

Singh, A.K. and O'Donnell, K.P. and Edwards, P.R. and Cameron, D. and Lorenz, K. and Kappers, M.J. and Boćkowski, M. and Yamaga, M. and Prakash, R. (2017) Luminescence of Eu3+ in GaN(Mg, Eu) : transitions from the 5D1 level. Applied Physics Letters. pp. 1-14. ISSN 0003-6951 (In Press),

This version is available at https://strathprints.strath.ac.uk/62516/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (<u>https://strathprints.strath.ac.uk/</u>) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.

Luminescence of Eu³⁺ in GaN(Mg, Eu): Transitions from the ⁵D₁ level

A.K. Singh^{1,6}, K.P. O'Donnell^{1,*}, P.R. Edwards¹, D. Cameron¹, K. Lorenz², M.J. Kappers³, M. Boćkowski⁴, M. Yamaga⁵ and R. Prakash⁶

¹SUPA Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, Scotland, United Kingdom
²IPFN, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
³Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, England, United Kingdom
⁴Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland
⁵Department of Mathematical and Design Engineering, Gifu University, Gifu 501-1193, Japan
⁶School of Materials Science and Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005, India
*E-mail: k.p.odonnell@strath.ac.uk

Eu-doped GaN(Mg) exemplifies hysteretic photochromic switching between two configurations, Eu0 and Eu1(Mg), of the same photoluminescent defect. Using abovebandgap excitation, we studied the temperature dependence of photoluminescence (TDPL) of transitions from the excited ⁵D₁ level of Eu³⁺ for both configurations of this defect. During sample cooling, ⁵D₁ \rightarrow ⁷F_{0,1,2} transitions of Eu0 manifest themselves at temperatures below ~200 K, while those of Eu1(Mg) appear only during switching. The observed line positions verify crystal field energies of the ⁷F_{0,1,2} levels. TDPL profiles of ⁵D₁ \rightarrow ⁷F₁ and ⁵D₀ \rightarrow ⁷F_J transitions of Eu0 show an onset of observable emission from the ⁵D₁ level coincident with the previously observed, but hitherto unexplained, decrease in the intensity of its ⁵D₀ \rightarrow ⁷F_J emission on cooling below 200 K. Hence the ⁵D₀ \rightarrow ⁷F_J TDPL anomaly signals a back-up of ⁵D₁ population due to a reduction in phonon-assisted relaxation between ⁵D₁ and ⁵D₀ levels at lower temperatures. We discuss this surprising result in the light of temperature-dependent transient luminescence measurements of Eu0. Since the millenium, the doping of GaN with europium has gained considerable attention¹⁻⁴ on the strength of its potential application to the fabrication of red light emitting diodes⁵⁻⁹, with particular emphasis on the strongest, 'hypersensitive', transitions of Eu³⁺, denoted ${}^{5}D_{0}\rightarrow^{7}F_{2}$, near 620 nm. In general, PL spectra of Eu-doped GaN feature emission from multiple 'sites', suggesting the possibility of modifying the local environment of Eu ions, thereby increasing the luminescence yield, by impurity- or defect- engineering^{7,10-11}. Utilising a variety of sample preparation techniques, a number of researchers recently reported that co-doping GaN:Eu with magnesium, the commercially successful p-type dopant of the III-nitride semiconductors, enhances Eu emission at room temperature and forms new defects¹²⁻¹⁶.

One clear advantage of our favoured technique of preparing GaN(Mg):Eu by hightemperature annealing of Eu-implanted p-type GaN, as opposed to *in situ* growth techniques, is that it leads to simpler spectra: the red emission at room temperature of annealed, implanted samples comes from a single centre, suggesting a selective attraction between Eu and Mg atoms in the GaN lattice during annealing¹⁶. This centre was found to show hysteretic photochromic switching (HPS) between two configurations of the same defect (labelled Eu0 and Eu1(Mg)); at low temperature, Eu0 spectral lines disappear and a spectrum of different symmetry, corresponding to Eu1(Mg), replaces them: there is a *photochromic* transformation between alternate defect configurations, with the rate of switching dependent upon temperature, light intensity and photon energy¹⁷⁻¹⁸. The reverse process, switching Eu1(Mg) back to Eu0, occurs when the sample warms above ~175 K; hence the photochromism is hysteretic with temperature. In the simplest defect model, the Eu0/Eu1(Mg) defect comprises an Eu atom, substituting for Ga, in close association with Mg, also substitutional, bonded to a common N atom¹⁷. We have ascribed the observed changes of defect configuration to the well-known shallow-deep instability of the Mg-N bondlength¹⁹; in these experiments, the Eu spectrum *monitors* the disposition of the acceptor in the GaN lattice¹⁸.

