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Abstract
The proofs of quantum nonlocality due to Greenberger, Horne and Zeilinger and due to Hardy are qualitatively different from
that of Bell insofar as they rely only on a consideration of whether events are possible or impossible, rather than relying on
specific experimental probabilities. We consider the scenario of a bipartite nonlocality experiment, in which two separated
experimenters each have access to some measurements they can perform on a system. In a physical theory, some outcomes of
this experiment will be labelled possible, others impossible, and an assignment of the values 0 (impossible) and 1 (possible)
to these different outcomes forms a table of possibilities. Here, we consider the computational task of determining whether
or not a given table of possibilities constitutes a departure from possibilistic local realism. By considering the case in which
one party has access to measurements with two outcomes and the other three, it is possible to see at exactly which point this
task becomes computationally difficult.

1 Introduction

Since the inception of quantum mechanics, the apparent nonlocality of the theory has been a
cornerstone of debate about the foundations of the theory. Einstein, together with Podolsky and
Rosen [9], argued that nonlocality, in apparent contravention of the information-propagation bound
of the speed of light from special relativity, was evidence of the incompleteness of the quantum-
mechanical description of nature. The related concept of nonlocal steering, whereby a choice of
measurement made by one party ‘steers’ the partner’s system to one of a pair of quantum states, was
also the subject of Einstein’s scrutiny in a letter to Edwin Schrödinger [8], in which it is noted that
a local description of steering necessitates nature to have what we would now call the ψ-epistemic
property: that the quantum state is not instantiated as a part of nature’s ontology [13, 20].

In this paper, we will consider ‘Bell experiments’ of the classic form. Two experimenters
have laboratories in separated locations, performing measurements on two quantum systems; each
experimenter has a variety of measurements at their disposal, and once the measurements are done,
they compare results. Quantum theory provides a framework in which the probability of the different
outcomes, given the measurement settings chosen by each experimenter, can be calculated. In 1966,
Bell showed that in some cases, the statistics predicted by quantum mechanics were incompatible
with a notion of local realism: namely that each experimenter was performing measurements on a
system with a definite state, independent of the measurement choices made at the other location [5].
When such an explanation in terms of local hidden variables is not possible, we would say that the
distribution is nonlocal, or demonstrates Bell nonlocality. This motivates a natural decision problem:
we are given a table of empirical data from such a Bell experiment, and asked to decide whether or
not it constitutes a demonstration of nonlocality.

In 1991, Avis et al. [4] demonstrated that determining whether or not a given table of these
operational predictions for a Bell experiment had a local hidden variable explanation was
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204 On the computational complexity of detecting possibilistic locality

NP-hard, building on work by Pitowsky [19]. In this paper, we consider a more extreme, possibilistic,
manifestation of nonlocality; one in which it is not only true that we cannot account for the specific
experimental probabilities with a local hidden variable model, but that we cannot even account for
the possibilities. In doing so, we will identify the minimal operational requirements for this problem
to remain NP-hard, filling in the final gap in a categorisation started by Mansfield and Fritz [15, 16]
and continued by Abramsky et al. [1]. This nonlocality is a feature only of the table of possibilities
at hand, with no dependence on the source of the correlations. Accordingly, the first sections of this
paper will focus only on the decision problem, and no knowledge about how such a table might be
calculated within the formalism of quantum mechanics is required. In the final section, we turn our
focus to those data tables accessible within quantum theory, and demonstrate how we can embed a
large set of 3-SAT problems into a quantum formalism.

2 Background

In a Bell experiment, two researchers, canonically referred to as Alice and Bob, are placed at
spacelike separated locations and perform experiments on a pair of quantum systems that may
have interacted in the past. Each of the experimenters can choose between a range of measurement
selections: Alice chooses a ∈ A, Bob chooses b ∈ B. Alice’s measurement can take different outcomes
{0, 1, 2, . . . , l − 1}, and Bob’s has possible outcomes {0, 1, 2, . . . , m − 1}. If Alice and Bob have k
different measurement choices, and each has a maximum of l different measurement outcomes (i.e.
l = m), this is known as a (2, k, l) scenario [1, 15]: there are two parties, with access to k
measurements, each with l different outcomes. In this paper, we will focus on the cases where the
measurements available to Alice have a different number of measurement outcomes to those of Bob.

