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Eu-doped GaN(Mg) exemplifies hysteretic photochromic switching between two 

configurations, Eu0 and Eu1(Mg), of the same photoluminescent defect. Using above-

bandgap excitation, we studied the temperature dependence of photoluminescence (TDPL) of 

transitions from the excited 5D1 level of Eu3+ for both configurations of this defect. During 

sample cooling, 5D1ĺ7F0,1,2 transitions of Eu0 manifest themselves at temperatures below 

~200 K, while those of Eu1(Mg) appear only during switching. The observed line positions 

verify crystal field energies of the 7F0,1,2 levels. TDPL profiles of 5D1ĺ7F1 and 5D0ĺ7FJ 

transitions of Eu0 show an onset of observable emission from the 5D1 level coincident with 

the previously observed, but hitherto unexplained, decrease in the intensity of its 5D0ĺ7FJ 

emission on cooling below 200 K. Hence the 5D0ĺ7FJ TDPL anomaly signals a back-up of 

5D1 population due to a reduction in phonon-assisted relaxation between 5D1 and 
5D0 levels at 

lower temperatures. We discuss this surprising result in the light of temperature-dependent 

transient luminescence measurements of Eu0. 
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Since the millenium, the doping of GaN with europium has gained considerable attention1-4 

on the strength of its potential application to the fabrication of red light emitting diodes5-9, 

with particular emphasis on the strongest, �hypersensitive�, transitions of Eu3+, denoted 

5D0ĺ7F2, near 620 nm.  In general, PL spectra of Eu-doped GaN feature emission from 

multiple �sites�, suggesting the possibility of modifying the local environment of Eu ions, 

thereby increasing the luminescence yield, by impurity- or defect- engineering7,10-11. Utilising 

a variety of sample preparation techniques, a number of researchers recently reported that co-

doping GaN:Eu with magnesium, the commercially successful p-type dopant of the III-nitride 

semiconductors, enhances Eu emission at room temperature and forms new defects12-16.  

 One clear advantage of our favoured technique of preparing GaN(Mg):Eu by high-

temperature annealing of Eu-implanted p-type GaN, as opposed to in situ growth techniques, 

is that it leads to simpler spectra: the red emission at room temperature of annealed, 

implanted samples comes from a single centre, suggesting a selective attraction between Eu 

and Mg atoms in the GaN lattice during annealing16. This centre was found to show hysteretic 

photochromic switching (HPS) between two configurations of the same defect (labelled Eu0 

and Eu1(Mg)); at low temperature, Eu0 spectral lines disappear and a spectrum of different 

symmetry, corresponding to Eu1(Mg), replaces them: there is a photochromic transformation 

between alternate defect configurations, with the rate of switching dependent upon 

temperature, light intensity and photon energy17-18. The reverse process, switching Eu1(Mg) 

back to Eu0, occurs when the sample warms above ~175 K; hence the photochromism is 

hysteretic with temperature. In the simplest defect model, the Eu0/Eu1(Mg) defect comprises 

an Eu atom, substituting for Ga, in close association with Mg, also substitutional, bonded to a 

common N atom17,. We have ascribed the observed changes of defect configuration to the 

well-known shallow-deep instability of the Mg-N bondlength19; in these experiments, the Eu 

spectrum monitors the disposition of the acceptor in the GaN lattice18.  
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Above-bandgap photo-excitation of GaN at 3.5 eV creates mobile electrons and holes 

and mimics their electrical injection in light emitting diodes; the excitation of emission from 

embedded Eu3+ ions therefore involves a cascade of decay processes. In both PL and EL, 

emission is dominated by transitions from the lowest excited 5D state, namely 5D0ĺ7FJ 

transitions, with the 5D0ĺ7F2 lines dominating by an order of magnitude. On the other hand, 

an approach to a complete spectroscopic analysis of the Eu-associated defects, such as that 

carried out for AlN:Eu by Gruber et al.20, requires us to consider both transitions from 5D0 to 

other states, such as 7F1,17 and transitions from higher-lying 5D levels. For this reason, we 

have carried out a preliminary investigation of the 5D1ĺ7FJ emission of Eu3+ in GaN(Mg). 

Following Favennec et al.21, we use the temperature dependence of photoluminescence 

(TDPL) to gain further insight into the emission characteristics of the defects. The 5D1-5D0 

energy separation is about 0.2 eV, equivalent to a temperature in excess of 2000 K. Assuming 

thermal equilibrium among 5DJ states, conventional spectroscopic wisdom would predict that 

emission involving 5D1 levels should be very weak at room temperature, becoming even 

weaker at lower temperatures.  In fact, the opposite is found to be the case.  