Above-bandgap photo-excitation of GaN at 3.5 eV creates mobile electrons and holes and mimics their electrical injection in light emitting diodes; the excitation of emission from embedded Eu³⁺ ions therefore involves a cascade of decay processes. In both PL and EL, emission is dominated by transitions from the lowest excited ⁵D state, namely ⁵D₀ \rightarrow ⁷F_J transitions, with the ⁵D₀ \rightarrow ⁷F₂ lines dominating by an order of magnitude. On the other hand, an approach to a complete spectroscopic analysis of the Eu-associated defects, such as that carried out for AlN:Eu by Gruber et al.²⁰, requires us to consider both transitions from ⁵D₀ to other states, such as ⁷F₁,¹⁷ and transitions from higher-lying ⁵D levels. For this reason, we have carried out a preliminary investigation of the ⁵D₁ \rightarrow ⁷F_J emission of Eu³⁺ in GaN(Mg). Following Favennec et al.²¹, we use the temperature dependence of photoluminescence (TDPL) to gain further insight into the emission characteristics of the defects. The ⁵D₁-⁵D₀ energy separation is about 0.2 eV, equivalent to a temperature in excess of 2000 K. Assuming thermal equilibrium among ⁵D_J states, conventional spectroscopic wisdom would predict that emission involving ⁵D₁ levels should be very weak at room temperature, becoming even weaker at lower temperatures. In fact, the opposite is found to be the case.

Details of sample preparation and characterization have been reported previously¹⁷. GaN samples doped with Mg to concentrations of $\sim 1.1 \times 10^{19}$ cm⁻³ were implanted with various fluences of Eu⁺ (4 × 10¹³ cm⁻²@70 keV, 8.5 × 10¹³ cm⁻²@150 keV and 3 × 10¹⁴ cm⁻²@380 keV) along the surface normal, resulting in a quasi-uniform Eu concentration of $\sim 5 \times 10^{19}$ at/cm³ from 20 to 75 nm below the sample surface. The sample was annealed at 1673 K under 10.5 kbar of N₂ to remove implantation damage. Conventional photoluminescence (PL) spectroscopy yields Eu³⁺ spectra of samples mounted in a He cryorefrigerator in the temperature range from ~10 K to 300 K, using a tripled Nd:YAG 355 nm, 20 mW CW laser (Cobolt Zouk); residual second harmonic laser emission at 532.2 nm provides a useful wavelength reference in some spectral regions. Transient PL intensity was

measured using a pulsed 355 nm, Nd:YAG laser with a repetition rate of 10 Hz (Innolas, Spitlight 600) and recorded, at several different temperatures, on the strongest line originating on the ⁵D₀ level of the Eu0 configuration at ~619 nm. Data were acquired using an oscilloscope (Hameg HM1507) equipped with SP107 software. The decay time was calculated by monoexponential fitting of decay data and the risetime was estimated as described later. Our attempts to record transient emission from the ⁵D₁ failed due to the strong yellow band background in that spectral region (shown later in Figure 2).

Figure 1 summarises typical results of a cooling run, from 295 K to 13 K (hereafter written [295, 13 K]), obtained by plotting against temperature the *mean* PL intensities of transitions that terminate on the ${}^{7}F_{1}$ level. Considering the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ emission of Eu0, we first observe a rapid increase of intensity with cooling, in [295, 200 K], followed by an anomalous decrease, hitherto unexplained, in the range [200, 120 K]. An intensity plateau in [120,60 K] is succeeded by photochromic switching from Eu0 to Eu1(Mg) as the sample is further cooled towards the base temperature of the cryostat. Most of the switching occurs in a narrow range of temperature around 40 K, but a weak Eu1(Mg) signal appears at 150 K and grows slowly as the sample cools in the range [150, 70 K].