Each combination of measurement settings and measurement outcomes corresponds to an event,
and quantum mechanics gives us the ability to calculate the probabilities that a specific pair of
measurement outcomes will be observed, given the chosen values of the measurement settings. We
can present these in a table, for example in Figure 1. We will follow the notation of Mansfield and
Fritz for these tables, in which row and each column, separated by lines, corresponds to a choice of
measurement made by one of the two parties, respectively. Each row or column contains multiple
subrows or subcolumns, which correspond to outcomes of that measurement. The intersection of a
row and column is the probability of that outcome occurring, given the choices of measurement. For
example, if Alice chooses measurement setting A2, and Bob chooses measurement setting B1, then
we see from the table that the probability of seeing the outcome (a2 = 0, b2 = 1) is 3

8 . We will refer to
each of the measurement settings for Alice and Bob as a measurement row, or measurement column,
respectively. Within a measurement row or column, each measurement outcome is associated with
a subrow or subcolumn. We will sometimes refer to the intersection of a measurement row and
a measurement column, containing the outcome probabilities or possibilities for that setting, as a
‘context’.

This table of probabilities can be converted into a table of possibilities via a possibilistic collapse,
explored by Abramsky [2], and by Mansfield and Barbosa [17]. We apply to the event probabilities,
the mapping

f (p) =
{

1 p �= 0

0 p = 0,
(1)

which acts as a homomorphism between the normal probability semiring R+, and the Boolean
semiring on {0, 1}. The result of such a collapse applied to the Clauser-Horne-Shimony-Holt (CHSH)
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FIGURE 1. Probability and possibility tables for a CHSH [6] experiment. Alice has two available
measurements: measurement A1 with outcome a1 and a′

1; and measurement A2 with outcomes a2
and a′

2. Bob has measurements denoted similarly. Typically, however, we will not label outcomes as
the properties we consider are invariant under relabelling.

FIGURE 2. A simple signalling situation; if Alice sees the outcome a1 = 1, she knows Bob must
have chosen measurement setting B2.

scenario is also presented in Figure 1. The remainder of this article will focus on this possibilistic
case. We can consider such a possibility table as a function T : A × B × {0, . . . , l − 1} × {0, . . . , m −
1} → {0, 1}, taking as its input the measurement settings for the two locations alongside a choice of
a particular outcome event, and returning whether or not that event is possible or impossible. This
can be thought of as a conditional possibility P(L, M |A, B): the possibility of specific measurement
outcomes given the choices of measurement setting.

Given a table of probabilities or possibilities as shown above, there are two questions of particular
foundational relevance that we might consider: whether the table provides an example of signalling,
and if not, whether it still provides an example of nonlocality.1

The notion of signalling encapsulates the idea that a particular distribution could be used as a
resource to superluminally signal information between the two parties. An example of a signalling
situation is demonstrated in Figure 2. We will focus on no-signalling tables, which cannot be used
for signalling; all quantum-mechanically accessible tables are of this type. In terms of how our
tables are constructed, this means that if a subrow (subcolumn) contains a 1, then it must contain a
1 in every column (row); if a measurement outcome is possible, then it is possible no matter which
measurement choice is made at the other site.

1 In any real experiment, due to noise it is likely that the table of observed data might look like a signalling data table.
Valid notions of nonlocality and contextuality in this setting have been explored, for example by Dzhafarov et al. [7]. However,
in this paper we are dealing with possibilistic idealisations of data, and so we will ask that the tables obey a (possibilistic)
no-signalling restriction exactly.
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206 On the computational complexity of detecting possibilistic locality

FIGURE 3. A table of possibilities that does not exhibit nonlocality; it can be decomposed into a sum
of deterministic grids that obey no-signalling.

FIGURE 4. Tables of possibilities for the Hardy paradoxes: first, a complete table of possibilities;
second, a more general presentation in which blank spaces can be replaced with either 1 or 0.

