than the daily resolution considered here. Next steps will also consider
the sensitivity of the results to different input and evaluation data sets,
where their temporal and spatial resolution needs full consideration. A
focus on improving the N2O simulations is expected, noting that these
simulations are inherently difficult due to this variable's high spatial
and temporal variability, with a preponderance to “hot-spots” in both
space and time.
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