Eu0 transitions from the ⁵D₁ levels are also observed, but only at temperatures *below* ~200 K. Figure 2 shows typical sample spectra at 100 K (featuring mainly Eu0 PL) and at 13 K (only Eu1(Mg)). The temperature-dependent PL profile of the ⁵D₁ \rightarrow ⁷F₁ transition of Eu0 (Figure 1) shows an onset of emission below 200 K. In fact, a closer look at Figure 1 reveals that the decrease in ⁵D₀ \rightarrow ⁷F₁ emission and the increase in ⁵D₁ \rightarrow ⁷F₁ transitions points the complementary. Thus, the study of emission corresponding to ⁵D₁ \rightarrow ⁷F₁ PL of Eu0 in the temperature range [200, 120 K].

Figure 3 shows transient PL profiles, both in rise and in decay, for the Eu0 configuration, recorded by monitoring ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission at 619 nm. The decay lifetime of ${}^{5}D_{0}$ increases with cooling but is nearly constant below 200 K. In addition, the ${}^{5}D_{0}$ level shows a risetime which increases markedly with decreasing temperature from less than about 10 µs at 275 K to ~200 µs at 125 K, as estimated from the time taken for the signal to reach its peak.

The observation of ${}^{5}D_{1} \rightarrow {}^{7}F_{J}$ transitions enables us to verify the crystal field splittings of the ⁷F_J levels of Eu³⁺ ions and their energies¹⁶. Table 1 summarises the line positions (wavelengths) and energy levels obtained by harmonising the assignments of line positions to transitions arising on ${}^{5}D_{0}$ and ${}^{5}D_{1}$ levels, for each configuration. (The PL spectrum corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions can be found in Reference 17.) The PL spectrum was examined in high resolution; in regions of overlap, multiple Gaussian peak fitting helped to determine accurate line positions. The energy positions of various levels and their crystal field splitting were calculated by using the ground state of Eu³⁺ (⁷F₀) as a reference. The PL spectrum corresponding to ${}^{5}D_{1} \rightarrow {}^{7}F_{0}$ transitions of Eu0 recorded at 100 K shows emission peaks at 531.9 and 532.8 nm, corresponding to transition energies (energy positions of ${}^{5}D_{1}$ level) of 18801 cm⁻¹ and 18768 cm⁻¹. (The feature marked 'L' at 532.2 nm is the laser second harmonic.) After Eu0 to Eu1(Mg) switching, the emission spectrum, recorded at 13 K, clearly shows three peaks at 533.5, 533.7 and 533.8 nm. These emission peaks correspond to crystal field splitting of the ⁵D₁ level into $|0\rangle$ and sublevels which mix the $|\pm1\rangle$ states, denoted in Table 1 as ${}^{5}D_{1}(0)$, ${}^{5}D_{1}(1b)$, and ${}^{5}D_{1}(1a)$. In the EuO configuration, we expect ${}^{5}D_{1}(0) \rightarrow {}^{7}F_{0}$ transitions to be weak and in fact detect only 2 lines. The overall energy splittings of the ⁵D₁ level in the Eu0 and Eu1(Mg) configurations are \sim 33 cm⁻¹ (\sim 4.0 meV) and \sim 10 cm⁻¹ (1.2 meV), respectively. The difference in energy splitting of the ${}^{5}D_{1}$ levels of Eu0 and Eu1(Mg) therefore mirrors that found previously for their ⁷F₁ levels¹⁷. These findings confirm that the

crystal field acting on Eu1(Mg) is much more axial than that acting on Eu0: in other words, the Eu0 configuration is much less symmetric.

The relative intensities of Eu0 and Eu1(Mg) transitions also reflect their difference in symmetry in line with Judd-Ofelt theory²². In some way similar to the strongest 'hypersensitive' ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ transition, ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ is the most intense electric-dipole transition originating on the ${}^{5}D_{1}$ level. In the Eu0 configuration, the strongest ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ peak observed at 540.2 nm (18512 cm⁻¹), corresponds to a transition from the lowest sublevel of ${}^{5}D_{1}$ to the lowest sublevel of ${}^{7}F_{1}$, indicating the presence of thermalisation *within* the ${}^{5}D_{1}$ multiplet. The ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ emission of the Eu1(Mg) configuration is strong and well resolved.; each peak in this region shows a doublet character, related to very closely spaced ${}^{5}D_{1}(1b)$ and ${}^{5}D_{1}(1a)$ sublevels (18736 and 18733 cm⁻¹). The rather weak ${}^{5}D_{1}\rightarrow{}^{7}F_{2}$ transitions contain emission peaks corresponding to transitions from multiple sublevels of ${}^{5}D_{1}$ to ${}^{5}F_{2}$, as given in Table 1. Noticeably, in the Eu1(Mg) configuration, the out-lying line corresponding to the ${}^{5}D_{1}\rightarrow{}^{7}F_{2}$ transition, whereas the Eu0 configuration shows multiple peaks in the same region. This provides further information on the change in local symmetry around Eu³⁺ upon switching from Eu0 to Eu1(Mg) which requires further investigation with the aid of a complete crystal field analysis of the spectrum.