If a probability or possibility distribution is nonlocal, it means that it cannot arise from a
local hidden variables theory; any model for the process in which each of the separated quantum
systems are considered to have their own internal state, independent of choices made in at the other
experimental location cannot reproduce the correct statistics. By an extension of Fine’s Theorem due
to Abramsky and Brandenburger [3, 10], we can, without loss of generality, restrict our attention
to deterministic hidden variable theories, where in every measurement context there is a single 1
entry. We say that a table is local if it can be decomposed into a mixture of deterministic tables
that obey a no-signalling restriction. The mixture of two tables T1 and T2 is defined to be the sum
T1 + T2, where addition is performed in the Boolean semiring. Intuitively, an outcome is possible
in the mixture of two tables if and only if it is possible in at least one of those tables. Figure 3
demonstrates a simple example of a table that is local, as it permits a decomposition into grids
corresponding to deterministic local hidden variables.

In 1993, Hardy [12] demonstrated that the table in Figure 4 was realisable quantum mechanically;
there exists a quantum state, and quantum measurements performable on two separated subsystems
that yield the pattern of possible and impossible events. The ‘1’ entry in the top left corner cannot
be part of a deterministic grid that obeys no-signalling; this can be seen by noting that such a grid
would have to include the top-right 1 in the top-right context and the bottom-left 1 in the bottom-left
context, and these would together imply that there should be a 1 entry in the bottom right of the
bottom right context, where in fact there is a 0. This is the smallest possibility table that can yield
such nonlocality [15].

3 The locality decision problem and incompleteness of Hardy’s paradox

These considerations motivate a decision problem: does a given table of possibilities constitute a
demonstration of nonlocality?
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DEFINITION 1 ((l, m)-POSSIBILISTIC LOCALITY)
Instance: a possibilistic table of data represented by a function T : A×B×{1, . . . , l}×{1, . . . , m} →
{0, 1}.

Question: does there exist a set of functions Ti, such that the Ti are no-signalling, deterministic
and T = ∑

i Ti?

This represents a two-party nonlocality scenario in which Alice has access to measurements with
m outcomes, and Bob has access to measurements with l outcomes. We are given a possibility table
and asked whether or not it displays nonlocality. In general, we will take |A| = |B| = n to maintain
a single scaling factor; in fact this change is without loss of generality. In the case where l = m, we
will denote this problem merely l-POSSLOC. While it is not essential, we will also require that the
data tables obey the possibilistic no-signalling principle; this merely streamlines the wording of the
theorems. References [16, 17] call a specific arrangement of 0 and 1 entries in a table an empirical
model; we shall refer to it as an instance of the decision problem.

THEOREM 1
[16] 2-POSSLOC is in P.

PROOF. This proof proceeds by showing that the only kind of possibilistic nonlocality that can occur
in the two-outcome case is the one originally identified by Hardy [12], as depicted in Figure 4 (b); a
table is nonlocal if and only if it contains an example of the Hardy paradox.

Since the appearance of this structure is equivalent to possibilistic nonlocality in this case, an
algorithm to determine whether or not a given data table is possibilistically local or nonlocal reduces
to checking each possible set of four contexts for the structure. There are n2(n−1)2/4 contexts, so
since checking for the appearance of the Hardy paradox is possible in constant time, our algorithm
runs in O(n4). �

However, this argument is specific to the case in which we have measurements with at most two out-
comes on each side. As an illustration that there are quantumly-accessible nonlocal data tables that
are not reducible to a fine-graining of a Hardy paradox, we will now demonstrate a novel possibilistic
nonlocality scenario in the (2,3) case. This will be a generalisation of Hardy’s proof of Bell’s theorem.

Figure 5 shows an equatorial slice of the Bloch sphere, and a set of states of Bob’s system
to which he can be ‘steered’ by Alice. The Bloch sphere is a representation of the state space
of a quantum system of dimension 2 as a sphere, in which two orthogonal quantum states are
mapped to antipodal points on the sphere; this mapping is a case of the Hopf fibration. Taking
an equatorial slice can be thought of as restricting to the case of rebits, states that can be
represented as vectors over R2 rather than C2. For each pair of points on the circle, the line
between which goes through ρ, there is a measurement that Alice can perform such that if she
gets one outcome, Bob’s system is left in the state corresponding to one of the points, and if she
gets the other, Bob’s system is left in the other. As such, we can associate Alice’s measurements
with such pairs of points, which are said to be decompositions of ρ. The measurements Bob
can perform on the state manifest themselves in two ways in the diagram. Any set of points
such that the centre of the circle is in their convex hull is a valid Positive Operator Valued
Measure (POVM) measurement for Bob; we will restrict him to measurements with either 2 or
3 outcomes, so his measurements are either a pair of antipodal points, or a triple with the centre
in their convex hull. Impossible events occur when Bob’s system is steered to a state ψ , and a
measurement is performed that contains the element ψ⊥, the point antipodal to ψ on the circle. For
clarity, points antipodal to those that Alice can steer Bob to are not shown in Figure 5. Constructing
the possibility table for this steering scenario reveals the structure presented in Figure 6.
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208 On the computational complexity of detecting possibilistic locality

FIGURE 5. Points on the Bloch sphere to which Alice’s ensemble can be steered, revealing a
generalisation of the Hardy paradox.