Details of sample preparation and characterization have been reported previously17. 

GaN samples doped with Mg to concentrations of ~1.1 × 1019 cm-3 were implanted with 

various fluences of Eu+ (4ௗ×ௗ1013ௗcm-2@70ௗkeV, 8.5ௗ×ௗ1013ௗcm-2@150ௗkeV and 3ௗ×ௗ1014ௗcm-

2@380ௗkeV) along the surface normal, resulting in a quasi-uniform Eu concentration of 

~5ௗ×ௗ1019ௗat/cm3 from 20 to 75ௗnm below the sample surface. The sample was annealed at 

1673 K under 10.5 kbar of N2 to remove implantation damage. Conventional 

photoluminescence (PL) spectroscopy yields Eu3+ spectra of samples mounted in a He 

cryorefrigerator in the temperature range from ~10 K to 300 K, using a tripled Nd:YAG 355 

nm, 20 mW CW laser (Cobolt Zouk); residual second harmonic laser emission at 532.2 nm 

provides a useful wavelength reference in some spectral regions. Transient PL intensity was 
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measured using a pulsed 355 nm, Nd:YAG laser with a repetition rate of 10 Hz (Innolas, 

Spitlight 600) and recorded, at several different temperatures, on the strongest line originating 

on the 5D0 level of the Eu0 configuration at ~619 nm. Data were acquired using an 

oscilloscope (Hameg HM1507) equipped with SP107 software. The decay time was 

calculated by monoexponential fitting of decay data and the risetime was estimated as 

described later. Our attempts to record transient emission from the 5D1 failed due to the strong  

yellow band background in that spectral region (shown later in Figure 2).  

 Figure 1 summarises typical results of a cooling run, from 295 K to 13 K (hereafter 

written [295, 13 K]), obtained by plotting against temperature the mean PL intensities of 

transitions that terminate on the 7F1 level. Considering the 5D0ĺ7F1 emission of Eu0, we first 

observe a rapid increase of intensity with cooling, in [295, 200 K], followed by an anomalous 

decrease, hitherto unexplained, in the range [200, 120 K]. An intensity  plateau in [120,60 K] 

is succeeded by photochromic switching from Eu0 to Eu1(Mg) as the sample is further 

cooled towards the base temperature of the cryostat. Most of the switching occurs in a narrow 

range of temperature around 40 K, but a weak Eu1(Mg) signal appears at 150 K and grows 

slowly as the sample cools in the range [150, 70 K].  

 Eu0 transitions from the 5D1 levels are also observed, but only at temperatures below 

~200 K. Figure 2 shows typical sample spectra at 100 K (featuring mainly Eu0 PL) and at 13 

K ( only Eu1(Mg)). The temperature-dependent PL profile of the 5D1ĺ7F1 transition of Eu0 

(Figure 1) shows an onset of emission below 200 K. In fact, a closer look at Figure 1 reveals 

that the decrease in 5D0ĺ7F1 emission and the increase in 5D1ĺ7F1 emission intensities are 

complementary. Thus, the study of emission corresponding to 5D1ĺ7F1 transitions points the 

way to an explanation for the anomalous dependence of the 5D0ĺ7F1 PL of Eu0 in the 

temperature range [200, 120 K]. 
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 Figure 3 shows transient PL profiles, both in rise and in decay, for the Eu0 

configuration, recorded by monitoring 5D0ĺ7F2  emission at 619 nm. The decay lifetime of 

5D0 increases with cooling but is nearly constant below 200 K. In addition, the 5D0 level 

shows a risetime which increases markedly with decreasing temperature from less than about 

10 ȝs at 275 K to ~200 ȝs at 125 K, as estimated from the time taken for the signal to reach 

its peak. 

The observation of 5D1ĺ7FJ transitions enables us to verify the crystal field splittings 

of the 7FJ levels of Eu3+ ions and their energies16. Table 1 summarises the line positions 

(wavelengths) and energy levels obtained by harmonising the assignments of line positions to 

transitions arising on 5D0 and 5D1 levels, for each configuration. (The PL spectrum 

corresponding to 5D0ĺ7FJ transitions can be found in Reference 17.) The PL spectrum was 

examined in high resolution; in regions of overlap, multiple Gaussian peak fitting helped to 

determine accurate line positions.  The energy positions of various levels and their crystal 

field splitting were calculated by using the ground state of Eu3+ (7F0) as a reference.  The PL 

spectrum corresponding to 5D1ĺ7F0 transitions of Eu0 recorded at 100 K shows emission 

peaks at 531.9 and 532.8 nm, corresponding to transition energies (energy positions of 5D1 

level) of 18801 cm-1 and 18768 cm-1. (The feature marked �L� at 532.2 nm is the laser second 

harmonic.) After Eu0 to Eu1(Mg) switching, the emission spectrum, recorded at 13 K, clearly 

shows three peaks at 533.5, 533.7 and 533.8 nm. These emission peaks correspond to crystal 

field splitting of the 5D1 level into |0> and sublevels which mix the |±1> states, denoted in 