The TDPL intensity profile of ${}^{5}D_{1}\rightarrow{}^{7}F_{1}$ transitions of Eu0 recorded during cooling (Figure 1) reveals an onset of emission from ${}^{5}D_{1}$ at 200 K. Above 200 K the ${}^{5}D_{1}$ level can relax quickly through multi-phonon emission to ${}^{5}D_{0}$ levels of Eu³⁺, resulting in strong ${}^{5}D_{0}\rightarrow{}^{7}F_{J}$ emission. The cooling of samples below 200 K inhibits non-radiative relaxation between ${}^{5}D_{1}$ to ${}^{5}D_{0}$ levels and causes a non-equilibrium back-up of population in the ${}^{5}D_{1}$ level, which results in the observed ${}^{5}D_{1}\rightarrow{}^{7}F_{J}$ emission. This is further supported by the transient PL measurements. The ${}^{5}D_{0}$ lifetime increases from 275 K to 200 K and becomes constant at lower temperatures; the risetime increases sharply with decreasing temperature. In

a GaN:Eu sample, Bodiou et al²³ measured a short ⁵D₁ lifetime and proposed that the risetime of the ⁵D₀ level indicates 'an intermediate step through the ⁵D₁ level'.

Put simply, emission from ${}^{5}D_{1}$ occurs when the *risetime* of emission from ${}^{5}D_{0}$ exceeds the *lifetime* of the ${}^{5}D_{1}$ transitions. This condition is met at temperatures lower than ~200 K. While the effects of thermalisation *within* the excited state manifold of ${}^{5}D_{1}$ is evident in the spectral intensities, thermalisation does not apply between levels at low temperature, as pointed out by Binnemans²⁴, since the relative population of these states is determined mainly by details of the excitation cascade, filling different states at different rates. At higher temperatures, Eu³⁺ ions can relax into the ${}^{5}D_{0}$ level through interaction with the high-energy phonons of GaN. A relatively fast non-radiative interaction between the two levels at higher temperatures leads to a correlated increase of emission from ${}^{5}D_{0}$ at the expense of ${}^{5}D_{1}$.

In summary, the detailed investigation of ${}^{5}D_{1} \rightarrow {}^{7}F_{J}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ line positions enables us to confirm the Eu³⁺ ${}^{7}F_{J}$ level energies and their crystal field splittings, in both Eu0 and Eu1(Mg) configurations of the same defect. ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ is the most intense (hypersensitive) electric-dipole transition originating on the ${}^{5}D_{1}$ level in GaN(Mg):Eu samples. A comparative temperature-dependent study of PL intensity of the ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions and of the PL decay of the strongest ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions during [200, 120K] cooling. Thus, the results presented in this paper fully explain the TDPL profile of ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions during cooling, and also provide information regarding temperature-dependent transient behaviour of the ${}^{5}D_{0}$ level in the Eu0 configuration.

KPO'D, PRE and AKS acknowledge funding from EPSRC, UK (EP/N00275X/1). The authors thank Professor S. B. Rai, BHU for access to his laboratory for lifetime

measurements. The data presented in this paper is available for download from DOI: [DOI to be added in proofs].