FIGURE 6. A generalized Hardy paradox available for a two qubit measurement, with a two-outcome
projective measurement at one site and a three-outcome POVM measurement at the other.

The measurement rows denote pairs of states to which Alice can steer Bob; the measurement
columns represent measurements that Bob is able to perform. We now present this paradox
minimally, demonstrating that it is neither a Hardy paradox nor a fine-graining of a Hardy paradox.
Therefore, the following statement holds:

PROPOSITION 1
The Hardy paradox is not universal even for quantumly-accessible possibilistic nonlocality as long
as one party has access to three-outcome measurements.
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On the computational complexity of detecting possibilistic locality 209

We see that in some sense this can be thought of as a generalisation of Hardy’s paradox. The third
measurement row acts to convert the two right-hand measurement columns into a single effective
column identical to that of the standard Hardy paradox, since we see that in any deterministic, no-
signalling grid containing the above specified ‘1’ entry, we cannot have that both measurement
columns 2 and 3 have their 1 entries in the rightmost subcolumn. With this rightmost column
effectively eliminated, we are left with the form of the Hardy paradox.

4 (2,3)-POSSLOC is NP-complete

We can see that (l, m)-POSSLOC is in NP; to demonstrate that a data table is possibilistically local, we
can specify a possibilistically local hidden variable model that accounts for each of the occurrences
of the possible events (1 entries) within the problem instance. Such a witness is only polynomially-
sized, since there are only polynomially many 1 entries and each data table is polynomially sized; that
they sum to the table in question can also be checked in polynomial time. The rest of this section,
then, will be a proof of NP-hardness. We note that since Mansfield and Fritz [15] showed that 2-
POSSLOC was in P and Abramsky, Gottlob and Kolaitis showed that 3-PossLoc and the three-party
generalisation of 2-POSSLOC were NP-complete, this leaves (2, 3)-POSSLOC as the only remaining
case to have its complexity analysed.

We will demonstrate that (2, 3)-POSSLOC is NP-complete. First, we will introduce, following
Abramsky, Gottlob and Kolaitis, the concept of a robust satisfiability problem; we will then
demonstrate the NP-completeness of a specific family of robust satisfaction problems, and show
a polynomial-time embedding of such problems into (2, 3)-POSSLOC.

DEFINITION 2 (r-ROBUST satisfiability problems)
For a satisfiability decision problem S, the problem r-ROBUST S to be the decision problem that,
given an instance of S, asks whether or not every assignment of r variables in the problem that
do not directly cause one of the clauses to be false, can be extended to a satisfying assignment
of the problem.

THEOREM 2
The (2,3)-POSSLOC decision problem is NP-complete.

PROOF. We will now introduce the notion of 0- and 1-VALID 3-SAT. This restriction is not strictly
necessary for this proof, but we will see later that it has a bearing on the computational hardness of
deciding locality for quantum-mechanically accessible possibility tables.

DEFINITION 3
0-VALID 3-SAT is the set of 3-SAT decision problems that are satisfied by assigning a value of 0 to
all variables.

�
We will define 1-VALID 3-SAT analogously. Now, we will demonstrate that 2-ROBUST 0-VALID

1-VALID 3-SAT, the set of 2-ROBUST 3-SAT instances which are both 0-VALID and 1-VALID, is NP-
complete. We will then demonstrate how such a problem can be embedded into (2, 3)-POSSLOC.

