
 Pawelczak, G., & McIntosh-Smith, S. (2017). Application-Based Fault
Tolerance Techniques for Sparse Matrix Solvers Explained. Reliable, Secure
and Scalable Software Systems Workshop, Glasgow, United Kingdom.

Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/applicationbased-fault-tolerance-techniques-for-sparse-matrix-solvers-explained(e9382ef9-4b92-4fe8-8b4d-47b6649133e4).html
https://research-information.bris.ac.uk/en/publications/applicationbased-fault-tolerance-techniques-for-sparse-matrix-solvers-explained(e9382ef9-4b92-4fe8-8b4d-47b6649133e4).html

Application-Based Fault
Tolerance Techniques for Fully

Protecting Sparse Matrix Solvers

 Grzegorz Pawelczak, Simon McIntosh-Smith,
James Price, Matt Martineau

University of Bristol - High Performance Computing Group

https://uob-hpc.github.io

1

Top 10 Exascale challenges

2

Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and

cooling technologies.
2. Interconnect technology: Increasing the performance and energy

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning,

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating

mathematical optimization and uncertainty quantification for exascale
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational
scientists with new software engineering tools and environment

9

February 2014

Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and

cooling technologies.
2. Interconnect technology: Increasing the performance and energy

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning,

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating

mathematical optimization and uncertainty quantification for exascale
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational
scientists with new software engineering tools and environment

9

February 2014

Why do we need FT?
• Many different kinds of fault can occur during

computation (G. Gibson, Proc. of the DSN2006, June,
2006):

• Soft errors (bit flips in memory etc)

• Hard errors (component breakage)

• Power outages

• OS errors

• System software errors

• In this work we're interested in the faults which affect the
program data

3

Current Solutions
• Error Correcting Codes implemented in hardware

• Common Codes:

• Parity (SED)

• Hamming code - Single Error Correction and Double

Error Detection (SECDED)

• Reed–Solomon code - Chipkill

• ECC does not come for free!

• Storage overhead

• Extra energy and bandwidth used

• Puts restrictions on the hardware that can be used

4

Error Detecting/Correcting
Codes

• Data is stored as Codewords in memory

• The codes we are interested in are

• Parity - 1 extra bit per codeword

• Hamming Code - Single Error Correction and Double

Error Detection (SECDED) with:

• 64-bit codewords with 8-bits of redundancy

• 128-bit codewords with 9-bits of redundancy

• Cyclic Redundancy Check (CRC) Code

• In particular CRC32C with 32-bits of redundancy per

codeword

5

Application Based Fault
Tolerance

• Can take advantage of the data structures and memory
access patterns of the application

• User knowledge enables wider range of fault recovery
techniques

• A lot of progress being made in:

• Dense linear algebra

• Monte Carlo

• Sparse linear algebra (this work)

• Spectral (FFT)

6

ABFT for Sparse Matrix
Solvers

• In our research we utilise the TeaLeaf mini-app

• Part of Sandia National Laboratories’ Mantevo (https://

mantevo.org/) mini-app benchmark suite

• TeaLeaf solves the linear heat conduction equation in 2D

on a spatially decomposed regular grid using a five-point
stencil

• Vast majority of TeaLeaf’s runtime (+98%) is spent
performing either matrix-vector products or dot products

• Two main data structures

• Sparse matrix

• Dense vectors

7

Sparse Matrix Storage
• Most of the matrix elements are zero

• To save space, usually stored in compressed formats

• We focus our efforts on the Compressed Sparse Row

(CSR) format where a m×n matrix is represented by three
dense vectors:

• Vector v stores the corresponding nonzero values

• Vector c stores the column indices for each non-zero

value

• Vector r stores the offsets of the first nonzero element

in each row

8

ABFT with no storage
overhead

• Observation 1: If the matrix has less than 232 - 1 columns,
then elements in the column vector c will have unused bits

• Observation 2: If the matrix has less than 232 - 1 nonzero
values, then elements in the row offsets vector v will have
unused bits

• By further restricting the matrix size we can repurpose
these unused bits to store the redundant ECC data

• Note that in many production solvers, the matrix
dimensions may not meet our requirements, however:

• These restrictions apply to a single process

• Our techniques are easily extended to 64-bit integers

9

Protecting the CSR
Elements

• A CSR element is formed by pairing a nonzero value from vector v with the
corresponding column index from vector c to form a 96-bit CSR element

• This poses the following limits on the number of columns:
• SED - maximum 231 - 1 columns

• SECDED or CRC32C - maximum 224 - 1 columns

• When using CRC with a 32-bit checksum, we protect the whole matrix row at a
time

10

31 Bits 64 Bits 24 Bits 64 Bits

64 Bits 64 Bits 64 Bits 64 Bits 64 Bits

} }

} } } }

}

24 Bits

}

24 Bits

}

24 Bits

}
24 Bits

}

32 Bits

8 Bits 8 Bits 8 Bits 8 Bits

8 Bits1 Bit
Double bits
Integer bits
ECC bits

SED SECDED

CRC32C

Performance Results

11

O
ve

rh
ea

d
(%

)

0

10

20

30

40

50

60

ABFT Method
SED SECDED CRC32C (HW accel.) CRC32C

111

166

3029

53

00

91

22

112

4

74

54

59

11

Cavium ThunderX
Intel Broadwell
NVIDIA GTX 1080 Ti
NVIDIA K40
NVIDIA P100

Protecting the Row Offset
Vector

• A similar approach for protecting the CSR elements can be applied to
protecting the r row offset vector

• When using SED:

• Matrix can have at most 231 - 1 nonzero elements.