References

- ¹J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett. **75**, 1189 (1999).
- ²K. Wang, , R. W. Martin, K. P. O'Donnell, V. Katchkanov, E. Nogales, K. Lorenz, E. Alves, S. Ruffenach and O. Briot, Appl. Phys. Lett. 87, 112107 (2005).
- ³B. Mitchell, D. Lee, D. Lee, A. Koizumi, J. Poplawsky, Y. Fujiwara and V. Dierolf, Phys. Rev. B **88**, 121202(R) (2013).
- ⁴H. Sekiguchi, M. Sakai, T. Kamada, H. Tateishi, A. Syouji and A. Wakahara, Appl. Phys. Lett. **109**, 151106 (2016).
- ⁵A. J. Steckl, J. Heikenfeld, D. S. Lee and M. Garter, Mater. Sci. Eng. B81, 97 (2001).
- ⁶R Mueller-Mach, G. O. Mueller, M. R. Krames and T. Trottier, IEEE J. Sel. Top. Quantum Electron **8**, 339 (2002).
- ⁷K. P. O'Donnell and B. Hourahine, Eur. Phys. J. Appl. Phys. 36, 91, (2006).
- ⁸A. Wakahara, H. Sekiguchi, H. Okada and Y. Takagi, J. Lumin. 132, 3113 (2012).
- ⁹M. Ishii, A. Koizumi and Y. Fujiwara, Appl. Phys. Lett. **107**, 082106 (2015).
- ¹⁰ I. S. Roqan, K. P. O'Donnell, R. W. Martin, P. R. Edwards, S. F. Song, A. Vantomme, K.
- Lorenz, E. Alves and M. Boćkowski, Phys. Rev. B 81, 085209 (2010).
- ¹¹Z. Fleischman, C. Munasinghe, A. J. Steckl, A. Wakahara, J. Zavada and V. Dierolf, Appl Phys B **97**, 607 (2009).

- ¹²D. Lee, A. Nishikawa, Y. Terai and Y. Fujiwara, Appl. Phys. Lett. **100**, 171904 (2012).
- ¹³H. Sekiguchi, Y. Takagi, T. Otani, H. Okada and A. Wakahara, J. Appl. Phys. **113**, 013105 (2013).
- ¹⁴J. K. Mishra, T. Langer, U. Rossow, S. Shvarkov, A. Wieck and A. Hangleiter, Appl. Phys. Lett. **102**, 061115 (2013).
- ¹⁵B. Mitchell, D. Lee, D. Lee, Y. Fujiwara and V. Dierolf, Appl. Phys. Lett. **103**, 242105 (2013).
- ¹⁶K. P. O'Donnell, P. R. Edwards, M. J. Kappers, K. Lorenz, E. Alves and M. Boćkowski, Phys. Status Solidi C 11, 662 (2014).
- ¹⁷K. P. O'Donnell, P. R. Edwards, M. Yamaga, K. Lorenz, M. J. Kappers, and M. Boćkowski, Appl. Phys. Lett. **108**, 022102 (2016).
- ¹⁸A. K. Singh, K. P. O'Donnell, P. R. Edwards, K. Lorenz, M. J. Kappers and M. Boćkowski, Sci. Rep. 7, 41982 (2017).
- ¹⁹S. Lany and A. Zunger, Appl. Phys. Lett. **96**, 142114 (2010); J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. Lett. **108**, 156403 (2012); see also J.J. Davies, Phys. Rev. **B87**, 235208 (2013)
- ²⁰J. B. Gruber, U. Vetter, T. Taniguchi, G. W. Burdick, H. Hofsass, S. Chandra, and D. K. Sardar, J. Appl. Phys. **110**, 023104 (2011).
- ²¹P. N. Favennec, H. L'Haridon, M. Salvi, D. Moutonnet, and Y. Le-Gillou, Electron. Lett. **25**, 718 (1989).
- ²²B. R. Judd, Phys. Rev. **127**, 750 (1962); G. S. Ofelt, J. Chem. Phys. **37**, 511 (1962).
- ²³L. Bodiou, A. Braud, J.-L. Doualan, R. Moncorgé, J. H. Park, C. Munasinghe, A. J. Steckl,
 K. Lorenz, E. Alves, and B. Daudin, J. Appl. Phys. **105**, 043104 (2009).

²⁴K. Binnemans, Coordin. Chem. Rev. **295**, 1 (2015).

Figures

Figure 1: Mean PL signal intensities of ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions of Eu³⁺ for Eu0 and Eu1(Mg) configurations as a function of temperature recorded during cooling in the range [295, 13K] under 355 nm excitation by a CW laser ($I_{ex} = 10 \text{ mW/cm}^{2}$).

Figure 2: PL spectra corresponding to ${}^{5}D_{1} \rightarrow {}^{7}F_{J}$ transitions of Eu³⁺ ions recorded at 100 K (in predominantly Eu0 configuration) and at 13 K after switching (Eu1(Mg) configuration) (see text.)

