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Top 10 Exascale challenges
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Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and 

cooling technologies.
2. Interconnect technology: Increasing the performance and energy 

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to 

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is 

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that 

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle 

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning, 

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating 

mathematical optimization and uncertainty quantification for exascale 
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in 
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational 
scientists with new software engineering tools and environment
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Why do we need FT?
• Many different kinds of fault can occur during 

computation (G. Gibson, Proc. of the DSN2006, June, 
2006):

• Soft errors (bit flips in memory etc)

• Hard errors (component breakage)

• Power outages

• OS errors

• System software errors


• In this work we're interested in the faults which affect the 
program data
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Current Solutions
• Error Correcting Codes implemented in hardware

• Common Codes:

• Parity (SED)

• Hamming code - Single Error Correction and Double 

Error Detection (SECDED)

• Reed–Solomon code - Chipkill


• ECC does not come for free!

• Storage overhead

• Extra energy and bandwidth used

• Puts restrictions on the hardware that can be used
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Error Detecting/Correcting 
Codes

• Data is stored as Codewords in memory

• The codes we are interested in are

• Parity - 1 extra bit per codeword

• Hamming Code - Single Error Correction and Double 

Error Detection (SECDED) with:

• 64-bit codewords with 8-bits of redundancy

• 128-bit codewords with 9-bits of redundancy


• Cyclic Redundancy Check (CRC) Code 

• In particular CRC32C with 32-bits of redundancy per 

codeword

5



Application Based Fault 
Tolerance

• Can take advantage of the data structures and memory 
access patterns of the application


• User knowledge enables wider range of fault recovery 
techniques


• A lot of progress being made in:

• Dense linear algebra

• Monte Carlo

• Sparse linear algebra (this work)

• Spectral (FFT)
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ABFT for Sparse Matrix 
Solvers

• In our research we utilise the TeaLeaf mini-app

• Part of Sandia National Laboratories’ Mantevo (https://

mantevo.org/)  mini-app benchmark suite 

• TeaLeaf solves the linear heat conduction equation in 2D 

on a spatially decomposed regular grid using a five-point 
stencil 


• Vast majority of TeaLeaf’s runtime (+98%) is spent 
performing either matrix-vector products or dot products 


• Two main data structures

• Sparse matrix 

• Dense vectors
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Sparse Matrix Storage
• Most of the matrix elements are zero

• To save space, usually stored in compressed formats 

• We focus our efforts on the Compressed Sparse Row 

(CSR) format where a m×n matrix is represented by three 
dense vectors:

• Vector v stores the corresponding nonzero values

• Vector c stores the column indices for each non-zero 

value

• Vector r stores the offsets of the first nonzero element 

in each row
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ABFT with no storage 
overhead

• Observation 1: If the matrix has less than 232 - 1 columns, 
then elements in the column vector c will have unused bits


• Observation 2: If the matrix has less than 232 - 1 nonzero 
values, then elements in the row offsets vector v will have 
unused bits


• By further restricting the matrix size we can repurpose 
these unused bits to store the redundant ECC data


• Note that in many production solvers, the matrix 
dimensions may not meet our requirements, however:

• These restrictions apply to a single process

• Our techniques are easily extended to 64-bit integers

9



Protecting the CSR 
Elements

• A CSR element is formed by pairing a nonzero value from vector v with the 
corresponding column index from vector c to form a 96-bit CSR element


• This poses the following limits on the number of columns: 
• SED - maximum 231 - 1 columns

• SECDED or CRC32C - maximum 224 - 1 columns 


• When using CRC with a 32-bit checksum, we protect the whole matrix row at a 
time
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Performance Results
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Protecting the Row Offset 
Vector

• A similar approach for protecting the CSR elements can be applied to 
protecting the r row offset vector


• When using SED:

• Matrix can have at most 231 - 1 nonzero elements. 


• In order to use other ECC techniques, we use the top 4 bits from each 
elements 

• The matrix can still have 228 - 1 or ≈ 268 million nonzero elements


• Other ECC techniques require more than 4 bits to store the redundancy

• Protect multiple elements at the same time and split the redundancy 

bits between multiple elements
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Performance Overheads
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Less Frequent Checking
• Observation: During the Conjugate Gradient Solve the 

matrix does not change

• Perform the matrix integrity checks every N iterations of 

the algorithm

• Boundary checks on the column and row vector are 

performed to prevent out of bounds memory access

• Now have to perform up to N more iterations of CG 

before the error is detected

• We are not able to fully correct any errors, only detect
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Performance Results
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Floating Point Vector 
Protection

• Floating point values do not have any 
unused bits due to their format


• Redundancy bits are stored in the 
least significant bits of the mantissa


• This storage method poses a risk that 
the solver may take longer to 
converge or fail to converge altogether


• The solver has always converged, with 
the norm of the solution vector within 
2.0 × 10−11% of the expected answer


• Increase in the total number of 
iterations was less than 1%
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Read-Modify-Writes
• Unlike the sparse matrix, the floating point vectors 

change their values

• When modifying a value in a vector, a Read-Modify-Write 

(RMW) has to be performed as only part of the codeword 
is being modified

• Results in two ECC calculations every write


• Concurrency issues when multiple processes try to write 
the same ECC codeword
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Avoiding RMWs
• Observation: When performing calculations at position i, 

the algorithm will then work on the next element at 
position i + 1


• By buffering the writes a whole ECC element can be 
committed to memory in one go

• Single ECC calculation per multiple writes


• The algorithm has to be adapted so that the calculations 
are performed on the whole ECC element at a time


• Removes the race conditions
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Caching
• By buffering ECC elements when performing reads most 

of duplicate integrity checks can be removed


• This buffering technique performs poorly for the Sparse 
Matrix - Vector multiplication due to five-point stencil 
access pattern

• At least 3 ECC compound elements are accessed per 

iteration


• By leveraging the knowledge about the application we 
can create a caching scheme within the kernel that is 
both multiple ECC element and multi-iteration aware
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Performance Results
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Conclusions
• Demonstrated efficient ABFT techniques with no storage 

overhead

• We have shown that hardware accelerated calculations 

were a big improvement over software-only solutions

• Instruction set design can help with achieving better 

performance, and that combining software and 
hardware methods to protect against errors might 
prove beneficial. 


• Ideally these ABFT techniques would be implemented 
directly inside of libraries/packages such as PETSc or 
Trilinos 
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Thank you!
Any questions?
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