LEMMA 1
2-ROBUST 0-VALID 1-VALID 3-SAT is NP-complete.
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210 On the computational complexity of detecting possibilistic locality

PROOF OF LEMMA. Consider a general 3-SAT instance C = ∧
i ci, where ci are clauses consisting

of the disjunction of three literals or negated literals. We will introduce two new variables x and y,
and apply the mapping f to each clause ci defined by:

f (l1 ∪ l2 ∨ ◦l3) = (l1 ∨ l2 ∨ ◦l3 ∨ ¬x), (2)

f (¬l1 ∨ ¬l2 ∨ ◦l3) = (¬l1 ∪ ¬l2 ∨ ◦l3 ∨ y), (3)

in which the ◦ symbol is being used to denote the presence or absence of a ¬ symbol, and should
be taken as constant across instances of the same variable within the equations. By the pigeonhole
principle, each clause must contain either at least two positive literals, or at least two negated literals,
and so f is total. We note that now, every clause of C′ = ∧

i f (ci) contains at least one positive literal
and at least one negative literal, and so C′ is both 0-valid and 1-valid.

We note that it is possible now to convert this 4-SAT instance back to a 3-SAT instance by the
following procedure, mapping each clause to a pair of equisatisfiable clauses (which we will refer to
as an effective clause):

(◦l1 ∪ ◦l2 ∨ ◦l3 ∨ ¬x) → (◦l1 ∪ ◦l2 ∨ z) ∧ (¬z ∨ ◦l3 ∨ ¬x) (4)

(◦l1 ∪ ◦l2 ∨ ◦l3 ∨ y) → (◦l1 ∪ ◦l2 ∨ z) ∧ (¬z ∨ ◦l3 ∨ y). (5)

We note also that this adjustment maintains 0-validity and 1-validity, since we can choose an order
on the {◦li} such that each of the two clauses in the effective clause contains a positive and a negative
literal. We note that since each effective clause contains either ¬x or y, setting x to 0 and y to 1 leads
to a satisfying assignment for any assignment choices of the other variables.

We can now verify that this transformed instance is 2-ROBUSTly satisfiable if and only if our
original 3-SAT instance was satisfiable. We will consider the possibilities on a case-by-case basis,
depending on whether or not the variables x or y have been assigned valuations of 1 and 0,
respectively:

1. If neither x is fixed to 1 nor y is fixed to 0, then we set x to 0 and y to 1. As mentioned above,
this yields a satisfying assignment. If one or more z has been assigned a value, we may need
to assign some li to make the affected clauses valid. Since this affects at most two clauses it
can be seen that it is always possible to satisfy such a modified pair of clauses.

2. If exactly one of x is fixed to 1 or y is fixed to 0, then, removing all instances of the ¬x or
y literals respectively still leaves the instance either 0-valid or 1-valid, and so the instance is
satisfiable by definition.

3. If we fix both x to 1 and y to 0, then removing the ¬x and y literals from C′ transforms it back
into C, and therefore this restriction has a satisfying assignment if and only if C did originally.

Therefore, since 3-SAT is NP-hard, so is 2-ROBUST 0-VALID 1-VALID 3-SAT. It is in NP since
there are only O(n2) different pairs of variables to set, and so the witness size to demonstrate a set
of assignments that display robustness is still only polynomially sized. Hence, 2-ROBUST 0-VALID

1-VALID 3-SAT is NP-complete. �
We note that a stronger version of this result was independently derived by Ham [11].

COROLLARY 1
2-ROBUST 3-SAT is NP-complete.

We note now that we will only need the fact that 2-ROBUST 3-SAT is NP-complete for the rest
of this proof; the motivation for having proven that the 0-VALID 1-VALID is also NP-complete will
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On the computational complexity of detecting possibilistic locality 211

become apparent when considering which of these possibility tables are realisable within quantum
mechanics in Section 5.

LEMMA 2
There is a polynomial-time embedding of 2-ROBUST 3-SAT into (2,3)-POSSLOC.

PROOF OF LEMMA. The reduction algorithm is as follows:

• For each variable in the 2-ROBUST 3-SAT instance, we add a measurement to the party with
two-outcome measurements available to them, to which we will assign the measurement rows.
We pick any ordering of the variables to do this.

• For each clause in the 2-ROBUST 3-SAT instance, we add a measurement to the party with
three-outcome measurements available to them; these are our measurement columns. This is
a departure from the strategy of Abramsky, Gottlob and Kolaitis, whose constructions have a
direct symmetry between the rows and columns.

• For each intersection of a variable row and clause column, such that the variable is represented
positively in the clause, we have the measurement possibilities given by:

depending on whether the variable is the first, second or third variable in the clause with respect
to our variable ordering.