Figure 3: PL rise and decay profiles of the ${}^{5}D_{0}$ level monitored at the strongest ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu0 near 619 nm.

Table 1: Position of various energy levels/sublevels, and emission wavelengths corresponding to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ and ${}^{5}D_{1} \rightarrow {}^{7}F_{J}$ transitions of Eu³⁺ ions in Eu0 at 100 K and Eu1(Mg) at 13 K.

Eu0 (±3 cm ⁻¹)				Eu1(Mg)(±3 cm ⁻¹)			
${}^{5}D_{1}(0) =?, {}^{5}D_{1}(1b) = 18802, {}^{5}D_{1}(1a) = 18768 \text{ cm}^{-1};$				${}^{5}D_{1}(0) = 18743 \text{ cm}^{-1}, {}^{5}D_{1}(1b) = 18736 \text{ cm}^{-1}, {}^{5}D_{1}(1a) =$			
$^{5}D_{0} = 17038 \text{ cm}^{-1};$				18733 cm ⁻¹ ; ${}^{5}D_{0} = 16980$ cm ⁻¹			
${}^{7}F_{2}(0) = 1253 \text{ cm}^{-1}, {}^{7}F_{2}(1b) = 1200 \text{ cm}^{-1}, {}^{7}F_{2}(1a) =$				${}^{7}F_{2}(0) = 1204 \text{ cm}^{-1}, {}^{7}F_{2}(1b) = 923 \text{ cm}^{-1}, {}^{7}F_{2}(1a) = 898 \text{ cm}^{-1},$			
906 cm ⁻¹ , ${}^{7}F_{2}(2b) = 895$ cm ⁻¹ , ${}^{7}F_{2}(2a) = 880$ cm ⁻¹				${}^{7}F_{2}(2b) = 877 \text{ cm}^{-1}, {}^{7}F_{2}(2a) = 874 \text{ cm}^{-1} {}^{7}F_{1}(0) = 383 \text{ cm}^{-1},$			
${}^{7}F_{1}(0) = 439 \text{ cm}^{-1}$; ${}^{7}F_{1}(1b) = 393 \text{ cm}^{-1}$, ${}^{7}F_{1}(1a) = 258$				${}^{7}F_{1}(1b) = 350 \text{ cm}^{-1}, {}^{7}F_{1}(1a) = 335 \text{ cm}^{-1}; {}^{7}F_{0}(0) = 0 \text{ cm}^{-1}$			
cm^{-1} ; $^{7}\text{F}_{0} = 0 \text{ cm}^{-1}$							
$^{5}D_{1} \rightarrow ^{7}F_{J}$	Emission	${}^{5}D_{0} \rightarrow {}^{7}F_{J}$	Emission	${}^{5}D_{1} \rightarrow {}^{7}F_{J}$	Emission	$^{5}D_{0}\rightarrow^{7}F_{J}$	Emission
transitions	wavelength	transitions	wavelength	transitions	wavelength	transitions	wavelength
	(nm)		(nm)		(nm)		(nm)
${}^{5}D_{1} \rightarrow {}^{7}F_{0}$	531.9, 532.8	${}^{5}D_{0} \rightarrow {}^{7}F_{0}$	586.9	${}^{5}D_{1} \rightarrow {}^{7}F_{0}$	533.5, 533.7, 533.8	${}^{5}D_{0} \rightarrow {}^{7}F_{0}$	588.9
${}^{5}D_{1} \rightarrow {}^{7}F_{1}$	539.3, 540.2	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	595.9	${}^{5}D_{1} \rightarrow {}^{7}F_{1}$	543.4, 543.5	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	600.8
	543.3, 543.9		600.8		543.9, 544		601.3
	544.3, 545.2		602.7		544.7, 544.9		602.7
${}^{5}D_{1} \rightarrow {}^{7}F_{2}$	557.7, 558.6	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	618.9	${}^{5}D_{1} \rightarrow {}^{7}F_{2}$	559.5, 559.6	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	620.6
	559.9		619.5		559.8, 560.0		620.9
	560.5		619.9		560.4, 560.5		621.8
	568.6, 569.6		631.4		561.2, 561.3		622.7
	570.3, 571.3		633.5		570.9		633.9

