
Song, Gongfei and Lu, Zhenyu and Zheng, Bo-Chao and Mao, Xuerong 

(2018) Almost sure stabilization of hybrid systems by feedback control 

based on discrete-time observations of mode and state. Science in 

China Series F - Information Sciences. ISSN 1009-2757 , 

http://dx.doi.org/10.1007/s11432-017-9297-1

This version is available at https://strathprints.strath.ac.uk/62557/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/141194101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


SCIENCE CHINA
Information Sciences

July 2018, Vol. 61 070213:1–070213:16

https://doi.org/10.1007/s11432-017-9297-1

c© The Author(s) 2018. This article is published with open access at link.springer.com info.scichina.com link.springer.com

. RESEARCH PAPER .

Special Focus on Modeling, Analysis and Control of Stochastic Systems

Almost sure stabilization of hybrid systems by

feedback control based on discrete-time

observations of mode and state

Gongfei SONG1, Zhenyu LU2, Bo-Chao ZHENG1 & Xuerong MAO3*

1Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,

School of Information and Control, Nanjing University of Information Science and Technology,

Nanjing 210044, China;
2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,

Nanjing 210044, China;
3Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

Received 22 August 2017/Accepted 27 October 2017/Published online 13 June 2018

Abstract Although the mean square stabilization of hybrid systems by feedback control based on discrete-

time observations of state and mode has been studied by several authors since 2013, the corresponding almost

sure stabilization problem has received little attention. Recently, Mao was the first to study the almost

sure stabilization of a given unstable system ẋ(t) = f(x(t)) by a linear discrete-time stochastic feedback

control Ax([t/τ ]τ)dB(t) (namely the stochastically controlled system has the form dx(t) = f(x(t))dt +

Ax([t/τ ]τ)dB(t)), where B(t) is a scalar Brownian, τ > 0, and [t/τ ] is the integer part of t/τ . In this

paper, we consider a much more general problem. That is, we study the almost sure stabilization of a

given unstable hybrid system ẋ(t) = f(x(t), r(t)) by nonlinear discrete-time stochastic feedback control

u(x([t/τ ]τ), r([t/τ ]τ))dB(t) (so the stochastically controlled system is a hybrid stochastic system of the form

dx(t) = f(x(t), r(t))dt + u(x([t/τ ]τ), r([t/τ ]τ))dB(t)), where B(t) is a multi-dimensional Brownian motion

and r(t) is a Markov chain.

Keywords Brownian motion, Markov chain, generalized Itô formula, almost sure exponential stability,

stochastic feedback control
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1 Introduction

In recent years, stochastic systems have been considered by many researchers since many practical systems

can be modeled using these kinds of systems. Many significant results for stochastic systems have been

reported (see [1–13]). Markovian jump systems are a special class of hybrid stochastic systems, which

can be found in some engineering systems including power systems, manufacturing systems, ecosystems,

and so forth. The literature in this area is huge and lots of papers are open access, thus we only

mention a few [14–18]. Shaikhet [19] provided the sufficient conditions of asymptotic mean square stability

for Markovian systems with delay. Mao [20] discussed the problem of exponential stability of general

nonlinear Markovian jump systems.
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As is well known, a given unstable system can be stabilized by noise or noise can be used to make

a system more stable when it is already stable. Arnold et al. [21] pointed out that a linear system can

be stabilized by zero mean stationary parameter noise. In [22], a linear hybrid stochastic system was

stabilized by Gaussian type noise. In addition, Khasminskii [23] proposed that a system was stabilized by

using two types of white noise. It was shown in [24] that an unstable nonlinear system can be stabilized

by Brownian motion provided the growth condition is linear. Mao [25] showed that any nonlinear system

ẋ(t) = f(x(t), t) whose coefficient satisfied the condition |f(x, t)| 6 K|x|, K > 0, it was possible to use

the Brownian motions to stabilize the system. It is worth noting that Appleby et al. [26] presented a

general theory on the problem of stochastic stabilization for a nonlinear functional differential equation

by noise. Mao et al. [27] developed an unstable Markovian jump system ẋ(t) = f(x(t), r(t), t) that can

be stabilized by stochastic control and the partial subsystem was controlled. In other words, the space

S of the Markov chain was divided into two proper subspaces S1 and S2, i.e., S = S1 ∪ S2. In summary,

Mao et al. [27] considered the controlled stochastic system

dx(t) = f(x(t), r(t), t)dt + u(r(t), t)dB(t), (1)

where u(i, t) = 0 for i ∈ S1 while u(i, t) = u(i, x(t)) was a feedback control for i ∈ S2. New methods and

sufficient conditions on the stochastic stabilization for Markovian jump systems were provided in [28].

With some applications, two examples on stabilization and destabilization by noise in the plane were

presented in [29].

We should of course point out that the corresponding problem based on discrete-time state observations

has already been studied by some authors. Recently, Mao [30] was the first to study this stabilization

problem. He also obtained a bound τ∗ on τ for the controlled system to be stable as long as τ < τ∗

(plus some other conditions of course). Here τ > 0 is the duration between two consecutive observations.

From the point of control cost, it is clearly better to have a larger τ∗. Influenced by [30], a number

of recent papers (e.g., [31, 32]) have significantly improved the bound τ∗. Mao et al. [31] established a

better bound on τ∗ by considering a couple of important classes of hybrid stochastic systems and using

their special features. On the other hand, a better bound on τ∗ was also obtained in [32] by making

use of Lyapunov functionals. In particular, Song et al. [33] pointed out that the discrete-time feedback

control in controlled hybrid stochastic systems was based on not only the discrete-time observations of

the state, x(kτ) (k = 0, 1, 2, . . .) but also it was still dependent on the discrete-time observations of the

mode, r(kτ), on k = 0, 1, 2, . . ..