Table 1 as 5D1(0), 5D1(1b), and 5D1(1a). In the Eu0 configuration, we expect 5D1(0)ĺ7F0 

transitions to be weak and in fact detect only 2 lines. The overall energy splittings of the 5D1 

level in the Eu0 and Eu1(Mg) configurations are ~33 cm-1 (~4.0 meV) and ~10 cm-1  (1.2 

meV), respectively. The difference in energy splitting of the 5D1 levels of Eu0 and Eu1(Mg) 

therefore mirrors that found previously for their 7F1 levels17. These findings confirm that the 
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crystal field acting on Eu1(Mg) is much more axial than that acting on Eu0: in other words, 

the Eu0 configuration is much less symmetric.  

The relative intensities of Eu0 and Eu1(Mg) transitions also reflect their difference in 

symmetry in line with Judd-Ofelt theory22. In some way similar to the strongest 

�hypersensitive� 5D0ĺ7F2 transition, 5D1ĺ7F1 is the most intense electric-dipole transition 

originating on the 5D1 level. In the Eu0 configuration, the strongest 5D1ĺ7F1 peak observed 

at 540.2 nm (18512 cm-1), corresponds to a transition from the lowest sublevel of 5D1 to the 

lowest sublevel of 7F1, indicating the presence of thermalisation within the 5D1 multiplet. The 

5D1ĺ7F1 emission of the Eu1(Mg) configuration is strong and well resolved.; each peak in 

this region shows a doublet character, related to very closely spaced 5D1(1b) and 5D1(1a) 

sublevels (18736 and 18733 cm-1). The rather weak 5D1ĺ7F2 transitions contain emission 

peaks corresponding to transitions from multiple sublevels of 5D1 to 7F2, as given in Table 1. 

Noticeably, in the Eu1(Mg) configuration, the out-lying line corresponding to the 5D1 ĺ7F2 

transition is a singlet, similar to the situation for the 5D0ĺ7F2 transition, whereas the Eu0 

configuration shows multiple peaks in the same region. This provides further information on 

the change in local symmetry around Eu3+ upon switching from Eu0 to Eu1(Mg) which 

requires further investigation with the aid of a complete crystal field analysis of the spectrum.  

The TDPL intensity profile of 5D1ĺ7F1 transitions of Eu0 recorded during cooling 

(Figure 1) reveals an onset of emission from 5D1 at 200 K. Above 200 K the 5D1 level can 

relax quickly through multi-phonon emission to 5D0 levels of Eu3+, resulting in strong 

5D0ĺ7FJ emission. The cooling of samples below 200 K inhibits non-radiative relaxation 

between 5D1 to 5D0 levels and causes a non-equilibrium back-up of population in the 5D1 

level, which results in the observed 5D1ĺ7FJ emission. This is further supported by the 

transient PL measurements. The 5D0 lifetime increases from 275 K to 200 K and becomes 

constant at lower temperatures; the risetime increases sharply with decreasing temperature. In 
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a GaN:Eu sample, Bodiou et al23 measured a short 5D1 lifetime and proposed that the risetime 

of the 5D0 level indicates �an intermediate step through the 5D1 level�.  

Put simply, emission from 5D1 occurs when the risetime of emission from 5D0 exceeds 

the lifetime of the 5D1 transitions. This condition is met at temperatures lower than ~200 K. 

While the effects of thermalisation within the excited state manifold of 5D1 is evident in the 

spectral intensities, thermalisation does not apply between levels at low temperature, as 

pointed out by Binnemans24, since the relative population of these states is determined mainly 

by details of the excitation cascade, filling different states at different rates.  At higher 

temperatures, Eu3+ ions can relax into the 5D0 level through interaction with the high-energy 

phonons of GaN. A relatively fast non-radiative interaction between the two levels at higher 

temperatures leads to a correlated increase of emission from 5D0 at the expense of 5D1. 