• For each intersection of a variable row and clause column, such that the variable is represented
negatively in the clause, we have the measurement possibilities given by:

depending on whether the variable is the first, second or third variable in the clause with respect
to our variable ordering.

We can see that the choice of subrow in a measurement row corresponds to an assignment of the
associated variable, and that the clause structure effectively bans the assignment disallowed by that
specific clause, for example the clause (x1 ∨ x2 ∨ x3) corresponds to the possibility table

We see we cannot simultaneously assign a 1 to each of the top subrows as part of a deterministic
grid. It now only remains to be shown that choosing a specific ‘1’ instance, which needs to be
extended to a deterministic grid, is the equivalent of fixing at most two variable assignments in the
embedded 3-SAT instance. We note that choosing any ‘1’ entry fixes the valuation of the variable
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212 On the computational complexity of detecting possibilistic locality

associated with its measurement row; the ‘1’ is in some measurement subrow and corresponds to a
value assignment for that variable. Additionally, each measurement subcolumn has exactly one ‘0’
entry by construction: if this ‘0’ instance is not in the same measurement row as the chosen ‘1’ entry,
this also fixes a variable assignment for the measurement row containing the ‘0’ entry. In the example
directly above, if the bottom-left ‘1’ is chosen, then we see from the table that this is equivalent to
asking that x3 = 1, x1 = 1. Therefore this construction constitutes a polynomial-time reduction from
2-ROBUST 3-SAT to (2, 3)-POSSLOC. �

Therefore, since 2-ROBUST 3-SAT is NP-hard; any instance of 2-ROBUST 3-SAT can be reduced
to an instance of (2,3)-POSSLOC in polynomial time; and (2,3)-POSSLOC is in NP, (2,3)-POSSLOC

is NP-complete.

5 Quantum realisation

Thus far in the paper we have cared only about whether or not a given table was achievable within
the set of no-signalling theories, rather than whether or not it could arise from a particular quantum
mechanical scenario. When we restrict ourselves to quantumly accessible distributions, all these
problems become open.

THEOREM 3
All the quantumly accessible instances of the above (2,3)-POSSLOC construction in which the party
with three-outcome measurements has access only to a 2-dimensional quantum system are 0-valid
and 1-valid under a variable renaming that can be calculated in linear time.

PROOF. Each measurement row corresponds to a two-outcome measurement. Without loss of
generality, we can take these to be projective measurements since any two-outcome POVM is a
convex mixture of such projectors. Since the possibility table would then be a statistical mixture
of two or more other tables, noting that the statistical mixture of two local tables is always local,
if there exists a quantum mechanically accessible table using POVMs for measurement choices for
Alice, there must exist one using Projector Valued Measure (PVMs). If our entangled state is pure,
then this means that each outcome steers Bob’s system to one of two pure states that convexly mix
to Bob’s reduced state. Pure states, and measurement directions, of Bob’s system are represented by
rays in a 2-dimensional Hilbert space, which can be represented as a collection of points a sphere
S2, a representation known as the Bloch sphere.

We note that each measurement column corresponds to a three-element POVM, and as such the
convex hull of each triple contains the origin. Additionally, these POVM elements have an additional
geometrical constraint: the POVM element with a 0 entry when xi = 0, say, must be orthogonal to the
state to which Bob is steered when he gets the outcome xi = 0. This restricts each of these elements
to be proportional to the projector onto the unique element orthogonal to the steered states.

We note that each variable is associated with two POVM elements, one representing positive
occurrences of the variable, the other representing the negative occurrences of the variable; since
the union of the supports of such a pair is the whole Hilbert space, at least one of these must
have support in our chosen hypersphere and we choose one such POVM element to represent the
positive occurrences, where by the support of a matrix we mean the set of vectors that are not
mapped to the zero vector via the action of the matrix. Now, if we chose our hemisphere such that
no POVM elements lie on its equator, which is always possible since there are only finitely many
POVM elements, then we see that each triple must have at least one POVM element from that half of
the Hilbert space. Each clause therefore contains at least one positively-represented variable and so
the all-true assignment of the variables is a satisfying assignment. Additionally, the opposite holds

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/28/1/203/4807376 by Im
perial C

ollege London Library user on 07 D
ecem

ber 2018



On the computational complexity of detecting possibilistic locality 213

FIGURE 7. This table of possibilities, which corresponds to the 3-SAT instance (x1 ∧ x2 ∧ x3) ∨ (x1
∧ x2 ∧¬x3), can be shown to be unrealisable quantum mechanically, for example by invoking the
Navascués-Pironio-Acin (NPA) hierarchy.

and so the all-false assignment of the variables is satisfied also after this transformation has taken
place.