Observing that all the papers mentioned above were concerned with the mean square stabilization

by the discrete-time feedback control in the drift part, Mao [34] discussed the following almost sure

exponential stabilization by discrete-time feedback control in the diffusion part. Given an unstable

nonlinear system ẋ(t) = f(x(t)), Mao designed a feedback control Ax([t/τ ]τ), based on the discrete-time

state observations, in the diffusion part so that the corresponding closed-loop system

dx(t) = f(x(t))dt+Ax([t/τ ]τ)dB(t) (2)

was almost surely exponentially stable. Here B(t) was a scalar Brownian motion, f : Rn → R
n satisfied

|f(x)− f(y)| 6 α|x− y|, ∀x, y ∈ R
n,

for some α > 0 and f(0) = 0, and A was an n× n real-valued matrix such that

|Ax|2 6 ρ1|x|2 and |xTAx|2 > ρ2|x|2, ∀x ∈ R
n,

for some positive numbers ρ1 and ρ2 satisfying ρ2−0.5ρ1 > α. Mao [34] showed that there was a positive

number τ∗ such that the controlled system (2) was almost surely exponentially stable provided that

τ < τ∗. To the best of the authors’ knowledge, the problem of almost sure exponential stabilization

for hybrid stochastic systems has received little attention, in particular, in the framework of stochastic

feedback control based on discrete-time observations of mode and state.
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These motivate us to consider the following more general problem: if the given unstable system is

expressed as a hybrid stochastic system ẋ(t) = f(x(t), r(t)), can we design a discrete-time feedback

control u(x([t/τ ]τ), r([t/τ ]τ)), based on the discrete-time observations of both state and mode, in the

diffusion part so that the following closed-loop system

dx(t) = f(x(t), r(t))dt + u(x([t/τ ]τ), r([t/τ ]τ))dB(t) (3)

is almost surely exponentially stable? Here B(t) is an m-dimensional Brownian motion, r(t) is a Markov

chain in a finite state space S while f : Rn × S → R
n and u : Rn × S → R

n×m. We highlight a number of

key features.

• The stabilization is in the sense of almost sure exponential stability and there is far less known about

this than the mean square stabilization.

• The control u is in the diffusion part while it is nonlinear and B(t) is multi-dimensional.

• The controlled system is a hybrid stochastic delay system.

• The discrete-time feedback control u(x([t/τ ]τ), r([t/τ ]τ)) is based on the discrete-time observations

of both state and mode.

Let us begin to investigate this more general stabilization problem.

2 Preliminaries and notation

Throughout this paper, the notation is fairly standard. Here | · | denotes the Euclidean norm in R
n. For

a vector or matrix A, AT denotes its transpose and |A| =
√

trace(ATA) represents the trace norm of

matrix A. For a symmetric matrix A, λmax(A) and λmin(A) represent the largest and smallest eigen-

value, respectively. Here (Ω,F , {Ft}t>0,P) is a complete probability space, where {Ft}t>0 satisfies the

conditions that it is right continuous and F0 contains all P-null sets. In addition, we use B(t), t > 0, as

an m-dimensional Brownian motion. The continuous-time Markov chain r(t), t > 0, takes discrete values

in a given finite set S = {1, 2, . . . , N} and has the generator Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{

γij∆+ o(∆), if i 6= j,

1 + γii∆+ o(∆), if i = j,

with ∆ > 0 and γii = −∑j 6=i γij . Here γij > 0 denotes the transition rate from i to j. The notation

π = (π1, π2, . . . , πN ) ∈ R
1×N represents a stationary (probability) distribution. Furthermore, one can

find the linear equation πΓ = 0 subject to
∑N

j=1 πj = 1 and πj > 0 for all j ∈ S. In particular, we recall

that −γii =
∑

j 6=i γij > 0. We state a lemma that estimates the probability of jumps.

Lemma 1. For any t > 0, v > 0, and i ∈ S,

P(r(s) 6= i, for some s ∈ [t, t+ v]
∣
∣r(t) = i) 6 1− e−γ̂v, (4)

where

γ̂ = max
i∈S

(−γii). (5)

To show this lemma, define the stopping time

ζi = inf{s > t : r(s) 6= i}l,

given r(t) = i, and let inf ∅ = ∞ where ∅ denotes the empty set as usual. It is well known (see [14]) that

ζi − t has the exponential probability distribution with parameter −γii. Hence,

P(r(s) 6= i for some s ∈ [t, t+ v]|r(t) = i)

= P(ζi − t 6 v|r(t) = i) =

∫ v

0

−γiie
γiisds
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= 1− eγiiv 6 1− e−γ̂v (6)

as desired.

Consider the following unstable hybrid stochastic system

ẋ(t) = f(x(t), r(t)), t > 0, (7)

with the initial conditions x(0) = x0 ∈ R
n and r(0) = r0 ∈ S, where f : Rn × S → R

n, x(t) is the state,

and r(t) is the mode. We are required to design a stochastic feedback control u(x([t/τ ]τ), r([t/τ ]τ))dB(t)

based on the observations of state x([t/τ ]τ) and mode r([t/τ ]τ) at the discrete times 0, τ, 2τ, . . . such that

the corresponding closed-loop system

dx(t) = f(x(t), r(t))dt + u(x([t/τ ]τ), r([t/τ ]τ))dB(t), t > 0, (8)

becomes almost surely exponentially stable, where the positive constant τ > 0 denotes the duration

between two consecutive observations, [t/τ ] is the integer part of t/τ , and u : Rn × S → R
n×m is the

control input. For the existence and uniqueness of the solution to the controlled system, we impose the

following assumption.

Assumption 1. There exist two positive constants K1 and K2 such that

|f(x, i)− f(y, i)| 6 K1|x− y| and |u(x, i)− u(y, i)| 6 K2|x− y| (9)

for all (x, y, i) ∈ R
n × R

n × S.