In summary, the detailed investigation of 5D1ĺ7FJ and 5D0ĺ7FJ  line positions enables 

us to confirm the Eu3+ 7FJ level energies and their crystal field splittings, in both Eu0 and 

Eu1(Mg) configurations of the same defect. 5D1ĺ7F1 is the most intense (hypersensitive) 

electric-dipole transition originating on the 5D1 level in GaN(Mg):Eu samples. A comparative 

temperature-dependent study of PL intensity of the 5D1ĺ7F1 and 5D0ĺ7F1 transitions and of 

the PL decay of the strongest 5D1ĺ7F1 and 5D0ĺ7F2 transitions provides an explanation for 

the anomalous decrease in Eu0 emission intensity of 5D0ĺ7FJ transitions during [200, 120K] 

cooling. Thus, the results presented in this paper fully explain the TDPL profile of 5D0ĺ7FJ 

transitions during cooling, and also provide information regarding temperature-dependent  

transient behaviour of the 5D0 level in the Eu0 configuration.  

KPO�D, PRE and AKS acknowledge funding from EPSRC, UK (EP/N00275X/1). The 

authors thank Professor S. B. Rai, BHU for access to his laboratory for lifetime 
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measurements. The data presented in this paper is available for download from DOI: [DOI to 

be added in proofs]. 
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Figures 

Figure 1: Mean PL signal intensities of 5D1ĺ7F1 and 5D0ĺ7F1 transitions of Eu3+ for Eu0 

and Eu1(Mg) configurations as a function of temperature recorded during cooling in the 

range [295, 13K] under 355 nm excitation by a CW laser (Iex = 10 mW/cm2). 

  

Figure 2: PL spectra corresponding to 5D1ĺ7FJ transitions of Eu3+ ions recorded at 100 K (in 

predominantly Eu0 configuration) and at 13 K after switching (Eu1(Mg) configuration) (see 

text.)  

Figure 3: PL rise and decay profiles of the 5D0 level monitored at the strongest 5D0ĺ7F2 

transition of Eu0 near 619 nm.  
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Table 1: Position of various energy levels/sublevels, and emission wavelengths 

corresponding to 5D0Ѝ7FJ and 5D1Ѝ7FJ transitions of Eu3+ ions in Eu0 at 100 K and 

Eu1(Mg) at 13 K. 

 

 

 

 

 

 

 

Eu0 (±3 cm-1) 
5D1(0) =?,  5D1(1b) = 18802, 5D1(1a) = 18768  cm-1; 
5D0 =17038 cm-1; 
7F2(0) = 1253 cm-1, 7F2(1b) = 1200 cm-1, 7F2(1a) = 

906 cm-1, 7F2(2b) =  895 cm-1, 7F2(2a) = 880 cm-1 
7F1(0) = 439 cm-1; 7F1(1b) = 393 cm-1, 7F1(1a) = 258 

cm-1; 7F0 = 0 cm-1 

Eu1(Mg)(±3 cm-1) 

5D1(0) = 18743 cm-1, 5D1(1b) = 18736  cm-1, 5D1(1a) = 

18733  cm-1 ; 5D0 = 16980 cm-1 
7F2(0) = 1204 cm-1, 7F2(1b) = 923  cm-1, 7F2(1a) = 898 cm-1, 
7F2(2b) = 877 cm-1, 7F2(2a) = 874 cm-1 7F1(0) = 383 cm-1, 
7F1(1b) = 350  cm-1, 7F1(1a) = 335 cm-1;  7F0 (0) = 0 cm-1 

5D1ĺ7FJ 

transitions 

Emission 

wavelength  

(nm) 

5D0ĺ7FJ 

transitions 

Emission 

wavelength 

(nm)

5D1ĺ7FJ 

transitions 

Emission 

wavelength 

(nm)

5D0ĺ7FJ 

transitions 

Emission  

wavelength 

(nm)
5D1ĺ7F0 531.9, 532.8 5D0ĺ7F0 586.9 5D1ĺ7F0 533.5, 533.7, 533.8 5D0ĺ7F0 588.9  

5D1ĺ7F1 539.3, 540.2 

543.3, 543.9 

544.3, 545.2 

5D0ĺ7F1 595.9 

600.8  

602.7 

5D1ĺ7F1 543.4, 543.5  

543.9, 544 

544.7, 544.9 

5D0ĺ7F1 600.8 

601.3 

602.7  
5D1ĺ7F2 557.7, 558.6 

559.9 

560.5 

568.6, 569.6 

570.3, 571.3 

5D0ĺ7F2 618.9 

619.5 

619.9 

631.4 

633.5 

5D1ĺ7F2 559.5, 559.6 

559.8, 560.0 

560.4, 560.5 

561.2, 561.3  

570.9  

5D0ĺ7F2 620.6 

620.9 

621.8 

622.7 

633.9 
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