This calculation can be done in linear time exactly if we can find a great circle of the sphere that
does not go through any of point in linear time. To do this, take any axis of the sphere that does
not go through a point, any set of n + 1 such axes must contain one that does not meet a point, and
consider a set of n + 1 great circles that lie along this axis. Since such great circles share only their
intersection points at each end of the axis, at most n can contain one of our chosen points and so one
must contain none. �

We note that since our reduction in Lemma 2 was from a robust version of this problem, this
proof alone does not demonstrate that the quantum realisation is not NP-complete; however it does
demonstrate that we have access only to a very restricted set of problems we can embed, and
therefore the hardness results of the previous section do not automatically carry through into the
quantumly-accessible world. We have seen that when robustness is introduced into the mix, even
simple problems can become NP-hard; we cannot make any assumptions about the difficulty of
2-robust variants of decision problems based on the difficulty of the underlying problem, but that
we can embed some 2-ROBUST 0-VALID 1-VALID 3-SAT problems into the quantum formalism.
We note however that an arbitrary instance cannot be embedded: for instance, one can show that the
array shown in Figure 7 is ruled out by the second tier of the NPA-hierarchy [18], which is a hierarchy
of semidefinite programs to test whether a given probability distribution is quantum-mechanically
realisable: rejection at any tier of the hierarchy constitutes a proof that it is not. The proof is merely
by computation and will not be presented here, however the following proposition holds in general:

PROPOSITION 2
The array demonstrated in Figure 7 is not possible to create in any quantum dimension and any
realisation of measurement outcomes.

Having considered some restrictions on which 3-SAT instances can be embedded into
(2,3)-POSSLOC, we will now present a construction that enables a reasonably large class of
3-SAT instances to be embedded. We will consider the case in which our projective measurements
act on a qubit, and are additionally confined to a single plane through the Bloch sphere. It is possible
that relaxing either of these assumptions could allow more instances to be embedded, however this
is not clear: moving from a two-dimensional to a higher-dimensional quantum system could allow
more flexibility with regards to the geometry of the projectors, but since our measurements can only
have two outcomes, having more dimensions causes the creation of impossible events to be more
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214 On the computational complexity of detecting possibilistic locality

difficult; likewise moving from a system in which all the projectors are coplanar makes it harder for
impossible events to be created from the projectors since for a qubit at least, we need three coplanar
vectors to form a valid POVM. We note that the array in Figure 7 is, in particular, not achievable in
this situation, since if projectors {P1, P2, P3} in a two-dimensional Hilbert space have the identity
projector in their convex hull, then the set {P1, P2, P⊥

3 } does not unless P1 = P⊥
2 . In this situation,

they cannot form a proper POVM alongside another nonzero element.
We will draw inspiration for our projector geometry from the novel possibilistic nonlocality

scenario we illustrated in Figure 5 and presented in Figure 6.
For diagrammatic clarity, in this section we will adopt a slight representational change for our

diagrams, compared to the previous section. We will consider the scenario in which Alice and Bob
share a pure, entangled state and so once again, we will consider an equatorial slice of the Bloch
sphere, and the reduced state for Bob is a point, ρ, within the circle. Any pair of points on the edge
of the circle, the straight line through which goes through the point ρ constitute a pair of states to
which Bob can be steered (we will call this a steering pair); that is, there exists a measurement row
such that if the event corresponding to one subcolumn is observed by Alice, Bob’s system is left in
one of those states, and if the other is observed Bob’s system is left in the other. The departure from
our previous notation comes with how we will represent POVMs. Each POVM element, which in
this section will be proportional to a projector |ψ〉 〈ψ |, will be shown on the equatorial Bloch plane
as being in the location corresponding to the orthogonal projection

∣∣ψ⊥〉 〈
ψ⊥∣∣. The reason for this is

that in this representation of the system, when the same point on the circle is part of a POVM and a
steering pair, the possibility at the intersection of the relevant measurement subrow and measurement
subcolumn will be 0; Bob’s system is left in a state

∣∣ψ⊥〉
and the POVM element is proportional

to |ψ〉.
• The reduced state ρB is a point inside or on the edge of a circle.
• A measurement row corresponds to a line going through the point corresponding to ρB. The two

measurement outcomes are represented by the points at which this line intersects the circle, or,
equivalently, the inversion of these points through the centre of the circle. The latter denotation
will now be used.