This assumption guarantees that for any initial state x(0) = x0 ∈ R
n and mode r(0) = r0 ∈ S, the

controlled system (8) has a unique solution x(t) on t ∈ R+ and E|x(t)|2 < ∞ for all t > 0. In fact, for

t ∈ [0, τ ], system (8) becomes

dx(t) = f(x(t), r(t))dt + u(x(0), r(0))dB(t)

with the initial state x(0) = x0 and mode r(0) = r0. It is easy to show (see [27, Theorem 3.13]) that

this hybrid stochastic system has a unique solution x(t) on t ∈ [0, τ ] with E|x(t)|2 < ∞. For t ∈ [τ, 2τ ],

system (8) becomes

dx(t) = f(x(t), r(t))dt + u(x(τ), r(τ))dB(t)

with the initial state x(τ) and mode r(τ) at t = τ . It is easy to see that this hybrid stochastic system

has a unique solution x(t) on t ∈ [τ, 2τ ] with E|x(t)|2 < ∞. Repeating this procedure, we can see what

we have just claimed. Let us denote the solution by x(t;x0, r0). We see easily show that if x0 = 0, then

x(t; 0, r0) = 0 for all t > 0 almost surely. This is known as the trivial solution.

The purpose of this paper is to find sufficient conditions on the coefficient f and the control input u as

well as to obtain a positive bound τ∗ such that the controlled system (8) is almost surely exponentially

stable as long as τ 6 τ∗. By the almost sure exponential stability, we mean that

lim sup
1

t
log(|x(t;x0, r0)|) < 0 almost surely,

for any (x0, r0) ∈ R
n × S (see [7, 8, 23, 25]). We also observe that when τ → 0, the controlled system (8)

becomes the corresponding hybrid stochastic system

dy(t) = f(y(t), r(t))dt + u(y(t), r(t))dB(t) (10)

on t > 0 with the initial condition (y(0), r(0)) = (x0, r0). Under Assumption 1, system (10) has a unique

solution (see [17, 20]). Denote the unique solution by y(t;x0, r0) on t > 0.



Song G F, et al. Sci China Inf Sci July 2018 Vol. 61 070213:5

3 Main results

We see clearly from the discussion in the previous section that the conditions we need to impose should at

least guarantee the almost sure exponential stability of the corresponding hybrid stochastic system (10).

Although there are many useful criteria on the almost sure exponential stability, we use that established

by [20]. Accordingly, we impose the following assumptions.

Assumption 2. For each i ∈ S, there exist constant triples αi ∈ R, ρi > 0, and σi > 0 such that

xTf(x, i) 6 αi|x|2, |u(x, i)| 6 ρi|x|, |xTu(x, i)| > σi|x|2, (11)

for all x ∈ R
n. Set α̂ = maxi∈S αi and ρ̂ = maxi∈S ρi.

Assumption 3. There is a constant p ∈ (0, 1) such that the N ×N matrix

A(p) := diag(θ1(p), . . . , θN (p))− Γ (12)

is a nonsingular M -matrix, where

θi(p) :=
p(2− p)σ2

i

2
− pρ2i

2
− pαi (13)

and αi, σi, ρi are the constants specified in Assumption 2.

Let us make some comments on these assumptions. First, we point out that Assumptions 1 and 2 force

f(0, i) = 0 and u(0, i) = 0, ∀i ∈ S, (14)

which meet the stability purpose in this paper. In fact, g(0, i) = 0 follows from the second inequality in

(11). To show that f(0, i) = 0 for all i ∈ S, we assume otherwise that there were some i ∈ S such that

z := f(0, i) 6= 0. Choose a constant b such that 0 < b < 1/(K1 + |αi|) and let x = bz. Then, by the first

inequality in (11),

bzTf(bz, i) 6 αib
2|z|2 6 |αi|b2|z|2.

On the other hand, by Assumption 1,

bzTf(bz, i) = b|z|2 + bzT(f(bz, i)− f(0, i)) > b|z|2 −K1b
2|z|2.

Hence,

b|z|2 −K1b
2|z|2 6 |αi|b2|z|2.

This implies that

1 6 (K1 + |αi|)b,
but this is a contradiction as b < 1/(K1 + |ai|). We therefore must have (14). Recalling that y(t;x0, r0)

denotes the solution of the hybrid stochastic system (10), we can hence highlight a significant property

given in Mao [20, Lemma 2.1], which then leads to

P{y(t;x0, r0) 6= 0 on t > 0} = 1, ∀x0 6= 0. (15)

That is, if any initial solution of system (10) is a nonzero state, almost all the trajectories of system (10)

will never converge to the origin. Thus, Lyapunov functions can be chosen in a variety of ways.

We also emphasize that we are only interested in the case when α̂ > 0 in this paper; otherwise, the

given hybrid system (7) is already stable (see [28]) and there is no need to stabilize it using feedback

control. We should also point out that we always have α̂ 6 K1 and ρ̂ 6 K2, but we might have α̂ < K1

and ρ̂ < K2 in many cases. For example, consider the scalar case where f(x, i) = −x + ai sin(x) and

u(x, i) = x − bi sin(x) where ai ∈ [1, 2], bi ∈ (0, 1], but a1 = 2 and b1 = 1. It is easy to see that K1 = 3

and K2 = 2. On the other hand, xf(x, i) = −x2 + ai sin(x)x 6 (ai − 1)|x|2 so α̂ = 1 6 K1. Moreover,

0 6 |u(x, i)| 6 |x| for |x| 6 π whereas 0 6 |u(x, i)| 6 |x| + bi 6 (1 + bi/π)|x| for |x| > π so we have
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ρ̂ = (1 + 1/π) < K2. We also observe that once Assumption 2 holds, the verification of Assumption

3 depends very much on the choice of p ∈ (0, 1). In Appendix A, we give some easier conditions that

guarantee the existence of such a p and, hence, for Assumption 3 to hold.

The following lemma shows that the corresponding hybrid stochastic system (10) is exponentially stable

in the pth moment and, hence, by [27, Theorem 5.9], the hybrid stochastic system is also almost surely

exponentially stable.