• In order to use other ECC techniques, we use the top 4 bits from each
elements

• The matrix can still have 228 - 1 or ≈ 268 million nonzero elements

• Other ECC techniques require more than 4 bits to store the redundancy

• Protect multiple elements at the same time and split the redundancy

bits between multiple elements

12

31 Bits 28 Bits 28 Bits

} }}1 Bit 4 Bits 4 Bits

Integer bits
ECC bits

SED 64-bit SECDED

Performance Overheads

13

O
ve

rh
ea

d
(%

)

0

10

20

30

40

50

ABFT Method
SED SECDED64 SECDED128 CRC32C (HW accel.) CRC32C

28

3
00

127

46

36

29 28

100

12

6

11
9

1

28

15

35
32

4

Cavium ThunderX
Intel Broadwell
NVIDIA GTX 1080 Ti
NVIDIA K40
NVIDIA P100

Less Frequent Checking
• Observation: During the Conjugate Gradient Solve the

matrix does not change

• Perform the matrix integrity checks every N iterations of

the algorithm

• Boundary checks on the column and row vector are

performed to prevent out of bounds memory access

• Now have to perform up to N more iterations of CG

before the error is detected

• We are not able to fully correct any errors, only detect

14

Performance Results

15

O
ve

rh
ea

d
(%

)

0

10

20

30

40

50

60

70

80

90

Check Interval

1 2 4 8 16 32 64 128 256
Once / Timestep

88

45

24

12
6 3 2 1 1 0

Floating Point Vector
Protection

• Floating point values do not have any
unused bits due to their format

• Redundancy bits are stored in the
least significant bits of the mantissa

• This storage method poses a risk that
the solver may take longer to
converge or fail to converge altogether

• The solver has always converged, with
the norm of the solution vector within
2.0 × 10−11% of the expected answer

• Increase in the total number of
iterations was less than 1%

16

63 Bits

56 Bits

59 Bits 59 Bits

}
} }

}1 Bit

8 Bits

5 Bits 5 Bits

Double bits
ECC bits

SED

64-bit SECDED

128-bit SECDED

Read-Modify-Writes
• Unlike the sparse matrix, the floating point vectors

change their values

• When modifying a value in a vector, a Read-Modify-Write

(RMW) has to be performed as only part of the codeword
is being modified

• Results in two ECC calculations every write

• Concurrency issues when multiple processes try to write
the same ECC codeword

17

Avoiding RMWs
• Observation: When performing calculations at position i,

the algorithm will then work on the next element at
position i + 1

• By buffering the writes a whole ECC element can be
committed to memory in one go

• Single ECC calculation per multiple writes

• The algorithm has to be adapted so that the calculations
are performed on the whole ECC element at a time

• Removes the race conditions

18

Caching
• By buffering ECC elements when performing reads most

of duplicate integrity checks can be removed

• This buffering technique performs poorly for the Sparse
Matrix - Vector multiplication due to five-point stencil
access pattern

• At least 3 ECC compound elements are accessed per

iteration

• By leveraging the knowledge about the application we
can create a caching scheme within the kernel that is
both multiple ECC element and multi-iteration aware

19

Performance Results

20

O
ve

rh
ea

d
(%

)

0

20

40

60

80

100

120

140

160

180

200

ABFT Method
SED SECDED64 SECDED128 CRC32C (HW accel.) CRC32C

98

36

94

492

147

58

32

176

24
129

256

56

444399

17

213

175

299

142

31

Cavium ThunderX
Intel Broadwell
NVIDIA GTX 1080 Ti
NVIDIA K40
NVIDIA P100

Conclusions
• Demonstrated efficient ABFT techniques with no storage

overhead

• We have shown that hardware accelerated calculations

were a big improvement over software-only solutions

• Instruction set design can help with achieving better

performance, and that combining software and
hardware methods to protect against errors might
prove beneficial.

• Ideally these ABFT techniques would be implemented
directly inside of libraries/packages such as PETSc or
Trilinos

21

References
• R. Hunt and S. McIntosh-Smith, "Exploiting Spatial

Information in Datasets To Enable Fault Tolerant Sparse
Matrix Solvers", FTS, IEEE Cluster, Chicago, Sep 8th 2015

• S. McIntosh-Smith, R. Hunt, J. Price and A. Vesztrocy,
"Application-Based Fault Tolerance Techniques for
Sparse Matrix Solvers", to appear in IJHPCA, 2016

• J. Yeh, G. Pawelczak, J. Sewart, J. Price, A. Avila Ibarra, S.
McIntosh-Smith, L. Bautista-Gomez, and F. Zyulkyarov,
"Software-level Fault Tolerant Framework for Task-
based Applications", Poster session, IEEE/ACM
SuperComputing, Salt Lake City, United States, 2016.

22

Thank you!
Any questions?

23