FIGURE 8. A red positive literal, a red negative literal and a blue negative literal form a valid POVM.
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On the computational complexity of detecting possibilistic locality 215

FIGURE 9. Adding in x and y projectors sufficiently close to the eigendecomposition of ρB, which
is signified by the black circles. The positions of x and y are not shown individually due to their
closeness to the eigendecomposition.

• A measurement column consists of three points around the edge of the circle such that the
circle’s centre is in their convex hull, each of which is associated with a single measurement
subcolumn.

• An impossible event happens when the point corresponding to that measurement subcolumn
and the point corresponding to that measurement subrow are the same point.

A specific quantum scenario will now be explored alongside a characterisation of some of the
problem instances that can be embedded into it. Given a 3-SAT instance, let us assign each variable a
colour: blue or red. Clauses with variables of certain colourings and negation status will be realisable
with this construction. For example, as can be seen in Figure 8, a clause consisting of a red positive
literal, a red negative literal and a blue negative literal, e.g. (l1∧¬l2∧¬l3), forms a valid POVM.

If we add projectors for x and y that are close to the eigendecomposition of ρB (distinguished only
because we want them to have independent possibilities), as shown in Figure 9, we can note that we
can also support clauses of forms (l1∨l2∨¬x) or (¬l1∨¬l2∨y).

If we want to perform the transformation procedure in Theorem 1, we can see from these
constructions that the clauses in the initial 3-SAT instance can have one of the following forms:

• (l1∨l2∨l3), by transforming it to the conjunction of clauses (l1∨l3∨¬z) ∧ (z∨l2∨¬x), with
z close to x.

• (¬l1∨¬l2∨¬l3), by transforming it to the conjunction of clauses (¬l1∨¬l3∨z) ∧ (¬z∨¬l2∨y),
with all clauses of allowed forms if we choose the colouring z.

• (¬l1∨¬l2∨l3), by transforming it to (¬l1∨¬l2∨z2) ∧ (¬z2∨¬z1∨y) ∧ (z1∨l3∨¬x).
• (l1∨l2∨¬l3), since this becomes modified to (¬z∨l2∨¬l3) ∧ (z ∨ l1∨¬x), and by choosing the

colouration z both the clauses have permitted forms.

We also clearly by symmetry have as permissible clauses the images of the ones above under an
exchange of the colours blue and red. The rules seem to be, then, that in the original 3-SAT each
variable must be colourable either red or blue such that each clause contains at least one literal
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216 On the computational complexity of detecting possibilistic locality

of each colour, and that the literal in each clause that is the only one of its colour must not have
opposite sense to the other two literals. Here, ‘sense’ refers to whether the literal appears represented
positively or negatively in the clause. The author has been unable to produce a proof of NP-hardness
or membership in P of such 3-SAT instances. The scenario in consideration does not fall under the
purview of Ham’s trichotomy result [11], due to the restrictions being placed on which variables, not
just which senses, can appear together in clauses. In any case, the quantum realisation forces a very
strong geometrical relationship on clauses of the embedded instance.

6 Conclusion

By demonstrating the NP-completeness of (2, 3)-POSSLOC, the computational complexity of
all such possibilistic locality experiments has now been characterized. However, the problem of
quantum realisation remains open; we have also seen that it is difficult even to rule out a quantum
realisation under the restrictive assumption that the party with three-outcome measurements has
access only to a two-dimensional quantum system—although this does also imply without loss
of generality that the entire state under questioning is an entangled state of two qubits as can be
seen by invoking the Schmidt decomposition. A natural extension of this problem would be into
the formalism of ontological models; it is possible to prove possibilistic nonlocality results at the
level of underlying ontological models that nonetheless rely on operational probabilities rather than
possibilities, as is the case in Section IV of reference [14].
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