Lemma 2. Let Assumptions 1–3 hold. Define

(c1, . . . , cN )T = A−1(p)(1, . . . , 1)T, (16)

so all ci are positive by the theory of M -matrices [2, 27] or by Lemma A1 in the Appendix A and let

cmin = min16i6N ci and cmax = max16i6N ci. Then the solution of the hybrid stochastic system (10)

satisfies

E|y(t;x0, r0)|p 6 M |x0|pe−γt, ∀t > 0, (17)

for all (x0, r0) ∈ R
n × S, where γ = 1/cmax and M = cmax/cmin.

Proof. For x0 = 0, that is y(t; 0, r0) = 0, we can deduce that the assertion is natural. Fix x0 6= 0 and

r0 ∈ S arbitrarily and write y(t;x0, r0) = y(t). Recalling (15), we have that y(t) 6= 0 for all t > 0 almost

surely. Define the Lyapunov function

V (y, t, i) = ci|y|peγt, for (y, t, i) ∈ (Rn − {0})× R+ × S.

We can therefore apply the generalized Itô formula (see [27, Theorem 1.45]) to obtain that

EV (y(t), t, r(t)) = V (x0, 0, r(0)) + E

∫ t

0

LV (y(s), s, r(s))ds, (18)

for t > 0, where LV : (Rn − {0})× R+ × S → R is defined by

LV (y, t, i) = eγt
(

γci|y|p + pci|y|p−2yTf(y, i) +
pci
2
|y|p−2|u(y, i)|2

− p(2− p)ci
2

|y|p−4|yTu(y, i)|2 +
N∑

j=1

γijcj |y|p
)

.

By Assumption 2 and then using definition (13) of θi(p), we have

LV (y, t, i) 6 eγt|y|p


1− ciθi(p) +

N∑

j=1

γijcj



 .

However, by (16) and (12),

ciθi(p)−
N∑

j=1

γijcj = 1, ∀i ∈ S.

Hence, we have

LV (y, t, i) 6 0.

Substituting this into (18) yields

EV (y(t), t, r(t)) 6 V (x0, 0, r(0)).

This implies

cmine
γtE|y(t)|p 6 cmax|x0|p,

which is the desired assertion (17).

To simplify our notation, we let δt = [t/τ ]τ for t > 0 and set tk = kτ for k = 0, 1, 2, . . . from now on.
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Lemma 3. Let Assumptions 1 and 2 hold. Then for any initial condition (x0, r0) ∈ R
n × S,

E|x(t;x0, r0)|2 6 |x0|2e(2α̂+ρ̂2)t (19)

and

E|x(t;x0, r0)− x(δt;x0, r0)|2 6 2τ(K2
1 τ + ρ̂2)|x0|2e(2α̂+ρ̂2)t

> 0 (20)

for all t > 0.

Proof. Fix any (x0, r0) ∈ R
n × S and write x(t;x0, r0) = x(t). By the Itô formula and Assumption 2, it

follows that

E|x(t)|2 6 |x0|2 + E

∫ t

0

(2α̂|x(s)|2 + ρ̂2|x(δs)|2)ds 6 |x0|2 + (2α̂+ ρ̂2)

∫ t

0

(

sup
06u6s

E|x(u)|2
)

ds,

for t > 0. As the second term on the right-hand side is increasing in t, we can obtain

sup
06u6t

E|x(t)|2 6 |x0|2 + (2α̂+ ρ̂2)

∫ t

0

(

sup
06u6s

E|x(u)|2
)

ds,

which implies the desire assertion (19) by the well-known Gronwall inequality. Moreover, by Assump-

tions 1 and 2, we further derive that

E|x(t)− x(δt)|2 6 2τK2
1

∫ t

δt

E|x(s)|2ds+ 2τ ρ̂2E|x(δt)|2.

This, together with (19), implies another assertion (20).

Lemma 4. Let Assumptions 1 and 2 hold and p ∈ (0, 1). Then for any initial condition (x0, r0) ∈ R
n×S,

E|x(t;x0, r0)− y(t;x0, r0)|p 6 |x0|pep(K1+1.5K2
2 )t
(

H(τ)
[
e(2α̂+ρ̂2)t − 1

])p/2

, (21)

for all t > 0, where

H(τ) =
6K2

2

[
τ(K2

1 τ + ρ̂2) + 2(1− e−γ̂τ )
]

2α̂+ ρ̂2
.

Proof. Fix any (x0, r0) ∈ R
n × S and set x(t;x0, r0) = x(t) and y(t;x0, r0) = y(t). By applying the Itô

formula and Assumption 1, it can be verified that

E|x(t)− y(t)|2 6 2K1E

∫ t

0

|x(s)− y(s)|2ds+ J1(t), (22)

for t > 0, where

J1(t) = E

∫ t

0

|u(x(δs), r(δs))− u(y(s), r(s))|2ds

6 3E

∫ t

0

(

|u(x(δs), r(δs))− u(x(δs), r(s))|2

+|u(x(δs), r(s)) − u(x(s), r(s))|2

+|u(x(s), r(s)) − u(y(s), r(s))|2
)

ds

6 3E

∫ t

0

(

|u(x(δs), r(δs))− u(x(δs), r(s))|2

+K2
2 |x(δs)− x(s)|2 +K2

2 |x(s)− y(s)|2
)

ds.

Substituting this into (22) yields

E|x(t)− y(t)|2 6 (2K1 + 3K2
2)

∫ t

0

E|x(s)− y(s)|2ds+ 3K2
2J2(t) + 3J3(t), (23)
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where

J2(t) =

∫ t

0

E|x(δs)− x(s)|2ds,

J3(t) =

∫ t

0

E|u(x(δs), r(δs))− u(x(δs), r(s))|2ds.

However, by Lemma 3,

J2(t) 6
2τ(K2

1 τ + ρ̂2)|x0|2
2α̂+ ρ̂2

[

e(2α̂+ρ̂2)t − 1
]

. (24)

To estimate J3(t), we let κ = κ(t) = [t/τ ]. Then

J3(t) =

κ∑

k=0

∫ t∧tk+1

tk

E|u(x(δs), r(δs))− u(x(δs), r(s))|2ds. (25)

By Assumption 2, we can derive that, for tk 6 s 6 t ∧ tk+1,

E|u(x(δs), r(δs))− u(x(δs), r(s))|2

= E|u(x(tk), r(tk))− u(x(tk), r(s))|2

= E
[

E
(

|u(x(tk), r(tk))− u(x(tk), r(s))|2|Ftk

)]

6 E
[

4ρ̂2|x(tk)|2E
(

I{r(s) 6=r(tk)}|Ftk

)]

= E

[

4ρ̂2|x(tk)|2E
(
∑

i∈S

I{r(tk)=i}I{r(s) 6=i}

∣
∣
∣Ftk

)]

= E

[

4ρ̂2|x(tk)|2
∑

i∈S

I{r(tk)=i}P(r(s) 6= i
∣
∣r(tk) = i

)

]

. (26)

However, by Lemma 1,

P(r(s) 6= i
∣
∣r(tk) = i

)

6 P(r(s̄) 6= i for some s̄ ∈ [tk, t ∧ tk+1]
∣
∣r(tk) = i

)

6 1− e−γ̂τ .

Hence,

E|u(x(δs), r(δs))− u(x(δs), r(s))|2 6 E
[

4ρ̂2|x(tk)|2(1− e−γ̂τ )
]

= 4ρ̂2(1− e−γ̂τ )E|x(tk)|2. (27)

Substituting this into (25), we obtain

J3(t) 6 4ρ̂2(1− e−γ̂τ )

κ∑

k=0

∫ t∧tk+1

tk

E|x(tk)|2ds. (28)

However, by Lemma 3, we then have

κ∑

k=0

∫ t∧tk+1

tk

E|x(tk)|2ds 6
κ∑

k=0

∫ t∧tk+1

tk

|x0|2e(2α̂+ρ̂2)tkds

6

κ∑

k=0

∫ t∧tk+1

tk

|x0|2e(2α̂+ρ̂2)sds = |x0|2
∫ t

0

e(2α̂+ρ̂2)sds

=
|x0|2

2α̂+ ρ̂2

[

e(2α̂+ρ̂2)t − 1
]

.
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Putting this into (28) gives

J3(t) 6
4ρ̂2(1− e−γ̂τ )|x0|2

2α̂+ ρ̂2

[

e(2α̂+ρ̂2)t − 1
]

. (29)

Substituting (24) and (29) into (23), we obtain

E|x(t)− y(t)|2 6 (2K1 + 3K2
3 )

∫ t

0

E|x(s)− y(s)|2ds+ |x0|2H(τ)
[

e(2α̂+ρ̂2)t − 1
]

. (30)

Using the well-known Gronwall inequality, we have

E|x(t)− y(t)|2 6 |x0|2H(τ)e(2K1+3K2
3)t
[

e(2α̂+ρ̂2)t − 1
]

.

Finally, we can obtain the desired assertion (21) by applying the Hölder inequality.

Lemma 5. Let Assumptions 1–3 hold. Choose a free parameter ε ∈ (0, 1). Let τ̄ > 0 be the unique

root to the equation

ep(K1+1.5K2
2)(τ+log(M/ε)/γ)

(

H(τ)
[
e(2α̂+ρ̂2)(τ+log(M/ε)/γ) − 1

])p/2

= 1− ε, (31)

where H(τ) and γ,M have been given in Lemmas 2 and 4, respectively. Then, for each τ ∈ (0, τ̄ ], there

exists a pair of positive integer κ̄ and number λ such that, for every initial condition (x0, r0) ∈ R
n × S,

the solution of system (8) satisfies

E|x(kκ̄τ ;x0, r0)|p 6 |x0|pe−λkκ̄τ , ∀k = 1, 2, 3, . . . . (32)

Proof. It is easy to see that the term on the left-hand side of (31) is a continuous increasing function

of τ > 0 and is equal to zero when τ = 0 whereas it tends to infinity as τ → ∞, thus Eq. (31) must

have a unique root τ̄ > 0. Fix τ ∈ (0, τ̄ ] and (x0, r0) ∈ R
n × S arbitrarily and write x(kτ ;x0, r0) = xk for

k = 0, 1, 2, . . .. Let κ̄ be the smallest positive integer that is no less than log(M/ε)
γτ , namely

log(M/ε)

γτ
6 κ̄ < 1 +

log(M/ε)

γτ
, (33)

where γ and M have been defined in Lemma 2. This implies

Me−γκ̄τ
6 ε. (34)

Write y(κ̄τ ;x0, r0) = yκ̄. By Lemma 2,

E|yκ̄|p 6 M |x0|pe−γκ̄τ
6 ε|x0|p. (35)

By the elementary inequality (a+ b)p 6 ap + bp for any a, b > 0 and 0 < p < 1, one can obtain

E|xκ̄|p 6 E|yκ̄|p + E|yκ̄ − xκ̄|p.

Using (35) and Lemma 4, we obtain that

E|xκ̄|p 6 |x0|p
{

ε+ ep(K1+1.5K2
2 )κ̄τ

(

H(τ)
[
e(2α̂+ρ̂2)τ̄ − 1

])p/2}

. (36)

Noting from (33) that κ̄τ < τ + log(M/ε)/γ, we have

ε+ ep(K1+1.5K2
2)κ̄τ

(

H(τ)
[
e(2α̂+ρ̂2)τ̄ − 1

])p/2

< ε+ ep(K1+1.5K2
2)(τ+log(M/ε)/γ)

(

H(τ)
[
e(2α̂+ρ̂2)(τ+log(M/ε)/γ) − 1

])p/2

6 1,
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where Eq. (31) has been used. We may therefore write

ε+ ep(K1+1.5K2
2)κ̄τ

(

H(τ)
[
e(2α̂+ρ̂2)τ̄ − 1

])p/2

= e−λκ̄τ ,

for some λ > 0. It then follows from (36) that

E|xκ̄|p 6 |x0|pe−λκ̄τ . (37)

Let us now discuss the solution x(t) of hybrid stochastic system (8) on t > κ̄τ . This can be regarded as

the solution of the hybrid stochastic system (8) with initial condition (xκ̄, r(κ̄τ)) at time t = κ̄τ . Owing

to the time-homogeneous property of hybrid stochastic system (8), we can thus easily show that

E(|x2κ̄|p|Fκ̄τ ) 6 |xκ̄|pe−λκ̄τ .

This implies

E|x2κ̄|p 6 E|xκ̄|pe−λκ̄τ
6 |x0|pe−2λκ̄τ .

Repeating this procedure, we have

E|xkκ̄|p 6 E|x(k−1)κ̄|pe−λκ̄τ
6 |x0|pe−λkκ̄τ , ∀k = 1, 2, 3, . . .

as desired. The proof is, hence, complete.

Now, we are in the position to present and prove our main results in this section.

Theorem 1. Let Assumptions 1–3 hold. Then there exists a positive number τ∗ such that the stochastic

controlled hybrid system (8) is almost surely exponentially stable provided τ 6 τ∗.

Proof. Choose a free parameter ε ∈ (0, 1). We note that the unique root of (31) is τ̄ > 0. Let τ∗ = τ̄ .

First, we set τ ∈ (0, τ∗] and (x0, r0) ∈ R× S, and then we write x(t;x0, r0) = x(t). In addition, let κ̄ and

xkκ̄ be the same as defined in the proof of Lemma 5. For any t > 0, we can find a unique integer k such

that t ∈ [kκ̄τ, (k + 1)κ̄τ). By the time-homogeneous property of system (8), we see from Lemma 3 that

E
(

|x(t)|2
∣
∣
∣Fkκ̄τ

)

6 |xkκ̄|2e(2α̂+ρ̂2)(t−kκ̄τ)
6 |xkκ̄|2e(2α̂+ρ̂2)κ̄τ .

An application of the Hölder inequality yields

E
(

|x(t)|p
∣
∣
∣Fkκ̄τ

)

6 C1|xkκ̄|p,

where C1 = e(α̂+0.5ρ̂2)pκ̄τ . This, together with Lemma 5, implies

E|x(t)|p 6 C1E|xkκ̄|p 6 C1|x0|pe−λkκ̄τ
6 C2|x0|pe−λt, (38)

where C2 = C1e
λκ̄τ . In other words, we have shown that the controlled system (8) is exponentially stable

in the pth moment. However, this is not yet what we require.

In the remainder of this proof, we show that this pth moment exponential stability yields the almost

sure exponential stability as desired. We should of course point out that [27, Theorem 5.9] shows this

implication for hybrid stochastic systems, but our controlled system (8) is, in fact, a hybrid stochastic

delay system. In the area of hybrid stochastic delay systems, Mao et al. [27, Theorem 7.24] showed this

implication for p > 1, but here we have p ∈ (0, 1). Let z be a positive integer sufficiently large for

(
τK1

z

)p

6 0.5. (39)

Set ε = τ/z. Let integers k > 0 and 0 6 l 6 z − 1 be arbitrary. For t ∈ [tk + lε, tk + (l + 1)ε], it follows

from system (8) that

x(t) = x(tk + lε) +

∫ t

tk+lε

f(x(s), r(s))ds +

∫ t

tk+lε

u(x(tk), r(tk))dB(s).
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By the Burkholder–Davis–Gandy inequality (see [25]) and inequality (38), we then derive that

E

(

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

6 E|x(tk + lε)|p + E

(

sup
tk+lε6t6tk+(l+1)ε

∣
∣
∣

∫ t

tk+lε

f(x(s), r(s))ds
∣
∣
∣

p
)

+ E

(

sup
tk+lε6t6tk+(l+1)ε

∣
∣
∣

∫ t

tk+lε

u(x(tk), r(tk))dB(s)
∣
∣
∣

p
)

6 E|x(tk + lε)|p + εpKp
1E

(

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

+ cpE
(
ερ̂2|x(tk)|2

)p/2

6 C3e
−λtk + εpKp

1E

(

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

,

where C3 = C2|x0|p(1 + cpε
p/2ρ̂p) and cp is the constant from the Burkholder-Davis-Gandy inequality.

By (39), we hence have

E
(

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

6 2C3e
−λtk .

Consequently,

E
(

sup
tk6t6tk+1

|x(t)|p
)

= E
(

max
06l6z−1

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

6

z−1∑

l=0

E
(

sup
tk+lε6t6tk+(l+1)ε

|x(t)|p
)

6 C4e
−λtk , (40)

for all k = 0, 1, 2, . . . , where C4 = 2zC3. This implies

P

(

sup
tk6t6tk+1

|x(t)|p > e−0.5λtk
)

6 C4e
−0.5λtk ,

for all i > 1. The Borel-Cantelli lemma shows that, with probability 1,

sup
tk6t6tk+1

|x(t)|p < e−0.5λtk

holds for all but finitely many k. That is, for almost all ω ∈ Ω, there is an integer k0 = k0(ω) such that

sup
tk6t6tk+1

|x(t, ω)|p < e−0.5λtk , ∀k > k0(ω).

Therefore, for tk 6 t 6 tk+1 and k > k0,

1

t
log(|x(t, ω)|) < −0.5λtk

ptk+1
= − 0.5λk

p(k + 1)
.

Letting t → ∞, we obtain

lim sup
t→∞

1

t
log(|x(t, ω)|) 6 − λ

2p
,

for almost all ω ∈ Ω. This completes the proof.

4 Design of linear feedback controls

Consider the following unstable hybrid stochastic system

ẋ(t) = f(x(t), r(t)), t > 0, (41)
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with the initial state x(0) = x0 ∈ R
n and mode r(0) = r0 ∈ S, where f : Rn × S → R

n. As before, we

assume that f meets conditions (9) and (11), namely there are constants K1 > 0 and αi ∈ R (i ∈ S) such

that

|f(x, i)− f(y, i)| 6 K1|x− y| and xTf(x, i) 6 αi|x|2, (42)

for x, y ∈ R
n and i ∈ S. Instead of nonlinear feedback controls, we are now looking for linear feedback

controls. To avoid the notation becoming complicated, we set B(t) be a scalar Brownian motion in this

section (and leave the multi-dimensional case to the reader). The linear feedback control function we

look for is of the form u(x, i) = A(i)x so the controlled system becomes

dx(t) = f(x(t), r(t)) +A(r[t/τ ])x([t/τ ])dB(t), (43)

where A(i) ∈ R
n×n for i ∈ S and we will often write A(i) = Ai. Noting that

|u(x, i)− u(y, i)| 6 ‖Ai‖|x− y|, ∀x, y ∈ R
n, i ∈ S,

we see that the second inequality in (9) holds with K2 = maxi∈S ‖Ai‖.

4.1 Observable in all modes

We first consider the case where the state x(t) is observable in every mode i ∈ S. For each i ∈ S, choose

a matrix Di ∈ R
n×n such that

‖Di‖ = 1 and λmin(Di +DT
i ) >

√
3. (44)

Choose a nonnegative number δi such that

δ2i > 4αi. (45)

Let Ai = δiDi. Noting that

|u(x, i)| = |Aix| 6 δi|x| and |xTu(x, i)| = |xTAix| = 0.5xT(Ai +AT
i )x| >

√

3/4δi|x|2

for all x ∈ R
n, we see that the 2nd and 3rd inequality in (11) hold with ρi = δi and σi =

√

3/4δi. By

(45),

σ2
i − 0.5ρ2i − αi = 0.25δ2i − αi > 0.

We can therefore find a p ∈ (0, 1) sufficiently small for

θi(p) = p

(
(2− p)σ2

i

2
− ρ2i

2
− αi

)

> 0, ∀i ∈ S. (46)

Consequently, recalling (12), we have

A(p)1 = (θ1(p), . . . , θN (p))T > 0,

where 1 = (1, . . . , 1)T ∈ R
N . By Lemma A1, A(p) is a nonsingular M -matrix. In other words, we have

verified Assumption 3 under condition (45). In summary, we can conclude by using Theorem 1 that if we

choose Di and δi to meet conditions (44) and (45), respectively, and let Ai = δiDi for each i ∈ S, there is

a positive scalar τ∗ such that the stochastic controlled hybrid system (43) is almost surely exponentially

stable provided that τ 6 τ∗.

4.2 Observable in some modes

Let us now consider the case where the state of the underlying system is observable only for some modes

but not all. To describe this situation, let us divide the space S of the Markov chain into two proper

subspaces S1 and S2 (namely S = S1 ∪ S2 and S1 ∩ S2 = ∅). Assume that the state x(t) is not observable

when the system is in any mode i ∈ S1, but is fully observable in any mode i ∈ S2. Without any loss of

generality, let us assume that S1 = {1, . . . , N̄} and S2 = {N̄ + 1, . . . , N} for some 1 6 N̄ < N .
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Let us now design our stochastic feedback control function u(x, i). Given that the system is not

observable in any mode i ∈ S1, it is reasonable to think it is not controllable in these modes so we must

have u(x, i) = 0 for i ∈ S1. For i ∈ S2, we seek the linear control function u(x, i) = Aix as in the last

subsection. Hence, the controlled system can still be described by the hybrid system (43) as long as we

set Ai = 0 for i ∈ S1.

To design Ai for i ∈ S2, we impose an additional condition that

for each i ∈ S1, there is a j ∈ S2 such that γij > 0. (47)

In layman’s terms, this condition means that given that the Markov chain is at state i ∈ S1 at any time

t, it could jump to a state j ∈ S2 directly in very short time with a positive probability. Based on this

condition, we can choose a pair of numbers p ∈ (0, 2/3) and β ∈ (0, 1) such that

(1− β)

N∑

j=N̄+1

γij > pαi, ∀i ∈ S1. (48)

We can then, for each i ∈ S2, find a nonnegative number δi such that

βpδ2i (2− 3p)

8
> (1− β)

N̄∑

j=1

γij + βpαi. (49)

Choose a matrix Di satisfying condition (44) and let Ai = δiDi. We therefore see that the 2nd and 3rd

inequality in (11) hold with ρi = δi and σi =
√

3/4δi for i ∈ S2 whereas ρi = σi = 0 for i ∈ S1. Define

ξ = (

N̄times
︷ ︸︸ ︷

1, · · · , 1,
N−N̄times
︷ ︸︸ ︷

β, . . . , β )T,

and set

(ζ1, . . . , ζN )T := A(p)ξ.

Then, for i ∈ S1,

ζi = −pαi −
N̄∑

j=1

γij − β

N∑

j=N̄+1

γij = −pαi + (1 − β)

N∑

j=N̄+1

γij > 0

by (48), whereas for i ∈ S2,

ζi = βp

(
(2− 3p)δ2i

8
− αi

)

−
N̄∑

j=1

γij − β

N∑

j=N̄+1

γij

= βp

(
(2− 3p)δ2i

8
− αi

)

− (1− β)

N̄∑

j=1

γij

> 0

by (49). By Lemma A1, A(p) is a nonsingular M -matrix. In other words, we have to design Ai to meet

Assumption 3 under condition (47). We can therefore conclude by using Theorem 1 that if we design Ai

as described above, there is a positive scalar τ∗ such that the stochastic controlled hybrid system (43) is

almost surely exponentially stable provided that τ 6 τ∗.

5 Conclusion

Influenced by Mao [34], we have discussed the almost sure stabilization of a given unstable hybrid dif-

ferential equation ẋ(t) = f(x(t), r(t)) by nonlinear discrete-time stochastic feedback control u(x([t/τ ]τ),
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r([t/τ ]τ))dB(t). We have shown that there is a positive number τ∗ such that the stochastically controlled

system dx(t) = f(x(t), r(t))dt+ u(x([t/τ ]τ), r([t/τ ]τ))dB(t) is almost surely stable provided that τ < τ∗
under the global Lipschitz condition plus the condition that guarantees the almost sure exponential sta-

bility of the corresponding hybrid stochastic system dx(t) = f(x(t), r(t))dt + u(x(t), r(t))dB(t). As a

special but important case, we have discussed in more detail how to design the linear feedback controls.
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Appendix A

Once Assumption 2 holds, the verification of Assumption 3 depends very much on the choice of p ∈ (0, 1). In this appendix,

we give some easier qualifications that guarantee the existence of such a p and, hence, for Assumption 3 to hold. For this

purpose, we need the theory of M -matrices (see [2, 27]). For a vector or matrix A, A > 0 means that all elements of A are

positive. Moreover, a square matrix A = [aij ]N×N is called a Z-matrix if it has nonpositive off-diagonal entries, namely

aij 6 0 for all i 6= j.

Here, we cite a useful lemma on M -matrices.

Lemma A1 ([20]). If A = [aij ]N×N is a Z-matrix, the following statements are equivalent:

(1) A is a nonsingular M -matrix.

(2) A is semi-positive; that is, there exists x > 0 in RN such that Ax > 0.

(3) A−1 exists and its elements are all nonnegative.

(4) All the leading principal minors of A are positive; that is
∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1k
..
.

..

.

ak1 · · · akk

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, for every k = 1, 2, . . . , N.

We also need another classical result.

Lemma A2 (Minkowski1)). If a Z-matrix A = [aij ]N×N has all positive row sums, that is

N
∑

j=1

aij > 0, ∀i = 1, 2, . . . , N,

detA > 0.

Now, let us propose a condition that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−(α1 + 0.5ρ21 − σ2
1) −γ12 · · · −γ1N

−(α2 + 0.5ρ22 − σ2
2) −γ22 · · · −γ2N

...
... · · ·

...

−(αN + 0.5ρ2
N

− σ2
N
) −γN2 · · · −γNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, (A1)

where αi, ρi, σi are the constants specified in Assumption 2. This condition can be verified straightaway once Assumption 2

holds.

It was shown in [28] that under an additional condition that

for some u ∈ S, γiu > 0, for all i 6= u, (A2)

condition (A1) is equivalent to the following simpler condition

N
∑

i=1

πi(αi + 0.5ρ2i − σ2
i ) < 0, (A3)

1) Minkowski H. Diophantische Approximationen. Teubner, 1907.
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where (π1, . . . , πN ) are the stationary distribution of the Markov chain as defined in Section 2. In this paper, we replace

condition (A2) by a slightly weaker one that

for some u ∈ S, γiu ∨ (σ2
i − 0.5ρ2i − αi) > 0, for all i 6= u. (A4)

We do not yet know whether (A1) is equivalent to (A3) under this weaker condition. However, the following proposition is

good enough for use in this paper.

Proposition A1. If conditions (A1) and (A4) hold, Assumption 3 is satisfied.

Proof. Without loss of generality, we may assume that the state u = N in condition (A4), namely

γiN ∨ (σ2
i − 0.5ρ2i − αi) > 0, for all 1 6 i 6 N − 1. (A5)

If not, by switching state u with N , we need to reorder the states of the Markov chain r(t) that is, rename state u as N and

N as u. Consequently, the determinant in the left-hand side of (A1) will switch the uth row with the Nth row and then

switch the uth column with the Nth column, but these do not change the value of the determinant, namely the determinant

remains positive. Moreover, given a nonsingular M -matrix, it is easy to show that the new matrix remains a nonsingular

M -matrix by switching the uth column with the Nth column and then switching the uth row with the Nth row.

By [27, Lemma 5.2], the derivative dA(0)/dp is equal to the determinant on the left-hand side of (A1), whence dA(0)/dp >

0. It is also easy to see A(0) = 0. Consequently, for all p ∈ (0, 1) sufficiently small, we have

detA(p) > 0. (A6)

On the other hand, for each i = 1, 2, . . . , N − 1, either γiN > 0 or γiN = 0. In the case when γiN > 0, we clearly have

θi(p) > −γiN , for all sufficiently small p ∈ (0, 1);

whereas in the case when γiN = 0, condition (A5) implies σ2
i − 0.5ρ2i − αi > 0 whence

θi(p) > 0 = −γiN , for all sufficiently small p ∈ (0, 1).

In other words, we always have

θi(p) > −γiN , i = 1, 2, . . . , N − 1, (A7)

for all p ∈ (0, 1) sufficiently small. Fix any p ∈ (0, 1) sufficiently small for both (A6) and (A7) to hold. Consider the deriving

principal sub-matrix,

Ak(p) :=















θ1(p)− γ11 −γ12 · · · −γ1k

−γ21 θ1(p)− γ22 · · · −γ2k
..
.

..

. · · ·
..
.

−γk1 −γk2 · · · θk(p)− γkk















of A(p), for k = 1, 2, . . . , N − 1. Obviously, Ak(p) is a Z-matrix. Moreover, for every i = 1, 2, . . . , k, the ith row of this

sub-matrix has its sum

θi(p)−
k

∑

j=1

γij = θi(p) +
N
∑

j=k+1

γij > θi(p) + γiN > 0

by (A7). By Lemma A2, detAk(p) > 0. Thus, we should point out that all the deriving principal minors of A(p) are

positive. By applying Lemma A1, we can obtain that A(p) is a nonsingular M -matrix. This completes the proof.
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